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ABSTRACT
In this paper, we show a mechanism to explain transport from the outer to the inner Solar
system. Such a mechanism is based on dynamical systems theory. More concretely, we consider
a sequence of uncoupled bicircular restricted four-body problems – BR4BP – (involving the
Sun, Jupiter, a planet and an infinitesimal mass), being the planet Neptune, Uranus and Saturn.
For each BR4BP, we compute the dynamical substitutes of the collinear equilibrium points of
the corresponding restricted three-body problem (Sun, planet and infinitesimal mass), which
become periodic orbits. These periodic orbits are unstable, and the role that their invariant
manifolds play in relation with transport from exterior planets to the inner ones is discussed.

Key words: methods: numerical – celestial mechanics – planets and satellites: dynamical evo-
lution and stability.

1 IN T RO D U C T I O N

The geometrical approach provided by dynamical systems methods
allows the use of stable/unstable manifolds for the determination
of spacecraft transfer orbits in the Solar system (see for example,
Gómez et al. 1993; Bollt & Meiss 1995). The same kind of methods
can also be used to explain some mass transport mechanisms in the
Solar system.

Inspired by the work of Gladman et al. (1996), Ren et al. (2012)
introduced two natural mass transport mechanisms in the Solar
system between the neighbourhoods of Mars and the Earth. The
first mechanism is a short-time transport, and is based on the exis-
tence of ‘pseudo-heteroclinic’ connections between libration point
orbits of uncoupled pairs of Sun–Mars and Sun–Earth circular re-
stricted three-body problems, RTBPs. The term ‘pseudo’ is due to
the fact that the two RTBPs are uncoupled, the hyperbolic manifolds
of the departing and arrival RTBP only intersect in configuration
space and a small velocity increment is required to switch from one
to the other. The second and long-time transport mechanism relies
on the existence of heteroclinic connections between long-period
periodic orbits in one single RTBP (the Sun–Jupiter system), and is
the result of the strongly chaotic motion of the minor body of the
problem.

Lo & Ross (1999) also explored the transport mechanism by
considering a sequence of RTBP. In each of them, they computed
the osculating orbital elements of the one-dimensional invariant
manifolds of the collinear libration points L1 and L2 (see Fig. 1).
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The results suggest possible heteroclinic connections between the
manifolds associated with the three most outer planets.

Collisions in the Solar system are abundant and are a mechanism
that changes the velocity of the colliding bodies. After a collision,
the bodies can, eventually, be injected in a suitable invariant mani-
fold that transports them from their original location to very distant
places. This possibility has not been explored in this paper.

The present paper is devoted to provide a dynamical mechanism
for the transport of comets, asteroids and small particles from the
outer towards the inner Solar system. The study is based on the anal-
ysis of the dynamics of the bicircular restricted four-body problem
(BR4BP) in which the main bodies (primaries) are the Sun, Jupiter
and an external planet (Saturn, Uranus and Neptune); in this way,
the outer Solar system will be modelled as a sequence of bicircu-
lar models. Some preliminary results about this problem already
appeared in Ollé et al. (2015).

The BR4BP is a simplified model of the four-body problem, in
which it is assumed that a particle moves under the gravitational at-
traction of two bodies (primaries) revolving in circular orbits around
their centre of mass, and a third primary, moving in a circular or-
bit around their barycentre. We will consider as primaries the Sun
and two planets, and assume that the four bodies move in the same
plane. In contrast with the RTBP, this model is not coherent, in the
sense that the circular trajectories assumed for the Sun and the two
planets do not satisfy Newton’s equations of the three-body prob-
lem. The lack of coherence becomes an important issue when there
are resonances between the natural motion of the infinitesimal par-
ticle and the period of the third primary, as was shown by Andreu
(1998) in the Sun–Earth–Moon system, but this is not the case for
the problem under consideration.
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Figure 1. Semimajor axis and eccentricity of the stable manifold of the L2 libration point (right-hand side of each planet, curves towards the right) and of the
unstable manifold of the L1 libration point (left-hand side of each planet, curves towards the left) for several Sun–planet systems modelled as circular restricted
three-body problems (Lo & Ross 1999).

The differential equations of the BR4BP are non-autonomous,
with periodic time dependence with the same period as the syn-
odical period of the planet. The time-periodic character of the dif-
ferential equations implies the non-existence of equilibrium points.
Nevertheless, the BR4BP can be viewed as a perturbation of the
RTBP, where equilibrium points do exist. The collinear equilibrium
points, Li, i = 1, 2, 3, are replaced by some periodic orbits that are
named their dynamical substitutes, since they play in the BR4BP a
dynamic role similar to the one of the equilibrium points.

We will consider bicircular models Sun–planet–planet. Accord-
ing to the values of the gravity potential of the planets (see Fig. 2),
it is convenient to include Jupiter in all the BR4BPs. As has al-
ready been said, the Solar system will be modelled by a sequence
of bicircular Sun–Jupiter–planet problems, dynamically uncoupled.
Taking an aligned initial configuration of the three primaries, for
each BR4BP, the dynamical substitutes of L1 and L2 corresponding
to the (Sun+Jupiter)–planet system can be computed. These peri-
odic orbits inherit the centre × saddle character of their associated
equilibrium points. The hyperbolic invariant stable and unstable
manifolds associated with the dynamical substitutes will be used
to determine the possible pseudo-heteroclinic connections between
the different BR4BPs, analogously as it was done by Lo & Ross
(1999).

The paper is organized as follows.

(i) Section 2 introduces the methodology for the computation of
periodic orbits, and their hyperbolic invariant manifolds, in time-
periodic differential systems. Some lemmas supporting the state-
ments of this section are given in Appendix A.

(ii) In Section 3, the differential equations of the bicircular prob-
lem, together with the numerical values of the parameters appearing
in the equations, are given. Using the methods introduced in the pre-
ceding section, the dynamical substitutes of the equilibrium points
are computed for the different BC4BPs used in the paper.

(iii) Section 4 is devoted to the computation of the invariant
manifolds of the substitutes of the equilibrium points in the bi-
circular four-body problems: Sun–Jupiter–Neptune, Sun–Jupiter–
Uranus and Sun–Jupiter–Saturn. The possible connections between
the invariant manifolds of these problems for moderate ranges of
time integration are analysed in this last section.

2 C O M P U T I N G P E R I O D I C O R B I T S
A N D T H E I R IN VA R I A N T M A N I F O L D S
I N PERI ODI C DI FFERENTI AL SYSTEMS

The general form of a time-periodic system of (first-order) differ-
ential equations is

ẋ = f (x, θ0 + tω), (1)

where x ∈ R
n, t is the independent variable, θ0, ω ∈ R and

f : R
n × R −→ R

(x, θ ) �−→ f (x, θ )

is 2π-periodic in θ . This is a time-periodic differential system with
period T = 2π/ω. Actually, it is a family of systems of ordinary
differential equations (ODE) depending on the parameter θ0. For
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Figure 2. Values of the gravity potential (in au2 s−2) of the Earth (E), Mars (M) and Jupiter (J) in the heliocentric region including the orbits of the Earth and
Mars (left), and gravity potential of Jupiter (J), Saturn (S), Uranus (U) and Neptune (N) in the heliocentric region corresponding to the outer Solar system.

each value of θ0, we will denote by φθ0
t the flow from time 0 to time

t of the corresponding system of ODE, this is{
d
dt

φθ0
t = f

(
φθ0

t (x0), θ0 + tω
)
,

φ
θ0
0 (x0) = x0.

(2)

For a fixed θ0, the flow φθ0
t (x0) can be evaluated as a function of

t, x0 using a numerical integrator of ODE. The flows corresponding
to the different possible values of θ0 are related by the following
lemma.

Lemma 1 For any x ∈ R
n, θ, t, s ∈ R, we have

φθ+tω
s

(
φθ

t (x)
)

= φθ
s+t (x).

Proof: Introducing θ as an additional coordinate makes autonomous
the system of ODE (1) as{

ẋ = f (x, θ ),
θ̇ = ω.

Denote this last system as Ẋ = F(X), with X = (x, θ )� and
F(X) = ( f (x, θ ), ω)�. Denote its flow from time 0 to time t by
�t . The components of �t are

�t (X) =
(

φθ
t (x)

θ + tω

)
,

with φθ
t defined by equation (2). Now, for any X = (x, θ )�, by the

flow property of �t ,(
φθ

s+t (x0)

θ + (s + t)ω

)
= �s+t (X) = �s

(
�t (X)

)

= �s

(
φθ

t (x)

θ + tω

)
=

(
φθ+tω

s

(
φθ

t (x)
)

θ + tω + sω

)
,

and the lemma follows from the equality of the first components in
both ends. �

Assume that, given a starting phase θ0, we have found an initial
condition x0 ∈ R

n of a T-periodic orbit of system (1) by numerically
solving for x0 the equation

φ
θ0
T (x0) = x0. (3)

Once x0 is found (for the starting phase θ0), a numerically com-
putable parametrization of the periodic orbit is provided by the
function ϕ defined as

ϕ(θ ) = φ
θ0
(θ−θ0)/ω(x0). (4)

Using Lemma 1, ϕ can be shown (see Lemma 2 in Appendix A) to
be 2π-periodic in θ and to satisfy the invariance equation

φθ
t (ϕ(θ )) = ϕ(θ + tω). (5)

Finding a periodic orbit in terms of an initial condition x0 requires
choosing a starting phase θ0 to be used in its computation. But
the periodic orbit itself, as an invariant object, is independent of
θ0. This is suggested by the previous invariance equation (5) and
further corroborated by the following fact: by a straightforward
application of Lemma 1, it can be checked that if x1 = φθ0

t (x0) and
θ1 = θ0 + tω, then

φ
θ0
(θ−θ0)/ω(x0) = φ

θ1
(θ−θ1)/ω(x1).

An additional way to see that the periodic orbit, as invariant object,
is independent of θ0 is to check, again through Lemma 1, that ϕ(θ )
is a periodic orbit of the 2π-periodic differential system

x′(θ ) = 1

ω
f (x(θ ), θ) ,

which is obtained from equation (1) by changing the independent
variable to θ . Actually, the BR4BP could be defined as a 2π-periodic
system in this way (using θ as time), thus avoiding the need for θ0.
We will not use this last approach since we will work with different
BR4BP models and we will want to refer all of them to the same
time-scale.

Assume now that x0 is an initial condition of a periodic or-
bit of equation (1) with starting phase θ0, found by solving
equation (3), and assume also that Dφ

θ0
T (x0) (its monodromy ma-

trix) has an eigenvalue � ∈ R, �> 1 (resp. �< 1), with eigenvector
v0. In order to state a formula for the linear approximation of the
corresponding unstable (resp. stable) manifold of the periodic orbit,
we first define

v(θ ) = �− θ−θ0
2π Dφ(θ−θ0)/ω(x0)v0. (6)

Again using Lemma 1 (see Lemma 3), v can be shown to be a
2π-periodic function of θ . The linear approximation of the corre-
sponding invariant manifold is given by

ψ̄(θ, ξ ) = φ(θ ) ± ξv(θ ). (7)

According to the sign + or −, in the previous expression, we will
talk about the two branches (positive and negative) of the invariant
manifold, that will be usually denoted by W+ and W−, respectively.
The fact that equation (7) provides the linear approximation (in ξ ) of
an invariant manifold of the periodic orbit is given by the following
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approximate invariance equation, that can be proven again through
Lemma 1 (see Lemma 4):

φθ
t

(
ψ̄(θ, ξ )

) = ψ̄
(
θ + tω,�t/T ξ

) + O(ξ 2). (8)

In the computations that follow, we will generate points on a
periodic orbit with initial condition x0 for the starting phase θ0 by
numerically evaluating ϕ(θ ) as defined in equation (4) for different
values of θ . For any of such values, the corresponding trajectory
in the invariant manifold (corresponding to the � eigenvalue of the
monodromy matrix) will be obtained by choosing ξ small enough
for the O(ξ 2) term in equation (8) to be small (e.g. ξ = 10−6) and
numerically evaluating

φθ
t

(
ψ̄(θ, ξ )

)
,

for t as large as needed.

3 TH E B I C I R C U L A R P RO B L E M

3.1 The equations of motion

The BR4BP is a simplified model for the four-body problem. We
assume that two primaries are revolving in circular orbits around
their centre of mass, assumed from now on to be the origin O,
and a third primary moves in a circular orbit around this origin. The
BR4BP describes the motion of a massless particle that moves under
the gravitational attraction of the three primaries without affecting
them. We consider here the planar case, in which all the bodies
move in the same plane.

As mentioned in the introduction, we will assume that the two
main primaries are the Sun and Jupiter, and the third one a planet
of the outer Solar system. Our aim is to consider the Solar system
as a sequence of uncoupled bicircular models in order to get a first
insight of transport in the Solar system that may be explained using
the separated bicircular problems.

First, and in order to fix the notation, we briefly recall how to
obtain the equations of motion of the BR4BP (see also Andreu
1998).

Consider a reference system centred at the centre of mass of the
Sun–Jupiter system, and assume that it is in non-dimensional units
of mass, length, and time: the masses of the Sun, S, and Jupiter,
J, are 1 − μ and μ, respectively, being μ = mJ/(mJ + mS), the
distance between S and J is equal to 1, and both J and S complete
a revolution around their centre of mass in 2π time units. Then the
mean motion of S and J becomes one, and the universal gravitation
constant is also equal to one. Assume that, in these units, the planet,
P, has mass μP and revolves around the centre of mass of S and J in
a circle of radius aP. Then, see Fig. 3, we can write the coordinates
of S, J, P and of the barycentre B of the three bodies as

RS = Mθ1+t

(
μ

0

)
, RJ = Mθ1+t

(
μ − 1

0

)
,

RP = Mθ2+ωpt

(
aP

0

)
, B = μP

1 + μP

RP ,

where Mα is the matrix of a plane rotation of angle α, θ1, θ2 are the
initial phases of the Sun and the planet, respectively, and ωP is the
mean motion of the planet, chosen to satisfy Kepler’s third law

ω2
P a3

P = 1 + μP . (9)

Figure 3. The geometry of the BCP, indicating the position of the Sun (S),
Jupiter (J), a planet (P) and the particle (R) with respect to the centre of
mass of the Sun–Jupiter.

Newton’s equations for a particle (located by the position vector
R) submitted to the gravitational attraction of the Sun, Jupiter and
the planet are

R̈ − B̈ = − (1 − μ) (R − RS)

‖R − RS‖3
− μ(R − RJ )

‖R − RJ ‖3
− μP (R − RP )

‖R − RP ‖3
.

We consider a rotating (synodical) system of coordinates, with
angle θ1 + t, measured anticlockwise from the Jupiter–Sun direction
(see Fig. 3). In this rotating system, the Sun and Jupiter remain fixed
at (μ, 0), (μ − 1, 0), and the equations of motion for the particle
(with position vector (x, y)) can be written as(

ẍ

ÿ

)
+ 2

(
−ẏ

ẋ

)
+

(
−x

−y

)
− μP

a2
P

(
− cos θ

− sin θ

)
=

−1−μ

ρ3
1

(
x−μ

y

)
− μ

ρ3
2

(
x−μ+1

y

)
− μP

ρ3
P

(
x − aP cos θ

y − aP sin θ

)
,

(10)

where

ρ1 = ((x − μ)2 + y2)1/2,

ρ2 = ((x − μ + 1)2 + y2)1/2,

ρP = ((x − aP cos θ )2 + (y − aP sin θ )2)1/2,

θ = θ2 − θ1 + t(ωP − 1).

Observe that the previous equations are a system of ODE of the
form (1) with θ0 = θ2 − θ1.

Defining momenta px = ẋ − y, py = ẏ + x, the equations may
be written as a Hamiltonian system of differential equations with
Hamiltonian function

H (x, y, px, py) = 1

2
(p2

x + p2
y) + ypx − xpy

−1 − μ

ρ1
− μ

ρ2
− μP

ρP

+ μP

a2
P

(y sin θ + x cos θ ).

(11)
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Table 1. Parameter values for the mass ratio, semimajor axis and mean motion of Saturn, Uranus and Neptune. The
non-dimensional values of μP and aP have been computed using the numerical values of the planetary masses and
semimajor axis of the JPL ephemeris file DE405; the mean motion ωP has been computed according to Kepler’s third
law (9). Suitable units are taken such that the unit of mass is the mass of the Sun–Jupiter system, the unit of distance is
the Sun–Jupiter distance and the unit of time is such that Jupiter completes a revolution around the Sun in 2π units.

Planet μP aP ωP

Saturn 0.285 613 279 409 × 10−3 1.836 563 205 83 0.401 840 025 142
Uranus 0.436 207 916 533 × 10−4 3.694 005 741 96 0.140 852 033 933
Neptune 0.514 647 520 743 × 10−4 5.787 561 680 61 0.071 823 692 1118

In this way, we get a non-autonomous Hamiltonian system of 2
degrees of freedom which is periodic in t with period

TP = 2π

ωP − 1
. (12)

Later on, it will be useful to consider the Hamiltonian as an
autonomous one. To do so, we just introduce variables t, pt

and a new Hamiltonian with 3 degrees of freedom defined by
H̃ (x, y, t, px, py, pt ) = H (x, y, px, py) + pt .

Table 1 gives the values of the parameters corresponding to the
planets of the outer Solar system used in this paper.

3.2 Dynamical substitutes of the equilibrium points

Since our aim is concerned with possible mechanisms to explain
transport in the Solar system, we want to study the following pos-
sibility: the matching of the (different orbits on the) invariant man-
ifolds of suitable unstable periodic orbits from different BC4BP.
That is, (pseudo)-heteroclinic connections between certain periodic
orbits. This section is focused on the computation of these periodic
orbits.

The BR4BP may be regarded as a periodic perturbation of the
RTBP. It is well known that the RTBP has five equilibrium points:
the collinear ones L1, L2 and L3, which are unstable (of type centre
×saddle) for any μ ∈ (0, 1/2], and the equilateral ones L4 and L5

that are linearly stable for μ ∈ (0, μRouth) and unstable for μ ∈
(μRouth, 1/2]. Each collinear equilibrium point Li, i = 1, 2, 3 gives
rise to a periodic orbit in the BR4BP. These periodic orbits are
called the dynamical substitutes of the equilibrium points and are
unstable periodic orbits. In particular, we will be interested in the
role that the invariant manifolds of the dynamical substitutes of L1

and L2 play in the transport. We will denote them by OLi, i = 1, 2.
Fig. 4 shows the periodic orbits OL1 and OL2 – corresponding to
the equilibrium points L1 and L2 of the Sun–Saturn RTBP – for the
BR4BP Sun–Jupiter–Saturn in the synodical system of coordinates,
where the Sun and Jupiter remain fixed on the x-axis.

Let us describe first how to compute these periodic orbits. We
label each planet of the Solar system with the index ip = 1, 2, 3,
4, 6, 7, 8 corresponding to Mercury, Venus, Earth, Mars, Saturn,
Uranus, Neptune, respectively. We fix ip and consider the corre-
sponding BR4BPip Sun–Jupiter–(ip planet). As has been explained
in Section 2, one can take the initial phases θ1 = θ2 = 0. Since we
look for a periodic orbit of period TP, given by equation (12), the
system to be solved is

F (x, y, px, py) = φTP
(x, y, px, py) − (x, y, px, py) = 0,

so (a) we need a seed to start with, and (b) we will apply Newton’s
method to refine it.

In order to do so, we carry out the following procedure.

Figure 4. Projection in configuration space (rotating coordinates) of the
dynamical substitutes OL1 and OL2 for the BR4BP Sun–Jupiter–Saturn.
The orbit of Saturn is also shown with a dotted line.

(i) We consider the RTBP taking into account the Sun and the
planet ip. We compute the location of the equilibrium points L1

and L2.
(ii) We transform the position of the Li, i = 1, 2 computed to

suitable units according to the BR4BPip considered. Let xLi
be the

value of the x coordinate of the initial condition. We expect that the
periodic orbit we are looking for will be close to a circular orbit of
radius xLi

in the BR4BPip in rotating coordinates.
(iii) As an initial seed, we start with the initial condition of Li

and we apply the Newton’s method to solve

φTP
(q0) − q0 = 0.

This is a good seed for ip = 7, 8 but it is not for ip ≤ 6. Due to
the high instability of the substituting periodic orbits (see Table 3),
the convergence of the Newton’s method fails. In these cases, the
strategy is to consider a multiple shooting (MS) method. More con-
cretely, we take as initial condition m points on the circular orbit of
radius xLi

and angular velocity ωP − 1. We apply Newton’s method
using MS and we have convergence to the required substituting
periodic orbit.

As has already been said, the dynamical substitutes of Li, i = 1,
2 are denoted by OL

ip
i , i = 1, 2 (or simply OLi). In Table 2, we

give the initial conditions of the dynamical substitutes OLi, i = 1, 2
for the outer bicircular problems BR4BPip, ip = 6, 7, 8. The initial
conditions are (x, y, px, py) with y = px = 0, so we just list (x, py).

The periodic orbits are of type centre × saddle, so for each one
there exist stable and unstable manifolds Ws/u(OLi). In Table 3, we
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Table 2. Initial conditions of the dynamical substitutes OLi, i = 1, 2 for the
outer planets.

Planet Initial conditions (x, py)

Saturn OL6
1 1.754 258 959 238 766, 0.704 361 873 249 9882

OL6
2 1.921 870 553 845 556, 0.771 909 189 593 7062

Uranus OL7
1 3.604 609 729 648 801, 0.507 712 919 588 7936

OL7
2 3.784 916 933 322 854, 0.533 110 116 817 5304

Neptune OL8
1 5.639 606 878 614 984, 0.405 056 738 729 9962

OL8
2 5.938 111 451 650 008, 0.426 496 552 726 5244

show the value of the eigenvalue � > 1 associated with the periodic
orbits OL

ip
i , i = 1, 2 ip = 2, . . . , 8. We can see that the value of the

eigenvalue increases as ip decreases, and for the planets of the inner
Solar system, the value of � is really big. This high instability is the
reason why an MS method has been necessary to compute the initial
conditions of the periodic orbits. In the case of Mercury, not listed
in Table 3, we have found problems to compute the dynamical
substitutes even using MS with a number of nodes up to 15. As
Mercury is out of our scope, we have not tried to compute its
dynamical substitutes with a higher number of nodes. On the other
hand, due to the high instability, the linear approximation, given by
equation (7), is not good enough to follow the invariant manifolds
Wu/s(OLi) for a long time in the bicircular models corresponding to
the inner planets (ip ≤ 4).

4 C O N N E C T I O N S B E T W E E N S E QU E N C E S O F
B I C I R C U L A R P RO B L E M S

4.1 Invariant manifolds of O Li p
i

We want to see if some natural transport mechanism in the So-
lar system can be explained by chaining bicircular restricted Sun–
Jupiter–planet problems. In Ren et al. (2012), the authors consider
short-time natural transport based on the existence of heteroclinic
connections between libration point orbits of a pair of ‘consecutive’
Sun–planet RTBPs. Following the same idea, we want to explore
these type of connections between two different bicircular prob-
lems.

More concretely, we want to see if the invariant manifolds of the
dynamical substitutes from consecutive bicircular problems match.
Notice that if two invariant manifolds of two different bicircular
problems reach the same point (in position and velocity), they do
not really intersect, because they are associated with different dy-
namic problems. But such a match is a good indicator of a possible
transport mechanism in the Solar system, in the sense that could
be refined to a true heteroclinic connection in a model including
all the bodies involved in the two bicircular problems. We call such
common points connections. If a connection between two bicircular
problems exists, we can expect to have natural transport from one
planet to the next one in the sequence of bicircular problems, and a

particle could drift away from one planet to reach a neighbourhood
of the following planet. After that, for transport between neighbour-
hoods of the libration points of the same Sun–planet problem, it is
enough to consider an RTBP (Sun+planet+infinitesimal particle),
in which case the existence of heteroclinic connections between
libration point orbits around L1 and L2 is well known. These con-
nections would allow a particle to continue its journey towards the
innermost Solar system. See Fig. 5.

For the computation of the connections, we proceed as fol-
lows. Consider two consecutive bicircular problems BR4BPip and
BR4BPip + 1 corresponding to the planets ip and ip + 1. We are
interested in transits from the outer to the inner Solar system. In
all the bicircular problems, OL1 is an inner orbit than the orbit of
the planet with respect to the Sun, and OL2 is an outer orbit (see
Fig. 4). Then, the suitable connections are those involving the in-
variant manifolds of OL

ip+1
1 and OL

ip
2 . It is well known that the

invariant manifolds associated with the equilibrium points L1 and
L2 in the RTBP have two branches: one goes inwards, while the
other one goes outwards, at least for times not too big. The invariant
manifolds of the dynamical substitutes have the same behaviour.
According to this, we denote by W

u/s
+ (OL) the branch of the invari-

ant manifold that goes outwards, and by W
u/s
− (OL) the branch of

the invariant manifold that goes inwards. See Fig. 6.
Therefore, in order to find connections, in the BR4BPip, we com-

pute the (linear approximation of the) parametrization of the stable
manifold (see equation 7) and we follow the branch Ws

+(OL2), and
in the BR4BPip + 1, we compute the (linear approximation of the)
parametrization of the unstable manifold (again see equation 7) and
we follow the branch Wu

−(OL1). To study if there exist connections,
we also fix a section 
R = {(x, y); x2 + y2 = R2}, where R is an
intermediate value between the radii of the orbits of the planets of
the two bicircular problems, aip and aip + 1, that is aip < R < aip + 1

(see Fig. 7).
The main objectives are: first, to determine if both manifolds

reach the section 
, and, secondly, to study which is the minimum
distance between the sets Ws(OL

ip
2 ) ∩ 
 and Wu(OL

ip+1
1 ) ∩ 
.

That is, we want to see if both manifolds intersect, or if they do not,
and how far (as sets) they are from each other.

We propagate a large number of orbits along each invariant man-
ifold and we study the evolution of the distance r(t) =

√
x2 + y2

for |t| ≤ T, for a fixed maximum time T. First, we explore which
are the maximum and minimum values of r(t) that each invariant
manifold Ws(OL

ip
2 ) and Wu(OL

ip+1
1 ) can reach, that are denoted

by rM and rm. The exploration gives an idea whether the invariant
manifolds can intersect and which sections 
 are more suitable. We
explore in each case the behaviour of the two branches W

u/s
± . As we

will see, the function r(t) has, in general, an oscillating behaviour,
but the orbits on the branch W+, r(t) take values greater than the
mean radius of the corresponding orbit OLi, whereas the orbits on
the branch W−, r(t) take values less than that mean radius (at least
for values of |t| not too large). See Figs 8–11, where we show the
evolution of r(t) along both branches of some orbits of the invariant
manifolds Wu/s(OL

ip
1 ) for ip = 6, 7, 8.

Table 3. Value of the eigenvalue � > 1 corresponding to the dynamical substitutes OL
ip
i , i = 1, 2 of each bicircular

problem.

Outer planets �(OL
ip
i ), i = 1, 2 Inner planets �(OL

ip
i ), i = 1, 2

Neptune (ip = 8) 3.492, 3.286 Mars (ip = 4) 9× 107, 2.5× 108

Uranus (ip = 7) 14.105, 12.473 Earth (ip = 3) 2.8× 107, 3.4× 107

Saturn (ip = 6) 6.5× 104, 2.5× 104 Venus (ip = 2) 1.5× 107, 1× 107
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Figure 5. Scheme of the chain of connections between two consecutive restricted bicircular Sun–Jupiter–planet (BR4BPip) problems, and two consecutive
restricted Sun–planet (Pip) problems (RTBPip).

Figure 6. Projection in configuration space (rotating coordinates) of
branches of the invariant manifold Wu+(OL8

1) (outer corona) and Wu−(OL8
1)

(inner corona). The dynamical substitute OL8
1 is the periodic orbit between

the two branches. See the text for further details and also Fig. 8.

Figure 7. Projection in configuration space (rotating coordinates) of the
dynamical substitutes OL8

1, OL7
2, one orbit on the invariant manifolds

Wu(OL8
1) and Ws (OL7

2), and the section 
R for R = √
22.

It seems natural that the branches to be considered, in order to
see if the invariant manifolds Wu(OL

ip+1
1 ) and Ws(OL

ip
2 ) match,

should be Wu
− and Ws

+. Figs 8 and 9 suggest that this is the case
for Uranus and Neptune. Notice that in the BR4BP8 there are orbits

on the Wu
+(OL8

1) branch that, after some time moving outwards
(with r(t) greater than the mean radius of OL8

1), cross the OL8
1 orbit

and move inwards (see Fig. 8, left). This can be explained in two
ways: on one hand, the orbits follow paths that overlap the orbit
of the planet, so the particle can have a close encounter with the
planet and suffer a big deviation; on the other hand, the existence
of homoclinic orbits to OL8

1 would allow the existence of transit
orbits, i.e. orbits that spend some time surrounding the planet, have
a passage near the OL8

1 orbit and follow a path to the inner region
(this behaviour has been observed in the RTBP, see for example
Barrabés, Mondelo & Ollé 2009). Nevertheless, as Fig. 9 suggests,
this behaviour is rare. In this paper, we only consider the branches
Wu

−(OL8
1) and Ws

+(OL7
2) for a possible matching.

We repeat the exploration for the orbits on the manifold Wu(OL7
1)

(Sun–Jupiter–Uranus problem) and Ws(OL6
2) (Sun–Jupiter–Saturn

problem), see Figs 10 and 11. In the last case, the orbits OL6
i are

highly unstable (see Table 3) and the invariant manifolds spread
far away (inwards and outwards). That is the particular case of the
branch Ws

−(OL6
2): although their orbits initially tend to the inner

Solar system, most of them move outwards reaching distances r(t)
greater than the location of Neptune (see Fig. 11, right).

In Table 4, we summarize the maximum and minimum values
of r(t) of each manifold for |t| ≤ 104. As we have explained, we
are exploring transport in the outer Solar system, and we have not
studied from Saturn inwards. This minimum and maximum values
indicate that there exists the possibility of a connection between the
bicircular problems for Uranus and Neptune and Saturn and Uranus.

4.2 Matching consecutive bicircular problems

Next we choose two intermediate sections 
R, for R = R1 = √
22

and R = R2 = √
11, and we compute the intersection of the

appropriate invariant manifolds with the sections: on one hand
Wu(OL8

1) ∩ 
R1 and Ws(OL7
2) ∩ 
R1 , to explore connections be-

tween the bicircular problems Sun–Jupiter–Neptune and Sun–
Jupiter–Uranus, and, on the other hand, between Wu(OL7

1) ∩ 
R2

and Ws(OL6
2) ∩ 
R2 to explore connections between the bicircular

problems Sun–Jupiter–Uranus and Sun–Jupiter–Saturn.
First, we compute the value of the osculating semimajor axis at

each point of the orbits of the invariant manifolds at the section, in
order to obtain an equivalent of Fig. 1 for the bicircular problem,
see Fig. 12. In the case of the bicircular problems associated with
Neptune and Uranus, we see that there are points of both invariant
manifolds with the same semimajor axis, and this suggests the
existence of intersections between these manifolds. In the case of
Saturn and Uranus bicircular problems, it seems that there are not
common points for |t| < 104.
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Figure 8. Behaviour of the distance r(t) of some orbits of the branches Wu+(OL8
1) (left) and Wu−(OL8

1) (right). The dotted line corresponds to r = a8, the
circular orbit of Neptune. The continuous black line corresponds to the value of r of the orbit OL8

1.

Figure 9. Behaviour of the distance r(t) of some orbits of the branches Ws+(OL7
2) (left) and Ws−(OL7

2) (right). The dotted line corresponds to r = a7, the
circular orbit of Uranus. The continuous black line corresponds to the value of r of the orbit OL7

2.

Figure 10. Behaviour of the distance r(t) of some orbits of the branches Wu+(OL7
1) (left) and Wu−(OL7

1) (right). The dotted line corresponds to r = a7, the
circular orbit of Uranus. The continuous black line corresponds to the orbit OL7

2.

Figure 11. Behaviour of the distance r(t) of some orbits of the branches Ws+(OL6
2) (left) and Ws−(OL6

2) (right). The dotted line corresponds to r = a6, the
circular orbit of Saturn. The continuous black line corresponds to the orbit OL6

2.
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Table 4. Minimum and maximum values of r(t) of each manifold Wu(OL1)
and Ws(OL2) (resp) and |t| ≤ 104.

Bicircular problem rm(Wu(OL
ip
1 )) rM (Ws (OL

ip
2 ))

Sun–Jupiter–Neptune (ip = 8) 4.096 29
Sun–Jupiter–Uranus (ip = 7) 2.606 07 5.572 42
Sun–Jupiter–Saturn (ip = 6) >10

Figure 12. Osculating semimajor axis versus eccentricity for the points
of Wu(OL8

1) ∩ 
R1 and Wu(OL7
1) ∩ 
R2 , and Ws (OL7

2) ∩ 
R1 and
Ws (OL6

2) ∩ 
R2 .

In order to look for actual intersections, we explore the distance
between the sets Wu(OL

ip+1
1 ) ∩ 
R and Ws(OL

ip
2 ) ∩ 
R . We pro-

ceed in the following way. We take N initial conditions of N orbits
along each invariant manifold, according to formula (7), follow
these orbits and compute their intersections with the section 
R

for |t| < T, for a fixed T (so this means a finite time of integration
along each orbit). As we have seen in Figs 8 and 9, the distance
r(t) from the orbits to the origin has an oscillatory behaviour so,
in general, the orbits meet the section several times. Each orbit on
the invariant manifold is uniquely determined by the parameter θ

[see equation (7) for more details]. Thus, each point on the intersec-
tion Wu(OL

ip+1
1 ) ∩ 
R is determined by θ and the time required to

reach the section, t
 . Then, for each one of these points (θ , t
), we
compute the distance in position and velocity to each point on the
set Ws(OL

ip
2 ) ∩ 
R . We keep both the minimum distance in posi-

tion, denoted as dp(θ, t
), and the minimum distance in velocity,
denoted as dv(θ, t
). A connection between the bicircular problems
ip and ip + 1 would be obtained if dp + dv = 0.

We start with BR4BP7 and BR4BP8, and their intersections with
the section 
R1 . We are focused on short-term integrations, so for
the explorations done we take N = 500 and T = 104 (although
of course the Solar system is a lot older). We do not find any
connection, in the sense that dp + dv is never exactly zero. Fig. 13
shows the results obtained in this case. The plot on the left shows
that there exist points such that their distance dp is less than 10−7,
and few points with distance of the order of 10−9 (about 800 m).
The plot on the right shows the distance in velocity dv only for those
points such that dp < 10−5. In this case, we observe that dv > 10−5,
and there are some points such that dv ∈ (10−4, 10−3) (10−5 is about
1.306 m s−1).

Next we repeat the exploration to look for connections between
the bicircular problems Sun–Jupiter–Uranus (BR4BP7) and Sun–
Jupiter–Saturn (BR4BP6). Similarly to the previous case, initially
we consider the branches Wu

−(OL7
1) (inner branch, see Fig. 10,

right) and Ws
+(OL6

2) (outer branch, see Fig. 11, left). We follow
N = 500 orbits up to the section 
R2 for |t| < 104. The results are
shown in Fig. 14. We obtain similar results as in the previous case
in positions (minimum dp of the order of 10−8 or 10−9), but the
results in velocities are not so good. We remark that the simulations
have been done for a fixed and moderate value of T (T = 104). Of
course, for higher values of T – long-term integrations – we might
have better results. This is the case for the bicircular problems
Sun–Jupiter–Uranus (BR4BP7) and Sun–Jupiter–Saturn (BR4BP6)
where we obtain minimum in distance dp of the order of 10−8 and
minimum in velocities dv of the order of 10−3 for T = 5 × 104.

Recovering the behaviour of the branches of Ws(OL6
2), we no-

tice that the ‘inner’ branch Ws
− has a significant number of orbits

that move outwards after some time (see Fig. 11, right). In fact,
this branch sweeps a wide region of the outer Solar system, and
a possible connection with the branches of Wu(OL7

1) can occur.
Therefore, we repeat the exploration with the Ws

−(OL6
2) branch: we

compute its intersections with the section 
R2 and then we look for
matchings with Wu

−(OL7
1) ∩ 
R2 . The results are shown in Fig. 15.

Again in positions we have good results (points at a distance of
orders of metres), but in velocities the differences are larger than in
the previous case.

Figure 13. Minimum distances dp (positions, left) and dv (velocities, right) between points of the invariant manifolds at the section 
R1 of the Uranus and
Neptune bicircular problems. See the text for more details.
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Figure 14. Minimum distances dp (position, left) and dv (velocities, right) between points of the invariant manifolds Wu−(OL7
1) and Ws+(OL6

2) at the
section 
R2 .

Figure 15. Minimum distances dp (position, left) and dv (velocities, right) between points of the invariant manifolds Wu−(OL7
1) and Ws−(OL6

2) at the
section 
R2 .

5 C O N C L U S I O N S

In this paper, we have explored a natural transport mechanism, in
the outer region of the Solar system, based on the existence of het-
eroclinic connections between the invariant hyperbolic manifolds
of the dynamical substitutes of the collinear libration points of the
Sun–Neptune, Sun–Uranus and Sun–Saturn RTBPs. The study is
based on the analysis of a sequence of BR4BPs, in which, aside
from the Sun and the three outer planets already mentioned, the
gravitational effect of Jupiter is included in all the bicircular prob-
lems. The existence of connections between the manifolds of the
Sun–Jupiter–Neptune and Sun–Jupiter–Uranus suggests a natural
short-term mass transport mechanism between these two systems.
The situation is not so clear between the Sun–Jupiter–Uranus and
Sun–Jupiter–Saturn, since the invariant manifolds considered for
the short-term transport do not have a clear intersection. However,
integration for longer ranges of time seems to be a good strategy
to improve such connections. Of course, the ellipticity of the actual
planet orbits and additional perturbations of the other planets and
forces, as well as collisional processes should also be taken into
account for a more accurate description of transport mechanisms.

The paper includes a rigorous justification of the procedures used
for the computations of the periodic orbits and their associated
invariant manifolds in the bicircular restricted problems.
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APPENDIX A

The lemmas in this appendix support the statements in Section 2.

Lemma 2 The function ϕ(θ ), as defined in equation (4), is2π-
periodic in θ and satisfies the invariance equation (5).

Proof: The invariance equation is proven by the following calcu-
lation, for which it is necessary to use Lemma 1 in the second
equality:

φθ
t (ϕ(θ )) = φθ

t

(
φ

θ0
(θ−θ0)/ω(x0)

)
= φ

θ0
t+(θ−θ0)/ω(x0) = ϕ(θ + tω).

A similar argument proves 2π-periodicity:

ϕ(θ + 2π) = φ
θ0
2π/ω+(θ−θ0)/ω(x0) = φ

θ0+2π
(θ−θ0)/ω

(
φ

θ0
2π/ω(x0)︸ ︷︷ ︸

x0

)
= ϕ(θ ),

and the lemma follows. �

Lemma 3 The function v(θ ) defined in equation (6) is 2π-periodicin
θ and satisfies

Dφθ
t

(
ϕ(θ )

)
v(θ ) = �t/T v(θ + tω). (A1)

Proof: We first prove equation (A1). Using the definition of v, the
chain rule and Lemma 1,

Dφθ
t (ϕ(θ )) v(θ ) = Dφθ

t

(
φ

θ0
(θ−θ0)/ω(x0)

)
�− θ−θ0

2π Dφ
θ0
(θ−θ0)/ω(x0)v0

= �− θ−θ0
2π D

(
φθ

t ◦ φ
θ0
(θ−θ0)/ω

)
(x0)v0,

= �
tω
2π �− θ+tω−θ0

2π Dφ
θ0
(θ+tω−θ0)/ω(x0)v0

= �t/T v(θ + tω).

A similar argument proves 2π-periodicity in θ ,

v(θ + 2π) = �− θ+2π−θ0
2π Dφ

θ0
(θ+2π−θ0)/ω(x0)v0

= �− θ+2π−θ0
2π D

(
φ

θ0+2π
(θ−θ0)/ω ◦ φ

θ0
2π/ω

)
(x0)v0

= �−1�− θ−θ0
2π Dφ

θ0+2π
(θ−θ0)/ω

(
φ

θ0
2π/ω(x0)︸ ︷︷ ︸

x0

)
Dφ

θ0
T (x0)v0︸ ︷︷ ︸
�v0

= v(θ ),

and the lemma follows. �

Lemma 4 The expression (7) of the linear approximation of an
invariant manifold of a periodic orbit satisfies the approximate
invariance equation (8).

Proof: Expanding φθ
t by Taylor around ϕ(θ ), and using Lemmas 2

and 3, we have

φθ
t

(
ψ̄(θ, ξ )

)
= φθ

t

(
ϕ(θ )

)
+ Dφθ

t

(
ϕ(θ )

)
ξv(θ ) + O(ξ 2)

= ϕ(θ + tω) + ξ�t/T v(θ + tω) + O(ξ 2),

and the lemma follows. �
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