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Chapter 1

Introduction

“Even the most analytical thinkers are predictably irrational; the

really smart ones acknowledge and address their irrationalities.”

Dan Ariely
Behavioral Economist

1.1 Motivation

Standard economic theory relies on the neoclassical assumption that individuals are fully

rational and purely self-interested. It assumes that decision makers undertake optimal decisions

that maximize their own profits. As early as 1955, Simon criticized these assumptions and

argues that human decision makers have limited cognitive capabilities and are prone to

decision biases. He proposes satisficing as a more accurate way to model their behavior and

refers to this approach as bounded rationality (Simon 1955, 1957). Simon (1959) recommends

that economists should incorporate psychological evidence on individual behavior and that

theories of decision making should be grounded in an empirically founded theory of choice

that take the cognitive processes into account. The idea of bounded rationality of human

decision makers began to impact economics as the first controlled laboratory experiments in

decision making started to take place in the early 1960’s. Pioneering work of Vernon Smith

(1962, 1976) laid the ground for publishing research in experimental economics (Charness

and Halladay 2017). Ever since, the field of experimental economics has seen exponential

1



Chapter 1 Introduction

growth every decade (Roth 1995). At the same time the field of behavioral economics has also

grown in popularity and has developed new behavioral theory and models to explain the gaps

between established economic theory and experimental results (Bendoly et al. 2006). Once an

academic niche, behavioral and experimental economics have gained momentum in the late

1980’s and early 1990’s (Charness and Halladay 2017), approximately ten years after Herbert

Simon received the Nobel Prize for Economics in 1978 “for his pioneering research into the

decision-making process within economic organizations” (The Royal Swedish Academy of

Sciences 1978).

Another broad approach to address bounded rationality started in the late 1960’s by the

seminal work of Tversky and Kahneman (1971, 1974), now known as the heuristics and

biases approach (Kahneman and Frederick 2002). Tversky and Kahneman (1971) propose

that when humans face complex decisions they often apply simple decision heuristics, such as

the representativeness heuristic, the availability heuristic, and the anchoring and adjustment

heuristic. These decision heuristics are simple rules of thumb that lead to systematic biases

in judgment and decision making. Various researchers have contributed to that research

stream and identified a large number of heuristics and biases in human decision making.

Behavioral economists like Richard Thaler have started to incorporate behavioral insights

into economic science. In 2002, Daniel Kahneman and Vernon Smith co-received the Nobel

Prize in Economics “for integrating insights from psychology into economic science” and

for establishing “laboratory experiments as a vital tool in empirical economic analysis”,

respectively (The Royal Swedish Academy of Sciences 2002). They played a central role in

establishing behavioral and experimental economics as part of mainstream economics.

In the new millennium, both behavioral and experimental economics become useful tools

to design government policies. Before policy makers only rarely used psychological insights or

relied on theoretical predictions (Charness and Halladay 2017). After Thaler and Sunstein

(2008) published their influential book Nudge in 2008, behavioral economists have become

increasingly influential as policy advisors. Many governments have formed groups composed

of behavioral and experimental economists to incorporate insights from academic research

in behavioral science into the design of more effective policy solutions. In 2010 the British

2



Chapter 1 Introduction

Figure 1.1 Nudge Units Around the World (adapted from Chen et al. 2017)

Finland: Prime
Minister’s Office

Australia: Behavioural
Economics Team of the 
Australian Government 
(BETA)

Singapore: Prime 
Minister’s Office and 
Ministry of Manpower 

UK: (i) The Behavioural
Insights Team (BIT) and 
(ii) nudge units in 14 
departments

European 
Commission: 
Foresight, Behavioural
Insights and Design for 
Policy Unit

US: Social and 
Behavioral Sciences 
Team

Canada: Behavioural
Insights Unit

Rio de Janeiro: 
Mayor’s Office

France: OECD 
Behavioural science 
coordination

Melbourne: 
Department or Premier 
and Cabinet, Victoria

Italy: Prime Minister’s 
Committee of Experts

Germany: German 
Federal Chancellery

Moldova: UNDO/BIT 
collaboration

Sydney: (i) 
Behavioural
Insights Team 
Australia and (ii) 
Behavioural
Insights Unit, 
New South Wales

Jamaica: Finance 
Ministry (UNDP/BIT)

World Bank: Global 
Insights Initiative (GIN)

Chicago:
Chicago Nudge Unit

New York City: (i) BIT 
North America and (ii) 
ideas42

Netherlands: (i) Ministry of 
Economic Affairs and (ii) 
Ministry of Infrastructure 
and the Environment

India: New BE unit
Mexico: President’s 
Office

Norway: 
Greenudge

Guatemala: Guatemala 
tax administration

Denmark: The Danish 
Nudging Network

government was the first to establish its Behavioural Insights Team1, commonly referred to

as the “Nudge Unit”. In subsequent years, several governments around the world followed the

British government and formed their own nudge units, including Canada with its Behavioral

Insights Unit2, Germany with a team in the Federal Chancellery (Deutscher Bundestag

2015), and the United States, which established its Social and Behavioral Sciences Team

by President Obama’s executive order in 20153. Other initiatives around the world can be

seen in Figure 1.1. In 2017, Richard Thaler received the Nobel Prize in Economics “for his

contributions to behavioural economics” (The Royal Swedish Academy of Sciences 2017).

Incorporating behavioral science insights has not been limited to economics, but has taken

place in other fields as well, such as accounting, finance, marketing, law, and, more recently,

strategy. Operations management was perhaps the last field of management studies to embrace

behavioral insights (Loch and Wu 2007). Before 2000, the field was dominated by formal

mathematical models and human behavior received little attention. This has changed rapidly

after the seminal paper of Schweitzer and Cachon (2000), who initiated the research stream
1http://www.behaviouralinsights.co.uk/
2http://bi.dpc.nsw.gov.au/
3https://sbst.gov/
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of behavioral operations. They used laboratory experiments to analyze ordering behavior

in the newsvendor setting. The order quantities of their subjects deviated substantially

from profit maximizing order quantities and exhibited what has come to be known as the

“pull-to-center” effect, because observed average order quantities are consistently between

profit maximizing order quantities and mean demand. This effect was mainly attributed to

anchoring and insufficient adjustment (Slovic and Lichtenstein 1971, Tversky and Kahneman

1974). Since the seminal paper of Schweitzer and Cachon (2000), the pull-to-center effect has

proven robust in more than 20 experimental studies (Zhang and Siemsen 2016), holding under

various demand distributions (Benzion et al. 2008, 2010) and observed and unobserved lost

sales (Rudi and Drake 2014) and persists with experience and training (Bolton and Katok

2008, Bolton et al. 2012) and decision frequency (Bolton and Katok 2008, Bostian et al. 2008,

Lurie and Swaminathan 2009).

Bostian et al. (2008) estimated an adaptive learning model (Camerer and Ho 1999) that

tracks the observed data patterns in their newsvendor experiment. Other proposed explana-

tions of the pull-to-center effect include bounded rationality (Su 2008), cognitive reflection

(Moritz et al. 2013), ex post inventory error minimization (Schweitzer and Cachon 2000, Ho

et al. 2010, Kremer et al. 2014), overconfidence of decision makers (Ren and Croson 2013),

and impulse balance behavior (Ockenfels and Selten 2014, 2015). All of these theories offer

explanations for why learning is insufficient to move ordering fully away from the anchor at

mean demand to the optimal order quantity.

Behavioral operations has become a rapidly growing field. In the last decade, scholars

have incorporated insights from psychology and behavioral economics in sub-areas, such as

contracting (Katok et al. 2008, Katok and Wu 2009, Becker-Peth et al. 2013, Wu and Chen

2014), information sharing and forecasting (Özer et al. 2011, Kremer et al. 2011, Moritz

et al. 2014, Kremer et al. 2016, Bolton and Katok 2017), project management (Bendoly

and Swink 2007, Sting et al. 2015, Kagan et al. 2017), procurement (Engelbrecht-Wiggans

et al. 2007, Davis et al. 2011, Elmaghraby et al. 2012, Haruvy and Katok 2013, Davis et al.

2014), queuing (Batt and Terwiesch 2015, Kremer and Debo 2016, Shunko et al. 2017, Yu

et al. 2017), and revenue management (Bearden et al. 2008, Bendoly 2013, Kocabiyikoglu

4



Chapter 1 Introduction

et al. 2015). Hopp (2004) speculates that behavioral factors could be the source of the next

paradigm shift within operations management. Like behavioral and experimental economics

enhanced and broadened the field of economics, behavioral operations enhances and broadens

the field of operations management.

1.2 Behavioral Economic Engineering

Bolton and Ockenfels (2012) defined economic engineering as “the science of designing real-

world institutions and mechanisms that align individual incentives and behavior with the

underlying goals”. Economic mechanisms play an important role in operations management.

For example, the design of procurement auctions, supply contracts, or incentive schemes

directly affect prices, order quantities, and the motivation and satisfaction of employees.

Mechanisms matter because they affect decision making. Incorporating insights from psy-

chology and behavioral economics into the design of mechanisms is important because actual

decision making deviates from standard economic theory in two ways:

1. Deviations from rationality (bounded rationality)

2. Deviations from selfishness (other regarding preferences)

In this dissertation we will focus on bounded rationality of human decision makers. Human

decision makers are often guided by simple rules of thumb that are easy to apply but lead to

deviations from normative predictions. These biases are often systematic, making humans not

just boundedly rational but predictably irrational (Ariely 2010). These systematic deviations

allow us to design mechanisms based on behavioral models with the goal of engineering better

decision making.

To design effective mechanisms it is important to understand the psychological underpinnings

that contribute to biases. In behavioral science, the ancient idea that cognitive processes

can be partitioned into two main families has become standard under the so-called “dual

process theory of mind” (Epstein 1994, Sloman 1996). There is a rich body of literature on

how cognitive processes can be defined (see Stanovich and West 2000 and Evans 2008 for an

overview), with the common notion that one process is more intuitive while the other process

5
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Table 1.1 Two Cognitive Systems

System 1 System 2

Intuitive Reflective
Fast Slow
Automatic Controlled
Effortless Effortful
Associative Deductive
Unconscious Self-aware
Skilled Rule-following

is more reflective. Stanovich and West (2000) and Kahneman and Frederick (2002) refer to

these two cognitive processes as System 1 and System 2. Characteristics commonly attributed

to the two systems are listed in Table 1.1. The operations of System 1 are intuitive, fast,

automatic, and effortless. System 2 refers to operations, which are reflective, slow, controlled,

and effortful. If an individual faces a judgment problem, System 1 quickly proposes an

intuitive answer to the problem and System 2 can endorse or override this proposal. Although

System 1 often proposes correct answers, these fast and effortless answers come with a cost:

systematic biases (Arkes 1991).

The existence of systematic biases started an on-going debate about the most effective

strategies for debiasing individual biases (Larrick 2004, Soll et al. 2015). Klayman and

Brown (1993) suggest to group debiasing techniques into two general approaches: “modify

the decision maker” or “modify the environment”. The first approach assumes that the

environment is more or less fixed, and, therefore, the best debiasing approach is to provide

decision makers with a combination of education, training, and tools to help overcome their

cognitive limitations (Soll et al. 2015). These approaches have already been tested successfully

in field of behavioral operations. For example, Bolton et al. (2012) use task training to improve

performance in newsvendor decisions and Ren and Croson (2013) provide their subjects with

a tool for reducing overprecision and thereby improve subjects’ ordering behavior. The second

approach to debiasing is to modify the environment in which a decision is made in ways that

reduce the likelihood of biases (Soll et al. 2015). This approach comprises incentives and

choice architecture tools (Johnson et al. 2012) designed to “nudge” decision makers toward

better decisions (Thaler and Sunstein 2008, Johnson et al. 2012, Soll et al. 2015), and is part

6
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of behavioral economic engineering.

Behavioral economic engineering applied to operations management can help firms to design

mechanisms to improve the performance of their processes, given a better understanding of

behavioral regularities. First efforts aim to engineer better order decisions (Bolton and Katok

2008, Lee and Siemsen 2016), procurement auctions (Engelbrecht-Wiggans et al. 2007, Davis

et al. 2014), supply contracts (Becker-Peth et al. 2013, Becker-Peth and Thonemann 2016) or

incentive schemes (de Vries et al. 2016, Scheele et al. 2017). The aim of this dissertation is

to join these efforts and improve decision making in operations through applying behavioral

economic engineering.

1.3 Outline

This section outlines the structure of this dissertation. Although sharing the overall common

goal of improving decisions through behavioral economic engineering, the three main chapters

of this dissertation represent independent research projects. Each chapter considers an

example of how decision making can be improved through behavioral economic engineering

and is written in a way that the reader should be able to understand it without having read

all of the prior parts of the dissertation in detail. At the end of each chapter we provide

supplemental material for each project (for example, experimental instructions, screen shots

of the experimental implementations, post-experimental questionnaires, etc.).

Beyond the goal of improving decisions all research projects focus on individual decision

making in an operations context investigated through a common lens: controlled experiments.

We conducted 58 experimental sessions at the Cologne Laboratory of Economic Research

(CLER) at the University of Cologne, six sessions at the Laboratory for Behavioral Operations

and Economics (LBOE) at the University of Texas at Dallas, and one experimental study on

Amazon Mechanical Turk, a crowd-sourcing marketplace run by Amazon.com, Inc. (Paolacci

et al. 2010, Buhrmester et al. 2011). In addition, we collected data at three business conferences

(Marcus Evans 2013, Supply Chain Academy 2013, Copperberg 2013). In total we report

data from 785 subjects. In the following we give a brief overview of each chapter:
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Chapter 1 Introduction

Chapter 2 analyzes how performance metrics that contain equivalent information affect

human decisions.4 We consider two such performance metrics from supply chain management,

days of supply and inventory turn rate, where one is the inverse of the other. We argue that

individuals’ evaluation of performance is affected by the metric as opposed to solely based on

the fundamental attribute. We conducted three laboratory studies in which we investigate

decision making in inventory management. The first study considers alternative inventory

optimizations, out of which one must be selected. The second study analyzes a decision

maker who must decide on the effort to invest in optimizing inventory of a specific product.

The third study corresponds to the economic order quantity model. Our behavioral models

suggest that decisions are affected by the metric that is used to indicate performance and we

find support for the predictions in our laboratory experiments.

Chapter 3 analyzes human decision making under service level contracts.5 Service level

contracts can be parameterized, such that they have steep expected profit functions around

the expected profit-maximizing order quantity – an interesting property that other supply

contracts do not offer. We argue that this property leads to improved decision making. We

provide analytical models and perform a laboratory experiment to analyze ordering behavior

under service level contracts and compare the performance with that under wholesale price

contracts, which have flat expected profit functions. In our experiment, the efficiency that

human subjects achieved under a service level contract was 97.2%, compared with an efficiency

of 88.1% under a wholesale price contract.

Chapter 4 examines compliance rates (trust) for forecast guidance in a simple take-

the-risk or take-the-cost decision game.6 We analyze two ways of conveying the risk in

forecasts to non-expert users: providing the probability of the uncertain event or providing an

explicit advice. It turns out that low numerate subjects exhibit less trust in recommendation
4This chapter is based on the paper by Stangl and Thonemann (2017) and benefited from comments of two
anonymous referees and the editors of Manufacturing & Service Operations Management, seminar participants
at the University of Cologne and the University of Texas at Dallas, and participants at the 2013 INFORMS
Annual Meeting and the 9th Annual Behavioral Operations Conference.
5This chapter is based on the paper by Bolton et al. (2017) and benefited from seminar participants at the
University of Cologne and the University of Texas at Dallas, and participants at the 2014 INFORMS Annual
Meeting, the POMS 26th Annual Conference, and the 2016 INFORMS Annual Meeting.
6This chapter is joint work with Gary E. Bolton and Elena Katok and benefited from seminar participants at
the University of Cologne, UC Riverside, and the Erasmus University Rotterdam and participants at the 12th
Annual Behavioral Operations Conference.
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Chapter 1 Introduction

forecasts than high numerate subjects. While we find a positive relationship between subjects’

numeracy and trust in probability forecasts, this relationship is overshadowed by the fact

that even high numerate subjects use the probabilities inefficiently. Forecast guidance that

blends probabilities and recommendations, in a way designed to offset the major behavioral

shortcomings we observe, can improve compliance.

Chapter 5 summarizes the key results, offers concluding remarks on the contribution of

this dissertation and provides a general outlook to future research in the field of behavioral

operations.

1.4 Contribution

This dissertation adds to the emerging field of behavioral operations. The contributions of

each research project are described in detail at the beginning of the respective chapter. The

overall contribution to the field is mainly twofold:

Identifying behavioral regularities: We analyze behavioral regularities in an operations

context. In our three research projects we compare different performance metrics, supply

contracts, or forms of forecast guidance, respectively. Within each experimental study, the

treatments share the same normative solution. Thus, fully rational decision makers should

be unaffected by which of the metrics, supply contracts, or forms of forecast guidance is

used. This common design feature allows us to analyze how human decision makers react to

different mechanisms and to identify behavioral regularities.

Engineering better decision making: Based on the behavioral regularities that we identify in

our experimental studies we propose and test mechanisms to improve performance of human

decision making. We demonstrate that the design of performance metrics, supply contracts,

or forecast guidance can significantly improve decisions. We also study the interaction of

individual differences (for example, numeracy) with the proposed mechanism. This allows us

to make recommendations of how to tailor the design to different groups of individuals.
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Chapter 2

Equivalent Inventory Metrics:
A Behavioral Perspective

We analyze how performance metrics that contain equivalent information affect actual decisions.

We consider two such performance metrics from supply chain management, days of supply

and inventory turn rate, where one is the inverse of the other. We argue that individuals’

assessment of performance is also affected by the metric as opposed to solely based on the

inventory value that actually matters. We perform three laboratory studies and analyze

how decisions are affected by the metric used to indicate inventory performance. The first

study considers alternative inventory optimizations, out of which one must be selected. The

second study analyzes a decision maker who must decide on the effort to invest in optimizing

inventory of a specific product. The third study corresponds to the economic order quantity

model. Our behavioral models suggest that decisions are affected by the metric that is used

to indicate performance and we find support for the predictions in laboratory experiments

with human subjects: Under the inventory turn rate metric, individuals over-value inventory

reductions. Compared to decisions under the days of supply metric, they choose worse inventory

optimization options, invest more effort optimizing inventory of specific products, and choose

higher ordering cost.
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Chapter 2 Equivalent Inventory Metrics: A Behavioral Perspective

2.1 Introduction

Performance metrics are used to quantitatively assess the performance of organizations,

functions, projects, and individuals. Important decisions are based on performance metrics,

such as investment selections, budget allocations, and employee rewards. There exists a

rich body of literature that provides guidance for choosing appropriate metrics (Parmenter

2010, Eckerson 2011). However, multiple metrics that contain the same information are

often available, and it is unclear which one should be preferred. We refer to such metrics as

equivalent metrics. Fully rational decision makers are unaffected by which of the equivalent

metrics is used, but the decisions of actual human decision makers can be affected.

We consider equivalent metrics, where one metric is the inverse of the other. Such metrics

are widely used in management. The overall performance of a company can be measured by

the earnings yield and its inverse, the price-to-earnings ratio; a project can be evaluated by

the payback period and its inverse, the return on investment; sales efficiency can be measured

by cost per acquisition and its inverse, the acquisitions per dollar spent; employee retention

can be evaluated by the employee turnover rate and its inverse, the employee retention time;

and the number of calls in call centers can be measured by the incoming call rate and its

inverse, the inter-arrival time.

In supply chain management, performance metrics and their inverses are used in many

areas (Table 2.1). Our focus is on inventory management, which is one of the central areas of

supply chain management. Inventory is part of a company’s working capital and an important

driver of financial performance. In inventory management, the equivalent performance metrics

days of supply and inventory turn rate are commonly used (Caplice and Sheffi 1994, Hausman

2004). Days of supply measures the average duration that products are held in inventory

Table 2.1 Examples of Equivalent Metrics Used in Supply Chain Management

Area Time based Rate based

Inventory Days of supply (90 days) Inventory turn rate (4/year)
Warehousing Picking time (30 sec/unit) Picking rate (120 units/hr)
Production Production time (1 min/unit) Production rate (60 units/hr)
Reliability Mean time between failures (10 years) Failure rate (10%/year)
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Chapter 2 Equivalent Inventory Metrics: A Behavioral Perspective

and is usually specified in terms of days. Its inverse, the inventory turn rate, measures the

frequency at which the inventory stock is replenished or turned over, and is usually specified

as an annual rate. An inventory system with 90 days of supply, for instance, has an inventory

turn rate of 4 per year.

Days of supply and inventory turn rate are both popular in practice. In recent surveys

that we conducted at three supply chain management conferences (Copperberg 2013, Marcus

Evans 2013, Supply Chain Academy 2013), we asked 51 managers of manufacturing companies

about the performance metrics used at their companies: 31% of the participants reported that

they use days of supply, but not inventory turn rate, 31% that they use inventory turn rate,

but not days of supply, and 28% that they use both metrics, while 10% used other metrics

or did not provide answers. Similar results were reported by Harrison and New (2002) and

Cohen et al. (2007). In informal interviews, we could not identify a consistent pattern in the

rationales for choosing one metric versus the other.1

We are not the first to analyze the effect of equivalent metrics on decision making. Larrick

and Soll (2008) analyzed how fuel efficiency metrics affect people’s evaluations of fuel consump-

tion. They conducted an experiment in which subjects had to reduce the fuel consumption

of a car fleet. Subjects could increase the fuel efficiency of a fleet from 15 to 19 miles per

gallon or, alternatively, of another car fleet from 34 to 44 miles per gallon. Only 25% of the

participants chose the first, correct, option, that reduced fuel consumption more than twice

as much as the second option. In another treatment, in which fuel efficiency was expressed in

terms of the equivalent metric of gallons per 100 miles, 64% of the subjects chose the correct

option. Although fuel consumption optimization and inventory optimization are decision

problems from different fields, the problem structures are very similar. The setup of our first

experiment is very closely related to the miles per gallon illusion experiments of Larrick and

Soll (2008), and as we will show, we find similar decision biases.

The effect of metrics on decision making can be explained by attribute substitution: When
1To obtain insights into when these metrics are used, we consulted Knut Alicke, Master Expert of Supply Chain
Management at McKinsey&Company (personal communication, May 13, 2016). Alicke has worked as a supply chain
consultant with over 50 companies from various industries. He confirmed the initial insight from our surveys that there
is no consistent pattern in the usage of the two metrics. While some of the companies he worked with use inventory turn
rate, others use days of supply, and some use both. Alicke reported that in companies that use both metrics, inventory
turn rate tends to be used frequently for financial reporting. Overall, he could not identify a clear relationship between
hierarchical level or functional area and the use of the metrics that is consistent across companies.
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confronted with a difficult question, people instead answer an easier question and are often

actually unaware of the substitution (Kahneman and Frederick 2002), particularly if the

relationships involved are non-linear (Sterman 2002). Individuals do not necessarily make

decisions that optimize the fundamental attribute; instead, they optimize media that are

more readily available (Hsee et al. 2003). We use attribute substitution to model the effect of

metrics on inventory valuations. We show that decision makers tend to optimize the values of

the metric that is used to measure inventory performance, as opposed to the fundamental

attribute that is actually relevant, the inventory value. The relationship between the days of

supply metric and the inventory value is linear, and decision makers who substitute inventory

value by days of supply correctly value inventory changes. The relationship between the

inventory turn rate metric and the inventory value is convex, and decision makers who

substitute inventory value by the inventory turn rate over-value inventory changes.

We use a deductive approach for analyzing the effect of inventory metrics on decision

making. We perform three laboratory studies that are based on different problem types,

namely choice, effort, and cost optimization problems. Many inventory optimization problems

are of these types, and we analyze one in each of our three studies.

In Study 1, we adapt Larrick and Soll’s (2008) miles per gallon experiment to analyze an

operations management context. We consider a choice problem, in which a decision maker

must select an inventory optimization option from a set of options. Inventory managers face

this type of decision when they decide on the business units, locations, or processes to optimize

or when they prioritize such optimizations. We hypothesize that people more frequently

decide optimally under the days of supply metric, which is proportional to inventory value,

than under the inventory turn rate metric, which is convex in inventory value (Hypothesis 2.1).

The results of our experiments support the hypothesis. In our main experiment, 89.3% of

the choices are optimal under the days of supply metric, compared with 42.4% under the

inventory turn rate metric.

Our behavioral models build on attribute substitution. Applied to our setting, attribute

substitution suggests that decisions are affected by the value of the metric and not only by

the inventory value, which would be optimal. We argue that the extent to which people rely
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on the value of the metric depends on their cognitive reflection, which we quantify by the

cognitive reflection test (CRT; Frederick 2005) score. We hypothesize that people with high

CRT scores rely less on the metric and make better decisions than people with low CRT

scores (Hypothesis 2.2). We analyze the CRT scores of the subjects of our main experiment

and find support for the hypothesis. Subjects with high CRT scores solve up to 31.1% more

problems optimally than those with low CRT scores.

In Study 2, we consider an effort problem, in which a decision maker determines the

effort to invest in reducing inventory of a product. Similar problems occur, for instance, in

lean manufacturing environments when employees are working on continuous optimization.

Because the inventory turn rate is convex increasing in inventory reduction, it indicates a

greater than actual effect of effort on inventory reductions, and we hypothesize that individuals

invest more effort under the inventory turn rate metric than under the days of supply metric

(Hypothesis 2.3). In our laboratory experiment, we find support for the hypothesis. Individuals

invest on average 28.0% more effort under the inventory turn rate metric than under the days

of supply metric.

In Study 3, we consider a cost optimization problem, in which a decision maker must

determine the resources to allocate to ordering. Allocating resources to ordering is costly, but

reduces inventory. The problem is closely related to the economic order quantity model, one

of the standard models in inventory management. We hypothesize that individuals allocate

more resources to ordering under the inventory turn rate than under the days of supply metric

(Hypothesis 2.4), and our experimental results support the hypothesis. Subjects choose on

average a 69.5% higher ordering cost under the inventory turn rate metric than under the

days of supply metric.

In all of our studies, decisions are affected by the inventory metrics, and it seems reasonable

to expect that decisions are also affected by the metrics in other inventory settings. Given

the significances and magnitudes of the effects that we observe, our research suggests that

management should pay close attention to choosing the right metric. In many instances,

the days of supply metric will probably be the preferred choice because it is proportional

to inventory value. However, there might exist situations in which the inventory turn rate
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metric could be the preferred choice. Its convexity in inventory reduction could be utilized,

for instance, to motivate people to reduce inventory in situations in which the inventory level

is already low.

This chapter is organized as follows. Section 2.2 outlines the relevant literature. Section 2.3

presents our behavioral valuation model on which we base our hypotheses. Sections 2.4 through

2.6 contain our experimental studies. Section 2.7 concludes and discusses the managerial

implications of our findings.

2.2 Related Literature

Two streams of literature are related to our research: the literature on proxy attributes

and the presentation of information and the literature on dual process theory and cognitive

reflection. We will review both streams below.

Proxy Attributes and the Presentation of Information. A metric such as days of supply or

inventory turn rate can be considered a proxy attribute – an indirect and often more available

measure of a more fundamental attribute, in our case inventory value (Keeney and Raiffa 1976).

Proxy attributes are widely used in intuitive judgment and in many quantitative analyses in

operations management. Kahneman and Frederick (2002) referred to the tendency to focus

on a proxy attribute rather than assessing the fundamental attribute as attribute substitution.

They revisited the earlier studies on heuristic judgment (Tversky and Kahneman 1974, 1983,

Kahneman et al. 1982) and proposed a model of judgment heuristics in which the reduction

of complex tasks to simpler operations is achieved by attribute substitution. Consistent with

our findings, Fischer et al. (1987) found that decision makers who were presented with a

proxy attribute did not necessarily translate it into the fundamental attribute and gave the

proxy attribute more weight than they should have.

Keeney and Raiffa (1976) and Kahneman and Frederick (2002) argued that the use of proxy

attributes can lead to systematic biases, if the computation of the fundamental attribute

places a cognitive burden on the cognitive processes of decision makers. Managers often

need to make quick decisions and intuitively consider the relationship between the proxy
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and the fundamental attribute. Especially if the relationship is complex or probabilistic,

they tend to rely on simplifying heuristics (Fischer et al. 1987). One of the major sources of

complexity is non-linearity (Sterman 2002). Prior research has identified various situations

in which people reason poorly if the relationship between the proxy and the fundamental

attribute is non-linear. Perhaps the most noted misperception in this domain is the MPG

illusion (Larrick and Soll 2008), whereby people rely on miles per gallon as a linear indicator

of fuel efficiency. Larrick and Soll (2008) analyzed how people value fuel consumption. In

a treatment in which they indicated fuel efficiency by the miles per gallon metric, people

tended to over-value efficiency improvements of cars that are already efficient. In another

treatment, in which fuel efficiency was expressed in terms of the equivalent metric gallons

per 100 miles, which is linear in fuel efficiency, people were nudged toward better decisions

(Thaler and Sunstein 2008, Johnson et al. 2012).

Svenson (1970, 2008) analyzed how people estimate time savings from increased driving

speeds. He found that typical estimates are based on the differences in driving speeds instead

of the actual time savings. Hsee et al. (2003) conducted an experiment in which they compared

the effort of participants who were offered rewards that directly related to effort with that of

participants who first received points that were later converted into rewards. Although the

relationship between effort and reward was the same in all treatments, effort levels differed

and depended on the number of points received. Another study showing the insensitivity to

fundamental attributes is by Kagel et al. (1996), who analyzed how decisions are affected

by proxy attributes. They conducted an experiment in which participants bargained over

chips with different exchange rates. They found that participants’ perceptions of fairness were

more focused on the number of the chips than on the value of the chips. In another study,

Soll et al. (2013) found that people expect that monthly credit payments have a roughly

linear relationship with the payback period and therefore underestimate the payback period

when monthly payments barely cover interest. In general, people often reason poorly about

accumulation problems (see Cronin et al. 2009 and the references therein).

Even absent non-linearities, the presentation of seemingly equivalent information can affect

decision making. Denes-Raj and Epstein (1994) conducted a study in which participants had
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the chance to win a prize by drawing a red jelly bean from an urn. Their participants often

preferred to draw from an urn containing a greater absolute number but a smaller proportion

of red beans (for example, 7 in 100) than from an urn with fewer red beans but a better chance

to win (for example, 1 in 10). In a series of studies, Slovic et al. (2000) analyzed the different

reactions to risk presented as probability and risk presented as frequency. Experienced forensic

psychologists and psychiatrists were asked to rate the likelihood that a patient would commit

an act of violence. Clinicians who were given another expert’s assessment of a patient’s risk

of violence framed in terms of relative frequency rated patients as more dangerous than those

who were shown the “equivalent” risk assessment expressed as a probability. Similar results

were obtained by Yamagishi (1997), whose participants perceived a disease that kills 1,286

people out of every 10,000 to be more dangerous than one that kills 24.14% of the population.

We build on the research on proxy attributes (Keeney and Raiffa 1976, Fischer et al. 1987)

and attribute substitution (Kahneman and Frederick 2002) to model the effect of inventory

metrics on inventory valuations. Consistent with medium maximization (Hsee et al. 2003), we

show that individuals are affected by the value of the metrics and do not rely exclusively on

the values of the fundamental attribute, such that metrics that contain the same information,

but are framed differently, result in different decisions. The design of our Study 1 is similar to

that used by Larrick and Soll (2008), and Study 2 is related to the experimental design of Hsee

et al. (2003). Study 3 is not directly related to previous work in behavioral decision making

but considers a setting that is closely related to one of the standard models of inventory

management, that is, the economic order quantity model (Harris 1990, Erlenkotter 1990).

The results of our experiments are in line with the decision biases discussed above. Under

the inventory turn rate metric, individuals over-value inventory reductions and, compared

with decisions under the days of supply metric, they choose worse inventory optimization

options, invest more effort optimizing inventory of specific products, and choose a higher

ordering cost.

The literature has shown that people are not equally prone to such decision biases and that

cognitive reflection can explain some of the variation in decision outcomes. Therefore, we

next review the literature on dual process theory and cognitive reflection.
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Dual Process Theory and Cognitive Reflection. In dual process theory, cognitive processes

are partitioned into two qualitatively different but inter-operating types of thinking style

systems (Epstein 1994, Sloman 1996). There is a rich body of literature on how cognitive

processes can be defined (see Stanovich and West (2000) and Evans (2008) for an overview),

with the common notion that one process is more intuitive and the other process more rational

than the other. Stanovich and West (2000) and Kahneman and Frederick (2002) refer to the

cognitive processes as System 1 and System 2. System 1 is intuitive, fast, automatic, and

effortless, while System 2 is reflective, slow, rational, and effortful. If an individual faces a

problem, System 1 generates suggestions for System 2. System 2 can endorse or override

these suggestions.

Frederick (2005) proposes the CRT to measure the extent to which a person uses System 2.

The CRT consists of three questions, such as “A bat and a ball cost $1.10 in total. The bat

costs $1.00 more than the ball. How much does the ball cost?”. The intuitive answers are

wrong – in the example, the intuitive answer is $0.10, but the correct answer is $0.05. The

extent to which individuals choose the non-intuitive answers is measured by the CRT score,

which corresponds to the number of correct answers on the test. The CRT score indicates

how likely an individual is to reflect on an answer, that is, to use System 2 to override an

incorrect intuitive System 1 suggestion as opposed to endorsing it. The objective nature of

the CRT makes it an attractive candidate for understanding decision biases in our experiment

(Oechssler et al. 2009, Toplak et al. 2011). It is brief, easy to administer, unambiguous, and

widely used in laboratory experiments. Moreover, it has been proven to be a reliable predictor

for task performance in the behavioral operations management literature. Individuals with

high cognitive reflection have higher forecasting performance (Moritz et al. 2014) and perform

better in newsvendor-type decisions (Moritz et al. 2013), and this effect is robust to controlling

for intelligence. Narayanan and Moritz (2015) showed that cognitive reflection also provides

a powerful predictor for the bull-whip effect and supply chain performance in a multi-echelon

setting.

We build on previous research on proxy attributes to analyze the tendency of decision

makers to rely on inventory metrics as a proxy for the more fundamental attribute, inventory
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value. Prior research has analyzed the effect of cognitive reflection on decision making and

shown that individuals with high cognitive reflection are less prone to decision biases than

those with low cognitive reflection (Oechssler et al. 2009, Toplak et al. 2011). Moritz et al.

(2013) were the first to analyze cognitive reflection in an inventory management context. Like

us, they use the CRT score (Frederick 2005) as a proxy for cognitive reflection. In addition,

we use decision time and calculator use as proxies for cognitive reflection. We find that

individuals with high cognitive reflection make on average better decisions and than those

with low cognitive reflection. Moreover, we show that the performance metric can moderate

the effect that cognitive reflection has on task performance.

2.3 Behavioral Valuation Model

We are interested in understanding how inventory decisions are affected by the metrics

that are used to indicate inventory performance. The fundamental measure of inventory

performance is the inventory value. It quantifies the capital that is tied up in inventory, and

profit-maximizing (“rational”) individuals rely on it in their decision making. If the metrics

days of supply or inventory turn rate are used to indicate inventory performance, rational

individuals determine the corresponding inventory values and base their decisions on them.

Cognitive science research indicates that not all decision makers use this approach and that

some base their decisions on the metrics.

2.3.1 Inventory Performance Metrics

The value of the capital that is tied up in inventory, the inventory value, is the fundamental

measure of inventory performance. For a product with unit cost c and inventory level I, the

inventory value is

M = cI. (2.1)

To evaluate the efficiency of inventory usage over time or to compare inventory across

companies, locations, or products, the performance metrics days of supply and inventory turn

rate are commonly used (Hausman 2004). The days of supply metric relates the inventory
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value to the cost of goods sold. For a demand rate of d, the cost of goods sold is cd and the

days of supply metric is defined as

T = M
cd

= I
d
, (2.2)

where we use the variable T to indicate that it is a time-based measure. The days of supply

metric measures the average duration that products are held in inventory, and a lower value

indicates higher performance.

The inventory turn rate metric relates the cost of goods sold to the inventory value and is

defined as

R = c d
M

= d
I
, (2.3)

where we use the variable R to indicate that it is a rate-based measure. The inventory turn

rate metric measures the frequency at which the inventory stock is replenished, and a higher

value indicates higher performance. Because the days of supply metric is the inverse of the

inventory turn rate metric, the two metrics are equivalent and a rational individual makes

the same decisions under either metric.

2.3.2 Valuation of Inventory Reductions by Metrics

One of the key tasks of supply chain managers is to identify and implement improvements

that reduce inventory. Inventory reduction can be achieved, for instance, by reducing supply

lead times, automating order processing, or improving demand forecasting accuracy (see, for

example, Cachon and Terwiesch 2013). Such activities require effort or financial investments,

and to determine which of them to pursue, the value of the inventory reductions that they

achieve must be determined. We denote the initial inventory level by I0 and the inventory

level after the reduction by I1. An inventory level reduction of I0 − I1 reduces the inventory

value by VM = c(I0 − I1).
Because days of supply is the reciprocal of the inventory turn rate (T = 1/R), the metrics

are equivalent and rational individuals make the same decisions under either metric. However,

if inventory performance is measured by the days of supply or inventory turn rate metric,

we expect that some individuals will not invest the cognitive effort required to compute the
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inventory value and will instead value inventory based on the metric. We next analyze how

such individuals value inventory reductions.

Days of Supply. If an individual uses the days of supply metric as a proxy and substitute

for inventory value, then the value assigned to a reduction in the days of supply metric from

T0 = I0/d to T1 = I1/d is

VT = t(T0 − T1), (2.4)

where the parameter t is the value that an individual associates with a unit decrease in the

days of supply metric. Following Larrick and Soll (2008), we use linear relationships between

the proxy measure and the valuation. To express VT as a function of the inventory levels, we

replace T0 with I0/d and T1 with I1/d and obtain

VT = t

d
(I0 − I1), (2.5)

which is the value that an individual relying on Equation (2.4) assigns to an inventory level

reduction from I0 to I1.

Inventory Turn Rate. If an individual uses the inventory turn rate metric as a proxy and

substitute for inventory value, then the value assigned to an increase in the inventory turn

rate metric from R0 = d/I0 to R1 = d/I1 is

VR = r(R1 −R0), (2.6)

where the parameter r is the value associated with a unit increase in the inventory turn rate

metric and we again use a linear relationship between the proxy measure and the valuation.

To express VR as a function of the inventory levels, we replace R0 with d/I0 and R1 with

d/I1 and obtain

VR = rd( 1
I1
− 1
I0

) , (2.7)

which is the value that an individual relying on Equation (2.6) assigns to an inventory level

reduction from I0 to I1. The function is strictly convex increasing in the inventory reduction,
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Figure 2.1 Valuation of Inventory Reductions by Days of Supply and Inventory Turn Rate
(c = 1, d = 10,000, I0 = 5,000)
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whereas the optimal valuation is linear increasing in it. Therefore, there does not exist a

constant value for r for which the valuation is correct over a range of inventory reductions.

To optimally evaluate inventory reductions, a decision maker must use the function r =
cI0I1/d. Rational decision makers use this function, but those who rely on the substitution

heuristic and postulate a linear relationship between the inventory turn rate metric and the

valuation use a value of r that is independent of the inventory reduction.

Figure 2.1 provides an example to illustrate how inventory changes are valued by subjects

relying on the metrics. The left graph shows the valuation under the days of supply metric.

The gray line indicates the optimal valuation (VM ), which is the same valuation as that

under the days of supply metric with an optimal parameter value for t = cd (VT (t=10,000)). If

changes in days of supply are over-valued (t = 15, 000) or under-valued (t = 5, 000), the days of

supply valuation differs from the optimal valuation, but both depend linearly on the inventory

reduction. This implies, for instance, that the value assigned to an inventory reduction is

independent of the initial inventory level, which is optimal.

The right graph shows the valuation under the inventory turn rate metric. The valuation

is convex increasing in the inventory reduction, which implies that for any fixed value of r,

the value assigned to a given inventory reduction depends on the initial inventory level. This

implies that sufficiently large inventory reductions, that is, inventory reductions that are

greater than those where VM and VR intersect, are over-valued.
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2.4 Study 1: Effect of Performance Metrics on Investment

Decisions

A common management task is selecting investments from a set of investment options

with different returns. Managers must decide, for instance, which of several business units,

locations, or processes to optimize. We consider such a problem, in which a decision maker

must determine which of multiple inventory optimization options to choose. The effect of the

optimization options is indicated by the days of supply or inventory turn rate metric.

2.4.1 Behavioral Investment Models

Consider two alternative inventory optimization options for two products A and B. The initial

inventory level of product A is IA0 , and an investment in inventory optimization reduces

it to IA1 . The initial inventory level of product B is IB0 , and an investment in inventory

optimization reduces it to IB1 . To keep the model parsimonious, we consider products with

the same unit costs, demand rates, and investment costs but with different initial inventory

levels and different inventory reductions.

A rational decision maker values the optimization options based on their effect on the

inventory value and chooses Option A if

V A
M = c(IA0 − IA1 ) > c(IB0 − IB1 ) = V B

M (2.8)

and Option B otherwise.

If the optimization options are valued by the days of supply metric, Option A is chosen if

V A
T = t

d
(IA0 − IA1 ) > t

d
(IB0 − IB1 ) = V B

T (2.9)

and Option B is chosen otherwise. The only difference between the valuations by Equations

(2.8) and (2.9) is that the inventory reductions in Equation (2.9) are scaled by a factor t/d.
Because the factor is the same for both options, the decisions are the same under both

valuations and optimal choices are made under the days of supply metric.
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Figure 2.2 Effect of Initial Inventory and Inventory Reduction on Valuation under Inventory Turn Rate
Metric
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If the optimization options are valued by the inventory turn rate metric, Option A is chosen

if

V A
R = rd( 1

IA1
− 1
IA0

) > rd( 1
IB1

− 1
IB0

) = V B
R (2.10)

or, equivalently, if

(IA0 − IA1 )IB0 IB1 > (IB0 − IB1 )IA0 IA1 . (2.11)

Otherwise, Option B is chosen.

The choices under the inventory turn rate metric are not always optimal because the

inventory turn rate over-values inventory reductions if the initial inventory is small or the

inventory reduction is large. The left graph in Figure 2.2 depicts an example with initial

inventory levels IA0 = 100 and IB0 = 25. The gray area indicates where decision makers who

rely on the inventory turn rate metric make the wrong decisions.

Thus far, we have discussed how people decide if they rely exclusively on one of the metrics

or on the inventory value. Hsee et al. (2003) demonstrated that individuals do not necessarily

rely exclusively on the proxy or the fundamental attribute but that their valuations are

affected by the values of the proxy and the fundamental attribute, if both values are available.
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Translated to our setting, this finding suggests that individuals who compute the inventory

value based on the metric do not necessarily rely exclusively on the inventory value but also

on the value of the metric.

Such behavior can be modeled using a weighted average of the value of the metric and

the inventory value. We denote the weight that a decision maker places on the metric by w

(0 ≤ w ≤ 1) and the weight he or she places on the inventory value by (1 −w). The extreme

cases of w = 0 and w = 1 correspond to decision makers who rely on inventory value or the

value of the metric only, respectively. Values of w strictly above zero and strictly below one

model the combined approach suggested by Hsee et al. (2003). It can be shown that for all

strictly positive weights w, some decisions are incorrect under the inventory turn rate metric.

The right graph in Figure 2.2 shows an example for w = 0.5. The gray area is decreasing in w,

but it always exists for weights w > 0, such that some decisions are not made optimally under

the inventory turn rate metric. Under the days of supply metric, individuals are not prone to

such decision biases, and we hypothesize the following:

Hypothesis 2.1. Optimal investment decisions are made more frequently under the days of

supply metric than under the inventory turn rate metric.

2.4.2 Effect of Individual Thinking Styles on Decisions

To gain a better understanding of the drivers behind the potential heterogeneity of the

decisions, we draw from the theory of cognitive science. We use dual process theory, which

has already been successfully applied to understand heterogeneity in forecasting and decision

making in the newsvendor problem (Moritz et al. 2013, 2014).

We follow Stanovich and West (2000) and Kahneman and Frederick (2002) and refer to the

cognitive processes as System 1 and System 2. System 1 is intuitive, fast, automatic, and

effortless, while System 2 is reflective, slow, rational, and effortful (see Section 2.2 for details).

If an individual faces a problem, System 1 generates suggestions for System 2. System 2 can

endorse or override these suggestions. In our problem, the option that increases the metric

the most can be considered the intuitive suggestion because the metric is the proxy attribute

that is directly available to the decision maker. If System 2 endorses the suggestion in the
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inventory turn rate treatment, the wrong decision can be made. If System 2 is alerted and

overrides an incorrect intuitive suggestion, it becomes more likely that the optimal decision is

made.

Frederick (2005) proposes the CRT to measure the extent to which an individual uses

System 2. The higher an individual’s tendency to override an incorrect intuitive response

of System 1, the higher the probability that the problem is solved optimally. Individuals

with high CRT scores do not only override System 1 more frequently than individuals with

low CRT scores, but they are also generally more likely to make optimal choices. Frederick

(2005) and Toplak et al. (2011) found that the CRT overlaps with intelligence and cognitive

ability. Therefore, we expect that individuals with high CRT scores make better decisions

than individuals with low CRT scores under both metrics but that the effect is stronger under

the inventory turn rate metric, where the suggestion of System 1 must be overridden, which

leads to the following hypotheses:

Hypothesis 2.2.

(a) Under the days of supply metric, individuals with high CRT scores make optimal

investment decisions more frequently than individuals with low CRT scores.

(b) Under the inventory turn rate metric, individuals with high CRT scores make optimal

investment decisions more frequently than individuals with low CRT scores.

(c) The effect of the CRT score on the frequency of optimal choices is stronger under the

inventory turn rate metric than under the days of supply metric.

2.4.3 Investment Experiment

We conducted a laboratory experiment in which human subjects had to decide between two

inventory optimization options, where one option reduced inventory more than the other.

In the experiment, we used two treatments, a days of supply treatment and an inventory

turn rate treatment, that differed only in how the performance of the inventory system was

measured.
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Table 2.2 Treatments of Investment Experiment

Days of supply Inventory turns rate

Option A Option B Option A Option B

Problem Initial Optimized Initial Optimized Initial Optimized Initial Optimized

1 60 30 20 10 6 12 18 36
2 24 15 8 5 15 24 45 72
3 120 72 60 36 3 5 6 10

All sessions followed the same protocol. At the beginning of the experiment, subjects were

randomly assigned to one of the two treatments and received the corresponding instructions

(Supplementary Material 2.A). The written instructions explained how the performance

metrics are computed and provided an example. Subjects were informed that they had to

manage a warehouse with two products with the same unit costs and annual demand rates

of 10,000 units but with different initial days of supply or inventory turn rates. Subjects

were informed that they could optimize the inventory of one of the products and that they

would receive a payment of 10 experimental currency units (ECUs) for each unit of inventory

reduction. They were also informed that the exchange rate would be 1 euro per 3,000 ECUs.

After reading the instructions, subjects could ask questions that the instructor answered

privately.

During the experiment, subjects made the three investment decisions shown in Table 2.2.

The problems were designed to achieve variation in the absolute values of the optimal inventory

reduction and in the difference in the inventory reduction achieved under the two options.

The problems were presented sequentially, and the sequence was randomized. Participants

could make decisions at their own pace and were informed that the experiment was not time

restricted.

After they had made their investment decisions, subjects took the CRT, stated whether they

already knew the questions, and completed a post-experimental questionnaire, in which we

asked questions regarding participants’ attitudes and preferences, as well as general questions

about the experiment. We also collected demographic data.

A total of 114 students from the faculty of Management, Economics and Social Sciences of
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Figure 2.3 Results of Investment Decision Experiment
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the University of Cologne were recruited via the Online Recruitment System for Economic

Experiments (ORSEE, Greiner 2004). The experiment was conduced in six sessions. In total,

59 subjects were assigned to the days of supply treatment and 55 subjects to the inventory

turn rate treatment. The sessions lasted 45 minutes on average and were programmed and

conducted with the software z-Tree (Fischbacher 2007). The average payment was 9.29 euros,

including a participation fee of 2.50 euros.

2.4.4 Results

The fractions of optimal choices are shown in the left graphs in Figure 2.3. Averaged over all

problems, 89.3% of the decisions were optimal in the days of supply treatment and 42.4%

were optimal in the inventory turn rate treatment. The difference in the aggregate fraction

is significant (Wilcoxon test, one sided, p < 0.001), as are the differences in the fractions

for the individual problems (χ2 (1, N = 114), p < 0.001 for all problems). We conclude that

optimal investment decisions are made more frequently under the days of supply than under

the inventory turn rate metric, which provides support for Hypothesis 2.1.
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Figure 2.4 Effect of CRT Score on the Fraction of Optimal Choices
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The right graphs in Figure 2.3 depict the inventory reductions that were achieved under

both metrics. The inventory reductions are related to the optimal choices but are also affected

by the magnitudes of the inventory reductions stipulated in the problems. In the days of

supply treatment, the average total inventory reduction was 2,269 units and significantly

greater than the reduction of 1,595 units in the inventory turn rate treatment (Wilcoxon test,

one-sided, p < 0.001).

We next analyze the effect of the CRT scores on decision making. Of the 114 subjects, 49

stated that they already knew the CRT questions before the experiment, and we exclude

them from the analyses. Following Oechssler et al. (2009) and Hoppe and Kusterer (2011),

we pool the CRT scores of the remaining 65 subjects into a low CRT score group (CRT scores

of 0 or 1) and high CRT score group (CRT scores of 2 or 3).

Figure 2.4 shows the results. Under both metrics, subjects with high CRT scores more

frequently decided optimally than did those with low CRT scores. Compared with the group

with low CRT scores, the group with high CRT scores solved 19.1% more problems optimally

in the days of supply treatment and 31.1% more problems optimally in the inventory turn rate

treatment. Both differences are significant (Wilcoxon test, one-sided, p = 0.040 and p = 0.017,

respectively), which provides support for Hypotheses 2.2(a) and 2.2(b).
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The results also indicate that the effect of the CRT score on performance is higher under

the inventory turn rate metric than under the days of supply metric. We test the significance

of the differences using a fractional logit model (Papke and Wooldridge 1996) with the fraction

of optimal decisions as the dependent variable (see Table 2.3). Metric equals one in the days

of supply treatment and zero in the inventory turn rate treatment. CRT equals one if the

subject belongs to the high CRT score group and zero otherwise. The regression analysis

yields a significant effect for the metric and the CRT group but a non-significant effect for

the interaction of CRT group and metric.

We used the CRT score as an indicator of System 2 thinking in our analyses. To analyze

the robustness of the results, we considered alternative indicators for System 2 thinking, that

is, decision time (Dane and Pratt 2007) and calculator use (Rosenboim et al. 2013). We

replaced the variable CRT in the regressions with the variables Time (average time that a

subject required to reach a decision) and Calculator (number of decisions in which subjects

used a calculator). The results of the corresponding regressions are shown in Table 2.3.

For decision time, the results are similar to those for CRT score, but the significance levels

are higher. For calculator use, the results are also similar and more pronounced. Using a

calculator does not significantly improve decisions in the days of supply treatment (p = 0.721),

but using one does in the inventory turn rate treatment (p < 0.001). Note that the interaction

term is also significant (p = 0.050), indicating that calculator use has significantly lower value

in the days of supply than in the inventory turn rate treatment.

Overall, the results show that optimal investment decisions are made more frequently in

the days of supply than in the inventory turn rate treatment. The results also indicate that

System 2 thinking (operationalized by high CRT score, long decision time, and calculator

use) is beneficial, in particular if the inventory turn rate is used.

We conducted the experiments in a controlled laboratory environment at the University

of Cologne. The subjects were pre-experienced students from the faculty of Management,

Economics and Social Sciences with an average age of 23.6 years and little or no work

experience. Given the background of the students, it is unlikely that they had experience in

making investment decisions, such as those that they made in the experiment. To analyze
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Table 2.3 Effect of System 2 Thinking on Performance in Investment Decisions

CRT score Decision time Calculator use

Variable DOS only ITR only Full sample DOS only ITR only Full sample DOS only ITR only Full sample

Metric 1.822∗∗ 3.169∗∗∗ 3.252∗∗∗

(0.667) (0.640) (0.504)

CRT 1.762∗∗ 1.288∗∗ 1.288∗∗

(0.758) (0.587) (0.582)
CRT x Metric 0.474

(0.952)

Time 0.017 0.030∗∗∗ 0.030∗∗∗

(0.011) (0.011) (0.011)
Time x Metric −0.013

(0.015)

Calculator 0.104 0.799∗∗∗ 0.799∗∗∗

(0.292) (0.203) (0.202)
Calculator x Metric −0.694∗∗

(0.354)

Constant 1.128∗∗∗ −0.693 −0.693 1.675∗∗∗ −1.493∗∗∗ −1.493∗∗∗ 2.058∗∗∗ −1.193∗∗∗ −1.193∗∗∗

(0.503) (0.447) (0.443) (0.458) (0.451) (0.449) (0.403) (0.306) (0.305)

Log-likelihood −10.75 −17.14 −27.90 −17.34 −29.32 −46.66 −17.72 −27.87 −45.58
Observations 34 31 65 59 55 114 59 55 114

Notes. Fractional logit regression. Robust standard errors in parentheses.
∗ p-value < 0.10, ∗∗ p-value < 0.05, ∗∗∗ p-value < 0.01, two-tailed.
DOS = days of supply, ITR = inventory turn rate.
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Table 2.4 Inventory Investment Decisions of Managers (N = 51)

Berlin Munich Stockholm Total

Metric Subjects Optimal Subjects Optimal Subjects Optimal Subjects Optimal

Days of supply 5 2 (40.0%) 9 9 (100%) 9 6 (66.7%) 23 17(73.9%)
Inventory turn rate 3 0 (0%) 10 7 (70.0%) 15 6 (40.0%) 28 13(46.4%)

whether individuals with experience in investment decisions are also subject to the decision

biases we observed with students, we conducted an additional experiment with actual supply

chain managers.

2.4.5 Experiment With Managers

We identified three business conferences that targeted managers at the vice presidential level

and above and addressed inventory optimization: the Inventory Optimization Workshop in

Berlin (Marcus Evans 2013), the Supply Chain Executive Academy in Munich (Supply Chain

Academy 2013), and the Spare Parts Business Platform in Stockholm (Copperberg 2013).

At the conferences, we distributed questionnaires and asked the participants to consider a

warehouse where the inventory of three products can be optimized, but budget restrictions

allow them to optimize the inventory of only one product (Supplementary Material 2.B). The

products had the same unit costs and demand rates. In the days of supply treatment, days of

supply could be reduced from (A) 120 to 90 days, (B) 36 to 18 days, or (C) 15 to 9 days. In

the inventory turn rate treatment, we provided the corresponding inventory turn rates that

could be increased from (A) 3 to 4 turns per year, (B) 10 to 20 turns per year, or (C) 24 to

40 turns per year. In both treatments, A is the optimal choice.

The results of the experiment are shown in Table 2.4. At all conferences, the managers

performed better under the days of supply metric than under the inventory turn rate metric.

Under the days of supply metric, 73.9% of the decisions were optimal, a fraction that is

significantly higher than the fraction of 46.6% optimal decisions under the inventory turn

rate metric (Wilcoxon test, one-sided, p = 0.025).

There is substantial heterogeneity in the results across conferences, which could be attributed

to the relatively small sample sizes per conference, the different backgrounds of the participants,
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or the different topics covered at the conferences before the experiment. To control for such

factors in the analysis, we conducted a logistic regression analysis with the metric as the

independent variable and the binary decision as the dependent variable, using fixed effects

for the conferences. The regression shows a significant effect of the metric on the decision

(odds ratio = 0.178, p = 0.024). The results of this experiment indicate that the investment

decisions of supply chain managers are affected by the equivalent metric used and provide

additional support for Hypothesis 2.1.

2.5 Study 2: Effect of Performance Metrics on Effort

Companies continuously seek to increase their operational efficiency and reduce inventory

levels by, for instance, implementing lean management practices and continuous process

improvements (Chen et al. 2005, 2007, Alan et al. 2014). Such activities require effort. We

analyze how the effort that people invest is affected by the performance metric used. Because

different performance metrics assign different values to the effect of effort, the choice of metric

can influence employee motivation and effort.

2.5.1 Behavioral Effort Model

Consider an individual who must determine the effort to invest in inventory optimization. We

denote the effort cost function by E(a) and assume that the function is convex and increasing

in the effort level a. The effort that the decision maker invests determines the inventory level.

We denote the inventory level function by I(a) and the initial inventory level by I(0). The
function is strictly convex decreasing in effort and converges to a positive inventory level

as effort goes to infinity. This functional form models the standard setting, in which more

beneficial improvements are implemented before less beneficial ones. The monetary value of

the inventory reduction associated with effort level a is VM(a) = c(I(0) − I(a)).
The days of supply metric has the following value at effort level a:

VT (a) = t

d
(I(0) − I(a)) −E(a). (2.12)
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A decision maker who places weight 0 ≤ w ≤ 1 on the metric and weight (1 − w) on the

inventory value assigns the value

ṼT (a) = w t
d
(I(0) − I(a)) + (1 −w)c (I(0) − I(a)) −E(a) (2.13)

to effort level a.

The inventory turn rate metric has the following value at effort level a:

VR(a) = rd( 1
I(a) −

1
I(0)) −E(a). (2.14)

A decision maker who places weight 0 ≤ w ≤ 1 on the metric and weight (1 − w) on the

inventory value assigns the value

ṼR(a) = wrd( 1
I(a) −

1
I(0)) + (1 −w)c (I(0) − I(a)) −E(a) (2.15)

to effort level a.

We are interested in comparing the optimal effort levels under the days of supply and

inventory turn rate metrics, which requires specifying the parameters t and r. For our analyses,

we use the parameter values at the initial effort level, that is, t = cd and r = cI2(0)/d. All

results still hold if the parameters are determined at any effort level between zero and the

optimal effort level under the days of supply metric.

The function ṼT (a) is convex in the effort level, and the optimal effort level under the days

of supply metric solves the first-order condition −cI ′(a∗T ) = E′(a∗T ). At this effort level, the
first derivative of the function ṼR(a) is

Ṽ ′

R(a∗T ) = (1 − I2(0)
I2(a∗T )

)wcI ′(a∗T ). (2.16)

Ṽ ′

R(a∗T ) is non-negative for 0 ≤ w ≤ 1 and strictly positive for 0 < w ≤ 1, which implies that

the optimal effort level under the inventory turn rate metric is higher than the optimal effort

level under the days of supply metric, that is, for individuals who place some weight on the

metric. We hypothesize the following:
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Hypothesis 2.3. The average effort is higher under the inventory turn rate metric than

under the days of supply metric.

2.5.2 Effort Experiment

We analyzed the effect of the metrics on effort in a laboratory experiment, in which human

subjects invested real effort to reduce inventory. The experiment used two treatments, a

days of supply treatment and an inventory turn rate treatment, that differed only in how the

performance of the inventory system was indicated.

All experimental sessions followed the same protocol. Subjects received written instructions

about the experiment that explained how the performance metrics are computed and provided

examples (Supplementary Material 2.C). Subjects were informed that they had to manage

the inventory of a single product with an annual demand rate of 10,000 units and an initial

average inventory level of 5,000 units. They were told the initial values of the performance

metrics, that is, the initial value of the days of supply metric of 180 days or the initial value

of the inventory turn rate metric of 2 per year. Subjects were informed that they could invest

effort to reduce inventory and would receive a payment of 10 ECUs for each unit of inventory

reduction. They were also informed that the exchange rate would be 1 euro per 5,000 ECUs.

We decided to design a real effort experiment because real work better captures fatigue,

boredom, excitement and other affectations not present in monetary effort designs (see, for

example, van Dijk et al. 2001, Carpenter et al. 2010). The effort task required subjects to

position sliders on a computer screen using the computer mouse (Gill and Prowse 2012). The

instructions stated the relationship between effort, measured by the number of sliders moved

correctly from the initial position of 0 to the target position of 50, and average inventory:

Average inventory level = 5,000 units
1 + 0.1 ⋅Number of sliders positioned correctly

. (2.17)

Before the actual experiment, subjects completed a quiz consisting of five questions to

ensure that they understood the effect of their effort on the average inventory level and the

performance metric. The first question concerned the functional relationship between the
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inventory level and the performance metric. The second question asked for the initial average

inventory level (5,000 units) and the third question for the initial value of the performance

metric (180 days or 2 per year). The fourth question asked for the inventory level after

the first ten sliders were positioned correctly (2,500 units). The fifth question asked for the

corresponding value of the performance metric (90 days or 4 per year).

If all five questions were answered correctly on the first attempt, subjects received 1,000

ECUs. If they needed two attempts, they received 500 ECUs. If they needed more than two

attempts, they did not receive any compensation for completing the quiz. Subjects could

not continue without having answered all five questions correctly; 113 subjects needed one

attempt, five subjects needed two attempts, and ten subjects needed more than two attempts.

After the quiz, the actual experiment started. The experiment was played in rounds. At

the beginning of a round, a screen with 48 sliders appeared, all set at an initial value of zero

(see Supplementary Material 2.C for a screenshot). Subjects had two minutes to position

up to 48 sliders and were informed of the time remaining in each round. In the experiment,

the maximum number of sliders that a subject positioned correctly in a round was 28. After

a slider was positioned correctly, the performance metric was updated. After each round,

subjects could decide whether they wanted to stay for another round or to terminate the

experiment. Subjects were informed that they could play as many rounds as they wished. We

had to terminate the experiment for one subject in the inventory turn rate treatment after 50

rounds (nearly 120 minutes total) to avoid overlap with subjects of the subsequent session.

A total of 128 students from the faculty of Management, Economics and Social Sciences of

the University of Cologne were recruited via the online recruiting system ORSEE (Greiner

2004). We ran 48 sessions and invited three students per session. To avoid having subjects

who terminated the experiment affecting the effort decisions of other subjects, we placed

the subjects into individual rooms, such that they could not observe one another. Subjects

arrived at the instructor’s office and were randomly assigned to treatments and rooms; 65

subjects were assigned to the days of supply treatment and 63 to the inventory turn rate

treatment. The average compensation was 9.62 euros.
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Figure 2.5 Effect of Metric on Average Invested Effort and Average Final Inventory Value
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2.5.3 Results

Figure 2.5 summarizes the results. It shows that subjects, on average, invested more effort

in the inventory turn rate treatment than in the days of supply treatment: They moved

significantly more sliders (Wilcoxon test, one-sided, p = 0.011) and played significantly more

rounds (Wilcoxon test, one-sided, p = 0.025), which provides support for Hypothesis 2.3. The

figure also depicts the average final inventory level under both metrics. In the inventory turn

rate treatment, the final inventory level was significantly lower than in the days of supply

treatment (Wilcoxon test, one-sided, p = 0.011).

The results can be explained by the non-linear relationship between the inventory turn rate

metric and the inventory value, which leads individuals to overestimate the impact of the

effort they invested in inventory reduction. Therefore, it is more likely that an individual

exerts higher effort and achieves lower inventory levels under the inventory turn rate than

under the days of supply metric.
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2.6 Study 3: Effect of Performance Metrics on Inventory Decisions

The two fundamental inventory models used in supply chain management are the economic

order quantity model (Harris 1990, Erlenkotter 1990) and the newsvendor model (Arrow

et al. 1951). A large body of literature exists that analyzes variations and extensions of these

models (see, for example, Zipkin 2000). More recently, the behavioral aspects of inventory

management have been addressed (Schweitzer and Cachon 2000, Bolton et al. 2012, and the

references therein). The focus of this stream of research has been on analyzing decision biases

and human preferences in the newsvendor setting. Our interest is in understanding the effect

of inventory metrics on decision making, and we will use the simpler economic order quantity

model for our analyses.

2.6.1 Behavioral Inventory Model

The economic order quantity model considers ordering and inventory holding costs. Each time

an order is placed, a fixed order cost of K is charged. Orders are delivered instantaneously

and placed in inventory, where they are held at an inventory holding cost per unit of h. The

demand rate d is deterministic and constant, and all demand is filled from inventory.

The classical economic order quantity model considers an operational perspective and

analyzes how optimal order quantities of individual products can be determined. The decision

variable is typically order quantity, which is the key decision variable for inventory planners,

who are in charge of placing orders with suppliers. Inventory managers who are responsible

for managing larger organizational entities, such as departments, typically use aggregated

metrics to assess inventory performance (Harrison and New 2002, Cohen et al. 2007). Their

focus is on managing the budget, and they are often confronted with monetary decisions.

We consider such a monetary decision problem, in which a decision maker must determine

the ordering cost k and the resulting inventory is indicated by an inventory metric. With

ordering cost k, n = k/K orders can be placed per year, which results in an average inventory

level of d/2n = dK/2k. The higher the ordering cost is, the higher the ordering frequency

and the lower the average inventory level. The total costs are k + hdK/2k, and the optimal

ordering cost is k∗ =
√
hdK/2.
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If inventory is valued only by the days of supply metric, the value associated with ordering

cost k is

VT (k) = t

d
(I(K) − dK

2k
) , (2.18)

where I(K) denotes the initial inventory level. A decision maker who places weight 0 ≤ w ≤ 1

on the metric and weight (1−w) on the inventory value and who initializes t at k =K assigns

the value

ṼT (k) = wh(I(K) − dK
2k

) + (1 −w)h(I(K) − dK
2k

) − k = h(I(K) − dK
2k

) − k (2.19)

to ordering cost k.

Under the inventory turn rate metric, the value is

VR(k) = rd( 2k
dK

− 1
I(K)) − k. (2.20)

A decision maker who places weight 0 ≤ w ≤ 1 on the metric and weight (1 − w) on the

inventory value and who initializes r at k =K assigns the value

ṼR(k) = whI2(K)( 2k
dK

− 1
I(K)) + (1 −w)h(I(K) − dK

2k
) − k, (2.21)

to ordering cost k.

To compare the optimal ordering cost under the two metrics, we first analyze the optimal

ordering cost under the days of supply metric. The function ṼT (k) is concave in ordering

cost k, and the first-order condition yields an optimal ordering cost of k∗T =
√
hdK/2. The

function ṼR(k) is also concave in ordering cost k. At the optimal ordering cost k∗T , the first

derivative of the function ṼR(k) is

ṼR(k) = wdh − 2K
2K

. (2.22)

The first derivative at the optimal ordering cost is strictly positive for situations in which it

is more expensive to hold the annual demand in inventory than placing one order (dh/2 >K)
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and where individuals place some weight on the metric (w > 0). The first condition holds

for most real inventory systems, and the second condition holds if individuals rely, to some

extent, on the metric. Thus, we hypothesize the following:

Hypothesis 2.4. Average ordering costs are greater under the inventory turn rate metric

than under the days of supply metric.

2.6.2 Inventory Experiment

We conducted a laboratory experiment in which subjects had to determine the ordering costs

of three products with different inventory holding costs per unit. The experiment used two

treatments, a days of supply treatment and an inventory turn rate treatment, that differed

only in how the inventory level was indicated.

All experimental sessions followed the same protocol. Upon entering the lab, subjects

received written instructions (Supplementary Material 2.D). Subjects were informed that they

had to manage the inventory of three products with identical demand rates of 10,000 units

per product but with different inventory holding costs per unit. Subjects had to determine

the ordering costs of the products. They were informed that the higher that they set the

ordering cost, the lower the average inventory level and the corresponding inventory holding

cost for this product would be. For holding inventory, subjects incurred costs of h ECUs

per average unit on hand. The inventory holding costs per unit h were 10, 15, and 20. The

minimum ordering cost was 100 ECUs. Subjects received an endowment of 45,000 ECUs from

which the total costs were deducted. The exchange rate was 1 euro per 5,000 ECUs.

Before the actual experiment, subjects completed a computerized quiz consisting of seven

questions, separated into three parts, to ensure that they understood the relationship among

ordering cost, inventory holding cost, and the performance metric to which they were exposed.

The first part concerned the functional relationships among ordering cost, performance metrics,

and inventory holding cost. In the second part, we asked subjects to determine the average

inventory level for two values of the performance metric. In the third part, subjects had to

determine the effects of decreases in the inventory level on the inventory holding cost for

three different inventory holding costs per unit. If all questions within a part were answered
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correctly on the first attempt, subjects received 2,000 ECUs. If they needed two attempts,

they received 1,000 ECUs. If they needed more than two attempts, they did not receive any

compensation for answering the corresponding part. Subjects could not continue without

having answered all seven questions correctly. For the first part, 111 subjects needed one

attempt, 13 subjects needed two attempts, and one subject needed more than two attempts.

The corresponding frequencies for the second and third part are 115, 8, and 2 and 93, 28, and

4, respectively.

The experiment was implemented and conducted with the software z-tree (Fischbacher

2007). After they had made their investment decisions, subjects completed a post-experimental

questionnaire, and we collected demographic data.

A total of 125 students of from the faculty of Management, Economics and Social Sciences

of the University of Cologne were recruited via the online recruiting system ORSEE (Greiner

2004), and each subject participated in one of four sessions. Upon entering the laboratory,

each subject was randomly assigned to one of two treatments, which resulted in 61 subjects

for the days of supply treatment and 64 subjects for the inventory turn rate treatment. The

sessions lasted 40 minutes on average, and the average payment was 8.44 euros, including a

participation fee of four euros.

2.6.3 Results

The average ordering cost under the different inventory holding costs per unit are shown

in Figure 2.6. For all products, ordering costs were higher under the inventory turn rate

metric than under the days of supply metric. On average, the total ordering cost was 9,654

ECUs under the inventory turn rate metric and 69.5% higher than that of 5,695 ECUs under

the days of supply metric. The difference in total ordering cost is significant (Wilcoxon

test, one-sided, p < 0.001), as are the differences for the individual products (Wilcoxon test,

one-sided, p = 0.004 for h = 10 and p < 0.001 for h = 15 and h = 20). We conclude that subjects

set a higher ordering cost, on average, under the inventory turn rate metric than under the

days of supply metric, which provides support for Hypothesis 2.4.
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Figure 2.6 Effect of Metric on Average Ordering Cost
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Note. Error bars indicate one standard error.

Figure 2.6 also indicates that ordering costs tend to be below optimality under the days of

supply metric and above optimality under the inventory turn rate metric. Our model did not

predict the below-optimal ordering cost that we observed in the experiment under the days

of supply metric. However, this effect can be explained by prospect theory (Kahneman and

Tversky 1979) and mental accounting (Thaler 1985), if the ordering cost were framed as a loss.

Such losses typically loom larger than equivalent gains, which would explain the below-optimal

order quantities in the days of supply treatment. Assuming that mental accounts and loss

aversions are the same in both treatments, the behavioral models continue to predict the

difference in ordering cost as stated in Hypothesis 4.

Because the cost function is steeper below than above the optimal solution, a given

deviation from the optimal ordering cost is more costly below than above the optimum. This

explains why the average total costs of 29,493 ECUs under the inventory turn rate metric

are significantly below those of 42,555 ECUs under the days of supply metric (Wilcoxon test,

two-sided, p = 0.009).
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2.7 Discussion and Managerial Implications

We analyzed the effect of performance metrics on decision making and considered two

equivalent metrics, days of supply and inventory turn rate. The relationship between days

of supply and inventory value is linear, such that valuations that are based on the days of

supply metric are proportional to those that are based on inventory value. The relationship

between inventory turn rate and inventory value is convex, such that inventory reductions

that are evaluated based on this metric are over-valued. We hypothesized that people decide

differently under the two metrics and found support for our hypotheses in three laboratory

experiments.

In the first experiment, we considered investment decisions and showed that most decisions

are correct under the days of supply metric and incorrect under the inventory turn rate

metric. To better understand the heterogeneity in the decisions of the inventory turn rate

treatment, we applied dual process theory and found that individuals with high cognitive

reflection more frequently decide optimally than those with low cognitive reflection. In the

second experiment, we analyzed effort decisions and showed that individuals invest more

effort under the inventory turn rate metric than under the days of supply metric. In the third

experiment, we analyzed inventory decisions and showed that individuals choose a higher

ordering cost under the inventory turn rate metric than under the days of supply metric.

In some situations, one metric is clearly superior to the other metric. In the investment

decision study, for instance, individuals made better decisions under the days of supply metric

than under the inventory turn rate metric, and thus, the days of supply metric is the superior

choice. If this metric cannot be used, for instance, because corporate guidelines require using

the inventory turn rate metric, decision making can still be improved by activating System

2 thinking of the decision makers. This can be supported, for instance, by reducing the

emotional and cognitive load, by avoiding time pressure, and by avoiding multi-tasking during

decision making.

In other situations, it is less clear which metric should be used. In our real effort study,

individuals invested more effort under the inventory turn rate metric than under the days

of supply metric. In situations, in which an employee is solely responsible for a dedicated
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activity, such as managing raw material, work in process inventory, or finished goods inventory,

the inventory turn rate metric can motivate the employee to continuously reduce inventory.

However, employees investing more effort in inventory optimization have less capacity to invest

in alternative activities. Employees with broader responsibilities who must also determine

the activities in which to invest effort might be misguided by the inventory turn rate metric

and focus on reducing inventory in areas where inventory is already low instead of areas

with substantial inventory reduction potential or in other valuable activities. Furthermore, it

may demotivate employees when they realize that the increase they perceived in the metric

does not lead to a similar payment. If an employee is compensated based on changes in the

inventory value, he or she might consider the change in the metric as a reference point (Bell

1985, Loomes and Sugden 1986, Kőszegi and Rabin 2006) for the size of a bonus payment. If

bonus payments fall short of such expectation-based reference points, work satisfaction and

performance might suffer (Ockenfels et al. 2015).

In our inventory management experiment, individuals chose higher order cost under the

inventory turn rate metric than under the days of supply metric, which was predicted by the

behavioral model. However, our model did not predict the below-optimal ordering cost that

we observed in the experiment under the days of supply metric. This effect can be explained

by prospect theory (Kahneman and Tversky 1979) and mental accounting (Thaler 1985), if

the ordering cost were framed as a loss. Better understanding such behavioral biases seems a

promising area for future research.

Our research suggests various other areas for future research. We focused on inventory

management, but we expect that our insights are generalizable. In engineering, reliability

can be measured by the time between failures and the failure rate, and in warehousing,

performance can be measured by the picking time and the picking rate. We expect that

investment decisions will be more frequently optimal under the time than under the rate

metrics in both settings but that the motivation to continuously invest effort in optimizing

individual areas would be higher under the rate than under the time metrics. Similar examples

exist in other supply chain areas and other business functions, and it would be interesting to

analyze how approaches similar to ours can be applied to them.
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We considered equivalent metrics, where one was the inverse of the other. Many equivalent

metrics have this property, but there are other equivalent metrics. For instance, in operations

management, service performance can be measured by the fraction of filled demand or the

fraction of lost sales. Similarly, equipment performance can be measured by the uptime and

the downtime. One metric frames performance as gains, while the other frames it as losses,

which might affect how people value the outcomes (Kahneman and Tversky 1979, Tversky

and Kahneman 1981). Analyzing such effects offers interesting opportunities that we leave to

future research.

Beyond the decision biases that are rooted in solid theory, biases that have not received

much attention can have considerable effects on valuations. Green (2014), for instance,

reported on a failed new product introduction by the A&W restaurant chain that introduced

a new third pounder hamburger to rival the McDonald’s Quarter Pounder. The A&W burger

had more meat, was preferred in taste tests, and was less expensive, but did not sell well.

Customer focus groups revealed the reason: “Why, [customers] asked the researchers, should

they pay the same amount for a third of a pound of meat as they did for a quarter-pound of

meat at McDonald’s.” As the example illustrates, it is important to understand how metrics

affect valuation.
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Supplementary Materials

The following instructions are translated from German. We present the instructions for the

inventory turn rate treatments. In the days of supply treatments, the instructions differ from

those of the inventory turn rate treatment only in the metric used to measure inventory

performance.

2.A Instructions Investment Experiment

Welcome and thank you for participating in this experiment. Please do not talk to each other

from now on, turn off your mobile phones, and put away all your personal belongings.

We ask you to read all instructions carefully. If you have any questions, feel free to raise your

hand. The experimenter will then come to you and answer your questions in private. Moreover,

after reading the instructions you will have the chance to ask questions in case anything

remained unclear. All decisions are made anonymously and will be treated confidentially.

You can earn money in this experiment. How much you will earn depends on your decisions.

Your earnings in the course of this experiment are expressed in a virtual unit of currency –

the experimental currency unit (ECU). At the end of the experiment, you will receive 1 euro

per 3,000 ECUs earned during this experiment. In addition, you will receive a show-up fee of

2.50 euros.
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Introduction

The inventory turn rate metric is a measure commonly used in warehousing. It is defined as

the annual demand rate divided by the average inventory level. The inventory turn rate thus

indicates how many times per year the average inventory level of a product is completely

depleted and replenished.

Example:

A company sells 10,000 units per year of a product. The average inventory level is 5,000 units.

What is the inventory turn rate?

Inventory turn rate = Annual demand rate
Average inventory level

= 10,000 units/year
5,000 units

= 2/year

At constant demand rate, an increase in the average inventory level causes a reduction in the

inventory turn rate.

At constant demand rate, a reduction in the average inventory level causes an increase in the

inventory turn rate.

Task description

You are in charge of a warehouse, and you will be evaluated on the basis of the average

inventory level. Your warehouse contains two products featuring different inventory turn

rates. From each product, 10,000 units are sold per year. The unit holding costs are the same

for both products.

In each round, you can optimize the inventory management for one of the two products

and thus reduce the average inventory level of this product. You will receive a bonus for each

unit you reduce your average inventory level. There are no costs for the optimization itself.

You will know the current inventory turn rates of both products and how the inventory

turn rates will change after the optimization. In each round, it is your task to select one of

the two products for which you want to optimize inventory management.
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Experimental protocol

The sequence of the experiment is as follows:

I. Decisions: You will decide in three independent rounds for which product you want to

optimize the inventory management. You will receive a bonus for each unit you reduce

your average inventory level.

II. Questions: You will answer three short questions.

III. Questionnaire: You will answer general questions regarding your attitudes and prefer-

ences.

IV. Questionnaire: Finally, you will answer general questions regarding the experiment and

your person.

Payment

Your payment depends on the inventory reduction achieved over all three rounds. For each unit

you reduce the average inventory level, you will receive 10 ECUs. At the end of the experiment,

you will receive 1 euro per 3,000 ECUs that you have earned during the experiment. In

addition, you will receive a show-up fee of 2.50 euros.
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2.B Instructions Validation Experiment With Managers

Definition

Inventory turn rate = Annual demand rate
Average inventory level

Situation

You are in charge of a warehouse and you have discovered room for inventory optimization

for products A, B, and C. Unfortunately, your budget restrictions allow just one optimization.

You know the current inventory turns and how they will change after investing in inventory

optimization.

Product A B C 

��������	
��� ���	������� 10,000 10,000 10,000 

Unit cost (€) 500 500 500 

Inventory turn rate
Current situation 3 10 24 

After optimization 4 20 40 

You are evaluated by average inventory value. Which product would you invest in?

At your company, which of the following metrics is used to measure inventory performance?

2 Inventory turn rate

2 Days of supply

2 Both

2 Other (please specify):
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2.C Instructions Effort Experiment

Welcome and thank you for participating in this experiment. Please turn off your mobile

phone, and put away all your personal belongings. We ask you to read all instructions carefully.

All decisions are made anonymously and will be treated confidentially.

You can earn money in this experiment. How much you will earn depends on your decisions

and your exerted effort. Your earnings in the course of this experiment are expressed in a

virtual unit of currency – the experimental currency unit (ECU). At the end of the experiment,

you will receive 1 euro per 5,000 ECUs earned during this experiment.

Introduction

The inventory turn rate metric is a measure commonly used in warehousing. It is defined as

the annual demand rate divided by the average inventory level. The inventory turn rate thus

indicates how many times per year the average inventory level of a product is completely

depleted and replenished.

Example:

A company sells 10,000 units per year of a product. The average inventory level is 5,000 units.

What is the inventory turn rate?

Inventory turn rate = Annual demand rate
Average inventory level

= 10,000 units/year
5,000 units

= 2/year

At constant demand rate, an increase in the average inventory level causes a reduction in the

inventory turn rate.

At constant demand rate, a reduction in the average inventory level causes an increase in the

inventory turn rate.
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Situation

You are in charge of a warehouse with a single product, and you will be evaluated on the

basis of the average inventory level. Currently, your warehouse contains on average 5,000

units of this product. 10,000 units are sold per year. Therefore, the initial inventory turn

rate of your warehouse is 2 per year.

Depending on your effort, you can now optimize your inventory management and increase

your inventory turn rate. You will receive a bonus of 10 ECUs for each unit you reduce your

average inventory level.

Task description

In this experiment your effort will be simulated by moving sliders. The sliders are initially

positioned at “0” (see Figure 1 (a)). By using the mouse, you can position the slider at any

integer value between “0” and “100”. The more sliders you correctly position at the target

position “50” (see Figure 1 (b)), the more you can reduce your average inventory level. You

can adjust each slider an unlimited number of times. In each round, you have 120 seconds to

do so.

(a) Initial position at “0” (b) Target position at “50”

Figure 1 Initial and target position of a slider

The average inventory level depends on the number of sliders positioned correctly as follows:

Average inventory level = 5,000 units
1 + 0.1 ⋅Number of sliders positioned correctly

The inventory turn rate is calculated accordingly:

Inventory turn rate = Annual demand rate
Average inventory level

= 10,000 units/year
Average inventory level

Please note that the demand rate stays constant over all rounds.
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Sequence of a round

In each round, the sequence is identical. Each round begins with an input screen with 48

sliders (see Figure 2). By positioning the sliders (moving them to the target position of “50”),

you can reduce the average inventory level. For this task, you have 120 seconds per round.

Within this time, you can freely decide how many sliders you want to position. In the upper

part of the input window, you can track how the inventory turn rate changes, once you have

positioned a slider correctly.

Figure 2 Input screen

At the end of each round, on the result screen, you will be informed of the extent to

which you were able to increase the inventory turn rate of your warehouse. Once you press

“continue”, the input screen (Figure 2) appears again and the next round starts.

Please note that you will start the next round with the inventory turn rate you have

achieved in the previous round. This means that you can continuously reduce your average

inventory level over all rounds.
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It is up to you how many rounds you exert effort. If you do not want to exert any more

effort, please press “terminate experiment” on the result screen. You will then immediately

receive your payment for the inventory reduction you achieved until then and are free to leave.

Experimental protocol

The sequence of the experiment is as follows:

I. Comprehension questions: First, you will answer some comprehension questions. You

must answer all questions correctly to reach the next stage of the experiment. You will

receive a bonus if you can answer all questions correctly on the first or second attempt.

II. Effort task: You can exert effort and thus reduce the average inventory level. It is up

to you how many rounds to exert effort.

III. Questionnaire: Finally, you will answer general questions regarding the experiment and

your person.

Payment

Your payment depends on the achieved inventory reduction over all rounds. For each unit you

reduce the average inventory level, you will receive 10 ECUs. At the end of the experiment,

you will receive 1 euro per 5,000 ECUs that you have earned during the experiment.

53



Chapter 2 Equivalent Inventory Metrics: A Behavioral Perspective

2.D Instructions Inventory Decision Experiment

Welcome and thank you for participating in this experiment. Please do not talk to each other

from now on, turn off your mobile phones, and put away all your personal belongings.

We ask you to read all instructions carefully. If you have any questions, feel free to raise your

hand. The experimenter will then come to you and answer your questions in private. Moreover,

after reading the instructions, you will have the chance to ask questions in case anything

remained unclear. All decisions are made anonymously and will be treated confidentially.

You can earn money in this experiment. How much you will earn depends on your decisions.

Your earnings in the course of this experiment are expressed in a virtual unit of currency –

the experimental currency unit (ECU). At the end of the experiment, you will receive 1 euro

per 5,000 ECUs earned during this experiment. In addition, you will receive a show-up fee of

4 euros.

Introduction

The inventory turn rate metric is a measure commonly used in warehousing. It is defined as

the annual demand rate divided by the average inventory level. The inventory turn rate thus

indicates how many times per year the average inventory level of a product is completely

depleted and replenished.

Example:

A company sells 10,000 units per year of a product. The average inventory level is 5,000 units.

What is the inventory turn rate?

Inventory turn rate = Annual demand rate
Average inventory level

= 10,000 units/year
5,000 units

= 2/year

At constant demand rate, an increase in the average inventory level causes a reduction in the

inventory turn rate.

At constant demand rate, a reduction in the average inventory level causes an increase in the

inventory turn rate.
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Situation

You are in charge of a warehouse with three different products, and you will be evaluated on

the basis of total annual cost. From each product, 10,000 units are sold per year.

You have to decide how much you want to invest per year in the order processing of each

product. The more you invest in the order processing of a product, the higher the inventory

turn rate and the lower the average inventory level, as well as the corresponding holding cost

for this product.

For holding inventory, you incur costs of h ECUs per average unit on hand. The unit

holding cost parameter h varies from product to product and will be displayed on the input

screen.

You can adjust your decisions an unlimited number of times and display the corresponding

turn rates before you submit your decisions.

Payment

The annual cost per product can be broken down as follows:

Annual cost per product = Investment in order processing + h ⋅Average inventory level

The total annual costs are made up of the sum of the annual costs per product. In addition,

you will receive an endowment of 45,000 ECUs. Your profit will be calculated as follows:

Profit = 45,000 ECUs −Total annual cost

At the end of the experiment, you will receive 1 euro per 5,000 ECUs that you have earned

during the experiment. In addition, you will receive a show-up fee of 4 euros.
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Experimental protocol

The sequence of the experiment is as follows:

I. Comprehension questions: You will answer some comprehension questions.

II. Decision: You will decide how much to invest in order processing per year.

III. Questions: You will answer eight short questions.

IV. Questionnaire: You will answer general questions regarding your attitudes and prefer-

ences.

V. Questionnaire: You will answer general questions regarding the experiment and your

person.
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Chapter 3

Decision Making Under Service Level
Contracts: An Experimental Analysis

The ordering behavior of human decision makers under stochastic demand has been analyzed

for various supply contracts. A consistent finding is that people place orders that both deviate

from expected profit-maximizing quantities and exhibit high variability. We consider service

level contracts, commonly used in practice but receiving little attention in the behavioral

operations literature. Service level contracts have an interesting property that other supply

contracts do not offer. They can be parameterized, such that they have steep expected profit

functions around the expected profit-maximizing order quantity. We provide analytical models

and use a laboratory experiment to analyze ordering behavior under service level contracts

and compare the performance with that under wholesale price contracts, which have flat

expected profit functions. Our results indicate that properly designed service level contracts

can incentivize people to place close-to-optimal order quantities with low variability, resulting

in high efficiency. In our experiment, the efficiency that human subjects achieved under a

service level contract was 97.2%, compared with an efficiency of 88.1% under a wholesale

price contract.
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3.1 Introduction

We consider a standard setting in the supply chain literature, whereby a retailer orders

products from a supplier to fill her customers’ stochastic demand (see Cachon 2003 for an

overview). A good deal of this literature has focused on analyzing expected profit-maximizing

decision makers and whether various contracts incentivize first-best order quantities, that

is, order quantities that maximize expected channel profit. Among the contracts commonly

considered are the wholesale price contract (Arrow et al. 1951, Lariviere and Porteus 2001),

in which the retailer purchases products from the supplier at a unit wholesale price and bears

the full risk of excess inventory; the buyback contract (Pasternack 1985), in which the retailer

can return excess inventory to the supplier at a unit buyback price; and the revenue sharing

contract (Cachon and Lariviere 2005), in which the revenues of the retailer are shared with

the supplier.

A more recent stream of literature examines the ordering behavior of human decision makers.

This behavioral operations stream of research was initiated by Schweitzer and Cachon (2000).

They used laboratory experiments to analyze ordering behavior under a wholesale price

contract. The order quantities of their subjects deviated substantially from expected profit-

maximizing quantities and exhibited what has come to be known as the “pull-to-center” effect,

because observed average order quantities are regularly between expected profit-maximizing

quantities and mean demand. The pull-to-center effect has proven robust, holding under

various demand distributions (Benzion et al. 2008, 2010) and observed and unobserved lost

sales (Rudi and Drake 2014) and persists with experience and training (Bolton and Katok

2008, Bolton et al. 2012) and decision frequency (Bolton and Katok 2008, Bostian et al. 2008,

Lurie and Swaminathan 2009). The pull-to-center effect is not unique to the wholesale price

contract, having also been observed under buyback and revenue sharing contracts (Katok

and Wu 2009, Becker-Peth et al. 2013, Becker-Peth and Thonemann 2016).

One explanation for the pull-to-center effect, first put forward by Schweitzer and Cachon

(2000), is anchoring and insufficient adjustment, a learning heuristic by which people first make

decisions based on an initial anchor and tend to underweight additional information, thus

leading to insufficient adjustment and biasing subsequent decisions toward the initial anchor
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(Tversky and Kahneman 1974, Slovic and Lichtenstein 1971). Observed ordering behavior

reported in the behavioral operations literature is consistent with mean demand serving as an

anchor. Ordering behavior exhibits significant individual heterogeneity (Moritz et al. 2013),

and thus, it is unlikely that any single explanation will fit with all or most peoples’ ordering

behavior (Katok 2011). Nevertheless, some models perform well at capturing aggregate

trends in the data. Bostian et al. (2008) estimated the parameters of an adaptive learning

model (Camerer and Ho 1999) that tracks the observed data patterns in their newsvendor

experiment. Other explanations of the pull-to-center effect include bounded rationality (Su

2008), ex post inventory error minimization (Schweitzer and Cachon 2000, Ho et al. 2010,

Kremer et al. 2014), overconfidence of decision makers (Ren and Croson 2013), and impulse

balance behavior (Ockenfels and Selten 2014, 2015). Although diverse in their approach, all

of these explanations share a broad theme in that all offer explanations for why learning is

insufficient to move ordering fully away from the anchor at mean demand to the optimal

order quantity.

Most supply contracts analyzed in the behavioral operations literature have relatively flat

expected profit functions. For the wholesale price contract analyzed in Schweitzer and Cachon

(2000), for example, order quantities that deviate by 10% from the expected profit-maximizing

quantities achieve expected profits that deviate by only approximately 1% from the maximum

expected profit. Buyback and revenue sharing contracts exhibit similar low sensitivities.

Bolton and Katok (2008) referred to this as the flat-maximum problem. Based on the findings

from Harrison (1989), who showed that increasing expected payoff differences between bidding

strategies in first price auctions improves learning and performance, Bolton and Katok (2008)

hypothesized that a steeper expected profit function might improve learning and reduce the

pull-to-center effect. Some learning theories, such as Bostian et al.’s (2008) model, also predict

faster learning when the expected profit function is steeper.

In this chapter, we analyze behavior under service level contracts; these specify the fraction

of demand that a retailer is obligated to fill and the penalty that must be paid by the

retailer if the realized service level is below the specified level. We show that by properly

parameterizing this type of contract, a steep expected profit function can be achieved. In

59



Chapter 3 Decision Making Under Service Level Contracts: An Experimental Analysis

addition, the stipulated service level might serve as an alternative anchor to average demand.

We investigate both of these potential effects on ordering behavior.

Service level contracts are commonly used in practice (Thonemann et al. 2003, Chen and

Thomas 2016). Analytical models have been developed that show how such contracts can

be parameterized to incentivize first-best order quantities for expected profit-maximizing

decision makers (Sieke et al. 2013 and the references therein). However, the behavior of

human decision makers under service level contracts has received relatively little attention,

with the notable exceptions of Katok et al. (2008) and Davis (2015). Katok et al. (2008)

analyzed the effect of the length of the review period on order decisions under a service level

contract and found that the order quantities of human decision makers increase in the length

of the review period. Davis (2015) analyzed human decision making under a contract type

that is similar to the service level contract that we consider. He analyzed a pull setting, under

which a supplier fills the demand of the retailer’s customers. In one of his experiments, the

retailer uses a service level contract, specifying a wholesale price and a bonus payment that

the retailer pays to the supplier if the supplier achieves an exogenously given service level.

Davis found that the retailer sets contract parameters suboptimally and that performance

under the service level contract is considerably below optimality but better than under a

wholesale price contract.

In this chapter, we provide a detailed analysis of human decision making behavior under

service level contracts. We use an analytical model to determine the contract parameters that

incentivize first-best order quantities for expected profit-maximizing retailers and conduct

a laboratory experiment with these contracts. We analyze performance under service level

contracts and show that they can achieve a high degree of efficiency if they are parameterized

properly, that is, if contract parameters are chosen to achieve steep expected profit functions.

Then, average order quantities are closer to the expected profit-maximizing quantity and

have lower variability than under a wholesale price contract that has a flatter expected profit

function. In our experiment, the efficiency under the service level contract is 97.2%, compared

with an efficiency of 88.1% under the wholesale price contract. We also designed an experiment

to analyze whether the performance improvement can be attributed to the steepness of the
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expected profit function or the potential anchoring effect of the service level. The results

indicate that performance can primarily be explained by the steepness of the expected profit

function whereas the anchoring effect of the service level does not seem to have a significant

effect on performance.

3.2 Theoretical Analysis of the Service Level Contract

We consider a standard supply chain setting with a single supplier and a single retailer

(Pasternack 1985, Lariviere and Porteus 2001, Cachon and Lariviere 2005). The retailer

chooses order quantity q and places it with the supplier. When determining the order quantity,

the retailer knows the distribution F (D) of demand D but not the demand realization d.

For our analyses, we assume that the demand density f(D) is logconcave and has strictly

positive support on its entire domain. Most distribution functions commonly used in inventory

management have this property (Rosling 2002) and it simplifies our theoretical analyses. The

supplier produces order quantity q and delivers it to the retailer at the unit wholesale price

w. The retailer sells the minimum of the order quantity q and demand d to customers at unit

revenue r. Excess inventory has no salvage value, and excess demand is lost. We refer to the

order quantity that maximizes the retailer’s expected profit as the optimal order quantity

and next show how it can be determined for wholesale price and service level contracts.

A wholesale price contract has a single parameter, the unit wholesale price w. For order

quantity q and demand realization d, the retailer’s profit is

πWP (w, q, d) = r min(q, d) −wq. (3.1)

The optimal order quantity is (Arrow et al. 1951)

q∗WP (w) = F−1 (r −w
r

) (3.2)

and we denote the optimal expected profit by Π∗

WP (w) = E [πWP (w, q∗WP (w), d)].
A service level contract specifies the fraction of demand that the retailer is obligated to fill
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Figure 3.1 Combinations of Service Levels and Unit Penalty Costs Incentivizing Optimal Order
Quantities of 75
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Note. Demand is discrete and uniformly distributed between 1 and 100, and p is restricted to integers.

and the financial consequences of failing to do so. The fraction of demand that must be filled

is referred to as the service level s. For a demand realization of d units, the retailer must

fill at least sd units. If the retailer ordered fewer than sd units, a unit penalty cost of p is

charged for each unit difference between sd and q. If the retailer ordered at least sd units, no

penalty is charged. For order quantity q and demand realization d, the retailer’s profit is

πSL(s, p,w, q, d) = r min(q, d) −wq − p (sd − q)+ . (3.3)

The retailer’s optimal order quantity q∗SL(s, p,w) can be determined by solving (Sieke et al.

2013)

w − r (1 − F (q)) − p(1 − F (q
s
)) = 0 (3.4)

and we denote the optimal expected profit by Π∗

SL(s, p,w) = E [πSL(s, p,w, q∗SL(s, p,w), d)].
The service level contract has three parameters and two degrees of freedom. Observe from

Equation (3.4) that a given optimal order quantity can be achieved by different combinations
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of the contract parameters. For instance, consider a supplier with a unit production cost of

c = 3, a unit revenue of r = 12, and uniformly distributed customer demand between 1 and

100. The expected supply chain profit-maximizing order quantity is q∗SC = F−1(0.75) = 75

units. For a service level contract with unit wholesale price w = 6, Figure 3.1 depicts the

combinations of service level s and unit penalty cost p for a retailer’s optimal order quantity

of q∗SL(s, p,w) = 75 units; for example, service level s = 75% and unit penalty cost p = 145,

service level s = 100% and unit penalty cost p = 12, or any combination of service level and

unit penalty cost on the curve.

Note that in the case of uniformly distributed demand between 1 and 100, the same demand

distribution as used in our experiment, and a unit wholesale price of w = 6, s = 75% is

the lowest service level that yields a profit-maximizing order quantity of 75. For instance,

imposing a service level of 65% as opposed to 75%, will not get the optimal order above 65

independent of the penalty p, because for order quantities of 65 or above the expected penalty

payment will be zero and hence there is no incentive to exceed an order quantity of 65.

Although the order quantity that maximizes expected profit is the same for all combinations

of s and p on the curve, the expected profit functions are different. For the extreme cases,

that is, for s = 75% and p = 145 and for s = 100% and p = 12, the expected profit functions are

depicted in Figure 3.2(a). The expected profit function of the wholesale price contract, which

we will use as a benchmark, is also shown. The graphs show that the contracts have the same

optimal order quantities but different optimal expected profits. For our analyses, it will prove

useful to scale the contracts, such that they have the same optimal expected profits. This

can be achieved by adding Π∗

WP (w) −Π∗

SL(s, p,w) to the profit function πSL(s, p,w, q, d) of

Equation (3.3). The results are shown in Figure 3.2(b).

The graphs in Figure 3.2(b) indicate that the service level contract with a low service

level and a high unit penalty cost (s = 75%, p = 145) has a steeper expected profit function

than that with a high service level and a low unit penalty cost (s = 100%, p = 12) and that

both service level contracts have steeper expected profit functions than the wholesale price

contract. The latter observation will be important for deriving our hypotheses, and the

following proposition states that it holds in general (all proofs are provided in the Section 3.7):
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Figure 3.2 Expected Profit Functions for Different Contracts with Optimal Order Quantity of 75
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Proposition 3.1. For all wholesale price contracts with 0 < w < r, there exists a service level

contract with the same optimal order quantity and a steeper expected profit function.

The steepness of the expected profit function is affected by the service level s and the unit

penalty cost p. The higher the service level, the higher is the expected number of units for

which the penalty cost must be paid and the lower the unit penalty cost can be, which results

in a flatter expected profit function (see Figure 3.2). The following proposition states the

effect of the service level on the steepness of the expected profit function:

Proposition 3.2. For a given optimal order quantity q∗, the steepness of the expected profit

function of the service level contract is decreasing in the service level s.

The proposition implies that the contract with the lowest service level and highest unit penalty

cost, in our example the contract with s = 75% and p = 145, has the steepest expected profit

function. Many of our analyses will rely on this contract. For notational convenience, we will

refer to it as the steep service level contract and to the contract with the flattest expected

profit function, that is, the contract with s = 100% and p = 12, as the flat service level contract.

Under a steep expected profit function, it is more costly to deviate with average orders from

the optimal quantity than under a flat expected profit function. A similar effect holds for the

64



Chapter 3 Decision Making Under Service Level Contracts: An Experimental Analysis

variability of order quantities, which we measure by within-subject standard deviations of

quantities because within-subject variability represents the extent to which a subject adjusts

his or her order quantities. Between-subject variability reflects the extent to which subjects

differ in their level behavior (Rudi and Drake 2014).

For concave expected profit functions, the marginal profit loss that is incurred by deviating

from the optimal order quantity is increasing in the distance between the order quantity and

the optimal order quantity. This implies that given order quantity q̄ ≤ q∗, ordering q̄ −∆q

instead of q̄ reduces the expected profit by more than ordering q̄ +∆q increases the expected

profit. If multiple orders are placed and they exhibit variability, the variability is more costly

the more concave the expected profit function is. The following proposition addresses this

implication for our contracts:

Proposition 3.3. For a given optimal order quantity q∗ and a given average order quantity

q̄, order variability is more costly under a service level contract than under a wholesale price

contract.

Both the steepness and concavity of the service level contract’s expected profit function are

decreasing in the service level s, which results in the following proposition:

Proposition 3.4. For a given optimal order quantity q∗ and a given average order quantity

q̄ ≤ q∗, the costliness of order variability is decreasing in the service level s.

3.3 Development of Hypotheses

In supply contracting experiments, actual order quantities deviate significantly from the

expected profit-maximizing quantities and exhibit substantial variability (see Section 3.1

for references). For example, the expected profits under a wholesale price contract in the

baseline treatments of Bolton et al. (2012) are 13.3% below optimality. In their experiment,

approximately one-half of the performance gap can be attributed to deviations of actual

average orders from order quantities and one-half to order variability. Other studies have

reported similar results (for example Rudi and Drake 2014), which indicates that two issues
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must be addressed to achieve efficient ordering behavior: average orders must be close to

expected profit-maximizing quantities and must exhibit low variability.

Bostian et al. (2008) hypothesized that suboptimal ordering behavior can be attributed to

the flatness of the expected profit function:

The flatness of the expected profit function in the neighborhood of [q∗] implies

a low average payoff penalty for choosing an order quantity that is merely close

to the optimum. As a result, subjects may not have an economic incentive to be

very circumspect in their decisions, and so lazy decision making could possibly

explain the pull-to-center effect. (p. 593)

Bolton and Katok (2008) offered similar arguments.

We are interested in measuring how the steepness of the expected profit function affects

ordering profits. To compare the steepnesses of different contracts, we use the sensitivity

of the expected profit function with respect to deviations of the order quantity from the

optimum.

Similar to Bostian et al. (2008), we define an anchor factor α to quantify the deviation of

actual average orders q̄ from the optimal order quantity q∗ toward the mean demand µ:

q̄ = αµ + (1 − α)q∗. (3.5)

Using the anchor factor α, which reflects the degree of the pull-to-center effect, we define

sensitivity:

εα = 1 − Π (αµ + (1 − α)q∗)
Π(q∗) . (3.6)

Sensitivity ε40%, for instance, is the proportion of optimum expected profit that is lost if a

weight of 40% is placed on mean demand. For the wholesale price contract in Figure 3.2(b),

the sensitivity is ε40% = 1.9%. The flatness of the expected profit function is not unique to the

wholesale price contract but can be observed under other supply contracts that have been

analyzed in the supply chain literature. Table 3.1 provides empirical estimates for the anchor

factor based on Equation (3.5) and the sensitivities of typical supply contracts.
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Table 3.1 Steepnesses of Selected Contracts Analyzed in the Literature

Contract parameters

Retail Wholesale Buyback Revenue
price price price share Sensitivity

Contract Authors Demand r w b λ α ε40% ε60%

WPC Schweitzer and Cachon 2000 U(1,300) 12 3 - - 60% 1.8% 4.1%
Bolton and Katok 2008 U(0,100) 12 3 - - 56% 1.9% 4.1%
Bostian et al. 2008 U(1,100) 4 1 - - 36% 1.9% 4.2%
Bolton et al. 2012a U(1,100) 12 3 - - 89% 1.9% 4.2%
Rudi and Drake 2014b N(1000,4002) 12 3 - - 70% 0.8% 1.8%

BBC Ren and Croson 2013 N(100,302) 10 4 2 - 93% 0.6% 1.3%
Katok and Wu 2009 U(0,100) 12 9 8 - 78% 1.9% 4.1%

U(50,150) 12 9 8 - 37% 0.8% 1.8%

RSC Katok and Wu 2009 U(0,100) 12 1 - 1/3 44% 1.9% 4.1%
U(50,150) 12 1 - 1/3 89% 0.8% 1.8%

Notes. WPC = wholesale price contract, BBC = buyback contract, RSC = revenue sharing contract.
aPooled data from managers and students in Phase 2 of the basic treatments.
bData of the uncensored treatment.

The contracts in Table 3.1 all have low sensitivities, such that deviating from the expected

profit-maximizing order quantity has a small effect on expected profit. Under service level

contracts, such low sensitivities can be avoided, which makes deviating from the expected profit-

maximizing order quantity more costly. The service level contracts used in our experiment

have sensitivities of up to ε40% = 25.8% and ε60% = 61.0%. Therefore, we expect lower

deviations from the optimal order quantity under a service level contract than under contracts

with low sensitivity. Proposition 3.1 states that for all wholesale price contracts, we can

design a service level contract with the same optimal order quantity but a steeper expected

profit function. We refer to such contracts as properly designed service level contracts and

state the hypotheses for the experiment as follows:

Hypothesis 3.1. Under a properly designed service level contract, average order quantities

are closer to the optimal order quantity than under a wholesale price contract.

From Proposition 3.3, we know that order variability is more costly under a properly designed

service level contract than under a wholesale price contract. We therefore hypothesize the

following:
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Hypothesis 3.2. Under a properly designed service level contract, orders are less variable

than under a wholesale price contract.

The expected behavior stated in Hypotheses 3.1 and 3.2 has an immediate consequence

for expected profits. The closer order quantities are to the optimal order quantity and the

less variability they exhibit, the higher is the expected supply chain profit. A standardized

measure of supply chain profit is supply chain efficiency, that is, the expected supply chain

profit achieved divided by the expected supply chain profit from the optimal order, and we

hypothesize the following:

Hypothesis 3.3. Under a properly designed service level contract, expected supply chain

efficiency is higher than under a wholesale price contract.

The above hypotheses concern performance differences between service level contracts and

wholesale price contracts. For a given optimal order quantity, there exists a set of service

level contracts with different combinations of contract parameters (Figure 3.1). Although

these service level contracts have the same expected profit-maximizing order quantity, their

expected profit functions differ in steepness (Proposition 3.2) and concavity (Proposition 3.4).

We argued above that anchoring on mean demand and order variability are decreasing in the

steepness and concavity of the expected profit function. For a given optimal order quantity,

the steep service level contract has the steepest and the flat service level contract has the

flattest expected profit function, and we hypothesize the following:

Hypothesis 3.4. Under a steep service level contract,

(a) average order quantities are closer to the optimal order quantity,

(b) order quantities are less variable, and

(c) supply chain efficiency is higher

than under a flat service level contract.
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Table 3.2 Treatments Used in Laboratory Experiment

Fixed payment Wholesale price Retail price Service level Penalty cost Optimal order Sensitivity

Treatment E w r s p q∗ ε40% ε60%

1. WPC – 3 12 – – 75 1.9% 4.2%
2. SLC75%, 145 225 6 12 75% 145 75 25.8% 61.0%
3. SLC100%, 12 264 6 12 100% 12 75 3.9% 8.4%
4. SLC75%, 6 205 6 12 75% 6 60 0.6% 1.3%

WPC = wholesale price contract, SLC = service level contract.

3.4 Experiment

We use a laboratory experiment to analyze human decision making under service level

contracts. Our experiment has four treatments, one wholesale price contract treatment, which

serves as a benchmark, and three service level contract treatments.

3.4.1 Design

Table 3.2 provides an overview of the four treatments of our laboratory experiment. All

treatments used discrete uniformly distributed demand between 1 and 100 and a retail price

of r = 12 francs. The fixed payments ensured that ordering the optimal quantities would

yield the same expected profit of 342 francs in all treatments. All payouts were expressed in

laboratory francs. Subjects were informed that francs would be converted into cash at an

exchange rate of 3,000 francs to the dollar at the end of the experiment.

We chose a high-profit condition such that inventory is optimally stocked above average

demand (q∗ > µ) because this setting offers greater possible gains from coordination, and

thus coordinating contracts, such as service level contracts, are more likely to be observed

in practice (Katok and Wu 2009, Wu and Chen 2014). Furthermore, service levels below

50% are uncommon in practice (Gruen et al. 2002). For the wholesale price contract of

Treatment 1, we used a wholesale price of w = 3 francs, resulting in an optimal order quantity

of q∗ = 75 units. The wholesale price of the service level contracts was w = 6 francs. In

Treatment 2, we used the steep service level contract, and in Treatment 3, we used the flat

service level contract (see Figure 3.1).
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Figure 3.3 Experimental Protocol
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Treatments 1 to 3 are sufficient to test our hypotheses. The hypotheses are based on

arguments regarding differences in the steepnesses of the expected profit functions and do not

address the possibility that the service level exhibits an anchoring effect. To analyze whether

such an anchoring effect exists, we included Treatment 4, in which we used a service level

contract with the same service level as in Treatment 2 but with a lower unit penalty cost.

3.4.2 Protocol

All sessions were conducted at the Laboratory for Laboratory for Behavioral Operations

and Economics at the University of Texas at Dallas and followed the experimental protocol

in Figure 3.3. The experiment was programmed and conducted with the software z-Tree

(Fischbacher 2007).

Upon entering the laboratory, subjects were randomly assigned to a private computer

terminal and given time to read the instructions. After they had read the instructions, subjects

could ask questions that were answered privately. During the experiment, communication

between subjects was prohibited and none was observed.

Before the actual experiment started, subjects completed a computerized quiz with 11

(wholesale price contract treatment) or 17 questions (service level contract treatments). The

quiz comprised three sections. In the first and second sections of the service level contract

treatments, subjects had to determine the purchase cost, the number of units sold, the revenue,

the service level, the number of units short of the target, the penalty cost, and the profit for

two examples that were identical across treatments. In the wholesale price contract treatment,

questions regarding the service level, the number of units short of the target, and the penalty

cost were excluded. The third section contained general questions about the experiment. The

questions and statistics on the answers are provided in Supplementary Material 3.C. If all
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questions of a section were answered correctly on the first attempt, subjects received 1,000

francs. If they needed a second attempt, they received 500 francs. If they needed more than

two attempts, they did not receive any compensation for the section. Subjects could continue

only after they had correctly answered all questions in a section. We used this approach to

ensure that subjects had a good understanding of the cost accounting and profit calculation

for the particular contract addressed in their treatment.

At the beginning of each period, subjects were reminded of all contract parameters. After

each period, they were shown a detailed breakdown of the profit calculation. After the main

experiment, all subjects completed two additional tasks (see Supplementary Material 3.D for

details). The first task was a computerized version of the risk elicitation task introduced by

Holt and Laury (2002). The second task was the computerized loss aversion measurement

task of Gächter et al. (2010), which was adapted from an earlier protocol of Fehr and Goette

(2007). Subjects earned francs depending on their decisions and the outcome of the risky

lotteries.

Finally, subjects answered some general questions, provided demographic data (see Supple-

mentary Material 3.E), and were paid, in private, their total individual earnings. The total

earnings were based on the performance on the quiz, the profits achieved over the 100 periods

of the main experiment, and the two lotteries that we used to elicit subjects’ risk and loss

aversion. The sessions lasted on average approximately 75 minutes. Actual average earnings,

including a $5 participation fee, were $17.24.

3.4.3 Subjects

A total of 116 subjects participated in six sessions of the experiment. In each session, subjects

were randomly assigned to one of the four treatments. Each subject participated in exactly

one session, and cash was the only incentive offered. Subjects were students recruited through

an online recruitment system from the subject pool of the University of Texas at Dallas. The

majority of our subjects were graduate students (81%), and the rest were undergraduates

(3% freshmen or sophomores and 16% juniors or seniors). The average age was 23.6 years

(SD = 2.0 years).
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Table 3.3 Summary Statistics

WPC SLC1 SLC2 SLC3

N = 30 N = 28 N = 30 N = 28

Subjects’ average order quantities
Normative 75 75 75 60
Mean 60.16 69.93 61.79 54.37
Median 60.59 70.31 60.65 53.76
Std. deviation 12.5 5.59 6.05 8.56

Within-subject standard deviation
Normative 0 0 0 0
Mean 15.51 8.99 13.88 16.18
Median 15.53 8.78 14.22 15.62
Std. deviation 7.33 4.51 5.72 5.47

Expected supply chain efficiency
Normative 100% 100% 100% 100%
Mean 88.15% 97.19% 92.19% 89.19%
Median 92.07% 98.05% 91.67% 89.57%
Std. deviation 13.42% 2.72% 3.82% 5.17%

WPC = wholesale price contract, SLC = service level contract.

3.5 Results

We will first test the hypotheses concerning the higher performance of service level contracts

compared to wholesale price contracts. Then, we will test the hypotheses concerning the

effect of the service level contract parameters on performance, and finally, we will analyze a

potential anchoring effect of the service level. Unless otherwise stated, we use the Wilcoxon

signed-rank test for one-sample tests and the Mann-Whitney test for two-sample tests. All

p -values we report below are two-tailed. Summary statistics are provided in Table 3.3. For all

comparisons below, we tested for differences in subjects’ risk (Holt and Laury 2002) and loss

aversion (Gächter et al. 2010) across treatments and could not find any significant differences

(all p > 0.1). Thus, there is no evidence that a difference in risk or loss aversion across

treatments drives our results.
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Figure 3.4 Average Order Quantities by Period Under Wholesale Price Contract and Service Level
Contracts
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3.5.1 Service Level Contracts Versus Wholesale Price Contract

Our first set of analyses compares performance under service level contracts with that under

a wholesale price contract. The hypotheses state that average order quantities are closer to

optimal quantities (Hypothesis 3.1), that they have lower variability (Hypothesis 3.2), and

that they result in higher supply chain efficiency (Hypothesis 3.3) under a properly designed

service level contract than under a wholesale price contract. We will first compare ordering

behavior under the wholesale price contract with that under the steep service level contract

of Treatment 2, which has a 40%-sensitivity that is over ten times that of the wholesale price

contract, and with that under the flat service level contract of Treatment 3, which has a

40%-sensitivity that is approximately twice that of the wholesale price contract.

3.5.1.1 Average Order Quantities

Figure 3.4 depicts the average order quantities per period under (a) the wholesale price

contract, (b) the steep service level contract, and (c) the flat service level contract. Under

the steep service level contract, average orders are closer to the optimal order quantity than

are those under the wholesale price contract. The average order quantities are 5.1 units
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below optimality under the service level contract versus 14.8 units under the wholesale price

contract. This difference is significant (p < 0.001), which provides support for Hypothesis 3.1.

Under the flat service level contract, average order quantities are slightly above the average

order quantities under the wholesale price contract, but we do not observe a similar magnitude

in the difference to that observed under the steep service level contract. Average order

quantities are 13.2 units versus 14.8 units below optimality for the flat service level contract

and the wholesale price contract, respectively. The difference is small (1.6 units) and not

significant (p = 0.965) and thus only provides directional support for Hypothesis 3.1.

3.5.1.2 Order Variability

From Table 3.3, we see that the within-subject standard deviation of order quantities under

the steep service level contract is 8.99 and lower than that under the wholesale price contract

(15.51). The difference in within-subject standard deviation is significant (t(56) = 4.04,

p < 0.001), providing support for Hypothesis 3.2.

Under the flat service level contract, we also observe less order variability than under

the wholesale price contract. However, the within-subject standard deviation difference is

small and not significant (t(58) = 0.96, p = 0.342), providing only directional support for

Hypothesis 3.2.

3.5.1.3 Supply Chain Efficiency

The above analysis shows that under properly designed service level contracts, average orders

are closer to the optimal quantities and have lower variability than under a wholesale price

contract, which should result in higher supply chain efficiency. To compute supply chain

efficiency, we must specify the production costs of the supplier. Without loss of generality, we

set them equal to the wholesale price in the wholesale price contract, that is, w = 3.

Under the steep service level contract, supply chain efficiency is 97.2% and significantly

higher than that under the wholesale price contract, 88.1% (p < 0.001), providing support for

Hypothesis 3.3. Under the flat service level contract, supply chain efficiency is 92.2% and
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also higher than that under the wholesale price contract, but the difference is not significant

(p = 0.399), again providing only directional support.

The results of our experiment provide directional support for Hypotheses 3.1, 3.2, and

3.3; that is, all experimental results are in the directions stated in these hypotheses. For the

steep service level contract, all differences are highly significant (p < 0.001 for all comparisons

between the steep service level contract and the wholesale price contract). For the flat service

level contract, the differences are not significant. We conclude that properly designed service

level contracts tend to outperform wholesale price contracts but that it is important to design

a supply contract with a steep expected profit function to realize the performance potential

that this contract type offers.

3.5.2 Steep Versus Flat Service Level Contract

The above analyses indicated that the steepness of the expected profit function affects ordering

behavior. Hypothesis 3.4 states the performance differences between steep and flat service

level contracts with respect to (a) average order quantities, (b) order variability, and (c)

supply chain efficiency, and we next formally test this hypothesis.

Average orders under the steep service level contract are significantly above those under

the flat service level contract (p < 0.001), which provides support for Hypothesis 3.4(a). From

Table 3.3, we see that a steeper expected profit function leads to less order variability among

service level contracts. The within-subject standard deviation is significantly lower under the

steep than under the flat service level contract (t(58) = 3.60, p < 0.001), providing support

for Hypothesis 3.4(b). We also find support for Hypothesis 3.4(c). The efficiency under the

steep service level contract is significantly higher than the efficiency under the flat service

level contract (p < 0.001).

3.5.3 Service Level Anchor

We can explain the superior performance of the steep service level contract compared with the

flat service level contract and the wholesale price contract by the steepnesses of the expected

profit functions. However, there exists another factor that can potentially affect behavior,
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that is, the stipulated service level. One might argue that a service level provides another

anchor in addition to mean demand and therefore affects order quantities.

If the service level served as an anchor, increasing the service level and maintaining the

optimal order quantity would increase average orders. The comparison of the steep service

level contract with service level 75% and the flat service level contract with service level 100%

shows that the service level contract with the higher service level has smaller average order

quantities. However, it has also a flatter expected profit function, and we cannot exclude the

possibility that we observed superposed effects: A flatter expected profit function reduces

order quantities, and a higher service level anchor increases them.

Ideally, we would design a service level contract with the same expected profit function and

optimal order quantity but with different service levels. Unfortunately, this is not possible.

When we vary the service level, we must change the unit penalty (see Figure 3.1) and thus

the expected profit function to maintain the same optimal order quantity. However, we can

use the results of Treatment 4 to obtain an indication of whether people anchor on the service

level.

In Treatment 4, we used the same service level of 75% as in Treatment 2 but used a unit

penalty cost of p = 6 instead of p = 145. The contract in Treatment 4 has a flatter expected

profit function than the steep service level contract from Treatment 2, and its optimal order

quantity is 15 units smaller (60 as opposed to 75 units).

If the service level served as an anchor, the difference in average orders should be smaller than

the difference in the optimal order quantity, but this is not the case. As Table 3.3 indicates,

average orders in Treatment 4 are 54.4 units, that is, 69.9 units−54.4 units = 15.5 units below

the average orders under the service level contract from Treatment 2. Because we held the

service level constant, this change must be attributed to the change in the expected profit

function. Because average orders differ by approximately the same quantity as the optimal

order quantities, we have another indication that the flatter expected profit function, and not

the service level anchor, explains behavior under service level contracts.

Figure 3.5 shows the average per period order quantities for Treatments 2 and 4. We

observe that they start at approximately the same level and then diverge over 30 rounds
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Figure 3.5 Average Order Quantities by Period in Treatments 2 and 4
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before they level out. Average order quantities in the first period of the treatments do

not significantly differ (average order quantities of 62.6 and 59.5 in Treatments 2 and 4,

respectively, p = 0.404). Fitting a simple trend line to the data from the first 30 periods of

Treatment 4, we find a significant order decrease of 0.361 units per period (standard error =

0.146, OLS two-tailed p = 0.019), which is significantly different from that of Treatment 2

(OLS two-tailed p = 0.029), in which we do not observe a significant trend over the fist 30

periods (OLS two-tailed p = 0.780). The results suggest that subjects might initially anchor

on the stipulated service level and then adjust toward their final decision over time.

We note that neither the comparison of Treatments 2 and 3 nor the comparison of Treatments

2 and 4 can exclude the possibility that a service level anchoring effect exists that is superposed

by the effect that steepness of the expected profit function has on ordering. However, they

indicate that if an anchoring effect existed, it diminished over time, and its effect size would

be much smaller than the size of the expected profit function steepness effect.
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Figure 3.6 Effect of Average Order Quantities and Order Variability on Efficiency
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3.6 Discussion and Managerial Implications

The majority of supply contracts analyzed in the literature have flat expected profit functions.

Under such contracts, moderate deviations from optimal order quantities are inexpensive, and

we have argued that this flatness contributes to the pull-to-center effect. We hypothesized

that a supply contract with a steep expected profit function can reduce the pull-to-center

effect, and our experimental results are in line with the prediction. Under the steep service

level contract, average order quantities were 6.8% below optimality, compared with 19.8%

under the wholesale price contract.

We argued that the steepness of the expected profit function also affects order variability

and hypothesized that order variability is lower under steep than under flat profit functions.

Our experimental results provided support for the hypothesis. Under the steep service level

contract, the standard deviation of order quantities was 8.99, compared with 15.51 under the

wholesale price contract.

Because better average order quantities and lower order variability result in higher efficiency,

we expected that efficiency would be higher under the steep service level contract than under

the wholesale price contract. Our experimental results were in line with this expectation.

The efficiency of the steep service level contract was 97.2%, compared with an efficiency of
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88.1% under the wholesale price contract. Figure 3.6 shows how the difference in efficiency

can be attributed to differences in mean order quantities and variabilities and indicates that

both factors play an important role in explaining the efficiency differences that we observed.

Figure 3.6 also shows the efficiency under a mean demand heuristic, whereby the expected

demand is ordered in every period. This heuristic can serve as a benchmark and contextualizes

the performance that we observed. The performance under the wholesale price contract was

even worse than that of the mean demand heuristic, albeit not significantly. Thus, ordering

mean demand in each period would result in a similar efficiency to what subjects achieved

in the lab under a wholesale price contract. In both settings, efficiency is over 11% below

optimality. Under a service level contract, the gap was reduced to less than 3%, which

indicates that it is important to consider aspects of human behavior when selecting supply

contracts.

In addition to incentivizing average order quantities that are close to optimal order quantities,

having low variability, and resulting in high efficiency, service level contracts have another

useful property. They can be parameterized to incentive first-best order quantities for any

desired expected profit division among suppliers and retailers. Other supply contracts with

two or more contract parameters have the same property, but unlike these contracts, service

level contracts can be parameterized to achieve three objectives simultaneously: incentivizing

first-best order quantities, offering a steep expected profit function, and dividing expected

profits arbitrarily among supply chain partners.

The service level parameters in our experiment were chosen to explore our steepness of

the curve hypothesis. The controlled environment of our study enables us to show that, in

principle, a service level contract can induce more optimal behavior than a mathematically

comparable wholesale price contract. An interesting next step is to explore whether the kinds

of parameterizations we observe in the field are sufficient to induce the same kind of favorable

results. A stake-size experiment of this sort is probably best conducted at the field level,

since emulating the size of field stakes, and the associated consequences to decision makers, is

difficult to do outside the field environment.
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3.7 Proofs

We present the proofs for continuous demand distributions and denote the wholesale price

under the wholesale price contract by wWP and under the service level contract by wSL.

Proof of Proposition 3.1

Proof. The optimal order quantity under a wholesale price contract with 0 < wWP < r is

q∗ = F −1 ( r−wW P

r
). Consider a service level contract with wWP < wSL < r, 0 < s ≤ 1, and

p = wSL −wWP

1 − F ( q∗
s
) , (3.7)

Because the second derivative of the expected profit function,

d2

dq2 ΠSL(s,wSL, q) = −wSLf(q) − (r −wSL)) f(q) − wSL −wWP

s (1 − F ( q∗
s
))f(

q
s)

is negative, the expected profit function is concave in q and the retailer’s optimal order

quantity can be determined by solving

d

dq
ΠSL(s,wSL, q) = −wSLF (q) + (r −wSL) (1 − F (q)) + wSL −wWP

1 − F ( q∗s )
(1 − F ( qs)) = 0 (3.8)

for q. With q = q∗ in Equation (3.8), we obtain

d

dq
ΠSL(s,wSL, q)∣

q=q∗
= −wSL r −wWP

r
+ (r −wSL) (1 − r −wWP

r
) +wSL −wWP = 0,

which proves that a service level contract with unit penalty cost chosen according to Equa-

tion (3.7) has the same optimal solution as the wholesale price contract.

We next prove that the expected profit function of the service level contract is steeper than
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that of the wholesale price contract. For q < q∗,

d

dq
ΠSL(s,wSL, q) = r (1 − F (q)) −wSL

⎛
⎝1 − 1 − F ( qs)

1 − F ( q∗s )
⎞
⎠ −wWP

⎛
⎝

1 − F ( qs)
1 − F ( q∗s )

⎞
⎠

> r (1 − F (q)) −wWP
⎛
⎝1 − 1 − F ( qs)

1 − F ( q∗s )
⎞
⎠ −wWP

⎛
⎝

1 − F ( qs)
1 − F ( q∗s )

⎞
⎠

= d

dq
ΠWP (wWP , q).

Analogously, it can be shown for q > q∗ that d
dqΠSL(s,wSL, q) < d

dqΠWP (wWP , q).

Proof of Proposition 3.2

Proof. Consider a service level contract with wWP < wSL < r, 0 < s ≤ 1, and p chosen

according to Equation (3.7). The expected profit function has steepness d
dqΠSL(s,wSL, q) =

−wSLF (q)+(r −wSL) (1 − F (q))+ wSL−wW P

1−F ( q
∗

s )
(1 − F ( qs)). To determine the effect of the service

level s on the steepness, we analyze the first derivative of steepness with respect to service

level:

d

ds

d

dq
ΠSL(s,wSL, q) = (wSL −wWP )

f( qs) qs2 (1 − F( q∗
s
)) − (1 − F ( qs))f( q

∗

s
) q∗
s2

(1 − F ( q∗
s
))2

= (wSL −wWP )
1 − F ( qs)

(1 − F( q∗
s
)) s

⎛
⎝
q

s

f( qs)
1 − F ( q

s
) −

q∗

s

f( q∗s )
1 − F( q∗

s
)
⎞
⎠ . (3.9)

Let h(x) ≡ f(x)/ (1 − F (x)) denote the failure rate. All logconcave distributions have an

increasing failure rate (Bagnoli and Bergstrom 2005). From Lariviere and Porteus (2001) we

know that distributions with an increasing failure rate have an increasing generalized failure

rate, that is, xh(x) is increasing x. Therefore q
sf( qs)/ (1 − F ( qs)) is increasing in q and it

follows that Equation (3.9) is negative for q < q∗ and positive for q > q∗.

Proof of Proposition 3.3

Proof. Consider a service level contract with wWP < wSL < r, 0 < s ≤ 1, and p chosen according

to Equation (3.7). To prove the proposition, we show that the expected profit function of the
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service level contract is more concave than the expected profit function of the wholesale price

contract:

d2

dq2 ΠSL(s,wSL, q) = −wSLf(q) − (r −wSL) f(q) − wSL −wWP

1 − F ( q∗s )
f( qs)
s

= −rf(q) − wSL −wWP

1 − F ( q∗s )
f( qs)
s

< −rf(q) = d2

dq2 ΠWP (wWP , q).

Proof of Proposition 3.4

Proof. Consider a service level contract with wWP < wSL < r, 0 < s ≤ 1, and p chosen according

to Equation (3.7). We show that the concavity of the expected profit function is decreasing in

s, that is, that the second derivative of the expected profit function with respect to q becomes

less negative as s increases. We next provide the proof for q = q∗ and then show that the

result also holds for q < q∗. The concavity of expected profit function at q = q∗ is

d2

dq2 ΠSL(s,wSL, q)∣
q=q∗

= −rf(q∗) − (wSL −wWP ) 1
q∗
q∗

s

f( q∗s )
1 − F( q∗

s
)
. (3.10)

The concavity of the expected profit (Equation (3.10)) is increasing in s if q
∗

s

f( q∗s )
1−F( q∗s ) = q∗

s h( q
∗

s
)

is decreasing in s. q∗

s h( q
∗

s
) is a generalized failure rate with a logconcave density function,

which is decreasing in s. Thus, the right term in Equation (3.10) is decreasing in s, implying

that concavity is decreasing as s increases, that is, d
ds

d2

dq2 ΠSL(s,wSL, q)∣
q=q∗

> 0.

To prove that the proposition also holds for q < q∗, we consider the first derivative of the

concavity with respect to s:

d

ds

d2

dq2 ΠSL(s,wSL, q) = −(wSL −wWP )
−q (1 − F ( q∗s )) f ′( qs) + f( qs) (−s + sF ( q∗

s
) − q∗f( q∗s ))

s3 (−1 + F ( q∗
s
))2

= (wSL −wWP )
f( qs)

s3 (1 − F( q∗
s
))q (h(q

∗

s
) q

∗

q
+ s
q
+ f

′( qs)
f( qs)

) (3.11)
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We proved above that this derivative is positive for q = q∗, which implies that

h(q
∗

s
) + s

q∗
+ f

′( q∗
s
)

f( q∗s )
> 0

Logconcavity of the density function f implies that f ′( q
s
)

f( q
s
)
is decreasing in q. Thus for q < q∗,

the last term in Equation (3.11) is positive and the proposition also holds for q < q∗.
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Supplementary Materials

3.A Sample Instructions

The sample instructions below are for the wholesale price (Treatment 1) and the service

level contract with s = 75 and p = 145 (Treatment 2). Instructions for the other service level

contracts (Treatments 3 and 4) considered in our study are presented analogously but with

different parameters.

At the end of the experiment, we asked our subjects to rate, on a 7-point Likert scale

(from “strongly disagree” to “strongly agree”), how much they agree or disagree with the

statement “The instructions were clear and precise” (see 3.E). A Kruskal-Wallis H test showed

that there was no statistically significant difference in the rating across our four treatments,

χ2(3) = 2.845, p = 0.416, with a mean rank of 6.0, 5.8, 5.4, and 5.3 for Treatments 1, 2, 3, and

4, re spectively.

Instructions for the Wholesale Price Contract

The purpose of today’s session is to study how people make decisions in a particular situation.

If you follow these instructions carefully and make good decisions, you could earn a considerable

amount of money. If you have any questions, feel free to raise your hand and the experimenter

will come to you and answer your question.

During this session, you will play a game from which you can earn money. Your earnings

in this session are expressed in ‘francs’ with the following exchange rate:

3,000 francs = $1
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Description of the game

You are a retailer who sells a single generic product. In each period of the game, you will

order the product from an external supplier at a purchase price of 3 francs per unit and sell

the product to customers at a sales price of 12 francs per unit.

You play 100 periods with identical activities:

∎ At the beginning of each period, you determine the order quantity before you know what

your customers will demand. You can choose your order quantity freely between 0 and

100.

∎ Once you have submitted your order, the computer generates a customer demand.

To generate a customer demand, the computer draws a random number between 1 and

100. All customer demands between 1 and 100 are equally likely. The demand drawn for

any one period is independent of the demand from earlier periods. So a small or large

demand in earlier periods has no influence on whether demand is small or large in later

periods.

∎ Demand is filled and your profit is computed. There are two different cases:

– If customer demand is less than or equal to your order quantity, all customer demand

can be filled. Your profit is:

Profit = 12 ⋅Customer Demand − 3 ⋅Order Quantity

– If customer demand is greater than your order quantity, only customer demand up to

the order quantity can be filled. Your profit is:

Profit = 12 ⋅Order Quantity − 3 ⋅Order Quantity

∎ If your order quantity was greater than the demand, the remaining stock is disposed of at

no cost at the end of the period. In other words, remaining inventory is worthless and is

not carried over to later periods.
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Profit calculation per period

Your profit in each period is:

Profit = Sales Price ⋅ Customer Demand Filled (Revenue )

− Purchase Price ⋅ Order Quantity (Order Cost )

Please be aware that you can also make a loss. Should you have accumulated losses after the

100 periods, these will be set against your show-up fee of $5.

Example

Suppose customer demand is 60 units and you ordered 80 units:

All customer demand can be filled, and your profit in this period is:

Profit = 12 ⋅ 60 − 3 ⋅ 80 = 480

Now, suppose customer demand is 60 units and you ordered 40 units:

Only 40 units can be filled, and your profit in this period is:

Profit = 12 ⋅ 40 − 3 ⋅ 40 = 360

Sequence of the experiment

Comprehension
questions 2 short tasks Questionnaire Payment 100 periods of the game

Payment determination

At the end of the session, your total earnings will be converted into U.S. dollars at a rate of

$1 per 3,000 francs, added to your show-up fee of $5, and paid to you in cash.
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Instructions for the Service Level Contract

The purpose of today’s session is to study how people make decisions in a particular situation.

If you follow these instructions carefully and make good decisions, you could earn a considerable

amount of money. If you have any questions, feel free to raise your hand and the experimenter

will come to you and answer your question.

During this session, you will play a game from which you can earn money. Your earnings

in this session are expressed in ‘francs’ with the following exchange rate:

3,000 francs = $1

Description of the game

You are a retailer who sells a single generic product. In each period of the game, you will

order the product from an external supplier at a purchase price of 6 francs per unit and sell

the product to customers at a sales price of 12 francs per unit.

You play 100 periods with identical activities:

∎ At the beginning of each period, you receive a fixed endowment of 225 francs.

∎ You determine the order quantity before you know what your customers will demand.

You can choose your order quantity freely between 0 and 100.

∎ Once you have submitted your order, the computer generates a customer demand.

To generate a customer demand, the computer draws a random number between 1 and

100. All customer demands between 1 and 100 are equally likely. The demand drawn for

any one period is independent of the demand from earlier periods. So a small or large

demand in earlier periods has no influence on whether demand is small or large in later

periods.

∎ Demand is filled and your fill rate is calculated. There are two different cases:
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– If customer demand is less than or equal to your order quantity, all customer demand

can be filled. The fill rate is:

Fill Rate = Customer Demand Filled
Customer Demand

= Customer Demand
Customer Demand

= 100%

– If customer demand is greater than your order quantity, only customer demand up to

the order quantity can be filled. The fill rate is:

Fill Rate = Customer Demand Filled
Order Quantity

= Order Quantity
Customer Demand

< 100%

∎ The fill rate target is 75%; that is, the target is filling at least 75% of actual period

demand. An amount of 145 francs is deducted for each unit you fall short of target.

∎ If your order quantity was greater than the demand, the remaining stock is disposed of at

no cost at the end of the period. In other words, remaining inventory is worthless and is

not carried over to later periods.

Profit calculation per period

Your profit in each period is:

Profit = Endowment

+ Sales Price ⋅ Customer Demand Filled (Revenue )

− Purchase Price ⋅ Order Quantity (Order Cost )

− Deduction ⋅ Units Short of Target (Deduction )

Please be aware that you can also make a loss. Should you have accumulated losses after the

100 periods, these will be set against your show-up fee of $5.
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Example

Suppose customer demand is 60 units and you ordered 80 units:

All customer demand can be filled, and your fill rate = 60/60 = 100%. Because your fill rate

is above 75%, you do not incur a deduction. Your profit in this period is:

Profit = 225 + 12 ⋅ 60 − 6 ⋅ 80 = 465

Now, suppose customer demand is 60 units and you ordered 40 units:

Only 40 units can be filled, and your fill rate = 40/60 = 66.7%. 45 units, 5 units more, would

have been required to achieve a fill rate of 75%. You incur a deduction of 145 francs for each

of the 5 units you are short of target. Your profit in this period is:

Profit = 225 + 12 ⋅ 40 − 6 ⋅ 40 − 145 ⋅ 5 = −260

Sequence of the experiment

Comprehension
questions 2 short tasks Questionnaire Payment 100 periods of the game

Payment determination

At the end of the session, your total earnings will be converted into U.S. dollars at a rate of

$1 per 3,000 francs, added to your show-up fee of $5, and paid to you in cash.
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3.B Decision and Result Screens

Decision Screen

Result Screen
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3.C Comprehension Questions

In this section, we provide the questions and answers from the computerized quiz that our

subjects had to pass before they could continue with the main part of the experiment. The

sample quiz below contains the questions and answers for the service level contract with

s = 75 and p = 145. Note that the correct answers are indicated with dots (⊙). The questions

from the other treatments in our study are presented analogously, except for the differences

outlined in Section 3.4.2.

Section 1

Suppose you ordered 60 units and the computer generated a customer demand of 90 units.

(1) What are your Order Costs in this period?

⊙ 360 francs

# 540 francs

# 720 francs

(2) How many units can you sell in this period?

# 30

⊙ 60

# 90

(3) What is your Revenue in this period?

# 360 francs

⊙ 720 francs

# 1080 francs

(4) What is your Fill Rate in this period?

# 33.3%

⊙ 66.7%

# 100%
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(5) How many units more (if any) would have been required to achieve a fill rate of 75%?

# 0

⊙ 8

# 30

(6) What is your Deduction in this period?

# 0 francs

⊙ 1160 francs

# 4350 francs

(7) What is your Profit in this period? (Note that your endowment is 225 francs.)

⊙ -575 francs

# -215 francs

# 585 francs

Section 2

Suppose you ordered 60 units and the computer generated a customer demand of 30 units.

(1) What are your Order Costs in this period?

# 180 francs

⊙ 360 francs

# 720 francs

(2) How many units can you sell in this period?

⊙ 30

# 60

# 90

(3) What is your Revenue in this period?

# 180 francs

⊙ 360 francs

# 720 francs
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(4) What is your Fill Rate in this period?

# 33.3%

# 66.7%

⊙ 100%

(5) How many units more (if any) would have been required to achieve a fill rate of 75%?

⊙ 0

# 8

# 30

(6) What is your Deduction in this period?

⊙ 0 francs

# 1160 francs

# 4350 francs

(7) What is your Profit in this period? (Note that your endowment is 225 francs.)

# -135 francs

⊙ 225 francs

# 585 francs

Section 3

(1) All 100 periods are payoff relevant.

⊙ True

# False

(2) You can choose your order quantity freely between 0 and 100.

⊙ True

# False

(3) Depending on your order quantity and customer demand, you can also make losses.

⊙ True

# False
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Figure 3.7 Proportion of Required Attempts to Pass a Section of the Quiz by Treatment
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Figure 3.7 shows the proportion of subjects who required one, two, or more attempts to

pass a specific section of the quiz. Comparing the average number of attempts within a section

across our four treatments, we did not find any significant differences, except for the first

section, in which subjects in the SLC75%,145 treatment required on average 1.9 more attempts

to correctly answer all questions than did subjects in the WPC treatment (p = 0.017). This is

not surprising because the first section of the WPC treatment had three fewer questions and

required less calculation effort.
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3.D Additional Tasks

Task 1 – Holt and Laury’s (2002) Risk Elicitation Task

Task 2 – Gächter et al.’s (2010) Lottery Choice Task to Assess Loss Aversion
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3.E Post-Experimental Questionnaire
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Chapter 4

Trusting the Forecast: The Role of Numeracy

Relying on a scientific forecast to make decisions is an act of trust. Conventionally, forecast

guidance that includes uncertainty measures is generally thought to be for quantitatively

sophisticated decision makers, while firmer forecast guidance that omits uncertainty measures

is more easily and generally understood. In a controlled study of decision making in a simple

take-the-risk or take-the-cost decision game, we examine compliance rates (trust) for forecast

guidance provided as probabilities as well as recommendations. Most strikingly, and contrary

to our initial expectation, low numerate subjects exhibit less trust in recommendation forecasts

than do high numerates. While we find a positive relationship between subjects’ numeracy

and trust in probability forecasts, this relationship is overshadowed by the fact that even high

numerate subjects use the probabilities inefficiently. Forecast guidance that blends probabilities

and recommendations, in a way designed to offset the major behavioral shortcomings we

observe, improves compliance; especially for high numerates. We argue that improving low

numerate individuals’ trust in forecasting will require a new approach.
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4.1 Introduction

Many important business and personal decisions have to be made under risk and uncertainty.

Typically, experts use scientific models to derive forecasts, while non-expert users employ

these forecasts to make the decisions. With the growing availability of big data and predictive

analytics, more and more decisions are guided by expert models, ranging from improving

emergency responsiveness (Green and Kolesar 2004, Pinker 2007), to supply base diversification,

to talent management (Arellano et al. 2017). The forecasts for these specific applications are

inherently uncertain. For the forecast users, the value of scientific forecasts rests largely with

a reduction of uncertainty over future events, thereby enabling better decision making today

(Weber 1994, Fox and Tversky 1998).

Definitions of trust vary but one commonly accepted definition across multiple disciplines

is that “trust is a psychological state comprising the intention to accept vulnerability based

upon positive expectations of the intentions or behavior of another” (Rousseau et al. 1998,

p. 395). For most people, relying on an expert forecast for decision guidance is an act of

trust (Burgman 2016). Forecasts are by nature uncertain, and most forecast users have

only a partial understanding of the workings and expected accuracy of the scientific models

that underlie the forecast. To the extent that forecast users misunderstand the underlying

uncertainty, or fail to use this information properly, they are vulnerable to decision mistakes

that, rightly or wrongly, may get attributed to a faulty forecast.

Diversity in user numeracy complicates forecast guidance on forecast uncertainty, a clear

measure of which is, in decision theory, critical to good decision making. Forecast uncertainty

is difficult to convey effectively in words because different people interpret words like ‘likely’

differently (Bryant and Norman 1980, Beyth-Marom 1982, Wallsten 1986, Karelitz and

Budescu 2004). Conventionally, forecast guidance that includes quantitative measures of

uncertainty is thought to be for numerically sophisticated decision makers, while firmer forecast

guidance that omits uncertainty measures, such as point forecasts or recommendations of

what decision to take, is more easily and generally understood. Regarding trust there is a

potential trade-off here: The measure of uncertainty is, in decision theory, sufficient to make

optimal decisions but may also be prone to misunderstanding or misuse particularly among
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numerically less sophisticated users (Schwartz et al. 1997). Firmer guidance that omits or

de-emphasizes uncertainty – point forecasts or recommendations for example – is easier to

incorporate into decision making (assuming users deem the information credible) but may

also raise questions of reliability as users observe forecast errors (Bliss et al. 1995, Meyer and

Bitan 2002).

Here, we examine this trade-off in the context of a cost-loss game, in which a decision

maker chooses whether to take the risk of a loss or take a cost to avoid the risk (Bilham

1922, Thompson 1952). Many of the important risk decisions people face have a cost-loss

structure. Examples include whether to evacuate in the face of an impending hurricane, how

to invest for retirement, whether to elect a preventative medical procedure, and how to vote

on climate change policies. For each of these examples a forecast is typically available to aid

in the decision.

Making an informed decision in a cost-loss situation requires an evaluation of how likely it is

that the loss occurs. Providing the relevant probabilities is a straightforward way of conveying

this information to the forecast-users. Behavioral studies of cost-loss games find that providing

numerical forecast information of risk can improve the quality of decisions relative to providing

a point forecast only (Roulston et al. 2006). Work on categorical recommendations find a cry

wolf effect when the recommendation turns out to be a false alarm (Meyer and Bitan 2002,

Roulston and Smith 2004, Bolton and Katok 2017). However, it is likely that providing the

relevant probabilities is only meaningful to the extent that people have the ability to process

basic probability and numerical concepts, a construct called numeracy (Schwartz et al. 1997).

People differ substantially in their numeracy skills, and many people are innumerate

(Schwartz et al. 1997, Lipkus et al. 2001, Cokely et al. 2012). The 2003 National Assessment

of Adult Literacy indicates that about half the U.S. population has only very basic or below

basic numeracy skills (Kutner et al. 2006). The Survey of Adult Skills (PIAAC) shows that

in almost all OECD countries a sizable proportion of adults has poor numeracy skills, 23% of

adults, on average (OECD 2016). The survey also reveals that across countries and economies,

there is a positive correlation between numeracy skills and trust. While the causal nature of

this relationship is difficult to discern, it clearly matters, because trust is the foundation of
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economic behavior. Gurmankin et al. (2004) revealed that trust in numerical information

increases in numeracy skills. They hypothesize that low numerate individuals will be more

likely than their high numerate peers to reject information that they perceive to be inaccurate

or unreliable. Furthermore, low numerate individuals are less likely to retrieve and use

appropriate numerical principles, are less likely to use accuracy-enhancing System 2 forms

of thinking, and are more vulnerable to System 1 cognitive errors (Kahneman 2003, Peters

et al. 2006, 2007). Peters et al. (2007) found that this effect of numeracy is not due to general

intelligence.

In some conditions of our experiment, forecasts are offered in the form probabilities of the

loss event, a form of forecast that emphasizes the inherent uncertainty in the underlying

model. In other conditions, the forecast is offered as a recommendation of whether to take the

cost or take the risk, a form of forecast that provides the optimal action given the expected

probability of loss while de-emphasizing the underlying model uncertainty. Both kinds of

forecasts are common. We measured numeracy in each condition, to learn more about the

role of numerical abilities and its interaction with the form of forecast. Numeracy is deemed

important because it affects risk comprehension and the efficiency of decision making (Reyna

et al. 2009). The hypothesis we test in this study is that people with higher numeracy skills

are better able to utilize probability information, while lower numeracy people perform better

with recommendation.

This chapter is organized as follows. In Section 4.2, we present the details of our experimental

design, protocol, and sample. In Section 4.3, we present the results of our study, starting with

aggregate descriptive statistics, the role-of-numeracy analysis, and following with analyses of

the behavioral strength and weaknesses of probabilities and recommendations. In Section 4.3,

we also present forecast guidance that blends probabilities and recommendations in a way

designed to offset the major behavioral shortcomings. In Sections 4.4, we summarize our

conclusions and discuss the managerial implications of our findings.
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Figure 4.1 The Cost-Loss Game

Take the risk Take the cost

-100 tokens 0 tokens

-75 tokensP 100% – P 

4.2 Experiment

4.2.1 Design

4.2.1.1 Forecast guidance in a cost-loss game

Figure 4.1 depicts the extensive form of the cost-loss game used in the experiment. The

decision maker chooses between two actions: take the risk, in which case she loses 100 tokens

with probability P or take the cost, in which case she loses 75 tokens for certain.

Each subject in the experiment played this game 100 times, with the value of P varying

each round. The expected cost minimizing decision depends on P ; specifically, the implied

choice rule is take the risk if the expected loss, P × 100, is less than 75, and take the cost if

greater than 75. Given the monetary stakes and the amount of game repetition, this rule

should approximate the optimal decision rule for all but highly risk averse individuals.1 We

use this rule to benchmark forecast compliance; that is, we say that a decision is forecast

compliant if it is optimal given the forecast information about P available to the decision

maker.

The experiment manipulates the forecast information decision makers have about probability

P and compare the optimality of subject decision making across manipulations. At the

beginning of all conditions, subjects are told that the probability of the loss event will average

to 50% over the series of cost-loss games they play. In the baseline Neither condition, this is

1The major conclusions we will draw are robust to the assumption that players are risk averse; see Bolton and
Katok (2017).
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all the information subjects are given. The optimal action in each round is to take the risk.

In the other conditions, subjects also receive round-by-round forecast guidance.

In the Probability condition, forecast guidance is communicated as the actual value of P

for that round. In the Recommendation condition, guidance takes the form of advice: “take

the risk” or “take the cost” (the value of P is not provided). The recommendation follows

the optimal decision rule. The Both condition, both probability and recommendation are

presented together. For all three of these conditions, the optimal decision rule stipulates

taking the risk if P < 75%; take the cost otherwise. The round-by-round forecasts provide

better information about the risk than does knowing only the average cross-rounds probability,

so decision makers with round-by-round forecasts should experience fewer total losses (costs

paid plus losses incurred from risks) than users in the Neither condition.

Because it is optimal when no day-to-day forecast guidance is available, take the risk is

the status quo action. In this context, the function of the day-to-day forecast is to alert the

decision maker that the status quo action should be abandoned in favor of taking the cost,

the siren action.

4.2.1.2 Assessment of Numeracy

We assessed a subject’s numeracy with seven questions and scored it as the total number of

correct responses. Table 4.1 shows the numeracy questions accompanied by the percentage of

subjects who responded correctly to each item.

Item 1 to 3 are taken from Schwartz et al. (1997) and the remaining items are taken

from the Berlin Numeracy Test by Cokely et al. (2012). Building on the work of Lipkus

et al. (2001) and Schwartz et al. (1997), Cokely et al. (2012) provide a relatively short and

reliable instrument that has been proven to be the strongest single predictor of individual

differences in understanding everyday risks, such as evaluating risk in numerical and non-

numerical claims about consumer products and medical treatments or interpreting weather

forecasts (Ghazal et al. 2014). The Berlin Numeracy Test was developed to assess numeracy

of educated and highly educated samples, such as college students. Cokely et al. (2012)

suggests to combine the Berlin Numeracy Test with the Schwartz et al. test when assessing
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Table 4.1 Numeracy Questions Accompanied by the Percentage of Subjects Who Responded Correctly
to Each Item

Item % Correct

1. Imagine that we flip a fair coin 1,000 times. What is your best guess about how many times the coin
would come up heads in 1,000 flips?

87.1

2. In the BIG BUCKS LOTTERY, the chance of winning a $10 prize is 1%. What is your best guess
about how many people would win a $10 prize if 1,000 people each buy a single ticket to BIG
BUCKS?

81.1

3. In ACME PUBLISHING SWEEPSTAKES, the chance of winning a car is 1 in 1,000. What percent of
tickets to ACME PUBLISHING SWEEPSTAKES win a car?

56.2

4. Imagine we are throwing a five-sided die 50 times. On average, out of these 50 throws how many
times would this five-sided die show an odd number (1, 3, or 5)?

56.2

5. Imagine we are throwing a loaded die (6 sides). The probability that the die shows a 6 is twice as
high as the probability of each of the other numbers. On average, out of these 70 throws how many
times would the die show the number 6?

38.8

6. Out of 1,000 people in a small town 500 are members of a choir. Out of these 500 members in a
choir 100 are men. Out of the 500 inhabitants that are not in a choir 300 are men. What is the
probability that a randomly drawn man is a member of the choir?

37.8

7. In a forest 20% of mushrooms are red, 50% brown and 30% white. A red mushroom is poisonous
with a probability of 20%. A mushroom that is not red is poisonous with a probability of 5%. What
is the probability that a poisonous mushroom in the forest is red?

16.4

individuals who have lower levels of educational attainment. They tested the combined

score on Amazon’s Mechanical Turk online labor market and showed that it provides a fast

assessment with excellent discriminability. We added two additional items to specifically test

subjects’ comprehension of expected values, such as “Imagine we toss a fair coin. If head

comes up you win $20, if tail comes up you win $100. What is the expected payoff of this

gamble?” We find a strong positive correlation between the combined score suggested by

Cokely et al. (2012) and the number of correct answers to our additional items (r = 0.552,

p < 0.001).

All questions were incentivized such that subjects earned ten cents for each question

answered correctly.

4.2.2 Protocol

The experiment was conducted online using a self-developed Javascript software (implemented

in Qualtrics). Upon accessing the experiment, subjects were randomly assigned to one of

our four conditions, and this assignment remained constant throughout all rounds for each

subject. The forecast information given to the subject (Neither, Probability, Recommendation,
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or Both) depended on the condition and subjects were shown the corresponding on-screen

instructions (Supplementary Material 4.A) at the beginning of the experiment.

After reading the instructions but before playing the cost-loss game, subjects had to pass a

comprehension quiz that was the same for all conditions. The quiz comprised five questions

provided in Supplementary Material 4.B. Subjects could continue only after they had correctly

answered all questions on the first attempt (approximately one third were screened out). We

used this approach to ensure that subjects have read and understood the instructions.

At the beginning of each of the 100 rounds of play, a subject receives an endowment of

150 tokens (to avoid “bankruptcy problems” in which subjects would owe the experimenter

money; the endowment is fixed and does not change the normative analysis of the optimal

action). Forecast information depending on the condition was made available to subjects

before they made their decisions of whether to take the risk or take the cost. A random draw

from a uniform distribution, consistent with the loss probability P for that round, determined

the outcome of whether the loss occurred. Draws were independent across rounds, subjects,

and conditions. After the decision, the outcome and payoff was displayed to the subjects (see

screen shots of the computer interface in Supplementary Material 4.C).

After the main part of the experiment, we asked all subjects to “briefly describe how [they]

have decided when to take the risk and when to take the cost”. Subjects then answered the

seven numeracy questions (Table 4.1) as well as our two additional items, and completed a

risk elicitation task. We decided to use the Bomb Risk Elicitation Task (BRET) introduced by

Crosetto and Filippin (2013) to asses subjects’ risk preferences, because it requires minimal

numeracy skills but still allows precise estimation of both risk aversion and risk seeking. The

BRET asks subjects to choose the number of boxes they want to collect from a set of 100

boxes, one of which contains a bomb. Earnings increase with the number of boxes collected

(ten cents per box) but are equal to zero if one of them contains the bomb. Thus, the number

of boxes collected is a good proxy for subjects’ risk appetite (for instructions and results see

Supplementary Material 4.D).

At the conclusion of the experiment we asked subjects for additional demographic informa-

tion, including age, gender, highest level of education completed, employment status, and
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Table 4.2 Sample Demographics (N = 201)

Demographics Percentage

Agea 35.0 (10.9)

Gender (female) 54.7

Highest level of education
High school graduate 16.9
Some college 29.4
Bachelor’s degree 38.8
Master’s degree 12.4
Doctoral or advanced professional degree 2.5

Employment status
Not working 19.4
Working (paid employee) 62.2
Working (self-employed) 18.4

Annual income from all sources before taxes
$20,000 and under 28.9
$20,001 to $40,000 33.8
$40,001 to $60,000 21.9
$60,001 to $80,000 9.5
Over $80,000 6.0

Note. a M (SD)

own annual income from all sources before taxes (see post-experimental questionnaire in

Supplementary Material 4.E).

4.2.3 Subjects

We recruited subjects on Amazon’s Mechanical Turk (MTurk) online labor market (Buhrmester

et al. 2011, Paolacci and Chandler 2014). We restricted participation to residents of the

United States. After accepting to participate in our study, subjects were referred to an

external website containing our online experiment. A total of 361 MTurk workers started our

survey and were randomly assigned to one of our four conditions. Out of this 361 workers, 110

were screened out in the quiz and 50 did not complete the survey, resulting in a sample size of

201 subjects (demographic features of the sample are summarized in Table 4.2). There were

no statistically significant differences neither for the failure rates in the quiz (χ2(3) = 1.287,

p = 0.732) nor for the drop-out rates (χ2(3) = 3.187, p = 0.364) across conditions. Selective

attrition is therefore not an important concern for our study.
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Table 4.3 Summary of the Experimental Conditions

Probability

Not provided Provided

Recommendation
Not provided Neither Probability

(n = 50) (n = 60)

Provided Recommendation Both
(n = 47) (n = 44)

Subjects required on average 31 minutes to complete the experiment. Actual average

earnings, including a $1 participation fee, were $6.64, resulting in an average wage of more

than $13 per hour, which are substantial earnings on MTurk. Table 4.3 summarizes the

condition labels and sample sizes.

4.3 Results

4.3.1 Overall Results

We begin by plotting the proportion of decisions to take the risk over time in Figure 4.2.

Fitting a simple trend line to the data in Figure 4.2 (where each data point corresponds to

the proportion of subjects who take the risk per round), we find a significant trend only if the

advice is to take the cost for the Probability (Figure 4.2(b)) and the Both (Figure 4.2(d))

condition (random effects regression, two-tailed p < 0.05 in both cases). If the optimal action

is to take the cost in the Probability condition the overall average increase in compliance is

0.04 percentage points per round (standard error = 0.016); if the optimal action is to take

the cost in the Both condition, the overall average increase in compliance is 0.10 percentage

points per round (standard error = 0.021).

Overall, we can conclude that there is little to no trend in our data (see Figure 4.5).

Therefore, to further investigate how different information affects behavior we plot the average

compliance across all rounds and subjects by condition, and broken out on whether the

optimal action was to take the risk or take the cost in Figure 4.3. On the right side, the figure
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Figure 4.2 Proportion of Subjects Who Take the Risk
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(d) Both Recommendation and Probability

also presents pairwise Wilcoxon rank-sum tests that compare forecast compliance for each

pair of conditions in our study.

Absent of forecast information, subjects take the risk with a frequency of 66%. Getting

a probability forecast that implies that taking the risk is optimal does not increase this

frequency. Receiving a recommendation to take the risk significantly increases this frequency

to 85%. Comparing the compliance in the Probability and Recommendation condition, we

can conclude that the latter lead to higher compliance if the forecast implies to take the risk.

The frequency of taking the cost, absent of forecast guidance, is 33%. Both probability and

recommendation forecasts significantly improve this frequency to 93% and 65%, respectively.

A direct comparison of these frequencies shows that, if the forecast implies to take the cost, the
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Figure 4.3 Mean Proportion of Time in Compliance With the Forecast by Treatment

Wilcoxon rank-sum tests
(two-tailed, n = number of subjects)
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H0: Recommendation = Both 0.000

P ≥ 75%
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Note. Error bars indicate one standard error.

probability forecast is now more effective to increase compliance than is the recommendation

forecast.

Giving subjects both probability and recommendation forecasts leads to similar compliance

as probability only forecasts. We do not find a difference between Probability and Both

treatment in their effectiveness to induce compliance with the siren action (take the cost).

Adding verbal recommendation to the probability forecast, however, helps to improve forecast

compliance (from 66% to 74%) if the forecast implies to take the risk; but still remains behind

the compliance of 85% in the Recommendation condition. Overall, we can conclude that the

results from Bolton and Katok (2017) replicate quite well qualitatively on MTurk.

4.3.2 The Role of Numeracy

Figure 4.4 shows the distribution of the numeracy scores in our sample. The mean numeracy

score is 3.74 (SD = 1.84). A Shapiro-Wilk W test for normality indicates that we cannot

reject that numeracy is normally distributed in our sample (p = 0.100), with skewness of

0.13. There was no statistically significant difference between conditions (F (3,197) = 1.78,

p = 0.153).
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Figure 4.4 Distribution of Numeracy Scores
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To get a sense of the role of numeracy, Figure 4.5 displays the proportion of decisions to

take the risk by loss probability P (averaged over 5-percentage-point blocks). We partitioned

subjects into low numerate (numeracy score 3 and below) and high numerate (numeracy score

4 and above) subjects.

Absent round-by-round forecast information, high numerate subjects seem to be somewhat

more likely to take the optimal action (take the risk) than low numerate subjects (on average

70% versus 62%). If a probability forecast is provided, Figure 4.5(b), high numerate subjects

are somewhat more likely to take the optimal action when the forecast implies to take the risk

(69% versus 63%). When the forecast implies to take the cost there is no difference in the

proportion of subjects who take the cost (93%) between high and low numerate subjects. In

the Recommendation condition, Figure 4.5(c), high numerate subjects are again more likely

to take the optimal action when the forecast implies to take the risk (94% versus 71%). When

the forecast implies to take the cost, high numerate subjects are only slightly more likely to

follow the forecast than low numerate subjects (67% versus 63%). If both probability and a

verbal recommendation was provided. Figure 4.5(d), the pattern looks pretty much as the

pattern in the Probability condition. However, the differences between high and low numerate

subjects are more pronounced when the forecast implies to take the risk (81% versus 70%).

When the forecast implies to take the cost, high numerate subjects are only slightly more

likely to follow the forecast than low numerate subjects (94% versus 92%).

Overall, it appears that high numerate subjects are more likely to comply with the
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Figure 4.5 Proportion of Subjects Who Take the Risk by Numeracy
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(d) Both Recommendation and Probability

forecast than low numerate subjects. The effect of numeracy seems particularly strong in the

Recommendation condition. Table 4.4 presents estimated panel logistic regression models

for each condition. The dependent variable in all models is 1 when the optimal action is

taken. The variable Numeracy takes the value of the subject’s numeracy score. The estimates

confirm our previous observations: There is a strong positive effect of numeracy on compliance

in the Recommendation and the Both condition. Both coefficients are highly significant. In

the Probability condition we find a smaller and weakly significant effect of numeracy on

compliance. These effects still hold if we control for age, gender, education, and income (for

correlations between variables see Supplementary Material 4.F).
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Table 4.4 Effect of Numeracy on the Likelihood to Take the Optimal Action

Explanatory variable Neither Probability Recommendation Both

Numeracy 0.614∗∗ 0.090∗ 0.384∗∗∗ 0.219∗∗∗

(0.313) (0.049) (0.105) (0.067)

Constant −0.207 0.756∗∗∗ 0.336 0.772∗∗∗

(1.363) (0.205) (0.462) (0.237)

Log-likelihood -1752 -3275 -1933 -2126
Observations 5000 6000 4700 4400

Notes. Random-effects logistic regression. Standard errors in parentheses.
∗ p-value < 0.10, ∗∗ p-value < 0.05, ∗∗∗ p-value < 0.01, two-tailed.

Re-estimating the regression model with the pooled data from the Probability and the

Recommendation condition, adding an indicator variable for the Recommendation condition

crossed with Numeracy we find that numeracy skills are significantly more important in the

Recommendation condition than in the Probability condition (p = 0.006). Repeating this

analysis with the pooled data from the Recommendation condition and the Both condition we

find no significant difference in the effect of numeracy on the likelihood to take the optimal

action (p = 0.241). Contrary to our initial expectation, numeracy skills matter more to forecast

compliance with recommendations than with probabilities.

In the following sections we will analyze the decisions in the Probability condition and the

Recommendation condition in more detail.

4.3.3 Strengths and Weaknesses of Probability Forecasts

In Figure 4.5(b), we can see that both high and low numerate subjects comply nearly 100%

of the time when the probability is either extremely high or extremely low. But for moderate

levels of P (between about 30% and 75%) there is substantial deviation from compliance for

both high and low numerate subjects. Both high and low numerate subjects tend to take the

cost well below the optimal threshold of 75%. We might hypothesize that the explanation

for this pattern is driven by risk aversion. The number of boxes collected in the BRET

is a good proxy for subjects’ risk appetite. Assuming the constant relative risk aversion

utility function u(x) = xr and given the implied levels of r based on the number of boxes
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Figure 4.6 Proportion of Subjects Who Take the Risk in the Probability Condition
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collected (see Crosetto and Filippin 2013, Appendix A), we can calculate the expected utility

maximizing decision for each subject and each value of P . The result is depicted in Figure 4.6

(averaged over subjects and 5-percentage-point blocks) and indicates that risk aversion alone

is not sufficient to explain the observed pattern. Instead, it appears that many subjects,

independent of numeracy, fail to follow the optimal strategy when P gets above 50%.

Interestingly, this also happens in the condition with both, recommendation and prob-

ability. In fact, it appears that probability information effectively chases out the benefits

of recommendation for the high numerate subjects. We present informal analysis of this in

Figure 4.7, in which we display word clouds for the four conditions based on the answers to

the questions “briefly describe how you have decided when to take the risk and when to take

the cost”. Figure 4.7(b and d) and Figure 4.7(c and d) indicate that the condition with both

probability and recommendation is much more similar to the Probability condition than to

the Recommendation condition. Observe that, for both Probability and the Both condition,

subjects explain their actions in terms of probability or percent and seemingly ignore the

advice when it is given.

Looking more closely at the answers in the Probability condition, we find that 47% of

subjects indicate that the rule they followed was to choose to take the cost when the loss

probability was above 50%, effectively ignoring the financial implications of their decisions
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Figure 4.7 Word Clouds Based on the Request to Explain How the Decisions Were Made

(a) Neither Recommendation Nor Probability (b) Probability Only

(c) Recommendation Only (d) Both Recommendation and Probability

Note. For details on the data processing for the word clouds see Supplementary Material 4.G.

which would, if correctly folded into the decision making procedure, suggest the optimal

75% cutoff. This behavior is in line with the finding by Slovic and Lichtenstein (1968), who

showed that ratings of a gamble’s attractiveness were determined much more strongly by the

probabilities of winning and losing than by the expected payoff. This decision heuristic has

come to be known as proportion dominance Finucane et al. (2003) and has been replicated a

number of times (for example, Goldstein and Einhorn 1987, Ordóñez and Benson 1997).

Provided with a probability forecast, subjects seem to follow a simple decision heuristic

and compliance is only weakly correlated with numeracy.

4.3.4 Strengths and Weaknesses of Recommendation Forecasts

In Figure 4.5(c), we can see that recommendations work quite well, when the optimal decision

is to take the risk. The compliance rates of both high and low numerate subjects in the

Recommendation condition are higher than the compliance rates in the Probability condition,

when the optimal decision is to take the risk (69% versus 94% and 63% versus 71% for high

and low numerate subjects, respectively). However, the difference is only significant for high
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but not for low numerate subjects (p < 0.001 and p = 0.103, respectively). When the forecast

implies to take the cost, compliance in the Recommendation condition is significantly lower

than in the Probability condition for both high and low numerate subjects (p < 0.001).

To further explore the behavior in the Recommendation condition we will estimate panel

logistic regression models for the data in the Recommendation condition. All models use

random effects to control for the panel structure of our data. The dependent variable in all

models is 1 when the siren action (take the cost) is taken and 0 otherwise. The explanatory

variable Opt is 1 when the optimal action given the forecast corresponds to the siren action

and 0 otherwise. Therefore, (1 −Opt) is 1 when the optimal action is to take the status quo

action (take the risk). We cross the Period variable (1, . . . , 100) with the indicator variables

Opt and (1 −Opt) to capture learning effects for taking the siren action and the status quo

action, respectively.

Following Bolton and Katok (2017), we define the variable Errors to be the total number of

previous recommendations that turned out to be incorrect ex post – either the recommendation

was to take the risk but the loss did occur or the recommendation was to take the cost but

the loss did not occur. So the Errors variable is simply the cumulated number of forecast

errors observed during the game. We cross the Errors variable with the variable Opt and

with (1 −Opt) to track how subjects react to false alarms. Table 5 summarizes the estimates

of the models that we fit for each condition separately.

Model (1) takes a first look at the dynamics of the decision in the Recommendation condition

and tracks how subjects are influenced by forecast errors. Here, as in all models, the Opt

coefficient is positive, indicating that the recommendation improves decision making. However,

in Models (3) and (4), the coefficients for Opt become non-significant. We will discuss this

below. The coefficient for Opt ×Period is positive and significant, and for (1 −Opt) ×Period,

it is negative and significant in all models. So on aggregate and with experience subjects learn

to take the cost more often when it is optimal to do so and less often when it is not. The

coefficient for Opt×Errors is negative and significant and the coefficient for (1−Opt)×Errors
is positive and significant, indicating that subjects are less likely to trust the forecast the

more errors they observe. The more errors they observe, they take the cost less often when it
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Table 4.5 Effect of Numeracy and Forecast Errors in the Recommendation Condition

Explanatory variable (1) (2) (3) (4)

Opt 3.246∗∗∗ 3.233∗∗∗ 0.128 0.487
(0.205) (0.213) (0.314) (0.466)

Opt × Period 0.036∗∗∗ 0.037∗∗∗ 0.034∗∗∗ 0.034∗∗∗

(0.010) (0.011) (0.011) (0.011)

(1 −Opt) × Period −0.024∗∗∗ −0.021∗∗ −0.023∗∗∗ −0.023∗∗∗

(0.008) (0.008) (0.008) (0.008)

Opt × Errors −0.105∗∗∗ −0.222∗∗∗ −0.095∗∗∗ −0.134∗∗∗

(0.031) (0.037) (0.033) (0.039)

(1 −Opt) × Errors 0.072∗∗∗ 0.091∗∗∗ 0.068∗∗∗ 0.054∗

(0.025) (0.027) (0.026) (0.028)

Opt × Errors ×Numeracy 0.030∗∗∗ 0.010∗∗

(0.004) (0.005)

(1 −Opt) × Errors ×Numeracy −0.009∗∗∗ 0.005
(0.003) (0.004)

Opt ×Numeracy 0.166 0.017
(0.183) (0.199)

(1 −Opt) ×Numeracy −0.654∗∗∗ −0.724∗∗∗

(0.181) (0.192)

Constant −2.611∗∗∗ −2.684∗∗∗ −0.178 0.042
(0.347) (0.367) (0.808) (0.837)

Log-likelihood -1573 -1511 -1490 -1487
Observations 4700

Notes. Random-effects logistic regression. Standard errors in parentheses.
∗ p-value < 0.10, ∗∗ p-value < 0.05, ∗∗∗ p-value < 0.01, two-tailed.
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would be optimal to do so and more often when it is not optimal. So overall, while subjects

make better decisions with increasing experience, their compliance rate decreases with the

number of false alarms, a behavioral regularity known as the cry wolf effect (Bliss et al. 1995,

Meyer and Bitan 2002, Bolton and Katok 2017).

Next, we will analyze how numeracy influences decision making in the Recommendation

condition. In Model (2) we add the variables Opt×Errors×Numeracy and (1−Opt)×Errors×
Numeracy. The coefficient to Opt × Errors × Numeracy is positive and significant and the

coefficient to (1−Opt)×Errors×Numeracy is negative and significant, indicating that subjects

with high numeracy skills suffer less from a decrease in compliance with future forecasts as

response to previous forecast errors than subjects with low numeracy skills.

In Model (3) we add the variables Opt ×Numeracy and (1 −Opt) ×Numeracy to the set

of explanatory variables in Model (1). The coefficient to Opt × Numeracy is positive but

not significant and the coefficient to (1 −Opt) ×Numeracy is negative and significant. This

indicates that when the optimal action is to take the cost, numeracy skills have a positive

but not significant effect on the likelihood that subjects chose the siren action. However,

when the optimal action is to take the risk numeracy significantly improves performance by

lowering the likelihood to take the non-optimal siren action. In Model (3) we also see that the

coefficient to Opt becomes non-significant, indicating that recommendations do not improve

decision making per se, but require a certain level of numeracy skills. Thus, innumerate

subjects almost completely ignore the recommendation.

So far we found that numeracy skills can improve decisions in two ways: numeracy skills

increase subject’s tolerance toward false alarms (Model (2)) and they improve subject’s

compliance with status quo action (Model (3)). In the Model (4) we test both ways in one

model. The coefficients to Opt × Errors × Numeracy and to (1 − Opt) × Numeracy remain

significant, indicating that high numerate subjects suffer less from a decrease in compliance

with future siren forecasts as response to previous forecast errors and are in general more likely

to take the status quo action when it is optimal to do so than subjects with low numeracy

skills.

116



Chapter 4 Trusting the Forecast: The Role of Numeracy

4.3.5 A Hybrid Forecasting Scheme

Our results show that both probabilities and recommendations have their own behavioral

strengths and weaknesses. So the question is, if we can combine probabilities and recommen-

dations in a way to offset their major behavioral shortcomings but keep their benefits. We

designed a hybrid forecasting system that aimed to include the benefits from both types of

information. The forecast guidance always provides a recommendation, but only additionally

provides the probability of the loss event when the recommendation is to take the cost. In

other words, the recommendation for default action included recommendation only, while the

recommendation for the siren action, also added probability, by the way of an explanation.

This idea was based on our previous observations that recommendations are more successful

at inducing the default action (take the risk) and providing probabilities is more successful at

inducing the siren action (take the cost), we expect the hybrid forecast to capture most of

the benefits.

We tested the hybrid forecasting scheme in a follow-up experiment with 50 subjects

recruited on MTurk. The experimental procedure was identical to our main experiment. The

instructions for the follow-up experiment are identical to the Recommendation condition

except for one additional sentence (in italics): “Each round you will be given advice of whether

to take the cost or take the risk. If in a given round the advice is to take the cost, you will be

also given the loss probability P that pertains to that round. The advice has been determined

in a way that, on average, if you follow the advice you will earn the most money possible.

You are not required to follow the advice.” Thus, the information provided to our subjects is

identical to the Recommendation condition, when P is lower than 75% and identical to the

Both condition, when P is greater than or equal to 75%.

To analyze the success of the hybrid forecast scheme we will estimate two panel logistic

regression models one with the pooled data from the Recommendation condition and the

follow-up experiment and one with the pooled data from the Both condition and the follow-up

experiment. Both models use random effects to control for the panel structure of the data.

The estimates of the models are summarized in Table 4.6. The dependent variable is 1 when

the siren action (take the cost) is taken and 0 otherwise. The explanatory variables Opt and
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Table 4.6 Comparison of the Hybrid Forecast With Recommendation and Both

Explanatory variable (1) (2)

Opt 3.552∗∗∗ 4.655∗∗∗

(0.114) (0.168)

Opt ×Hybrid 1.534∗∗∗ −0.905∗∗

(0.452) (0.392)

(1 −Opt) ×Hybrid −0.528 −1.777∗∗∗

(0.448) (0.364)

Constant −2.676∗∗∗ −1.369∗∗∗

(0.320) (0.259)

Log-likelihood -2872 -3157
Observations 9700 9400

Notes. Random-effects logistic regression. Standard errors in parentheses.
∗ p-value < 0.10, ∗∗ p-value < 0.05, ∗∗∗ p-value < 0.01, two-tailed.

(1 −Opt) are defined as above. We add an indicator variable Hybrid that is 1 for the data

from the follow-up survey and 0 otherwise.

In Model (1) we can see that the hybrid forecast is at least as good as providing recom-

mendations in inducing compliance with the status quo action, when it is optimal. However,

compared to recommendations the hybrid forecast is significantly better in inducing the

siren action, when it is optimal. In Model (2) we can see that, compared to providing both

recommendations and probabilities the hybrid forecast is significantly better in inducing

compliance with the status quo action, when it is optimal. However, the hybrid forecast could

not unlock the full potential of providing both, when it is optimal to take the siren action.

Overall forecast compliance significantly improves (Wilcoxon rank-sum test, p < 0.01).

Figure 4.8 displays the proportion of decisions to take the risk separated by the range

of numeracy scores. From the figure, we observe that the hybrid forecast guidance moves

high numerate subjects largely in the right direction but is less effective with low numerate

subjects. This indicates that improving trust in forecasting for low numerates will require a

new approach.

118



Chapter 4 Trusting the Forecast: The Role of Numeracy

Figure 4.8 Proportion of Subjects Who Take the Risk in the Hybrid Condition Separated by the Range
of Numeracy Scores
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4.4 Discussion and Managerial Implications

We analyzed how forecast guidance interacts with the quality of decisions made by forecast

users. We found that numeracy influences trust in the forecast as measured by compliance

levels, although this happens in different ways than initially anticipated. While low numerate

subjects exhibit substantially less compliance with recommendation forecasts than do high

numerates, there is only a modest positive relationship between numeracy and trust with

probability forecasts. Both high and low numerate subjects comply nearly 100% of the time

when the probability is either extremely high or extremely low. But for moderate levels of

P there is substantial deviations from compliance for both high and low numerate subjects.

The failure in compliance with probability forecasts can be attributed to effectively ignoring

the financial implications and paying too much attention to probabilities. Most subjects,

independent of numeracy, seem to follow a 50% rule of thumb, leading them to take the

cost when the loss probability exceeds 50%. We also observed that probability forecasts

overshadow recommendations, leading to substantial deviation from compliance for moderate

levels of P in the Both condition.

The results of our study must be considered within its limitations. First, the subjects were

recruited on MTurk and may not be representative for the population. However, the socio-
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demographic characteristics of our sample approximately resemble those of the population

reported in the 2010 United States census. Second, the experiment used a context-free

cost-loss game that differs from reality in several important ways. While the design of study

allows us to control for context-dependent biases and therefore increases internal validity, it

clearly diminishes external validity. Analyzing how our findings translate to specific contexts

and the real world we leave to future research.

The limitations notwithstanding, our study provides a clearer understanding of how forecast

guidance interacts with the quality of decisions made by forecast users. We also shed light on

the role of numeracy in this interaction. Our findings on behavior may lead to new ideas on

how to design forecast guidance and stimulate future research. One promising approach to

improve forecast compliance could be the use of graphical displays of numerical information.

Graphs summarize and present numerical information in an alternative, but not less precise

way. Especially, so-called pictographs seem to be a promising tool for communicating risk to

persons with higher and lower numeracy (Galesic et al. 2009, Hess et al. 2011). Pictographs

represented by icons showing the frequency of a loss event can be used to illustrate magnitude

and convey the notion of randomness (Nelson et al. 2008). Analyzing the effectiveness of such

pictographs or other visual displays in a cost-loss game offers interesting opportunities that

we leave to future research.
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4.A On-Screen Instructions

These were the on-screen instructions that were shown to the subjects upon accessing the

experiment.2 In this condition, the subjects received both probability and recommendation.

When subjects were only given probability, the paragraphs detailing the recommendation were

removed (paragraph with dotted border). When the subjects were only given recommendation,

the details of the probability were removed (paragraph with solid border). When the subjects

were given neither probability nor recommendation, they were only provided with the loss

probability across all rounds. The payment information were identical across all conditions.

Payment Information

We want you to give us your best and honest answers to the questions that follow. We value

your participation, and offer an incentive on top of the amount you will be paid for this

HIT (if you answer the comprehension questions correctly). We will pay it out as a bonus in

Mechanical Turk.

During this survey you will play 100 rounds of a game from which you can earn money.

Your profits in this game are expressed in tokens. At the end of the survey the sum of your

profits will be converted into U.S. dollars at a rate of $1 per 3,000 tokens; the more tokens

you earn, the more money you will make.

After they game you will answer some questions from which you can earn additional money.

2Our instructions are similar to the instructions in Bolton and Katok (2017).
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We are academics at a business school, and we always pay as promised. We believe that

compensating you is important and also fair, and we hope that you will participate in our

future studies.

Instructions

At the beginning of each round of the game, you are given a credit of 150 tokens. You must

then decide whether to take the risk or take the cost. If your decision is to take the risk,

there is some probability P of incurring a loss of 100 tokens. If your decision is to take the

cost, you incur a cost of 75 tokens for certain.

Take the risk Take the cost

-100 tokens 0 tokens

-75 tokensP 100% – P 

Your profit depends on your decision and on whether the loss occurs.

If you take the risk, then either:

Your profit = 150 − 100 = 50 tokens if the loss occurs

or

Your profit = 150 tokens if the loss does not occur.

If you take the cost, then

Your profit = 150 − 75 = 75 tokens regardless of whether the loss occurs or not.

You will play 100 rounds of the game. The probability of loss (P) varies from round-to-round.

To determine whether the loss actually occurs in a round, the computer will generate a

random number between 0% and 100%, with each number in this range equally likely. If the

random number is below or equal to the loss probability for that round, the loss occurs; if it

is above the loss probability, the loss does not occur.
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For example, suppose the loss probability P for the round is 60%. If the random number

comes out to be 65%, the loss does not occur. If the random number comes out to be 40%,

the loss occurs.

Information to help you decide

While the loss probability P varies from round-to-round, the average loss probability across

all rounds is 50%.

Each round you will be given the loss probability P that pertains to that round.

Each round you will be given advice of whether to take the cost or take the risk. The

advice has been determined in a way that, on average, if you follow the advice you will

earn the most money possible. You are not required to follow the advice.

Note that the advice does not guarantee that you will make the most money possible in

any given round. It is possible that when the advice is take the risk, the loss does occur.

It is also possible that the advice is to take the cost, and the loss does not occur.
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4.B Comprehension Questions

In this section, we provide the questions and answers from the quiz that our subjects had

to pass before they could continue with the main part of the experiment. Out of the 337

subjects who started the quiz, 110 subjects (32.6%) could not answer all questions correctly

on the first attempt and were therefore screened out. Out of the 110 subjects who failed the

quiz, four subjects had only one correct answer, eleven subjects had two correct answers, 22

subjects had three correct answers, and 73 subjects had four correct answers. We do not find

any significant differences in the failure rates across treatments (χ2(3) = 1.2872, p = 0.732).

To make sure that the instructions are clear, please answer the following comprehension
questions.

(1) The loss probability P varies from round-to-round.

⊙ True

# False

(2) What is the average loss probability across all rounds?

# 40%

⊙ 50%

# 60%

# 65%

(3) If you take the risk, then your profit...

⊙ . . . depends of whether the loss occurs.

# . . . is independent of whether the loss occurs.

(4) If you take the cost, then your profit...

# . . . depends of whether the loss occurs.

⊙ . . . is independent of whether the loss occurs.

(5) How many rounds will you play?

# 25

# 50

# 75

⊙ 100
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4.C Screen Shots

Decision Screen

Result Screen
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4.D The Bomb Risk Elicitation Task

In this section, we provide the instructions and results of the BRET (Crosetto and Filippin

2013), that subjects completed after the main part of the experiment.

Instructions

Below you see a field composed of 100 numbered boxes. Exactly one of these 100 boxes

contains a bomb. You do not know the bomb’s location. You only know that it is equally

likely to be in any of the 100 boxes.

Your task is to choose how many boxes to collect. Boxes will be collected in numerical order.

So you will be asked to choose a number between 1 and 100.

 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

After you have confirmed your decision the computer will randomly determine the number of

the box containing the bomb.

∎ If you happen to have collected the box where the bomb is located – i.e. if your chosen

number is greater than or equal to the drawn number – you will earn zero.

∎ If the bomb is located in a box that you did not collect – i.e. if your chosen number is

smaller than the drawn number – you will earn 10 cents for each collected box.

On the next screen you will be asked to indicate how many boxes you would like to collect.

You confirm your choice by clicking ‘Continue’.
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To make sure that the instructions are clear, please answer the following short quiz.

Suppose that the bomb is located in box 25. How much will you earn, if you collect . . .

(a) . . . 21 boxes _____

(b) . . . 38 boxes _____

(c) . . . 62 boxes _____

(d) . . . 79 boxes _____

Suppose that the bomb is located in box 75. How much will you earn, if you collect . . .

(a) . . . 21 boxes _____

(b) . . . 38 boxes _____

(c) . . . 62 boxes _____

(d) . . . 79 boxes _____

The location of the bomb depends on how many boxes you decide to collect.

# Yes

# No

Results

Figure 4.9 shows the distribution of the number of collected boxes in the BRET. The mean

number of boxes collected is 35.0 (SD = 16.1).

Figure 4.9 Distribution of Risk Appetite
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4.E Post-Experimental Questionnaire

(1) What is your age?

(2) What is your gender?
# Male
# Female

(3) What is your primary language
(i.e., the one you speak most of the time)?

(4) What is the highest level of education you
have completed?
# Less than high school degree
# High school graduate (high school

diploma or equivalent including GED)
# Vocational/technical school
# Some college but no degree
# Bachelor’s degree
# Master’s degree
# Doctoral degree (PhD)
# Advanced professional degree (JD,MD, etc.)

(5) Which category best describes your major?3

# Arts and Humanities
(Arts, Language, Literature, History, Philosophy, etc.)

# Business
(Accounting, Finance, Marketing, etc.)

# Engineering and Computer Science
(Civil, Electrical, Mechanical, etc.)

# Health and Medicine
(Medicine, Nursing, Public Health, etc.)

# Natural Sciences and Mathematics
(Biology, Chemistry, Maths, Physics, etc.)

# Social Sciences
(Communication, Economics, Politics, Psychology, Sociology, etc.)

# Other (please specify):

(6) How would you best describe your current
employment status?

# Working (paid employee)

# Working (self-employed)

# Not working (temporary layoff from a job)

# Not working (looking for work)

# Not working (retired)

# Not working (disabled)

# Not working (other):

(7) Please indicate the category that best de-
scribes your own annual income from all
sources before taxes.

# $10,000 and under

# $10,001 to $20,000

# $20,001 to $30,000

# $30,001 to $40,000

# $40,001 to $50,000

# $50,001 to $60,000

# $60,001 to $70,000

# $70,001 to $80,000

# $80,001 to $90,000

# $90,001 to $100,000

# $100,001 to $150,000

# over $150,000

3Question 5 was displayed only if the answer to Question 4 was Bachelor’s degree or higher.
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4.F Correlations Between Variables

We collected data on subjects’ numeracy skills and risk preferences; and asked for additional

demographic information, including highest level of education completed and own annual

income from all sources before taxes. Responses to these questions were categorical. For

Education, 0 equals “less than high school degree,” 1 equals “high school graduate (high school

diploma or equivalent including GED),” 2 equals “vocational/technical school,” 3 equals

“some college but no degree,” 4 equals “bachelor’s degree,” 5 equals “master’s degree,” 6 equals

“doctoral degree (PhD),” and 7 equals “advanced professional degree (JD,MD, etc.).” For

Income, 0 equals “$10,000 and under,” 1 equals “$10,001 to $20,000,” 2 equals “$20,001 to

$30,000,” . . . 9 equals “$90,001 to $100,000,” 10 equals “$100,001 to $150,000,” and 11 equals

“over $150,000.”

Correlations between variables are provided in Table 4.7. Numeracy scores were higher

for men as well as for more educated people in our sample. Incomes were higher for more

educated people.

Table 4.7 Correlations Between Variables

Variable 1 2 3 4 5 6 Mean (SD)

1. Numeracy — 3.74 (1.84)
2. Risk appetitea

−.02 — 34.95 (16.07)
3. Age .01 −.08 — 34.98 (10.90)
4. Education .31 −.02 .12 — 3.44 (1.24)
5. Genderb −.22 .03 .06 .02 — 0.55 (0.50)
6. Income .07 .04 .09 .24 −.13 — 3.09 (2.53)

Notes. Coefficients printed in bold are significant (p < 0.01), all others are not significant at any level.
anumber of boxes collected in Crosetto and Filippin’s (2013) risk elicitation task.
b0=male, 1= female.
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4.G Data Processing for Word Clouds

The first step of our data processing was to remove punctuation, extra white spaces, and

special characters; and convert the text to lower case. After this initial data cleaning, we

substituted words and phrases to correct for spelling mistakes and to group words with similar

meaning. The substitutions are shown in Table 4.8.

Table 4.8 Substitutions

Substitute Substituendum Substitute Substituendum Substitute Substituendum

30 30s gain gained, gaining realize realized
40 40s gamble gambled reason reasoned, reasoning
60 60ish general generally regret regretted
85 high85 generate generated, generating reliable proved, turned
90 90s guess guessing, predict report reports
a lot alot happen happened, happening result results
action actions help helped risk riash, risks
actual actually hope hopes, hoping risk would riskwould
advice advices, advised, adviser,

advisor, reccomendations,
recomendation,
recommendation,
recommendations,
recommended, suggested,
suggestion, suggestions

intuition gut, gut feeling, instinct,
intuitive

round rounds

agree agreed keep keeping run ran
alternate alternated know knew, knowing safe safer, save
always every round, every time,

everytime
lead led scare scared

always with every timewith learn learned search searching
answer answers listen listened seem seemed, seems
attempt attempts load loads select selected
average averages look looked show showed, shown
balance balanced lose loosing, loses, losing, lost significant significantly
based bases loss losses situation situations
become becoming loss and lossand sometimes occasionally, rarely
begin began luck lucky start started
benefit beneficial, benefiting make made, making statistical statistically
cancel cancelled maximize maximizing stay stayed
chance chances, shot mean means stick stuck
change changed, changing mostly mainly, most of the time,

normally, ordinarily,
typically, usually

straight
forward
though

straightforward-
though

choice choices non loss nonlosses streak streaks
choose choosing, chose notice noticed, noticing successive successively
click clicked number numbers suspicious suspiciously
collect collecting occasion occasions switch switched

Finally, we removed common stop words like “a”, “and”, “the”, etc.. The list of stop

words is shown in Table 4.9. Table 4.10 shows the most common words that subjects used
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Table 4.9 Stopwords

a between gave know on than unless whereupon
able bro get known only that until wherever
about but getting last or thats up whether
across by give latter other the upon which
after came given least out their us while
again certain go less over them v whither
against come going let own then very who
all could got like per there via whoever
almost did had look probably thereafter vs whole
along didnt have me provided therefor want whom
also do he mean provides theres wanted whose
although does help might rather they wants why
am doesnt here more regardless think was will
an doing how most right third wasnt with
and done i much said this way within
another dont id must same those well without
any down if my saw though went would
anyways each ill myself second three were woulda
around either im near see through what wouldnt
as even in never seem throughout whatever wouldve
at except instead next should to when x
be far into no so too whence yet
because few is non some took whenever you
been first isnt not somehow toward where your
being for it now still try whereafter yours
below forth its of sure twice whereas yourself
best four itself off take two whereby yourselves
better from just often taken under wherein

to describe how they have decided when to take the risk and when to take the cost. The

table also shows the proportion of subjects per treatment who used the corresponding word

to describe their strategy.

131



Chapter 4 Trusting the Forecast: The Role of Numeracy

Table 4.10 Common Words Used by Subjects to Describe Their Strategy

Word Neither Probability Recommendation Both

risk 74.0 80.0 42.6 54.5
percent 18.0 80.0 6.4 68.2
cost 42.0 43.3 29.8 40.9
50 20.0 48.3 10.6 38.6
probability 8.0 53.3 6.4 36.4
loss 30.0 28.3 14.9 34.1
advice 0.0 0.0 63.8 29.5
mostly 18.0 15.0 23.4 22.7
always 30.0 10.0 21.3 4.5
taking 28.0 6.7 19.1 9.1
time 28.0 6.7 21.3 6.8
decide 18.0 18.3 14.9 6.8
choose 18.0 10.0 8.5 15.9
feel 4.0 11.7 14.9 13.6
occur 18.0 10.0 4.3 9.1
follow 0.0 0.0 31.9 11.4
sometimes 10.0 6.7 4.3 13.6
chance 8.0 6.7 4.3 13.6
lose 12.0 6.7 6.4 4.5
intuition 4.0 8.3 6.4 11.4
random 16.0 5.0 6.4 0.0
anything 2.0 15.0 2.1 6.8
profit 18.0 1.7 4.3 2.3
75 14.0 5.0 2.1 4.5
average 14.0 1.7 10.6 0.0
above 0.0 11.7 0.0 13.6
round 10.0 3.3 8.5 4.5
win 18.0 0.0 2.1 2.3
token 10.0 1.7 8.5 2.3
lower 0.0 11.7 0.0 6.8
60 0.0 11.7 0.0 6.8
based 4.0 1.7 4.3 11.4
guaranteed 16.0 0.0 2.1 0.0
happen 12.0 0.0 0.0 0.0
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Conclusion

In this dissertation, we applied behavioral economic engineering approaches to improve

decision making. In the three main chapters of the dissertation, we analyzed how different

performance metrics, supply contracts, and forms of forecast guidance affect human decision

making and how we can improve performance. This chapter summarizes the key results of

the three main chapters and provides directions for future research.

In Chapter 2, we analyzed how performance metrics used in inventory management affect

human decision making. We considered two equivalent inventory metrics, days of supply and

inventory turn rate. While the relationship between days of supply and inventory value is

linear, inventory turn rate and inventory value have a reciprocal (non-linear) relationship.

Human decision makers use differences in these metrics to estimate inventory reduction. As a

result inventory reductions that are evaluated based on inventory turn rate are over-valued.

This misperception can be avoided by using days of supply instead of inventory turn rate.

In our first study, we showed that using the days of supply metric improves performance in

investment decisions compared to using the inventory turn rate metric and that this effect

persists with experience. In our second study, we showed that this misperception can cause

subjects to work harder at reducing inventory. In a real effort task, subjects invested 28% more

effort under the inventory turn rate metric than under the days of supply metric. In our third

study, individuals chose higher order cost under the inventory turn rate metric than under

the days of supply metric. We also found that subjects with high cognitive reflection more

frequently decide optimally than those with low cognitive reflection. Thus, if the behavioral

133



Chapter 5 Conclusion

superior metric cannot be used, decision making can still be improved by activating System

2 thinking of the decision makers. This can be supported, for instance, by reducing the

emotional and cognitive load, by avoiding time pressure, and by avoiding multi-tasking during

decision making. Overall, however, our findings suggest that debiasing the decision maker

(activating System 2 thinking) is less beneficial than debiasing the environment (choosing the

right metric).

In Chapter 3, we analyzed human decision making under service level and under wholesale

price contracts. We showed that service level contracts can be parameterized, such that

they have steep expected profit functions, relative to other commonly studied contracts such

as the wholesale price contract. We argued that this property increases the salience of the

actual costs and induces a debiasing effect. As a result, under the steep service level contract,

the average order quantity was 66% closer to optimality and standard deviation of order

quantities was 42% lower than under a mathematically comparable wholesale contract. In our

experiment, the efficiency that human subjects achieved under a service level contract was

almost 10% higher than the achieved efficiency under a wholesale price contract. Efficiency

under the wholesale price contract was even lower than that of the mean demand heuristic

(ordering the expected demand in every period), albeit not significantly. Thus, ignoring

underage and overage costs and ordering mean demand in each period would result in a

similar efficiency to what subjects achieved in the lab under a wholesale price contract. These

results highlight that it is important to consider aspects of human behavior when designing

supply contracts.

In Chapter 4, we analyzed compliance rates (trust) for forecast guidance provided as

probabilities as well as recommendations in a simple take-the-risk or take-the-cost decision

game. We found that high numerate subjects are more likely to comply with the forecast

than low numerate subjects. Nevertheless the observed behavior in our study was contrary to

our initial expectations in important ways. First, low numerate subjects exhibit substantially

less compliance with recommendation forecasts than do high numerates. Second, there is

only a modest positive relationship between subjects’ numeracy skills and trust in probability

forecasts. Both high and low numerate subjects complied nearly 100% of the time when the
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probability was either extremely high or extremely low. But for moderate levels of the loss

probability (between about 25% and 75%) there was substantial deviation from compliance

for both high and low numerate subjects. We found that, when given probability information,

subjects followed a 50% rule of thumb (taking the cost when the loss probability was above

50%), leading to systematic biases. Subjects seem to ignore financial implications (compare

Chapter 3) and pay too much attention to probabilities, which can be seen as a proxy attribute

(Chapter 2). Our results show that both probabilities and recommendations have their own

behavioral strengths and weaknesses. We designed a hybrid forecasting system that blends

probabilities and recommendations in a way to offset the major behavioral shortcomings. We

observed that the new design moves high numerates largely in the right direction but is less

effective with low numerates.

The field of behavioral operations explores how individuals make decisions in operations

contexts and how those decisions compare to normative predictions of analytical models.

We have shown that human decision makers often do not give financial implications full

consideration or even ignore them, especially in situation in which the economic consequences

of deviating from normative predictions are less severe. We have also shown how behavioral

economic engineering can help to improve decision making, given a better understanding

of behavioral regularities. Investigating how existing behavioral theory translates to the

operations domain and identifying behavioral regularities is important part of future research

in behavioral operations. However, research in behavioral operations should go one step

further and also aim to design mechanisms that take behavioral aspects into account in order

to improve human decision making in operations contexts. Controlled laboratory experiments

are a great starting point to design and test mechanisms. The next step would be to test the

proposed designs in the real world, because successful mechanisms in the lab can fail in the

field. Therefore, conducting field experiments to further test the robustness of mechanisms is

an important step for future research in the field of behavioral operations.
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