
THE GHOST LENGTH AND DUALITY ON THE CHAIN AND
COCHAIN TYPE LEVELS

KATSUHIKO KURIBAYASHI

Abstract. We establish equalities between cochain and chain type levels of
maps by making use of exact functors which connect appropriate derived and
coderived categories. Relevant conditions for levels of maps to be finite are
extracted from the equalities which we call duality on the levels. Moreover,

we give a lower bound of the cochain type level of the diagonal map on the
classifying space of a Lie group by considering the ghostness of a shriek map
which appears in derived string topology. A variant of Koszul duality for a
differential graded algebra is also discussed.

1. Introduction

This work is a sequel to previous one [32, 33] in which new topological invariants
have been studied.

In [2], Avramov, Buchweitz, Iyengar and Miller introduced a numerical invariant
of an objects in a triangulated category, which is called the level. The invariant
counts the number of steps to build the given object out of some fixed object via
triangles. It seems to be cone length in the category. Jørgensen [24, 25, 26] devel-
oped categorical representation theory of spaces employing the singular (co)chain
complexes of spaces. In the context of such work, the cochain and chain type levels
of maps between topological spaces have been defined and studied in [32, 33].

The cochain type level of a map α : Y → X indeed provides a lower bound on the
number of spherical fibrations which describe a factorization of α in a relevant sense;
see [32, Proposition 2.11]. On the other hand, the chain type level of the identity
map on a space Y gives an upper bound of the L.-S. category of Y in rational case;
see [33, Corollary 2.9]. The L.-S. category is also considered a homotopy invariant
counting the number of cofibrations which construct a given space. Therefore, it
is natural to anticipate that the levels of maps inherit duality between fibrations
and cofibrations, namely Eckmann-Hilton duality. For example, one might expect
that chain and cochain type levels fit into appropriate equalities, which we may call
duality on the levels.

In this article, we establish such equalities between these two kinds of levels; see
Theorem 2.4 below. One of the highlights in getting the result is that we make
use of a variant of Koszul duality for differential graded algebras which is given
by considering exact functors between certain derived and coderived categories; see
[21, 28, 38, 46] for Koszul duality. In fact, Theorem 3.3 below describes such a
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variant. We can take the singular chains of a space as a coalgebra in Theorem
3.3. In consequence, the commutative diagrams of categories in the theorem give
duality of the levels in Theorem 2.4.

Let X be a space and LX the free loop space, namely the space of all continuous
maps from the circle S1 to X with compact-open topology. String topology initiated
by the fascinating paper of Chas and Sullivan [8] describes a rich structure in the
homology of the free loop space LM of a closed oriented manifold M . A basic
one of the string operations is the so-called loop product on the shifted homology
H∗+dim M (LM). The key to defining these operations is to construct a shriek map
(an Umkehr map or a wrong way map) associated with the diagonal map on M .

Félix and Thomas [17] generalized the construction of shriek maps on manifolds
to that on Gorenstein spaces. This enables us to develop string topology in appro-
priate derived categories; see [36, 37] for torsion and extension functor descriptions
of loop (co)products and their applications. It is important to mention that the
class of Gorenstein spaces contains the classifying spaces of connected Lie groups,
Borel constructions more general, Poincaré duality spaces and hence closed oriented
manifolds; see [12, 13, 44].

Let BG be the classifying space of a connected Lie group G. In [9], Chataur
and Menichi showed that the homology H∗(LBG; K) with coefficients in a field K
carries the structure of homological conformal field theory (HCFT). The integra-
tion along the fibre of a Borel fibration plays a crucial role in defining the HCFT
operations. In a derived categorical setting, the integration is considered the homo-
morphism induced by a shriek map on the derived category D(C∗(BG × BG)) of
differential graded modules (DG modules) over the cochain algebra C∗(BG×BG)
with coefficients in K; see [17, Theorems 5 and 13].

Another aim of this article is to consider behavior of such shriek maps in the
derived category D(C∗(BG×BG)), more generally in D(C∗(BG×n)). In particular,
we see that non-triviality of a shriek map associated with the diagonal map on BG
in D(C∗(BG×n)) gives a lower bound of the ghost length of C∗(BG); see Theorem
2.11 and Remark 5.2. In consequence, a lower bound of the cochain type level of
the diagonal map BG→ BG×n is obtained; see Proposition 2.12. We mention that
the notion of ghosts has been actually introduced by Christensen [10] in a more
general framework.

We conclude this section with comments on topics related to the invariant level.
Our attempt in [32, 33] and this paper is closely related to the work in [5, 11, 47, 49].
Indeed, the dimension dim T of a triangulated category T , which is introduced by
Rouquier [47]; see also [7], is defined by

dim T = inf{d ∈ N |thickd+1
T (C) = T for some object C in T }.

Here thickj
T (C) denotes the jth thickening which is a subcategory of T used when

defining the level; see Section 2. Thus the dimension gives a global invariant of
triangulated categories.

The results in [5] due to Benson, Iyengar and Krause are concerned with the
classification of thick subcategories of a triangulated category. In [11, 2.1 Theorem],
Dwyer and Greenlees give an equivalence between categories of torsion and complete
modules. Moreover, the result [11, 4.6 Proposition] asserts that torsion modules are
chain complexes built from a fixed complex. Then these also clarify global nature
of thick or localizing subcategories.
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On the other hand, the level considered here captures properties of individual
objects, which come from topological spaces via the singular chain and cochain
functors; see Remark 2.3 below.

In [12], Dwyer, Greenlees and Iyengar have developed Morita theory in algebraic
topology by making use of ring spectra. In particular, the result [12, 3.16 Propo-
sition] describes a necessary and sufficient condition for the level of a map to be
finite. Very recently, Mao [39] has introduced a new numerical invariant for DG
modules, which is defined by replacing thick subcategories in the definition of the
level with localizing ones. The invariant of a bounded below DG module coincide
with the ghost length plus one; see [39, Theorem A].

Following [49], the string topology category invented by Blumberg, Cohen and
Teleman [6] can be regarded as a full subcategory of one of the derived categories
that we deal with in this paper. Then we can expect that machinery used in order
to investigate the invariant level is applicable to the study of the string topology
category; see Remark 3.9 for such expectation. It is worth noting that the recent
result [49, Theorem 1.2] due to Shamir, which is concerned with the string topology
category, is deduced by relying on the results in [5, 11] cited above.

2. results

To describe our results more precisely, we first recall from [2, Section 2] the
definition of the level of an object in a triangulated category T . We say that a
subcategory of T is strict if it is closed under isomorphisms in T .

For a given object C in T , we define the 0th thickening by thick0
T (C) = {0} and

thick1
T (C) to be the smallest strict full subcategory which contains C and is closed

under taking finite coproducts, retracts and all shifts. Moreover for n > 1 define
inductively the nth thickening thickn

T (C) by the smallest strict full subcategory of
T which is closed under retracts and contains objects M admitting a distinguished
triangle M1 → M → M2 → ΣM1 in T for which M1 and M2 are in thickn−1

T (C)
and thick1

T (C), respectively. A triangulated subcategory C of T is said to be thick
if it is closed under taking retracts. Then the thickenings provide a filtration of the
smallest thick subcategory thickT (C) of T containing the object C:

{0} = thick0
T (C) ⊂ · · · ⊂ thickn

T (C) ⊂ · · · ⊂ ∪n≥0thick
n
T (C) = thickT (C).

For an object M in T , we define a numerical invariant levelCT (M), which is called
the C-level of M , by

levelCT (M) := inf{n ∈ N |M ∈ thickn
T (C)}.

It turns out that the C-level of an object M in T counts the number of steps
required to build M out of the object C via triangles. For more details and general
features of the level, we refer the reader to [2, Sections 2 and 3].

Let K be a field of arbitrary characteristic and R a DG (that is, differential
graded) algebra over K. Let D(R) denote the derived category of DG right R-
modules. Observe that the category D(R) comes equipped with the structure
of a triangulated category [27], in particular with the shift functor Σ defined by
(ΣM)n = Mn+1.

We here recall from [32] and [33] two numerical topological invariants defined by
the level in a triangulated category D(R). Unless otherwise explicitly stated, it is
assumed that a space has the homotopy type of a connected CW complex whose
cohomology with coefficients in the underlying field is locally finite.
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Let B be a space and T OPB the category of maps with the target B; that is,
an object of T OPB is a map f : X → B and a morphism form f : X → B to
g : X → B is a map α : X → Y which satisfies the condition that f = g ◦ α. For
any object f : X → B, the normalized singular cochain C∗(X; K) with coefficients
in K is regarded as a DG right module over the cochain algebra C∗(B; K) via the
induced map C∗(f) : C∗(B; K) → C∗(X; K). Thus the cochain functor gives rise
to a contravariant functor from the category T OPB to the triangulated category
D(C∗(B; K)):

C∗(s(−); K) : T OPB → D(C∗(B; K)),
where s(f) denotes the source of an object f in T OPB .

Definition 2.1. Let f be an object of T OPB. The cochain type level of the
map f is defined by the C∗(B; K)-level of the DG module C∗(s(f); K), namely
level C∗(B;K)

D(C∗(B;K))(C
∗(s(f); K)).

Let Ff be the homotopy fibre of a map f : X → B. The Moore loop space ΩB
acts on the space Ff by the holonomy action. Thus the normalized chain complex
C∗(Ff ; K) is a DG module over the chain algebra C∗(ΩB; K). The normalized
singular chain and the homotopy fibre construction enable us to obtain a covariant
functor

C∗(F(−); K) : T OPB → D(C∗(ΩB; K))
from the category T OPB to the triangulated category D(C∗(ΩB; K)).

Definition 2.2. Let f be an object of T OPB . The chain type level of the
map f is defined by the C∗(ΩB; K)-level of the DG module C∗(Ff ; K), namely
level C∗(ΩB;K)

D(C∗(ΩB;K))(C∗(Ff ; K)).

More generally, we call the levels of objects in D(C∗(ΩB; K)) and in D(C∗(B; K))
the chain type levels and the cochain type levels, respectively. In what follows, the
coefficients in the singular (co)chain complex and their homology are often omitted
if the context makes them clear.

Remark 2.3. Let T c be the full subcategory of the triangulated category T = D(A)
consisting of compact objects, where A = C∗(Sd; K). The result [48, Proposition
6.6] implies that for any i ∈ N, there exists an indecomposable object Zi in T c such
that levelAT Zi = levelAT cZi = i + 1. On the other hand, dim T c = ∞. In fact, if
dim T c = l < ∞, then there is an object C in T c such that T c = thickl+1

T c (C).
This yields that levelCT cM ≤ l + 1 for any object M ∈ T c. Since C is compact,
it follows from [27, Theorem 5.3] that levelAT C = n for some n. Then a triangular
inequality (Lemma 4.1) implies that

levelAT M ≤ levelAT C · levelCT M ≤ n(dim T c + 1)

for any M in T c. As mentioned above, we have an indecomposable object Z in T c

with levelAT Z > n(dim T c + 1), which is a contradiction.

One of our main theorems reveals a remarkable relationship between the two
kinds of levels.

Theorem 2.4. Let B be a simply-connected space and f : X → B an object in
T OPB. Then one has (in)equalities

(1) dim H∗(X; K) ≥ level C∗(ΩB)
D(C∗(ΩB))(C∗(Ff )) = level K

D(C∗(B))(C
∗(X)) and
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(2) dim H∗(Ff ; K) ≥ level C∗(B)
D(C∗(B))(C

∗(X)) = level K
D(C∗(ΩB))(C∗(Ff )).

As mentioned in the Introduction, the theorem is deduced from a correspondence
between the triangulated categories D(C∗(ΩB)) and D(C∗(B)), which is a variant
of Koszul duality for DG algebras; see Theorem 3.3, Proposition 3.6 and Theorem
6.4. More precisely, we deduce the results by means of exact functors between the
triangulated categories which are compatible with the covariant functor C∗(F(-))
and the contravariant functor C∗(s(-)). These would allow us to call the equalities
in Theorem 2.4 duality on the (co)chain type levels. Algebraic versions of the
equalities above deserve mention. They appear in Remark 3.8.

We here describe another evidence that the equalities in Theorem 2.4, which are
topological versions, exhibit the duality. By definition, the homotopy fibre Ff for
a given map f : X → B fits into a sequence

ΩB
i // Ff

p // X
f // B

in which p is a fibration with ΩB the fibre. We observe that the maps i and f give
the chain C∗(Ff ) and the cochain C∗(X) a C∗(ΩB)-module structure and a C∗(B)-
module structure, respectively. Since the map p connects those maps i and f , it
seems that (in)equalities in Theorem 2.4 reflect homological duality of the fibration
in some sense. In fact, the Eilenberg-Moore type quasi-isomorphism relative to
a fibration [14, 15] is an important ingredient for proving the main theorem; see
Proposition 3.6.

Theorem 2.4 and a triangular inequality on the levels (Lemma 4.1) allow us to
compare the (co)chain type levels of maps.

Proposition 2.5. Under the same assumption as in Theorem 2.4, one has inequal-
ities

level C∗(ΩB)
D(C∗(ΩB))(C∗(Ff )) ≤ level C∗(ΩB)

D(C∗(ΩB))(K) · level C∗(B)
D(C∗(B))(C

∗(X))

≤ dim H∗(B; K) · level C∗(B)
D(C∗(B))(C

∗(X)) and

level C∗(B)
D(C∗(B))(C

∗(X)) ≤ level C∗(B)
D(C∗(B))(K) · level C∗(ΩB)

D(C∗(ΩB))(C∗(Ff ))

≤ dim H∗(ΩB; K) · level C∗(ΩB)
D(C∗(ΩB))(C∗(Ff )).

As a corollary of Theorem 2.4, we have criteria for the levels of maps to be finite.
Let M be an object of the triangulated category D(R) of DG-modules over a DG
algebra R. Then it is immediate that dimH(M) < ∞ if level K

D(R)M < ∞. Thus
we have the following result.

Corollary 2.6. Let f : X → B be a map with B simply-connected.

(1) level C∗(ΩB)
D(C∗(ΩB))(C∗(Ff )) is finite if and only if so is dim H∗(X; K).

(2) level C∗(B)
D(C∗(B))(C

∗(X)) is finite if and only if so is dim H∗(Ff ; K).

This corollary is essentially a special case of [18, Proposition 2.3]; see also [2,
Theorem 4.8] for other equivalence conditions for the level to be finite.

Let X be a simply-connected rational space. The result [33, Corollary 2.9] states
that

catX ≤ level C∗(ΩX)
D(C∗(ΩX))Q− 1,
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where catX stands for the L.-S. category of X. Moreover, a simple calculation in
[33, Example 6.4] enables us to conclude that if X is a simply-connected rational
H-space with dimH∗(X; Q) < ∞, then the above inequality turns out to be the
equality. On the other hand, the inequality can be strict as we will see below.

Example 2.7. Let X be an infinite wedge of spheres of the form
∨

α Snα . Then
catXQ = catX = 1. By applying Corollary 2.6 (1) to the case where idX : X → X,
we see that level C∗(ΩX)

D(C∗(ΩX))Q =∞. In fact, H∗(X; Q) is of infinite dimension.

The following proposition, which is derived from Corollary 2.6 (2) and the to-
tally fibred square construction [45, Section 3], is of interest to us. Indeed, the
result suggests that the study of the levels for maps contributes to determining the
homotopy types of spaces.

Proposition 2.8. Let π : X → B be a map between simply-connected spaces with
a right homotopy inverse s : B → X. We regard the map π and s as objects in
T OPB and T OPX , respectively. Then both of levels level C∗(B;K)

D(C∗(B;K))C
∗(X; K) and

level C∗(X;K)
D(C∗(X;K))C

∗(B; K) are finite if and only if H∗(Fπ; K) = K. In particular, the
both of the two levels with coefficients in Z/p are finite if and only if π : X → B is
a homotopy equivalence after p-completion.

Let q : X → B be a trivial fibration with H∗(Fq; K) finite dimensional. Then the
C∗(B; K)-level of C∗(X; K) in D(C∗(B; K)) is just one for any field K in general.
In fact, we see that C∗(X; K) ∼= C∗(B; K) ⊗ H∗(Fq; K) in D(C∗(B; K)). This
implies that C∗(X; K) is a coproduct of shifts of C∗(B; K) and hence C∗(X; K) is
in thick1

D(C∗(B;K))(C
∗(B; K)). On the other hand, for a spherical fibration Sl →

X → B, we obtain a characterization for the C∗(B; K)-level of C∗(X; K) to be
two; see Proposition 4.2. Combining the result with Proposition 2.5, we have the
following proposition.

Proposition 2.9. Let B be a simply-connected space. Suppose that there exists a
sequence of fibrations

F1 −→ X1
p1−→ B, F2 −→ X2

p2−→ X1, ..., Fn −→ Xn
pn−→ Xn−1

in which Xi is simply-connected for 1 ≤ i < n and H∗(Fi; K) ∼= H∗(Sni ; K) for
some ni. Then one has inequalities

level C∗(B;K)
D(C∗(B;K))C

∗(Xn; K) ≤ 2n and

level C∗(ΩB;K)
D(C∗(ΩB;K))C∗(Ff ; K) ≤ 2n · dimH∗(B; K),

where f = pn ◦ · · · ◦ p1.

In rational case, the result [32, Proposition 2.7] gives a better estimate of C∗(B; Q)-
level of C∗(Xn; Q) than that of Proposition 2.9 provide each ni is odd.

In order to describe another main theorem, we recall a numerical invariant for
DG modules related to the level. Let A be a DG algebra. We call a morphism
f : M → N in the derived category D(A) a ghost if H(f) = 0. An object M in
D(A) is said to have ghost length n, denoted gh.len.M = n, if every composite

M
f1 // Y1

f2 // · · ·
fn+1 // Yn+1
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of n + 1 ghosts is trivial in D(A), and there exists a composite of n ghosts from M
which is non trivial in D(A); see [22].

The ghost length of a DG module M gives a lower bound of the level of M .

Proposition 2.10. [48, Lemma 6.7] [33, Proposition 7.5] For any M ∈ D(A), one
has

gh.len.M + 1 ≤ levelAD(A)(M).

Let BG be the classifying space of a connected Lie group G. Since the diagonal
map ∆ : G → G × G is a homomorphism, it induces a map BG → BG×2, which
is regarded as the diagonal map BG → BG × BG under a homotopy equivalence
between BG×2 and BG × BG. We give an estimate for the cochain type level of
the composite

∆(n−1) : BG
B∆ // BG×2 // · · ·

B(1×∆)// BG×n

by considering the ghostness of a shriek map associated with the map B(1 ×∆) :
BG×l → BG×(l+1); see [17] and Section 5 for shriek maps on a Gorenstein space.

Theorem 2.11. Let BG be the classifying space of a connected Lie group G whose
cohomology with coefficients in K is isomorphic to a polynomial algebra. Then in
the derived category D(C∗(BG×n)), one has

n− 1 ≤ gh.len.C∗(BG).

The assumption for a Lie group G in Theorem 2.11 is satisfied for any field K if
the homology H∗(G; Z) is torsion free. Moreover, the classical Lie groups SO(n),
Spin(n) for n ≤ 9, the exceptional Lie groups G2 and F4 satisfy the assumption in
the case where the field K is of characteristic 2 while the integral homology groups
of these Lie groups have 2-torsion; see [41].

The proof of Theorem 2.11 uses the Leray-Serre and the Eilenberg-Moore spectral
sequences. The key to the proof is the non-triviality of the loop coproduct in string
topology on the classifying space of a Lie group [9, 34]. Therefore it is hard to
expect an algebraic proof of the theorem.

By Proposition 2.10 and Theorem 2.11, we have the following result.

Proposition 2.12. Under the same assumption as in Theorem 2.11,

n ≤ levelC
∗(BG×n)

D(C∗(BG×n)(C
∗(BG)) ≤ (n− 1) dim QH∗(BG; K) + 1,

where QH∗(BG; K) stands for the vector space of indecomposable elements of the
algebra H∗(BG; K). Assume further that QH∗(BG; K)2j+1 = 0 for j ≥ 0. Then

levelC
∗(BG×n)

D(C∗(BG×n))(C
∗(BG)) = (n− 1) dim QH∗(BG; K) + 1.

For example, we consider the orthogonal group SO(3). Since the mod 2 coho-
mology H∗(BSO(3); Z/2) is a polynomial algebra generated by the second and the
third Stiefel-Whitney classes, it follows that

2 ≤ gh.len.C∗(BSO(3); Z/2) + 1 ≤ levelC
∗(BSO(3)×2)

D(C∗(BSO(3)×2))(C
∗(BSO(3)) ≤ 3.

Remark 2.13. Let F∆(n−1) be the homotopy fibre of the map ∆(n−1) : BG→ BG×n.
Then the fibration F∆(n−1) → BG admits the holonomy right action of ΩBG×n and
is weakly equivalent to the fibration BG ×BG×n EG×n → BG with the holonomy
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right action of G×n; see [16, Proposition 2.11] for example. Then the duality in
Theorem 2.4 (2) implies that

levelC
∗(BG×n)

D(C∗(BG×n))(C
∗(BG)) = levelKD(C∗(G×n))(C∗(BG×BG×n EG×n)).

We observe that BG×BG×n EG×n is homotopy equivalent to a homogeneous space
of the form G×n/∆G = G×(n−1), where ∆ : G → G×n denotes the diagonal map.
In fact, we have a homotopy fibre square

G×n/∆G
' // BG×BG×n EG×n //

��

EG×n

��
G×n/∆G // // BG

∆
// BG×n.

The rest of the article is organized as follows. In Section 3, we prove Theorem
2.4. Section 4 is devoted to proving Propositions 2.5, 2.8 and 2.9. Section 5 presents
proofs of Theorem 2.11 and Proposition 2.12. In Appendix, we recall results on a
coderived category due to Lefèvre-Hasegawa [38] on which we rely when proving
Theorem 2.4. Moreover, a variant of Koszul duality due to He and Wu [21] is
discussed.

3. Proof of Theorem 2.4

As we will see below, for an object f in T OPB , we obtain quasi-isomorphisms
which connect DG modules C∗(s(f)) and C∗(Ff ) by making use of the bar and
cobar constructions. In order to prove Theorem 2.4, we incorporate such the quasi-
isomorphisms into arguments on appropriate derived and coderived categories.

For a graded vector space V , we denote by V ∨ the graded dual HomK(V, K),
namely (V ∨)−k = (V ∨)k = HomK(V k, K). We say that V is locally finite if V i is
of finite dimension for each i.

Definition 3.1. (i) Let A be an augmented DG algebra over K with differential of
degree +1 and mod−A the category of DG left A-modules. The derived category
D(mod−A) of DG right A-modules is the localization of the homotopy category of
mod−A at the class of quasi-isomorphisms.
(ii) Let C be a co-augmented DG coalgebra over K with differential of degree +1 and
comod−C the category of cocomplete DG right C-comodules; see the Appendix.
The coderived category D(comod−C) of cocomplete DG C-comodules is the local-
ization of the homotopy category of comod−C at the class of weak equivalences;
see [38] and also the Appendix.

We shall write D(A) and Dc(C) for D(mod−A) and D(comod−C), respectively.

By definition, a simply-connected algebra A satisfies the condition that A0 = K,
A1 = 0 and Ai = 0 for i < 0. We call a coalgebra C simply-connected if C0 = K,
C−1 = 0 and Ci = 0 for i > 0. In what follows, we assume that an algebra and a
coalgebra are endowed with an augmentation and a co-augmentation, respectively
and that they are defined over a field K.

Let F : comod−C → C∨−mod be a functor given by sending a cocomplete DG
right C-comodule to the DG left C∨-module with the same underlying K-module
and whose multiplication is given by the natural composite

C∨ ⊗M → C∨ ⊗M ⊗ C → C∨ ⊗ C ⊗M →M.
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Composing the vector space dual functor ( )∨ with F , we have an exact functor

tD : D(comod−C) F∗−−−−→ D(C∨−mod)
( )∨−−−−→ D(mod−C∨)

from the coderived category to the derived category; see Remark 6.1.
We deal with the bar and cobar constructions below. For the (co)algebra and

(co)module structures of these constructions, see [14, Section 2], [15, Section 4] and
[43]. We also refer the reader to [23] for differential graded objects.

Let A be a DG algebra and consider the bar resolution B(A; A) → AK of K.
Let B(A) be a DG coalgebra defined by B(A) = K ⊗A B(A;A). By using the
twisted tensor product construction associated with the natural twisting cochain
τ : B(A)→ A of degree +1, we have a pair of adjoint functors

Dc(B(A))
L:=−⊗τ A //

D(A).
R:=−⊗τ B(A)

oo

For more details, see [43], [38, Ch. 2], [28] and also Appendix. We write RA for
the functor −⊗τ B(A). The definition of the twisted tensor product enables us to
deduce that RA coincides with the functor − ⊗A B(A; A). For a right A-module
M , we may write B(M ; A) for M ⊗A B(A;A). For a coalgebra C and a right
C-comodule N , let Ω(N ; C) denote the cobar construction; see [14, Section 2] for
example.

The duality on the bar and cobar constructions yields the following result.

Proposition 3.2. Let C be a simply-connected DG coalgebra with H(C) locally
finite. Then there exists an equivalence

Θ : D(ΩC)→ D(B(C∨)∨)

of triangulated categories such that for a DG C-comodule N with H(N) locally finite
and bounded above,

Θ(Ω(N ; C)) ∼= B(N∨; C∨)∨.

Proof. Let u : A = TV
'−→ C∨ be a TV-model for the simply-connected DG

algebra C∨ in the sense of Halperin and Lemaire [20]. By assumption, H(C∨) is
locally finite. Then without loss of generality, we can assume that A is also locally
finite; see [14, Proposition 4.2].

Let ∆ : C → C ⊗ C be the comultiplication on C. Then the multiplication
m : C∨ ⊗ C∨ → C∨ is defined by the composite

C∨ ⊗ C∨ = C∨ ⊗ C∨ q′

→ (C ⊗ C)∨ ∆∨

→ C∨ = C∨,

where q′ denotes the natural quasi-isomorphism. We have a commutative diagram

A∨ m∨
// (A⊗A)∨ A∨ ⊗A∨

∼=

q′′
oo

(C∨)∨ m∨
//

u∨

OO

(C∨ ⊗ C∨)∨
(u⊗u)∨

OO

C∨∨ ⊗ C∨∨q′

'
oo

u∨⊗u∨

OO

C

q '
OO

∆
// C ⊗ C,

q⊗q

OO
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where q and q′′ are the natural quasi-isomorphisms. In fact, the commutativity of
the lower square follows from that of the diagram

(C∨)∨ ∆∨∨
// (C ⊗ C)∨∨ (q′)∨ // (C∨ ⊗ C∨)∨

C

q

OO

∆
// C ⊗ C

q

OO

q⊗q
// C∨∨ ⊗ C∨∨.

q′

OO

Observe that q′′ : A∨ ⊗ A∨ → (A ⊗ A)∨ is an isomorphism because A is locally
finite. This implies that u∨ ◦ q : C → A∨ is a quasi-isomorphism of coalgebras. We
then have a sequence of quasi-isomorphisms of algebras

(3.1) ΩC
ρ:=Ω(u∨q)

'
// Ω(A∨) ∼=

µ1 // B(A)∨ B(C∨)∨.
µ2

'
oo

Thus the result [30, Proposition 4.2] enables us to obtain equivalences of triangu-
lated categories

D(ΩC)
−⊗L

ΩCΩ(A∨)//
D(Ω(A∨))

ρ∗
'oo

−⊗L
Ω(A∨)B(A)∨

//
D(B(A)∨)

µ∗
1

'oo
µ∗

2

'
// D(B(C∨)∨).

We define Θ : D(ΩC)→ D(B(C∨)∨) by the composite.
Let C1

'−→ N∨ be an A-semifree resolution for N∨; see [14, Propositions 4.6
and 4.7]. Since H∗(N) is locally finite, we may assume that so is the A-module C1;
see [14, Proposition 4.6]. Then we can define a comodule structure on C∨

1 by the
composite c : C∨

1 −→ (C1⊗A)∨
∼=←− C∨

1 ⊗A∨. The same argument as above allows
us to obtain a commutative diagram

C∨
1

c // C∨
1 ⊗A∨

N
∆N

//
'

OO

N ⊗ C

'
OO

in which vertical arrows are quasi-isomorphisms. Thus we have an isomorphism
Ω(N ; C) ∼= ρ∗Ω(C∨

1 ; A∨) in D(ΩC). Moreover, it follows from the locally finiteness
of C1 and A that Ω(C∨

1 ; A∨) is isomorphic to µ∗
1(B(C1; A)∨) and µ∗

2(B(C1;A)∨) ∼=
B(N∨; C∨)∨ in D(B(C∨)∨). This completes the proof. �

We have a crucial result on exact functors which connect the triangulated cat-
egories D(ΩC) and D(C∨) for a coalgbera C. The result is a key to proving the
duality on chain and cochain type levels described in Theorem 2.4.

Let A and C be an augmented DG algebra and a co-augmented cocomplete
DG coalgebra, respectively. The result [14, Proposition 2.14] asserts that for a C-
comodule N , there exist a quasi-isomorphism σC : C

'→ BΩC of coalgberas and a
quasi-isomorphism σN : N

'→ B(Ω(N ; C); ΩC) of C-comodules.
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Theorem 3.3. (i) Under the same assumption as above on the coalgebra C, one
has a commutative diagrams up to isomorphism

Dc(C)Ω( ;C)

ss

tD

''
D(ΩC)

RΩC

// Dc(BΩC)
tD

// D((BΩC)∨)
−⊗L

(BΩC)∨C∨

' // D(C∨);
(σ∨

C)∗oo

that is, there exists a natural isomorphism between two composite functors from
Dc(C) to D((BΩC)∨). Moreover, all the functors between (co)derived categories
are exact.
(ii) Let C be a simply-connected DG coalgbera with H(C) locally finite. Let Dlf,−

c (C)
denote the full subcategory of Dc(C) consisting of comodules whose cohomologies
are locally finite and bounded above. Then one has a commutative diagram up to
isomorphism

Dlf,−
c (C)Ω( ;C)

ss

tD

''
D(ΩC)

Θ

' // D((B(C∨))∨) Dc(B(C∨))
tD

oo D(C∨)
RC∨

oo

in which all the functors are exact.

Proof. (i) Let τ : C → ΩC be the canonical twisting cochain. Then Ω( ;C) is
nothing but the functor L = -⊗τ ΩC mentioned in Theorem 6.2 below. In particular,
we see that Ω( ; C) is exact. Moreover, it follows that for any N in Dc(C),

tD(B(Ω(N ;C); ΩC)) = B(Ω(N ; C); ΩC)∨ ' N∨ = (σ∨
C)∗tD(N)

in D((BΩC)∨). This implies that the diagram is commutative up to isomorphism.
(ii) Proposition 3.2 yields that for any N in Dlf,−

c (C),

Θ(Ω(N ; C)) ∼= B(N∨; C∨)∨ = (tD ◦RC∨ ◦ tD)(N).

We have the result. �
In order to prove Theorem 2.4, we recall important results on the level.

Lemma 3.4. [48, Lemma 3.9] Let M be a DG-module over a non-negative simply-
connected or non-positive connected DG algebra A. Assume that M is bounded
below if A is non-negative and is bounded above if A is non-positive. Then

dimH(M ⊗L
A K) ≥ levelAD(A)(M).

The difference between the dimension of H(M ⊗L
A K) and the level is also of

interest to us. In general, the difference is very large. The proof of Lemma 3.4
which we provide below exhibits the fact.

Proof of Lemma 3.4. If dim H(M ⊗L
A K) =∞, then the assertion is immediate.

By assumption, the module M admits a minimal semi-free resolution F
'→ M

endowed with a filtration {F l}l≥0 of F ; see [13], [16] and [15, Section 2] . We
thus obtain triangles

∐
i Σn0

i A→ F 1 →
∐

j Σn1
j A→, F 1 → F 2 →

∐
j Σn2

j A→, ...,

Fn−1 → Fn →
∐

j Σnn
j A→, .... The minimality of the semi-free resolution enables

us to deduce that

H(M ⊗L
A K) = H(F ⊗A K) = F ⊗A K =

∐
s≥0

∐
j

Σns
j K.
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Suppose that dim H(M ⊗L
A K) is of finite dimension. Then it follows that there

exists an integer n such that Fn ' M and each index j runs in finite numbers.
Thus we see that M ∈ thickn+1

D(A)(A). If ns
j = 0 for any j and s, then M ' 0 and

hence the result is obvious. Without loss of generality, we can assume that for any
s,

∐
j Σns

j A is non-trivial. We then have

dim H(M ⊗L
A K) = dim

n∐
s=0

∐
j

Σns
j K ≥ n + 1 ≥ level A

D(A)(M).

This completes the proof. �

Let γ : T → U be an exact functor of triangulated categories. Then we have the
following result.

Lemma 3.5. [2, Theorem 2.4 (6)] levelCT (M) ≥ levelγ(C)
U (γ(M)).

Let B be a simply-connected space and f : X → B a map. Recall from [14,
Theorem II] a quasi-isomorphism of DG-modules

(3.2) Φ : Ω(C∗(X);C∗(B)) '−−−−→ C∗(Ff ),

which is compatible with actions of ΩC∗(B) and C∗(ΩB) via a quasi-isomorphism
of DG algebras

(3.3) φ : ΩC∗(B)→ C∗(ΩB),

where Ω(N ; C∗(B)) denotes the cobar construction of the right C∗(B)-comodule N .
We mention that the quasi-isomorphisms Φ and φ are induced from the universal
constructions due to Adams [1]; see also [14, Section 3].

We connect the category T OPB with D(C∗(ΩB)) and D(ΩC∗(B)).

Proposition 3.6. Let B be a simply-connected space. One has a commutative
diagram up to isomorphism

D(C∗(ΩB))

φ∗

��

T OPB

C∗(F(−))oo
C∗(s( ))

%%
C∗(s( ))

��
D(ΩC∗(B))

−⊗L
ΩC∗(B)C∗(ΩB) '

OO

Dlf,−
c (C∗(B))

Ω( ;C∗(B))
oo

tD
// D(C∗(B)).

Proof. The quasi-isomorphisms in (3.2) and (3.3) enable us to conclude that the
left hand-side square is commutative up to isomorphism. By definition, the right
hand-side triangle is commutative. �

Remark 3.7. We write η and ν for the composites -⊗L
(BΩC)∨ C∨ ◦ tD ◦RΩC∗(B) ◦φ∗

and - ⊗L
ΩC∗(B) C∗(ΩB) ◦ Θ−1 ◦ tD ◦ RC∗(B), respectively; see Theorem 3.3 and

Proposition 3.6. It follows that η(C∗(ΩB)) ∼= η(C∗(F(∗→B))) ∼= C∗(∗) ∼= KC∗(B)

and ν(C∗(B)) ∼= νC∗(s(id : B → B)) ∼= C∗(F(id)) ∼= C∗(∗) ∼= KC∗(ΩB). Moreover,
we see that η(K) ∼= η(C∗(F(id:B→B))) ∼= C∗(B) and ν(K) ∼= ν(C∗(s(∗ → B))) ∼=
C∗(F(∗→B)) ∼= C∗(ΩB).

We are now ready to prove our main theorem.
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Proof of Theorem 2.4. It follows from [16, Proposition 19.2] that B(C∗(ΩB);C∗(ΩB))
is a C∗(ΩB)-semifree resolution of K. Then the result [15, Proposition 6.7] yields
that

C∗(X) ' C∗(Ff )⊗C∗(ΩB) B(C∗(ΩB); C∗(ΩB)) ' C∗(Ff )⊗L
C∗(ΩB) K.

By virtue of Lemma 3.4, we have the first inequality.
Let Ff → EX → B be the fibration associated with the map f : X → B. Since

there exists a homotopy equivalence j : X → EX which is in T OPB , it follows
that, as vector spaces,

H∗(C∗(X)⊗L
C∗(B) K) ∼= TorC∗(B)(C∗(X), K) ∼= TorC∗(B)(C∗(EX), K) ∼= H∗(Ff ).

Observe that the third isomorphism is induced by the Eilenberg-Moore map; see
for example [19, Theorem 3.3]. By applying Lemma 3.4 again, one has the second
inequality.

It follows from Lemma 3.5, Theorem 3.3 (i), Proposition 3.6 and Remark 3.7
that

level C∗(ΩB)
D(C∗(ΩB))(C∗(Ff )) ≥ level K

D(C∗(B))(C
∗(X)).

Theorem 3.3 (ii) yields the converse inequality. The same argument as above works
well to obtain the equality in (2). �

Remark 3.8. Let C be a co-augmented cocomplete DG coalgebra with H(C) locally
finite and M an object in Dlf,−(C). Then Theorem 3.3 yields algebraic versions of
equalities in Theorem 2.4. Indeed, we have equalities

levelΩC
D(ΩC)(Ω(M ; C)) = levelKD(C∨)(M

∨) and

levelC
∨

D(C∨)(M
∨) = levelKD(ΩC)(Ω(M ; C)).

Remark 3.9. As mentioned in the Introduction, the string topology category StM
for a simply-connected oriented manifold M is a full subcategory of D(C∗(ΩM));
see [49]. Then Proposition 3.6 and Theorem 3.3 may generalize the result [6, The-
orem 2.8] on the Dwyer-Kan equivalence between StM and the full subcategory of
D(C∗(M))-modules consisting of objects in the image of the functor C∗(s( )). This
will be discussed in a forthcoming paper [35].

4. Proofs of Propositions 2.5, 2.8 and 2.9

We here recall some full subcategories of a triangulated category T before proving
Proposition 2.5.

Let A be a subcategory of T and addΣ(A) the smallest full subcategory of T that
contains A and is closed under finite coproducts, all shifts and isomorphisms. The
category smd(A) is defined to be the smallest full subcategory of T that contains
A and is closed under retracts. For full subcategories A and B of T , let A ∗ B be
the full subcategory whose objects L occur in a triangle M → L→ N → ΣM with
M ∈ A and N ∈ B. Then we see that thickn

T (C) = smd(addΣ(C)∗n); see [7] and
[2, 2.2.1].

A triangular inequality on levels is described in the following lemma.

Lemma 4.1. (cf. [48, The proof of 6.3.2(3)]) Let T be a triangulated category and
C, C ′ objects in T . If levelCT M ≤ n and levelC

′

T C ≤ l, then levelC
′

T M ≤ nl.
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Proof. It suffices to prove that if M ∈ thickn
T (C) and C ∈ thickl

T (C ′), then
M ∈ thicknl

T (C ′).
Since the thickening thickl

T (C ′) is closed under finite coproducts, all shifts
and retracts, it follows that addΣ(C) ⊂ thickl

T (C ′) and hence thick1
T (C) ⊂

thickl
T (C ′). Assume that thicki

T (C) ⊂ thickil
T (C ′) for i ≤ n − 1. For any

object M ∈ thickn
T (C), there exists a triangle M1 →M ′ →M2 → ΣM1 such that

M is a retract of M ′, M1 ∈ thickn−1
T (C) and M2 ∈ thick1

T (C). This yields that

M ∈ smd(thick(n−1)
T (C) ∗ thick1

T (C))

⊂ smd(smd(addΣ(C ′)∗(n−1)l) ∗ smd(addΣ(C ′)∗l))

= smd(addΣ(C ′)∗(n−1)l ∗ addΣ(C ′)∗l)

= thicknl
T (C ′).

Observe that the first equality follows from [7, Lemma 2.2.1]. This completes the
proof. �

Proof of Proposition 2.5. Lemma 4.1 and Theorem 2.4 induce the inequalities. In
fact, we see that

level C∗(ΩB)
D(C∗(ΩB))(C∗(Ff )) = level K

D(C∗(B))(C
∗(X))

≤ level K
D(C∗(B))(C

∗(B)) · level C∗(B)
D(C∗(B))(C

∗(X))

= level C∗(ΩB)
D(C∗(ΩB))(K) · level C∗(B)

D(C∗(B))(C
∗(X))

≤ dim H∗(B) · level C∗(B)
D(C∗(B))(C

∗(X)).

We here observe that C∗(Fid) ∼= K in D(C∗(ΩB)) for the homotopy fibre Fid of the
identity map on B. The second inequalities follow from the same consideration as
above. Observe that the based loop space ΩB is the homotopy fibre of the map
∗ → B. �
Proof of Proposition 2.8. By replacing the square

B
s //

=
��

X
π

��
B =

// B,

which is homotopy commutative, to a totally fibred square, we have a commutative
diagram

B
s //

'ι2
��

X
ι1'

��
ΩFπ

// B′ // X ′

in which ι1 and ι2 are homotopy equivalences and bottom sequence is a fibration;
see [45, Propositions 3.2.2 and 3.2.3]. The map ι1 gives rise to an equivalence
C∗(ι1)∗ : D(C∗(X)) → D(C∗(X ′)) of triangulated categories. It is readily seen
that C∗(ι1)∗(C∗(B)) ∼= C∗(B′). This yields that

level C∗(X′)
D(C∗(X′))C

∗(B′) = level C∗(X)
D(C∗(X))C

∗(B).

In view of the Leray-Serre spectral sequence of the path-loop fibration ΩFπ →
PFπ → Fπ, we see that H∗(Fπ; K) = K if and only if H∗(ΩFπ; K) and H∗(Fπ; K)
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are of finite dimension. Observe that Fπ is simply-connected since π has a right
inverse. By Corollary 2.6 (2), we have the result. �

Before proving Proposition 2.9, we consider a special case for the assertion.

Proposition 4.2. Let F → X → B be a fibration with B simply-connected. Sup-
pose that H∗(F ; K) ∼= H∗(Sl; K) as a graded vector space. Then one has

level C∗(B;K)
D(C∗(B;K))C

∗(X; K) ≤ 2.

Moreover, level C∗(B;K)
D(C∗(B;K))C

∗(X; K) = 2 if and only if H∗(X; K) is not a free H∗(B; K)-
module.

The following lemma serves to prove Proposition 4.2.

Lemma 4.3. Let X → B be an object in T OPB. Then level C∗(B)
D(C∗(B))C

∗(X) = 1 if
and only if H∗(X; K) is a free H∗(B; K)-module.

Proof. Suppose that level C∗(B)
D(C∗(B))C

∗(X) = 1. Then by definition, we see that
C∗(X) is a retract of a free C∗(B)-module. Therefore H∗(X) is a projective H∗(B)-
module and hence H∗(X) is a free H∗(B)-module; see [16, page 274 Remark 1] for
example.

We see that level H∗(B)
D(H∗(B))H

∗(X) = 1 if H∗(X) is a free H∗(B)-module. The

result [33, Corollary 7.3] implies that level C∗(B)
D(C∗(B))C

∗(X) is less than or equal to

level H∗(B)
D(H∗(B))H

∗(X). This completes the proof. �

Proof of Proposition 4.2. Let Sl be the homotopy fibre of the projection X →
B. We observe that H∗(Sl; K) ∼= H∗(F ; K) ∼= H∗(Sl; K). In order to prove the
proposition, it suffices to show that level K

D(C∗(ΩB))C∗(Sl) ≤ 2. This follows from
Theorem 2.4 (2). We define a DG subalgebra R of C∗(ΩB) by R0 = K, R1 = Ker d
and R≥2 = C≥2(ΩB). It is immediate that the inclusion i : R → C∗(ΩB) is
a quasi-isomorphism. Then the map i induces an equivalence of categories i∗ :
D(C∗(ΩB)) → D(R). Moreover, we have i∗(K) = K and i∗(C∗(Sl)) = C∗(Sl).
Therefore, we conclude that

level K
D(C∗(ΩB))C∗(Sl) = level K

D(C∗(R))C∗(Sl).

Let N be a DG R-submodule of C∗(Sl) defined by N≤l−1 = 0, Nl = Im d and
Ni = Ci(Sl) for i > l. Since N is acyclic, it follows that the projection C∗(Sl) →
C∗(Sl)/N is a quasi-isomorphism of R-modules. Moreover, we can construct a
triangle in D(R) of the form Σ−lK → C∗(Sl)/N → K → . In fact, the projection
from the quotient (C∗(Sl)/N)

/
Σ−lK to K is a quasi-isomorphism of R-modules.

Then the triangle yields that level K
D(R)C∗(Sl) = level K

D(R)C∗(Sl)/N ≤ 2. We have
the result. The latter half of the assertion follows from Lemma 4.3. �
Remark 4.4. We can prove Proposition 4.2 by means of a minimal semifree resolu-
tion Γ '→ C∗(X) of C∗(X) as a C∗(B)-module. Indeed, we see that

H∗(K⊗C∗(B) Γ) = H∗(K⊗L
C∗(B) C∗(X)) = H∗(Sl) = K{1, w},

where deg 1 = 0 and deg w = l. This implies that the filtration of F has class at
most 2; see [2, 4.1]. Proposition 4.2 follows from [2, Theorem 4.1].

We use again Lemma 4.1 to prove Proposition 2.9.
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Proof of Proposition 2.9. Consider the maps C∗(B) α→ C∗(Xi)
p∗

i+1→ C∗(Xi+1),
where α = (pi ◦ · · · ◦ p1)∗. Then the map α induces an exact functor α∗ :
D(C∗(Xi))→ D(C∗(B)). In view of Proposition 4.2 and Lemma 3.5, we have

2 ≥ level C∗(Xi)
D(C∗(Xi))

C∗(Xi+1) ≥ level α∗C∗(Xi)
D(C∗(B)) α∗C∗(Xi+1) = level α∗C∗(Xi)

D(C∗(B)) C∗(Xi+1).

Therefore, Lemma 4.1 and the induction hypothesis allow us to deduce that

level C∗(B)
D(C∗(B))C

∗(Xi+1) ≤ level C∗(B)
D(C∗(B))α

∗C∗(Xi) · level α∗C∗(Xi)
D(C∗(B)) C∗(Xi+1) ≤ 2i · 2.

We have the first inequality. The second inequality follows from Proposition 2.5. �

5. Proofs of Theorem 2.11 and Proposition 2.12

We begin by recalling a shriek map on the classifying space BG of a con-
nected Lie group G. The classifying space BG is a Gorenstein space of dimen-
sion −dim G; see [13] for more details. Then the result [17, Theorem 12] deduces
that Ext∗C∗(BG×n)(C

∗(BG), C∗(BG×n)) ∼= H∗−(n−1)(− dim G)(BG), where the DG
right C∗(BG×n)-module structure on C∗(BG) is induced by the diagonal map
∆(n−1) : BG→ BG×n. In particular, we have a generator of the vector space

Ext−(n−1) dim G
C∗(BG×n) (C∗(BG), C∗(BG×n)) ∼= H0(BG) = K,

which is called a shriek map associated with the diagonal map.

Proof of Theorem 2.11. By assumption, the cohomology H∗(BG) is a polynomial
algebra, say H∗(BG) = K[x1, ..., xs]. Then H∗(G) is isomorphic to the algebra
with a 2-simple system of generators s−1x1, ..., s

−1xs, where deg s−1xi = deg xi −
1; see [40, page 154]. Observe that H∗(G) is the exterior algebra generated by
s−1x1, ..., s

−1xs if the characteristic of K is odd.

Claim 5.1. In the Leray-Serre spectral sequence {LSE∗,∗
r , dr} of the fibration G→

BG×(k−1) B(1×∆)→ BG×k, the generators s−1xi are transgressive. More precisely,
for the transgression τ , one has τ(s−1xi) = λi(xi ⊗ 1 − 1 ⊗ xi) for some non-zero
scalar λi under an isomorphism H∗(BG×k) ∼= H∗(BG×(k−2))⊗H∗(BG)⊗H∗(BG).

Therefore, there is no non-trivial element in LSE0,∗
∞ for ∗ > 0. This implies that

that the shriek map B(1 × ∆)! : C∗(BG×(k−1)) → C∗−d(BG×k) is a ghost map,
where d = dim G. In fact, the induced map H∗(B(1×∆)!) is the integration along
the fibre; see [17, Theorems 5 and 13].

We shall prove that the composition of the shriek maps B(1×∆)! ◦ · · · ◦ B∆! :
C∗(BG) → C∗−(n−1)d(BG×n) is non-trivial in D(C∗(BG×n)). To this end, we
consider the homotopy pullback square

(5.1) Gn−1 // LBG×BG · · · ×BG LBG
e∆ //

ev0
��

LBG
eva1,...,an��

Gn−1 // BG
∆(n−1)

// BG×n,

where eva1,...,an denotes the evaluation map at points ak = k−1
n for k = 1, ...., n. We

regard the composite B(1×∆)!◦· · ·◦B∆! as the shriek map (∆(n−1))! by choosing an
appropriate orientation class of the fibration ∆(n−1); see [9, Section 2.3, Composi-
tion] for example. In order to show non-triviality of the shriek map (∆(n−1))!,
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it suffices to prove that the shriek map ∆̃! : C∗(LBG ×BG · · · ×BG LBG) →
C∗−(n−1)d(LBG) is non-trivial since ∆̃! is an extension of (∆(n−1))!; see the proof
of [17, Theorem 6]. We observe that H∗(LBG) ∼= H∗(BG) ⊗∆(s−1x1, ...., s

−1xs)
as an algebra.

Let K = H∗(BG) ⊗ ∧(s−1QH∗(BG)) ⊗ H∗(BG) → H∗(BG) be the two sided
bar resolution of H∗(BG); see [4] for example. Then we have a projective resolution

K⊗n−1
H∗(BG) → H∗(BG)⊗

n−1
H∗(BG) = H∗(BG)

of H∗(BG) as an H∗(BG)⊗n−1-module.
Let {Er, dr} be the Eilenberg-Moore spectral sequence for the right-hand side

pullback in the diagram (5.1). Computing the E2-term by using the projective
resolution K⊗n−1

H∗(BG) → H∗(BG) mentioned above, we see that

E∗,∗
2

∼= H
(
H∗(BG)⊗n ⊗∆(s−1x1,1, ...., s

−1x1,s, ...., s
−1xn−1,1, ...., s

−1xn−1,s)

⊗H∗(BG)⊗nH∗(LBG), ∂(s−1xi,j) = ev∗a1,...an
(xi,j ⊗ 1− 1⊗ xi+1,j)

)
as a bigraded algebra. Since ev0 ' evak

for any k, it follows that ev∗
a1,...an

◦p∗k ' ev0,
where pk : BG×n denotes the projection into the kth factor. This implies that
ev∗

a1,...an
(xi,j ⊗ 1− 1⊗ xi+1,j) = 0 since ev∗0(xi) = xi. For dimensional reasons, we

see that E∗,∗
∞
∼= H∗(LBG) ⊗ ∆(s−1x1,1, ...., s

−1x1,s, ...., s
−1xn−1,1, ...., s

−1xn−1,s).
This fact enables us to conclude that the Leray-Serre spectral sequence of the upper
fibration in the homotopy pull-back above collapses at the E2-term. Therefore, it
follows that the integration along the fibre H∗((∆̃)!) is non-trivial. This completes
the proof. �

Proof of Claim 5.1. We consider a morphism of homotopy fibrations

G

��

G

��
BG×(k−2) ×BG

1×∆BG ��

BG×(k−1)
'oo

B(1×∆)
��

BG×(k−2) ×BG×BG BG×k
'

oo

in which horizontal maps are homotopy equivalences. Thus in order to prove Claim
5.1, it suffices to show that the result holds for the spectral sequence of the fibration
G→ BG

∆BG→ BG×BG.
Let zi : BG→ K := K(K, deg xi) be the map corresponding to the generator xi

of H∗(BG); that is, z∗i (ι) = xi for the fundamental class ι of K. In the Leray-Serre
spectral sequence of the homotopy fibration K(K,deg x− 1)→ K

∆K→ K ×K, the
transgression sends the fundamental class of the fibre to the element ι ⊗ 1 − 1 ⊗ ι
up to the multiplication by a non-zero scalar because ∆∗

K(ι ⊗ 1 − 1 ⊗ ι) = 0. The
naturality of the morphism induced by zi implies that τ(s−1xi) = λi(xi⊗1−1⊗xi)
for some non-zero scalar λi. We have the result. �

Remark 5.2. The proof of Theorem 2.11 enables us to conclude that the shriek map
(∆(n−1))! is the non-trivial generator in Ext−(n−1) dim G

C∗(BG×n) (C∗(BG), C∗(BG×n)) and
it is a ghost map.
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Proof of Proposition 2.12. We have a fibration of the form G×(n−1) → BG
∆(n)

→
BG×n. Therefore, we see that H∗(G×(n−1)) ∼= TorH∗(BG×n)

∗ (H∗(BG), K) and
hence the torsion product is of finite dimension. Then it follows from [33, Lemma
7.1] that levelC

∗(BG)×n

D(C∗(BG×n)(C
∗(BG)) ≤ pdH∗(BG×n)H

∗(BG) + 1, where pdAM de-
notes the projective dimension of an A-module M . Let

K⊗n−1
H∗(BG) → H∗(BG)⊗

n−1
H∗(BG) = H∗(BG)

be the projective resolution of H∗(BG) as an H∗(BG)⊗n−1-module introduced in
the proof of Theorem 2.11, This yields that

pdH∗(BG×n)H
∗(BG) ≤ (n− 1) dim QH∗(BG).

We have the upper bound of the level. Proposition 2.10 and Theorem 2.11 give the
lower bound.

We prove the latter half of the assertion. Since H∗(BG; K) is a polynomial
algebra generated by elements with even degree, it follows from [32, Proposition

2.4] that the homotopy fibration G×(n−1) → BG
∆(n)

→ BG×n is K-formalizable; see
[33, Section 2]. Thus the result [33, Proposition 5.2] implies that

levelC
∗(BG×n)

D(C∗(BG×n)(C
∗(BG)) = (n− 1) dimQH∗(BG; K) + 1.

This completes the proof. �
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6. Appendix: A variant of Koszul duality for DG algebras

In this section, we describe a result concerning Theorem 3.3, which is regarded
as a variant of the Koszul duality for DG algebras. We also refer the reader to
the paper [46] due to Positselski for a more general approach to the derived Koszul
duality.

We begin by recalling the result on a coderived category due to Lefévre-Hasegawa
[38].

Let (A, dA, εA) and (C, dC , εC) be an augmented DG algebra and a co-augmented
DG coalgebra over a field K, respectively. By using the kernel C of the counit of
C, we have a decomposition C = C ⊗ K. Let ∆ : C → C ⊗ C denote the reduced
coproduct defined by ∆(x) = ∆(x) − x ⊗ 1 − 1 ⊗ x. We say that a coaugmented
DG coalgebra is cocomplete if C = ∪l≥1Ker (∆

(l)
: C → C

⊗l+1
), where ∆

(l)
is the

iterated coproduct defined by ∆
(l)

= (∆⊗1⊗l−1)◦ · · · ◦ (∆⊗1)◦∆. By definition, a
twisted cochain τ : C → A is a K-linear map of degree +1 such that εA ◦ τ ◦ εC = 0
and

dA ◦ τ + τ ◦ dC + µA ◦ (τ ⊗ τ) ◦∆C = 0,
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where µA and ∆C are the multiplication of A and the comultiplication of C, re-
spectively. Let M be a DG right A-module. Then we defined the twisted tensor
product M ⊗τ C to be the comodule M ⊗ C over C endowed with the differential

d = dM ⊗ 1 + 1⊗ dC − (µM ⊗ 1)(1⊗ τ ⊗ 1)(1⊗∆C).

For a DG C-comodule N , we define the DG module N ⊗τ A similarly. Let ∆N be
the comodule structure of a DG C-comodule N . We say that N is cocomplete if
N = ∪l≥1Ker (∆

(l)

N : N → N ⊗ C
⊗l

), where ∆N (x) = ∆N (x) − x ⊗ 1 for x ∈ N

and ∆
(l)

N denotes the iterated comodule structure defined by the same way as the
iterated coproduct on C.

Let C be a cocomplete DG coalgebra and τ0 : C → ΩC the canonical twisting
cochain. Then the category comod−C of cocomplete DG comodules over C admits
the structure of a model category for which f : N → N ′ is a weak equivalence, by
definition, if and only if f ⊗ 1 : N ⊗τ0 ΩC → N ′ ⊗τ0 ΩC is a quasi-isomorphism.
For the details, see [38, Théorème 2.2.2.2]. Observe that f is a weak equivalence,
then f is a quasi-isomorphism. This fact follows form [14, Proposition 2.14]. We
define the coderived category Dc(C), which is a triangulated category, to be the
localization of the homotopy category of comod−C with respect to the class of all
weak equivalences.

Remark 6.1. Let C be a finite dimensional co-augmented coalgebra. The re-
sult [42, 1.6.4] due to Montgomery allows one to deduce that the functor F :
comod−C → C∨−mod mentioned in Section 3 is an equivalence of categories.
As mentioned above, weak equivalences between cocomplete DG-comodules are
quasi-isomorphisms. Then we see that F induces a functor F∗ : D(comod−C) →
D(C∨−mod) of triangulated categories. Observe that the functor F∗ is not an
equivalence of triangulated categories in general. In fact, we can regard the ex-
terior algebra ∧(x) as a Hopf algebra with a primitive element x of degree −1.
Forgetting the algebra structure of ∧(x), we have a DG coalgebra C1 endowed with
the trivial differential. The argument in [28, Section 4] asserts that in (C1)∨−mod,
weak equivalences form a strictly smaller class than that of quasi-isomorphisms.

On the other hand, the equivalence F allows us to obtain an equivalence

F̃∗ : Dc(C) = D(comod−C) '−→ D̃(C∨−mod)

of triangulated categories. Here D̃(C∨−mod) denotes the localization of the homo-
topy category of C∨−mod with respect to the class of morphisms which come from
weak equivalences in comod−C by F .

The following theorems assert that a coderived category is closely related to a
derived category.

Theorem 6.2. [38, 2.2.3, Lemma 2.2.1.2, Proposition 2.2.4.1] Let τ : C → A be a
twisting cochain. Then one has adjoint functors

Dc(C)
L:=−⊗τ A //

D(A)
R:=−⊗τ C

oo

between triangulated categories.

Theorem 6.3. [38, Proposition 2.2.4.1] The following are equivalent.
(i) The map τ induces a quasi-isomorphism Ω(C)→ A.
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(ii) The canonical map A⊗τ C ⊗τ A→ A is a quasi-isomorphism.
(iii) The functor L and R in Theorem 6.2 are equivalences.

Let V be a finite dimensional, non-negatively graded vector space with V odd = 0.
Let SV be the polynomial algebra and ∧ΣV the primitively generated coalgebra
whose underlying space is the exterior algebra on ΣV . Then the projection from
∧ΣV to ΣV and the inclusion form V to SV give rise to a twisting cochain τ :
∧ΣV → SV . Thus we have exact functors between derived and coderived categories

D̃((∧ΣV )∨−mod) Dc(∧ΣV )
L:=−⊗τ SV //fF∗oo D(SV ).

R:=−⊗τ∧ΣV
oo

Here F̃∗ stands for the functor defined in Remark 6.1.
The existence of the two-sided Koszul resolution (see for example [4]) implies

that the functor R gives an equivalence with inverse L. Indeed this follows from
the equivalence of the assertions (ii) and (iii) in Theorem 6.3. Moreover, since the
vector space V is of finite dimension, the functor F̃∗ is also an equivalence between
D(∧ΣV ) and D((∧ΣV )∨−mod); see Remark 6.1.

More generally, the proof of [21, Theorem 4.4] due to He and Wu enables us to
deduce the following result.

Theorem 6.4. (cf. [2, Theorem 7.4], [21, Theorem 4.7] ) Let A be a locally finite,
simply-connected DG algebra over a field K. Suppose that the dual (BA)∨ to the bar
construction is formal in the sense that (BA)∨ admits a TV -model TV

'→ (BA)∨

together with a quasi-isomorphism TV
'→ H((BA)∨) = ExtA(K, K). Assume fur-

ther that ExtA(K, K) is of finite dimension. Then one has equivalences

D̃(ExtA(K, K)−mod)
h

'
//
D(A)

t
oo

of triangulated categories. If A is 2-connected, then t satisfies the condition that
t(K) = ExtA(K, K)∨ and t(A) = K in D̃(ExtA(K, K)−mod).

Let A be a 2-connected DG algebra as in Theorem 6.4. Then it follows that for
an object M in D(A),

level A
D(A)(M) = level K

eD(ExtA(K,K)−mod)
(t(M)).

Proof of Theorem 6.4. Since A is simply-connected and locally finite, it follows that
the bar construction is also locally finite. Thus we can assume that for the TV -
model TV

'→ (BA)∨, the graded vector space V is locally finite; see the proof of
Proposition 3.2. Then the sequence of quasi-isomorphisms

E := ExtA(K, K) = H((BA)∨) '←− TV
'−→ (BA)∨

of DG algebras gives rise to a sequence of quasi-isomorphisms

Ω(E∨) '−→ Ω(TV ∨) '←− Ω((BA)∨∨) '←− Ω(BA) '−→ A

as DG algebras. Thus we have equivalences

D(Ω(E∨))
α

'
//
D(A)

β
oo
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of triangulated categories for which β(A) = Ω(E∨) and β(K) = K. The canonical
twisting cochain τ0 : E∨ → Ω(E∨) induces the identity map Ω(E∨) → Ω(E∨). In
view of Theorem 6.3, we have equivalences

D(comod−(E∨))
L

'
//
D(Ω(E∨)).

R=−⊗Ω(E∨)B(Ω(E∨);Ω(E∨))

oo

Since E∨ is a finite dimensional coalgebra by assumption, it follows that the functor

F̃∗ : D(comod−(E∨)) '−→ D̃(E−mod),

which is defined in Remark 6.1 gives an equivalence of triangulated categories. Then
one has an equivalence t := F̃∗ ◦R ◦ β : D(A)→ D̃(E−mod).

The natural map σ : E∨ → BΩ(E∨) and η : B(Ω(E∨); Ω(E∨)) → K are quasi-
isomorphisms; see [14, Propositions 2.4 and 2.14]. If A is 2-connected, then E∨ is
simply-connected. Then it follows from [14, Remark 2.3] that maps σ and η are
weak equivalences. This implies the latter half of the theorem. �

The following proposition provides examples of DG algebras which satisfy the
assumptions in Theorem 6.4.

Proposition 6.5. Let E be a non-positively graded, connected DG algebra; that
is, E0 = K and Ei = 0 for i > 1. Suppose further that E is formal and of finite
dimension. Put A = Ω(E∨). Then the algebra (BA)∨ is a formal and H((BA)∨) ∼=
ExtA(K, K) ∼= H(E) as algebras. In consequence, the DG algebra A satisfies all the
assumptions in Theorem 6.4. Thus one has equivalences

D̃(H(E)−mod)
h

'
//
D(Ω(E∨))

t
oo

of triangulated categories. Assume further that E∨ is simply-connected. Then one
has t(Ω(E∨)) = K and t(K) = H(E)∨.

Proof. Since E is a finite dimensional DG algebra, it follows from [14, Proposi-
tion 2.14] that there exists a quasi-isomorphism α : E∨ '−→ BA = BΩ(E∨) of
coalgebras. Let η : TV

'−→ (BΩ(E∨))∨ be a TV-model. We then have a sequence

E ∼= E∨∨ '←−−−−
α∨◦η

TV
'−−−−→
η

(BA)∨

of quasi-isomorphism of DG algebras. By assumption, the DG algebra E is formal.
This enables us to obtain quasi-isomorphisms H(E) '←− TW

'−→ E. The lifting
lemma [15, Lemma 3.6] yields a quasi-isomorphism TV

'−→ H(E) of DG algebras
and hence (BA)∨ is formal. �
Example 6.6. Let E be an exterior algebra ∧(x1, ..., xn) generated by x1, ..., xn,
where− deg xi is odd for any i. We have an isomorphism H(Ω(E∨)) ∼= H((BE)∨) =
TorE(K, K)∨ of algebras which sends the cycles 〈x∨

i 〉 to [xi]∨. Moreover, there exists
an isomorphism

η : TorE(K, K) = H(BE)
∼=→ Γ[sx1, ..., sxn]

of coalgebras such that η([xi]) = sxi, where deg sxi = deg xi− 1 and Γ[sx1, ..., sxn]
stands for the divided power Hopf algebra with the comultiplication ∆(γi(sxj)) =∑

k+l=j γi(sxj) ⊗ γk(sxj); see the proof of [31, Lemma 1.5]. Thus we see that the
algebra H(Ω(E∨)) is isomorphic to the polynomial algebra K[sx∨

1 , ..., sx∨
n ], where
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deg sx∨
i = − deg xi+1. Since the algebra Ω(E∨) is free, it follows that there exists a

quasi-isomorphism θ : Ω(E∨) '→ K[sx∨
1 , ..., sx∨

n ] of algebras such that θ(〈x∨
i 〉) = sx∨

i

for i. This implies that Ω(E∨) is formal. Therefore, Theorem 6.4 and Proposition
6.5 enable us to obtain equivalences

D̃(∧(x1, ..., xn)−mod)
h

'
//
D(K[sx∨

1 , ..., sx∨
n ])

t
oo

of triangulated categories. This result is a variant of [2, Theorem 7.4]; see also [28,
Section 4].
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[28] B. Keller, Koszul duality and coderived categories, preprint, 2003.

[29] A. Kono and K. Kuribayashi, Module derivations and cohomological splitting of adjoint
bundles, Fundamenta Mathematicae, 180(2003), 199-221.

[30] I. Kriz and J. P. May, Operads, algebras, modules and motives. Astérisque, no. 233,1995.
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Paris 7, November, 2003, arXiv:math.CT/0310337v1.
[39] X. F. Mao, Ghost length, cone length and complete level of DG modules. Acta Math. Sin.

(Engl. Ser.) 29(2013), 1279-1310.
[40] J. McCleary, A user’s guide to spectral sequences. Second edition. Cambridge Studies in

Advanced Mathematics, 58. Cambridge University Press, Cambridge, 2001.

[41] M. Mimura and H. Toda, Topology of Lie groups. I, II. Translated from the 1978 Japanese edi-
tion by the authors. Translations of Mathematical Monographs, 91. American Mathematical
Society, Providence, RI, 1991.

[42] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series

in Mathematics, 82, the American Mathematical Society, Providence, RI, 1993.
[43] H. J. Munkholm, The Eilenberg-Moore spectral sequence and strongly homotopy multiplica-

tive maps, J. Pure and Appl. Alge. 5(1974), 1-50.
[44] A. Murillo, The virtual Spivak fiber, duality on fibrations and Gorenstein spaces, Trans.

Amer. Math. Soc. 359 (2007), 3577-3587.
[45] J. Neisendorfer, Algebraic methods in unstable homotopy theory, New Mathematical Mono-

graphs, 12, Cambridge University Press, Cambridge, 2010.
[46] L. Positselski, Two kinds of derived categories, Koszul duality, and comodule-contramodule

correspondence, Memoirs of the American Mathematical Society, Volume: 212, 2011.
[47] R. Rouquier, Dimensions of triangulated categories, J. K-Theory 1(2008), 193-256.
[48] K. Schmidt, Auslander-Reiten theory for simply connected differential graded algebras,

preprint (2008), arXiv:math.RT/0801.0651v1.

[49] S. Shamir, On the string topology category of compact Lie groups, Adv. Math. 261(2014),
122-153.


