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Abstract

In this work we analyze the propagation of photons in an environment where a strong magnetic

field (perpendicular to the photon momenta) coexists with an oscillating cold axion background

with the characteristics expected from dark matter in the galactic halo. Qualitatively, the main

effect of the combined background is to produce a three-way mixing among the two photon polar-

izations and the axion. It is interesting to note that in spite of the extremely weak interaction of

photons with the cold axion background, its effects compete with those coming from the magnetic

field in some regions of the parameter space. We determine (with one plausible simplification) the

proper frequencies and eigenvectors as well as the corresponding photon ellipticity and induced

rotation of the polarization plane that depend both on the magnetic field and the local density of

axions. We also comment on the possibility that some of the predicted effects could be measured

in optical table-top experiments.
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I. INTRODUCTION

Originally introduced to solve the strong CP problem [1–3], axions are an attractive and

viable candidate for dark matter (DM) [4–7]. The axion is the Goldstone boson associ-

ated with the spontaneous breaking of the U(1)PQ symmetry [1–3]. After the QCD phase

transition, instanton effects induce a potential on the axion field, giving it a mass ma. Astro-

physical and cosmological constraints (see below) force this mass to be quite small. Yet, the

axion provides cold dark matter, as it is not produced thermically. If the axion background

field is initially misaligned (not lying at the bottom of the instanton-induced potential), at

late times it oscillates coherently as

ab(t) = a0 sinmat, (1)

where the amplitude, a0, is related to the initial misalignment angle. The oscillation of

the axion field has an approximately constant (i.e. space-independent) energy density ρ =

1
2
a20m

2
a, which contributes to the total energy of the universe1. This constitutes the cold

axion background (CAB for short). There are suggestions that axions could actually form

a Bose-Einstein condensate (BEC) [8].

Axions couple to photons through the term

Laγγ = gaγγ
α

2π

a

fa
FµνF̃

µν , (2)

where the coefficient gaγγ depends on the model2. However, most of them [9–12] give gaγγ ≃
1. For the present discussion this is all that matters. The near-universality of the axion-

photon coupling makes it the best candidate to explore axion physics.

This coupling is severely bounded. The lower limit fa > 107 GeV coming from astro-

physical considerations seems now well established. If one assumes that axions are the main

ingredient of DM, there is also an upper bound: fa < 3 · 1011 GeV. See Ref. [7] and refer-

ences therein for an explanation of the above bounds. These values of fa make the axion

very weakly coupled and imply a very long lifetime, of the order of 1024 years or more; see

e.g. Ref. [13]. In the case of Peccei-Quinn axions (i.e. solving the strong CP problem)

1 This density is not really constant, as DM tends to concentrate in galactic halos. Nevertheless it is

assumed to change over very large scales, so for our purposes it suffices to treat it as a constant.
2 Sometimes a dimensionful coupling constant Gaγγ ∝ 1

fa
is used instead. Our gaγγ is dimensionless.
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the approximate relation fama ≃ fπmπ should hold and therefore cosmology considerations

place the axion mass in the range 10−1− 10−6 eV. For other axion-like particles, not related

to the strong CP problem, there is no such relation between ma and fa and the range of

possible values is more open, although they are less motivated from a physical point of view.

Axions could also couple to matter, although in this case the coupling is much more model

dependent. The coupling is so small that their detection is very difficult. Nevertheless, some

of the best bounds on axion masses and couplings come from the study of abnormal cooling

in white dwarfs due to axion emission [14].

When dealing with axions and their possible cosmological relevance, there are several

separate issues that have to be adressed. The first one is whether a particle with the

properties of the axion exists or not. This is what experiments such as CAST [15], IAXO

[16] or ALPS [17] are addressing directly. If the axion does exist and its mass happens to

be in the relevant range for cosmology we would have a strong hint that axions may serve

as valid DM candidates. Of course for axions to be the main component of DM they also

have to be present in a sufficient amount.

The mechanism of vacuum misalignment and the subsequent redshift of momenta suggest

that it is natural for axions to remain coherent (or very approximately so) over relatively

long distances, perhaps even forming a BEC as has been suggested. Thus one should expect

not only that the momentum of individual axions satisfies the condition k ≪ ma as required

from cold DM but also all that axions oscillate in phase, rather than incoherently, at least

locally. In addition one needs that the modulus of the axion field is large enough to account

for the DM density.

Finding an axion particle with the appropriate characteristics is not enough to demon-

strate that a CAB exists. Detecting the coherence of the axion background and hence

validating the misalignment proposal is therefore not within reach of any of the above ex-

periments.

The ADMX Phase II experiment [18] tries to detect axions in the Galaxy dark matter

halo that, under the influence of a strong magnetic field, would convert to photons with a

frequency equal to the axion mass in a resonant cavity. This experiment is sensitive to the

local axion density, the probability of a positive detection being proportional to the latter. In

order to get a significant signal the axion field has to be significantly constant at length scales

comparable to the cavity size. ADMX is therefore sensitive to the CAB. The experiment
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claims sensitivity to axions in the approximate mass range 10−6 eV to 10−5 eV and this is

also the range of momenta at which the axion background field can be significantly probed

in such an experiment.

Looking for the collective effects on photon propagation resulting from the presence of

a CAB is another possible way of investigating whether a CAB is present at the scales

probed by the experiment. Of course we do not anticipate large or dramatic effects given

the presumed smallness of the photon-to-axion coupling and the low density background

that a CAB would provide. However, interferometric and polarimetric techniques are very

powerful and it is interesting to explore the order of magnitude of the different effects in

this type of experiments. Potentially, photons can also probe the CAB structure in different

ranges of momenta. In addition, precise photon measurements could in principle check the

coherence of the oscillations over a variety of distances. Discussing in detail the effects of a

CAB on photons is the purpose of the present paper.

Several studies on the influence of axions on photon propagation at cosmological scales

exist[19–22]. The consequences are only visible for extremely low mass axions, such as the

ones hypothetically produced in string theory scenarios[23]. We do not consider very light

axions here in detail as their masses do not fall into the favoured range but exploring such

small masses might be of interest too.

It is worth noting that a CAB introduces via its time dependence some amount of Lorentz-

invariance violation in photon physics; the term (2) does actually modify the photon disper-

sion relation and it has somewhat exotic consequences. For instance, in Ref. [24] we showed

how this modification of the dispersion relation allows the emission of a photon by a cosmic

ray, a process forbidden due to conservation of energy and momentum in a Lorentz-invariant

theory. In Ref. [25] we computed the amount of energy radiated by this process and found

it to be non-negligible, although the normal synchrotron radiation background makes its

detection very challenging.

In Ref. [26] we found that some photon wave numbers are actually forbidden in a CAB,

as a consequence of its time dependence. This striking result is an unavoidable and direct

consequence of the periodicity of the CAB oscillations. In the subsequent we study the actual

width of these gaps that, not surprisingly, turns out to be extremely narrow for axions of

cosmological relevance.

The consequences of the mere existence of axions as propagating degrees of freedom on
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photon propagation have been studied for a long time and are well understood. It is well

known that photons polarized in a direction perpendicular to the magnetic field are not

affected by the existence of axions [27, 28] but photons polarized in the parallel direction

mix with them. As a consequence there is a small rotation in the polarization plane due to

photon-axion mixing as well as a change in the ellipticity [29]. In Ref. [26] we showed that

a similar effect exists even without a magnetic field when a CAB is present except that now

it involves the two photon helicities.

Throughout this work we will see that the effects of the CAB on the propagation of

photons are extremely small, so it is quite pertinent to question whether these effects could

be experimentally measured. The answer is surely negative with present day experimental

capabilities but some effects are not ridiculously small either to be discarded from the outset:

the effects of a coherent CAB are in some cases quite comparable to, or even larger than,

the influence of axions as mere propagating degrees of freedom, which have been profusely

studied before. They might even be comparable to non-linear QED effects, which have also

been actively sought for experimentally. Therefore we think it is legitimate to present this

study in view of the physical relevance of the presumed existence of a CAB as a dark matter

candidate.

This work is a continuation of Ref. [26] and some overlap is unavoidable to be reasonably

self-contained. In section II we review the problem and derive the equations of motion for

the axion and photon in the presence of both backgrounds, both for linear and circular

polarization bases for the photon. We also review there the range of relevant values for the

intervening parameters. In section III we discuss the results for the case of no magnetic

field, when there is no photon-axion conversion but the CAB still mixes the two photon

helicities. In Ref. [26] we found that some gaps in the photon momenta were present due to

the time periodicity of the CAB. We complement this discussion now by deriving the precise

location and width of these momentum gaps. In section IV we study the consequences that

the combined background has on photon wave-numbers and polarizations. In section V we

explore the consequences of the change in the plane of polarization of the photons in the

presence of the CAB, making use of the photon propagator derived in a combined CAB and

constant magnetic field that was derived in Ref. [26]. We also correct some approximations

that were made in Ref. [26] and that turn out not to be correct for the relevant range of

masses, magnetic fields and CAB densities. We have also made an effort in presenting the
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new the results in a standard notation, more suitable for optical experiments. The technical

details are given in a detailed appendix. A short summary of some of our results was already

presented in Ref. [30].

II. EQUATIONS OF MOTION OF THE AXION-PHOTON SYSTEM

The Lagrangian density describing axions and photons consists of the usual kinetic terms

plus the interaction term (2)

L =
1

2
∂µa∂

µa− 1

2
m2

aa
2 − 1

4
FµνF

µν +
g

4
aFµνF̃

µν , (3)

where we have rewritten the axion-photon coupling as g = gaγγ
2α
πfa

. We are not considering

the non-linear effects due to the Euler-Heisenberg Lagrangian [31, 32] that actually can

provide some modifications in the polarization plane. Later we shall discuss their relevance.

We decompose the fields as a classical piece describing the backgrounds (external magnetic

field ~B and a CAB as given in (1) plus quantum fluctuations describing the photon and the

axion particles, e.g. a → ab + a. For the (quantum) photon field, we work in the Lorenz

gauge, ∂µA
µ = 0, and use the remaining gauge freedom to set A0 = 0. The equations of

motion are

(∂µ∂
µ +m2

a)a + gBi∂tAi = 0,

∂µ∂
µAi + gBi∂ta + ηǫijk∂jAk = 0,

(4)

where η = g∂tab. We neglect the space derivatives of ab thereby assuming homogeneity

of the axion background, at least at the scale of the photon momentum and translational

invariance. Since η is time-dependent, we make a Fourier transform with respect to the

spatial coordinates only,

φ(t, ~x) =

∫

d3k

(2π)3
ei
~k·~xφ̂(t, ~k), (5)

and get the equations

(∂2
t +

~k2 +m2
a)â + gBi∂tÂi = 0,

(∂2
t +

~k2)Âi + gBi∂tâ + iηǫijkkjÂk = 0.
(6)

As can be seen, the presence of a magnetic field mixes the axion with the photon. To proceed

further, we write the photon field as

Âµ(t, ~k) =
∑

λ

fλ(t)εµ(~k, λ), (7)
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where εµ are the polarization vectors and fλ(t) are the functions we will have to solve for.

If we choose a linear polarization basis for the photon, the equations are, in matrix form,











∂2
t + k2 +m2

a −ib∂t 0

−ib∂t ∂2
t + k2 −η(t)k

0 −η(t)k ∂2
t + k2





















â

if‖

f⊥











=











0

0

0











, (8)

where k = |~k| and b = g| ~B⊥|, where ~B⊥ is the component of the magnetic field perpendicular

to the momentum (the parallel component does not affect propagation at all if the Euler-

Heisenberg piece is neglected). The subscripts ‖ and ⊥ refer to parallel or perpendicular to

this ~B⊥.

In a circular polarization basis, defining

f± =
f‖ ± if⊥√

2
, (9)

the equations take the form











∂2
t + k2 +m2

a i b√
2
∂t i b√

2
∂t

i b√
2
∂t ∂2

t + k2 + η(t)k 0

i b√
2
∂t 0 ∂2

t + k2 − η(t)k





















iâ

f+

f−











=











0

0

0











. (10)

As we see from the previous expressions, the presence of a CAB changes in a substantial

way the mixing of photons and axions. Now all three degrees of freedom are involved.

A difference in the approach between this work and Ref. [33] is worth noting. In going

from (4) to (6) we have performed a Fourier transform in space, but not in time, because

the magnetic field is homogeneous but η(t) is time-dependent. Equation (4) in Ref. [33],

however, uses a transform in time rather than in space because the CAB is not considered.

There are several ways to deal with the periodic CAB. One possibility is to try to treat it

exactly. Unfortunately this unavoidably leads to the appeareance of Mathieu functions due

to the sinusoidal variation of the background and the analysis becomes extremely involved.

On the other hand, the substantial ingredient in the problem is the existence of periodicity

itself and the fine details are not so relevant3. Therefore to keep the discussion manageable,

we approximate the sinusoidal variation of the axion background ab(t) in (1) by a piecewise

3 Recall that the generic appeareance of bands in the energy levels of a solid relies on the periodicity of the

potential and not on its precise details.
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FIG. 1: ab(mat)/a0 and its approximating function.

linear function, see figure 1. Since η(t) is proportional to the time derivative of ab(t), in this

approximation it is a square-wave function, alternating between intervals where η = η0 and

η = −η0 with a period 2T = 2π/ma. Here, η0 =
2
π
ga0ma = gaγγ

4α
π2

a0ma

fa
.

A brief numerical discussion of the parameters involved in the problem and their relative

importance is now in order. The bound on fa implies one on g. Taking gaγγ of O(1) the range

fa = 107 − 1011 GeV translates to g = 10−18 − 10−22 eV−1. Assuming a halo DM density of

ρ = 10−4 eV4 [34] this means that η0 = 10−20− 10−24 eV. When working with natural units

and magnetic fields it is useful to know that 1 T ≈ 195 eV2. To have a reference value, a

magnetic field of 10 T implies the range b = 10−15 − 10−19 eV, for fa = 107 − 1011 GeV.

Finally, let us now comment on the relevance of the contribution of the Euler-Heisenberg

pieces compared to the ones retained in the description provided by (3). As it is known (see

e.g. Ref. [27, 28]) an external magnetic field perpendicular to the photon motion contributes,

via the Euler-Heisenberg terms, to the mixing matrices, affecting the (2,2) and (3,3) entries

of (8) and (10). They modify the k2 terms with corrections of order 10−2 × α2 × (B2/m4
e),

where me is the electron mass, leading to birefringence and therefore to ellipticity. For

magnetic fields of ∼ 10 T this gives a contribution of order 10−21 that may be comparable

to axion-induced effects for large magnetic fields, particularly if fa is very large, or to the

effects from the CAB (which for k ∼ 1 eV are in the range 10−20 − 10−24). Since there is

no new physics involved in the contribution from the Euler-Heisenberg Lagrangian, in order

to facilitate the analysis we will not consider it here. In any case given the smallness of the

Euler-Heisenberg and the axion effects, they can safely be assumed to be additive [27, 28].

The relevant modifications due to the Euler-Heisenberg term can be found in Refs. [27, 28]

and [35].

Of course, the effects of the Euler-Heisenberg Lagrangian are absent or negligible if there

is no magnetic field or if it is relatively weak, and we will see that for a range of parameters

the effect of a CAB might be comparable to the former.
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III. NO MAGNETIC FIELD: FORBIDDEN WAVELENGTHS

If there is no magnetic field (b = 0, η0 6= 0) the axion and the photon are no longer

mixed. We explored this situation in Ref. [26] and we will summarize the main results here

and complete the discussion.

Because η(t) does mix the two linear polarizations, in this case it is useful to choose

the circular polarization basis, which diagonalizes the system. The solution is, for a given

interval, f±(t) = eiω±t, ω± =
√

k2 ± η0k. Of course, when η(t) changes sign the solutions

are interchanged as well. The way to solve this is to write f±(t) = eiΩtg±(t) and demand

that g±(t) have the same periodicity as η(t). After elementary quantum mechanical consid-

erations, periodicity of the modulus of the wave-function imposes the condition

cos(2ΩT ) = cos(ω+T ) cos(ω−T )−
ω2
+ + ω2

−
2ω+ω−

sin(ω+T ) sin(ω−T ). (11)

This condition implies the existence of momentum gaps: some values of k admit no solution

for Ω, much like some energy bands are forbidden in a semiconductor. Here, however, the

roles of momentum and energy are exchanged, since the periodicity is in time, rather than

in space. The solutions are shown in an Ω(k) plot in figure 2 for two values of the ratio

η0/ma. One of the ratios shown is unreasonably large, in order to show clearly the existence

of the gaps.

Let us now discuss the width of these gaps, an issue that was not studied in Ref. [26] in

detail. The first order in η0 drops from (11) but to second order it reads

cos(2ΩT ) = cos(2kT ) +
η20
4k2

[−1 + cos(2kT ) + kT sin(2kT )] (12)

(recall that T = π/ma). There is no solution when the r.h.s. of this expression becomes

larger than one. The gaps are approximately located at

kn =
nma

2
, n ∈ N (13)

and their width is

∆k ∼























η0
nπ

for n odd

η20
2nma

for n even

. (14)

These results agree well with the exact results as can be easily seen in the left side of figure

2. Unfortunately we are not aware of any way of detecting such a tiny forbidden band for
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(a) (b)

FIG. 2: Plot of the solutions to the gap equation. In the left figure the value for the ratio η0/ma is

unreasonably large and it is presented here only to make the gaps in the photon momentum clearly

visible.

the range of values of η0 previously quoted (10−20 eV or less) that correspond to the allowed

values of fa.

It may be interesting to think what would happen if one attempts to produce a ‘forbidden’

photon, i.e. one whose momentum falls in one of the forbidden bands. A photon with such a

wave number is ‘off-shell’ and as such it will always decay. For instance, it could decay into

three other photons with appropiately lower energies. However, because the off-shellness

is so small (typically 10−20 eV or less) it could live for a long time as a metastable state,

travelling distances commensurable with the solar system. For more technical details see

e.g. Ref. [36].

We realize that the small bandwidth of the forbidden momentum bands make them

unobservable in practice. However their mere existence is of theoretical interest. Conclusions

might be different for other axion-like backgrounds.

IV. PROPER MODES IN A MAGNETIC FIELD AND AXION BACKGROUND

In the presence of a magnetic field, but no CAB (b 6= 0, η0 = 0) there is no longer a time

dependence in the coefficients of the equations, so we can Fourier transform with respect to
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time as well. We find the following dispersion relations:

ω2
a = k2 +

m2
a + b2

2
+

1

2

√

(m2
a + b2)2 + 4b2k2 ≈ (k2 +m2

a)

(

1 +
b2

m2
a

)

ω2
1 = k2 +

m2
a + b2

2
− 1

2

√

(m2
a + b2)2 + 4b2k2 ≈ k2

(

1− b2

m2
a

)

ω2
2 = k2, (15)

where the ≈ symbol indicates the limit bk
m2

a

≪ 1. These results are well known [29]. We

have identified as corresponding to ‘photons’ the two modes that if b = 0 reduce to the two

usual polarization modes. The third frequency corresponds predominantly to the axion (or

axion-like particle), but of course it has also a small photon component as the ‖ polarized

photon mixes with the axion.

If laser light of frequency ω is injected into a cavity, the different components will develop

different wave-numbers resulting in the appeareance of changes in the plane of polarization

(ellipticity and rotation) unless the photon polarization is initially exactly parallel or exactly

perpendicular to the magnetic field. We will review these effects later. From the above

expressions it would appear that the relevant figure of merit to observe distortions with

respect the unperturbed photon propagation is the ratio b2

m2
a

and this is indeed true at large

times or distances (actually for x ≫ ω
m2

a

). This number is of course very small, typically

10−28 for the largest conceiveable magnetic fields (note that this ratio is actually independent

of fa and ma provided that we are considering Peccei-Quinn axions.)

Laser interferometry is extremely precise and Michelson-Morley type experiments are

capable of achieving a relative error as small as 10−17 using heterodyne interferometry

techniques[37, 38] and the PVLAS collaboration claims that a sensitivity of order 10−20

in the difference of refraction indices is ultimately achievable [39] (see also Ref. [40]). In

spite of this the above figure seems way too small to be detectable.

Let us now explore the situation where both the CAB and the magnetic field are present.

We choose to work with the linear polarization basis. Again, in each time interval we can

define (a, if‖, f⊥) = eiωt(x, iX‖, X⊥). Then the equations in matrix form are











−ω2 + k2 +m2
a ωb 0

ωb −ω2 + k2 −η0k

0 −η0k −ω2 + k2





















x

iX‖

X⊥











=











0

0

0











, (16)

and involve a full three-way mixing as previously mentioned. The proper frequencies of the
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system turn out to be

ω2
a = k2 +

m2
a + b2

3
+ 2
√

Q cosφ,

ω2
1 = k2 +

m2
a + b2

3
−
√

Q
(

cos φ+
√
3 sinφ

)

,

ω2
2 = k2 +

m2
a + b2

3
−
√

Q
(

cos φ−
√
3 sin φ

)

, (17)

where

Q =

(

m2
a + b2

3

)2

+
1

3
k2(b2 + η20),

φ =
1

3
arctan

√

Q3 − R2

R
,

R =
1

54
(m2

a + b2)
[

2m4 + b2(9k2 + 4m2
a + 2b2)

]

− 1

6
η20k

2(2m2
a − b2). (18)

It can be observed that they depend only on even powers of η0, so they are not altered when

η(t) changes sign. According to the discussion at the end of section II the limit η0 ≪ b ≪
{ma, k} is quite reasonable. The approximate expressions for the proper frequencies in this

limit are4

ω2
a ≈ (k2 +m2

a)

(

1 +
b2

m2
a

)

,

ω2
1 ≈ k2 − k

√

η20 +

(

b2k

2m2
a

)2

− b2k2

2m2
a

,

ω2
2 ≈ k2 + k

√

η20 +

(

b2k

2m2
a

)2

− b2k2

2m2
a

. (19)

Corresponding to each frequency, the eigenvectors that solve the system are

ωa :















1

b
√

k2 +m2
a

m2
a

−η0bk
√

k2 +m2
a

m4
a















, ω1 :











− bk

m2
a

1

ε











, ω2 :











bk

m2
a

ε

−ε

1











, (20)

where

ε =
η0

√

η20 +
(

b2k
2m2

a

)2

+ b2k
2m2

a

. (21)

4 Extreme care has to be exercised when using approximate formulae based on series expansions in b or η0

because there is a competition among dimensionful quantities, several of which take rather small values.
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Note that the above eigenvectors are written in the basis described in (9) that includes an

imaginary unit for the parallel component. Therefore the eigenvectors for ω1,2 correspond to

photon states elliptically polarized with ellipticity 5 |ε|. In addition, unless exactly aligned

to the magnetic field there will be a change in the angle of polarization. We will return to

this in section V.

We also note that the above value for ε corresponds to the ellipticity of the eigenmodes.

In section V we will discuss the evolution of the ellipticity of photon state that is initially

linearly polarized.

Let us now try to get some intuition on the relevance of the different magnitudes entering

in the expressions. There are two different limits we can study, depending of which term in

the square root in (21) dominates. If
|η0|
k

≪ b2

2m2
a

we have ε ≈ η0m
2
a

b2k
. The ellipticity of the

eigenmodes is small, so the proper modes are almost linearly polarized photons. In the case
|η0|
k

≫ b2

2m2
a

we have ε ≈ sign(η0)

(

1− b2k

2|η0|m2
a

)

. Now the ellipticity of the eigenmodes is

close to 1 so the proper modes are almost circularly polarized. We see that while the proper

frequencies depend only on the square of η0 (and therefore do not change as we go from one

time interval to the next) the eigenvectors do change.

The discussion on the size of the different parameters done in section II and also in this

section indicates that the effect from the cold axion background is actually the dominant

one for Peccei-Quinn axions, well and above the effects due to the presence of the magnetic

field. Unfortunately both are minute. In the limit where the magnetic field can be neglected,

the photon proper frequencies are

ω2
± = k2 ± kη0 (22)

Axion-like particles are not constrained by the PCAC relation fama ≃ constant required

of Peccei-Quinn axions and using (somewhat arbitrarily) the largest value of b discussed and

the smallest mass for ma we get a value for b2/m2
a in the region ∼ 10−18, to be compared

with the largest acceptable value for η0 that gives η0/k ∼ 10−20 if k ∼ 1 eV. Sensitivity to

the magnetic field could be enhanced by being able to reproduce the experiment with even

larger magnetic fields.6

5 Ellipticity is the ratio of the minor to major axes of the ellipse.
6 Non-destructive magnetic fields close to 100 T have been achieved. This would enhance the sensitivity by

a factor 100.
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V. CHANGE OF THE POLARIZATION IN AN AXION BACKGROUND

For our purposes it will be useful to consider the electric field correlator, easily derived

from the resummed photon propagator derived in Ref. [26]. Using that ~k · ~B = 0, we get in

momentum space

DE
ij(ω, k) = − igijω

2

ω2 − k2
− iω4bibj

(ω2 − k2)[(ω2 − k2)(ω2 − k2 −m2
a)− ω2b2]

. (23)

Notice the rather involved structure of the dispersion relation implied in the second term,

which is only present when b 6= 0, while the first piece corresponds to the unperturbed

propagator. For a given value of the wave-number k the zeros of the denominator are

actually the proper frequencies ωa, ω1 and ω2. We consider the propagation of plane waves

moving in the x̂ direction. The Fourier transform with respect to the spatial component will

describe the space evolution of the electric field. We decompose

1

(ω2 − k2)[(ω2 − k2)(ω2 − k2 −m2
a)− ω2b2]

=
A

k2 − ω2
+

B

k2 − F 2
+

C

k2 −G2
, (24)

where ω, F and G are the roots of the denominator

F 2 = ω2 − m2
a

2
+

1

2

√

m4
a + 4ω2b2 ≈

(

1 +
b2

m2
a

)

ω2,

G2 = ω2 − m2
a

2
− 1

2

√

m4
a + 4ω2b2 ≈

(

1− b2

m2
a

)

ω2 −m2
a, (25)

and

A = − 1

ω2 − F 2

1

ω2 −G2
=

1

ω2b2
,

B = − 1

F 2 − ω2

1

F 2 −G2
≈ − 1

ω2b2

(

1− ω2b2

m4
a

)

,

C = − 1

G2 − ω2

1

G2 − F 2
≈ − 1

m4
a

. (26)

The last contribution to B in the previous formula was incorrectly neglected in our previous

publication [26]. The space Fourier transform of the electric field propagator is

DE
ij(ω, x) = −gij

ω

2
eiωx +

ω4

2
bibj

(

A

ω
eiωx +

B

F
eiFx +

C

G
eiGx

)

=
ω

2
eiωx

[

−gij + ω3bibj

(

A

ω
+

B

F
ei(F−ω)x +

C

G
ei(G−ω)x

)]

, (27)

where x is the travelled distance. After factoring out the exponential eiωx we consider the

relative magnitude of the differential frequencies F −ω and G−ω. The latter is much larger
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and for m2
ax/2ω ≫ 1 the corresponding exponential could be dropped. This approximation

was made in Ref. [26] and for the range of axion masses envisaged here and ω ∼ 1 eV is

valid for all astrophysical and most terrestrial experiments. As for the exponential containing

F −ω, we can safely expand it for table-top experiments and retain only the first non-trivial

term. In this case, the leading terms in the propagator are

DE
ij(ω, x) ≈

ω

2
eiωx

[

−gij + b̂ib̂j

(

ω2b2

m4
a

− i
ωb2x

2m2
a

)]

, (28)

where b̂ is a unitary vector in the direction of the magnetic field. For very light axion masses,

neglecting the ei(G−ω)x exponential cannot be justified for table top experiments. Then one

should use a slightly more complicated propagator, namely

DE
ij(ω, x) ≈

ω

2
eiωx

{

−gij + b̂ib̂j
ω2b2

m4
a

[

1− cos
m2

ax

2ω
+ i

(

sin
m2

ax

2ω
− m2

ax

2ω

)]}

. (29)

These expressions agree in the appropriate limits with the ones in Ref. [29].

When a CAB is considered the electric field propagator changes to

DE
ij(ω, k) = −iω2

(

P+ij

ω2 − k2 − η0k
+

P−ij

ω2 − k2 + η0k

)

−iω4 bibj
(ω2 − k2)[(ω2 − k2)(ω2 − k2 −m2

a)− ω2b2]
. (30)

The P+ and P− are projectors defined in Ref. [36]. This expression differs from the one

presented in formula (75) of Ref. [26] in that (a) only the leading contribution to the term

proportional to the magnetic field is retained and (b) the piece independent of the mag-

netic field contains (unlike in Ref. [26]) the modifications from the CAB. See the appendix

for a complete discussion. The external magnetic field can be set to zero in the previous

expressions, if desired.

By projecting on suitable directions and taking the modulus square of the resulting

quantity, the following expression for the angle of maximal likelihood (namely, the one

where it is more probable to find the direction of the rotated electric field) as a function of

the distance x can be found

α(x) = β − η0x

2
− ǫ

2
sin 2β, (31)

where β is the initial angle that the oscillation plane of the electric field forms with the

background magnetic field and

ǫ ≈ −ω2b2

m4
a

(

1− cos
m2

ax

2ω

)

. (32)
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From the results in the appendix, the ellipticity turns out to be

e =
1

2
|ϕ sin 2β| , ϕ ≈ ω2b2

m4
a

(

m2
ax

2ω
− sin

m2
ax

2ω

)

. (33)

For small distances, m2
ax

2ω
≪ 1 we can expand the trigonometric functions to get

ǫ ≈ −b2x2

8
, ϕ ≈ m2b2x3

48ω
. (34)

If this limit is not valid, we have instead

ǫ ≈ −ω2b2

m4
, ϕ ≈ ωb2x

2m2
. (35)

It can be noted that the effect of the magnetic field always comes with the factor sin 2β, which

means that it disappears if the electric field is initially parallel (β = 0) or perpendicular

(β = π/2) to the external magnetic field.

The results of Ref. [29], which we reproduce in the case where η0 = 0, are known to be

in agreement with later studies such as Ref. [33], which has somehow become a standard

reference in the field. However, their approach is not adequate to deal with time dependent

backgrounds and therefore it is not easy to reinterpret the results derived in the present

work when a non-vanishing CAB is present in the language of Ref. [33].

VI. MEASURING THE CAB IN POLARIMETRIC EXPERIMENTS

If η0 6= 0 a rotation is present even in the absence of a magnetic field. This is a char-

acteristic footprint of the CAB. This ‘anomalous’ rotation attempts to bring the initial

polarization plane to agree with one of the two elliptic eigenmodes. In the case where the

effect of η0 dominates, the eigenmodes are almost circularly, rather than linearly, polarized

so the changes in the plane of polarization could be eventually of order one. The effect is

independent of the frequency. Equation (31) shows however that the process of rotation due

to the CAB is very slow, with a characteristic time η−1
0 .

Typically in interferometric-type experiments the laser light is made to bounce and folded

many times. Formula (31) can be used each time that the light travels back and forth. When

this happens, β changes sign and so does sin 2β. Since ǫ is always negative, the effect of the

magnetic field is always to increase β in absolute value (i.e. moving the polarization plane

away from the magnetic field). So in this sense, the rotation accumulates. The situation is
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different for the CAB term. It does not change sign when β does, so its effect compensates

each time the light bounces. However, recall that η0 changes sign with a half-period πm−1
a

so the effect could be accumulated by tuning the length between each bounce. The range of

values of πm−1
a makes this perhaps a realistic possibility for table-top experiments (we are

talking here about separations between the mirrors ranging from millimeters to meters for

most accepted values of ma).

It turns out that for Peccei-Quinn axions the effect is actually independent both of the

actual values for fa and ma and it depends only on the combination fama ≃ 6 × 1015 eV2

and the local axion density. Assuming that the laser beam travels a distance L = πm−1
a

before bouncing, the total maximum rotation athat can be observed will be given by |η0|x.
The total travelled distance will be x = NL, where N is the total number of turns that

depends on the finesse of the resonant cavity. Replacing the expression for |η0| in the previous

expression in terms of the local DM density ρ (that we assume to be 100% due to axions)

we get |η0| = gaγγ
4α
π2

√
2ρ
fa

. Then

|η0|x = gaγγ
4α

π

√
2ρ

6× 1015 eV2N ≃ 2× 10−18 eV−2 ×√
ρ×N . (36)

Plugging in the expected value for the local axion density one gets for every bounce an

increment in the angle of rotation of 2 × 10−20. This is of course a very small number

and we realize that the chances of being able to measure this anytime soon are slim. At

present there are cavities whose reflection losses are below 1 ppm[41] but these numbers

still fall short. However this result may be interesting for several reasons. First of all, it is

actually independent from the axion parameters, as long as they are Peccei-Quinn axions,

except for the dependence on gaγγ that is certainly model dependent but always close to 1.

Second, in this case it depends directly on the local halo density and nothing else. Third, a

positive result obtained by adjusting the length of the optical path would give an immediate

direct measurent of ma and an indirect one of fa. There are no hidden or model dependent

assumptions, the only ingredient that is needed is QED.

Observing a net rotation of the initial plane of polarization when the magnetic field is

absent (or very small) would be a clear signal of the collective effect of a CAB. On the

contrary, a non-zero value for η0 does not contribute at leading order to a change in the

ellipticity (and subleading corrections are very small). In Ref. [42] the authors discuss in

some detail the different backgrounds, all of wich are very small with the exception of the
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dichroism originating from the experimental apparatus itself [43]. Ways of partially coping

with these experimental limitations are discussed in the previous reference.

Notice that the effect is directly proportional to the distance travelled and therefore any

improvement in the finesse of the cavity directly translates into a longer distance and a

better bound. Recall that in order to measure the rotated angle it is actually much better

not to consider an external magnetic field, making the experimental setup much easier.

Incidentally this also liberates us from the non-linear QED effects discussed in section II.

Axion-like particles not constrained by the Peccei-Quinn relation fama ≃ constant could

be easier to rule out if they happen to be substantially lighter than their PQ counterparts

as cavities in this case can be longer and one could have longer accumulation times.

VII. CONCLUSIONS

In this work we have extended the analysis of axion-photon mixing in the presence of an

external magnetic field to the case where a cold axion background (CAB) is present too.

The mixing is then substantially more involved and the two photon polarizations mix even

without a magnetic field. In particular in our results we can take the limit where the magnetic

field vanishes, a situation that would make experiments easier even if it would be really

challenging to measure the predicted effects. Together with resonant cavity experiments,

such as ADMX, optical experiments or observations are so far the only ones that appear

eventually capable of testing the nature of the CAB.

We have made one approximation that we believe is not essential, namely we have approx-

imated the assumed sinusoidal variation in time of the CAB by a piece-wise linear function;

resulting in a fully analytically solvable problem. We believe that this captures the basic

physics of the problem and we expect only corrections of O(1) in some numerical coefficients

but no dramatic changes in the order-of-magnitude estimates.

The existence of some momentum gaps due to the periodic time dependence of the CAB

and its implications has been reviewed too. It seems challenging to design experiments

to verify or falsify their existence, but in any case they are unavoidable if dark matter is

explained in terms of an axion background; in fact it would possibly be the most direct

evidence of the existence of a CAB.

We have obtained the proper modes and their ellipticities and we have analyzed in detail
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the evolution of the system. It should be said that CAB-related effects dominate in some

regions of the allowed parameter space. We have also studied the possible presence of accu-

mulative effects that might enhance the rotation of the instantaneous plane of polarization.

This would also be a genuine CAB effect.

In order to analyze the evolution of the system we have made use of the two point function

for the electric field, that correlates the value at x = 0 with the one at a given value for

x. We find this a convenient and compact way of treating this problem. It is valuable to

have this tool at hand as the propagator encompasses all the information of the travelling

photons.

Of course the most relevant question is whether laser experiments may one day shed

light on the existence and properties of the CAB. The present authors are not competent

to judge on the future evolution of the precision in this type of experiments. In both cases

the required precision is several orders of magnitude beyond present accuracy, but progress

in this field is very fast.

Apart from the precision issue, there are several caveats to take into account when at-

tempting to experimentally test the predictions of the present work. For instance, a scan on

ma (i.e. the mirror separation) has to be performed until a cumulative effect is found, which

obviously takes time (this is in a sense somewhat equivalent to the scan on the resonant fre-

quency of the cavity in ADMX). The total number of reflections is limited by mirror quality

(finesse) and it typically induces a spurious rotation that needs to be disentangled from the

true effect. We do not think that any of the approximations made in this work (basically

the piecewise linear approximation for the CAB profile) is experimentally significant pro-

vided that the coherence length of the CAB is larger than the spatial region experimentally

probed.

As emphasized in the introduction, checking the coherence of a putative cold axion back-

ground is not easy because the physical effects associated to it are subtle and small in

magnitude. The present proposal analyzes the consequences of the existence of a CAB on

photon propagation and as we have seen its effects can be of a size comparable to other

phenomena that are being actively investigated in optical experiments. For these reasons

we believe it is important to bring the present analysis to the atention of the relevant ex-

perimental community.
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Appendix A: Propagator

Considering only the spatial components, eq. (52) of Ref. [26] becomes:

Dij(ω, k) = Dij + iω2

{

bibj

(k4 − η20
~k2)(k2 −m2

a)− ω2k2b2

+
iη0k

2(biqj − qibj)

(k4 − η20
~k2)[(k4 − η20

~k2)(k2 −m2
a)− ω2k2b2]

}

, (A1)

where

Dij = −i

(

P ij
+

k2 − η0|~k|
+

P ij
−

k2 + η0|~k|

)

, ~q = (~b× ~k) (A2)

and the projectors P± have been defined in Ref. [36]. Terms proportional to kikj have been

dropped, since we are interested in contracting the propagator with a photon polarization

vector. The roots of the denominators are |~k| = Fj , with

F 2
1,2 = ω2 +

η20
2

∓ η0
2

√

4ω2 + η20 ≈ ω2 ∓ ωη0,

F 2
3,4 = ω2 − m2

a − η20
3

+
√
W (cosχ∓

√
3 sinχ),

F 2
5 = ω2 − m2

a − η20
3

− 2
√
W cosχ. (A3)

W ≈
(

m2
a

3

)2(

1 +
3ω2b2

m4
a

)

,

χ ≈ 1

m2
a

√
3ωξ,

ξ ≈
(

1 +
9ω2b2

2m4

)−1
√

η20 +

(

ωb2

2m2

)2

+

(

ω2b3

m4
a

)2

. (A4)

F1 and F2 correspond to the pieces with P+ and P−, respectively. The piece proportional

to bibj has poles at F 2
3,4,5 and the last piece contains all five poles. We decompose the
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denominators in simple fractions:

1

(k4 − η20
~k2)(k2 −m2

a)− ω2k2b2
=

5
∑

l=3

Al

~k2 − F 2
l

, (A5)

with

Al =
−1

∏

m6=l,1,2(F
2
l − F 2

m)
, l = 3, 4, 5 (A6)

and
k2

(k4 − η20
~k2)[(k4 − η20

~k2)(k2 −m2
a)− ω2k2b2]

=
5
∑

l=1

Ãl

~k2 − F 2
l

, (A7)

with

Ãl =
−(ω2 − F 2

l )
∏

m6=l(F
2
l − F 2

m)
, l = 1, ..., 5. (A8)

Then,

Dij(ω,~k) = i

(

P ij
+

~k2 − F 2
1

+
P ij
−

~k2 − F 2
2

)

+iω2b2

[

b̂ib̂j
5
∑

l=3

Al

~k2 − F 2
l

+ iη0(b̂
iq̂j − q̂ib̂j)

5
∑

l=1

|~k|Ãl

~k2 − F 2
l

]

(A9)

We choose the axes so that

k̂ = (1, 0, 0), b̂ = (0, 1, 0), q̂ = (0, 0,−1). (A10)

The propagator in position space is, after dropping an overall factor,

dij(ω, x) ≈ (P ij
+ + P ij

− ) cos
(η0x

2

)

+ i(P ij
+ − P ij

− ) sin
(η0x

2

)

+b̂ib̂j
5
∑

l=3

ale
iαlx − i(b̂iq̂j − q̂ib̂j)

5
∑

l=1

ãle
iαlx, (A11)

where

al =
ω3b2Al

Fl

, ãl = ω3b2η0Ãl, αl = Fl − ω. (A12)

All the αl are proportional to η0 or b2, except for α5 ≈ −m2
a

2ω
. Restricting ourselves only to

y − z components, we can write d(ω, x) in matrix form.

P i
+j + P i

−j =





1 0

0 1



 , (A13)

i(P i
+j − P i

−j) =





0 1

−1 0



 , (A14)
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b̂ib̂j =





−1 0

0 0



 , (A15)

− i(b̂iq̂j − q̂ib̂j) =





0 −i

i 0



 . (A16)

If we write
∑

l

ale
iαlx = −(ǫ+ iϕ), i

∑

l

ãle
iαlx = −(ǫ̃+ iϕ̃), (A17)

we have

dij(ω, x) =





cos η0x

2
+ ǫ+ iϕ sin η0x

2
+ ǫ̃+ iϕ̃

−
(

sin η0x

2
+ ǫ̃+ iϕ̃

)

cos η0x

2



 (A18)

Appendix B: Ellipticity and rotation

The quantities appearing in (A18) are

ǫ ≈ −ω2b2

m4
a

(

1− cos
m2

ax

2ω

)

, ϕ ≈ ω2b2

m4
a

(

m2
ax

2ω
− sin

m2
ax

2ω

)

, (B1)

while ǫ̃ and ϕ̃ are both proportional to b2η0, so they are negligible.

In the limit m2
ax

2ω
≪ 1 we have

ǫ ≈ −b2x2

8
, ϕ ≈ m2

ab
2x3

48ω
(B2)

whereas if m2
ax

2ω
≫ 1 the trigonometric functions oscillate rapidly and can be dropped:

ǫ ≈ −ω2b2

m4
a

, ϕ ≈ ωb2x

2m2
a

. (B3)

Eq. (B2) agrees with eq. 16 of Ref. [29] (although their k2 in the denominator should be

only k, the dimensions do not fit otherwise). Eq. (B3) agrees with their eq. (20,21), at least

to second order in b.

If we start with a polarization ~n0 = (cos β, sin β), after a distance x we have

ni
x = dij(x)n

j
0 =





cos(β − η0x

2
) + (ǫ+ iϕ) cos β

sin(β − η0x

2
)



 (B4)

Following section 1.4 of Ref. [44], this vector describes a polarization at an angle

α ≈ β − η0x

2
− ǫ

2
sin 2β (B5)
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and with ellipticity

e =
1

2
|ϕ sin 2β| . (B6)

This ellipticity differs from the one described in Ref. [29] by the factor of sin 2β.

Quantum mechanically the quantity that is relevant is not the amplitude itself, but the

modulus squared of it. From this, the probability of finding an angle α given an initial angle

β will be

P (α, β) =
∣

∣ǫ′id
ijǫj
∣

∣

2 ≈ cos2
(

α− β +
η0x

2

)

+ 2ǫ cos
(

α− β +
η0x

2

)

cosα cos β. (B7)

The angle of maximum probability, satisfying ∂αP (α, β) = 0 is also, to first order,

α = β − η0x

2
− ǫ

2
sin 2β. (B8)
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