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Introduction and Summary

This dissertation consists of five self-contained research papers that cover

theoretical work, simulation-based research, and experimental studies. My

research interests are mainly focused on two interrelated areas within eco-

nomics. One area is concerned with the economic consequences as well as

the foundations of boundedly rational behavior. The other area is more spe-

cific and concerns the design of institutions and how they can be used to

shape behavior and align incentives. The first chapter belongs to both areas,

Chapters 2 and 3 cover topics from the former area, whereas the last two

chapters contribute to the latter area. Chapter 1 concerns the role of trader

matching with regard to the selection of market institutions by boundedly

rational traders. Chapter 2 presents results on the stability of the Cournot-

Nash and the Walrasian equilibrium under imitative behavior. Chapter 3

presents a model linking response times and iterative thinking and provides

experimental evidence regarding the underlying processes of iterative think-

ing. Chapter 4 investigates the effects of a leniency mechanism on collusive

bribery and tax evasion. Chapter 5 asks how the timing of punishment and

the timing of the resolution of uncertainty affect deterrence of illicit behav-

ior. In the remainder of this section I present a brief introduction for each

chapter and summarize the main findings.

Chapter 1 is the result of joint work with Carlos Alós-Ferrer (University

of Cologne) and has been published under the title “Trader Matching and

the Selection of Market Institutions” in the Journal of Mathematical Eco-

nomics. We analyze a stochastic dynamic learning model with boundedly

rational traders who can choose among trading institutions with different

matching characteristics. The framework allows for institutions featuring

multiple prices (per good), thus violating the “law of one price.” We find

that centralized institutions are stochastically stable for a broad class of dy-

namics and behavioral rules, independently of which other institutions are

available. However, some decentralized institutions featuring multiple prices
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can also survive in the long run, depending on specific characteristics of the

underlying learning dynamics such as fast transitions or optimistic behav-

ior. Work on this paper was shared among the authors as follows: Carlos

Alós-Ferrer 50%, Johannes Buckenmaier 50%.

Chapter 2 is the result of joint work with Carlos Alós-Ferrer (University

of Cologne) and has been published under the title “Cournot vs. Walras:

A Reappraisal through Simulations” in the Journal of Economic Dynam-

ics and Control. Best-reply behavior in Cournot oligopolies generally leads

to Cournot-Nash equilibrium, but imitative behavior selects the Walrasian

equilibrium as the unique stochastically stable state. Previous work (Alós-

Ferrer, 2004) showed that in the presence of memory, imitative behavior

leads to a non-trivial dynamics selecting all quantities between the Cournot

and Walrasian outcomes. However, the scope of previous results was limited

to specific assumptions on demand and cost functions, and did not provide

information on the shape of the distribution of outcomes. We use computa-

tional simulations to address these limitations. We show that the selection

result for non-trivial memory holds beyond the set of well-behaved Cournot

games previously analyzed. Further, we find that, in Cournot games, the

limit distribution of long-run outcomes is highly skewed towards the Wal-

rasian quantity. Although longer memory increases the importance of the

Cournot equilibrium, the competitive outcome remains the dominant predic-

tion. Work on this paper was shared among the authors as follows: Carlos

Alós-Ferrer 50%, Johannes Buckenmaier 50%.

Chapter 3, entitled “Cognitive Sophistication and Deliberation Times,”

is the result of joint work with Carlos Alós-Ferrer (University of Cologne).

Cognitive capacities differ among individuals. Models of iterative thinking

put forward heterogeneity in the depth of reasoning as a source of individ-

ual differences in behavior. So far there has been little direct evidence that

sophistication (depth of reasoning) corresponds to cognitive effort. Choice

data alone cannot provide such evidence, hence additional evidence is neces-

sary. We argue that deliberation times can provide such evidence. We pro-

vide a simple model linking cognitive sophistication and deliberation times,

taking into account stylized facts from the psychophysiological literature on

2



response times. The key assumption is that deliberation time is a decreas-

ing function of the hypothetical gain from conducting an additional step of

reasoning. We then test the predictions in an experiment. We find longer

deliberation times for choices commonly associated with more steps of rea-

soning in games where iterative thinking is salient, confirming the prediction

of our model that deliberation time is increasing in cognitive sophistication.

However, this relation breaks down when iterative thinking is not natural or

when there is a conflict between alternative decision rules. Further, we find

that larger incentives decrease the time required to perform a single step of

reasoning, which, in line with our predictions, is consistent with a closeness-

to-indifference effect. If the underlying processes are clearly identified, we

observe a strong link between deliberation times and steps of reasoning sup-

porting level-k thinking. Additionally, however, deliberation times also allow

us to detect when other elements enter the picture, and hence are also helpful

for further theory development. Work on this paper was shared among the

authors as follows: Carlos Alós-Ferrer 50%, Johannes Buckenmaier 50%.

Chapter 4, entitled “Institutional History, Leniency and Collusive Tax

Evasion,” is the result of joint work with Eugen Dimant (University of Penn-

sylvania) and Luigi Mittone (University of Trento). We investigate the effects

of an institutional mechanism, that incentivizes tax payers to blow the whistle

through a leniency program, on collusive corruption and tax compliance. In

our experiment, we nest collusive corruption within a tax evasion framework.

We not only study how the presence of such a mechanism affects behavior,

but also investigate the role of institutional changes, that is, the dynamic ef-

fect caused by the introduction and the removal of leniency. We find that in

the presence of a leniency mechanism subjects collude less, accept less bribes

and pay more taxes, while we find no evidence that it encourages bribe of-

fers. Further, our results show that the introduction of the opportunity to

blow the whistle decreases collusion, decreases the bribe acceptance rate, and

increases the tax yield collected, while not encouraging bribe offers. In con-

trast, the removal of the institutional mechanism does not cause effects in

the opposite direction, suggesting a positive spillover effect of leniency that

persists even after the mechanism has been removed. Work on this paper
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was shared among authors as follows: Johannes Buckenmaier 33%, Eugen

Dimant 33%, Luigi Mittone 33%.

Chapter 5, entitled “Timing, Uncertainty and Institutional Deterrence,”

is the result of joint work with Eugen Dimant (University of Pennsylvania),

Ann-Christin Posten (University of Cologne) and Ulrich Schmidt (Univer-

sity of Kiel). Reducing criminal acts in society is a crucial duty of gov-

ernments. Establishing punishment structures to attain this goal involves

high costs. Typically, both theorists and practitioners resort to the adjust-

ment of severity and/or certainty of punishment as effective deterrents of

criminal behavior. One more cost effective, but scientifically understudied

mechanism for effective deterrence is the swiftness or celerity of punishment.

We carry out a controlled economic experiment to study the effectiveness of

swiftness of punishment along the following two dimensions: the timing of

punishment and the timing of the resolution of uncertainty (regarding the

punishment). Our results indicate an inverted U-shaped relation between

the delay of punishment, the delay of uncertainty resolution regarding the

detection of deviant behavior, and any resulting deterrence. In fact, insti-

tutions that either reveal detection and impose punishment immediately or

maintain uncertainty about the state of detection and impose punishment

sufficiently late deter individuals at equal rates. Further, we find that the

same institutional settings that are capable of reducing recidivism are also

the ones deterring deviant behavior in the first place. Our results yield pol-

icy implications for designing effective institutions in mitigating misconduct

and reducing recidivism. Work on this paper was shared among the authors

as follows: Johannes Buckenmaier 25%, Eugen Dimant 25%, Ann-Christin

Posten 25%, Ulrich Schmidt 25%.

4



Chapter 1

Trader Matching and the Selection of Market Institutions

1.1 Introduction

Market institutions come in many flavors. In many markets, institutions

with different characteristics exist, even for the same good. Those can be

formal, as e.g. specific Business-to-Business (B2B) or Business-to-Consumer

platforms, middlemen agencies, or local markets for perishable products (fish

and produce), or informal, as e.g. exchange arrangements, black markets, or

the set of particular conventions surrounding real-estate and rental markets

in certain countries (group-tenant vs. individual visits). The characteristics

of such market institutions in turn influence market outcomes in terms of

efficiency, surplus distribution and convergence to market-clearing outcomes.

It is hence important to understand what promotes coordination on a specific

institution.

In this work, we build upon the evolutionary approach to the selection

of trading institutions, and in particular on Alós-Ferrer and Kirchsteiger

(2010, 2015) and Alós-Ferrer et al. (2010). The essence of the approach is

the study of long-run stability. Suppose a host of alternative institutions are

present in a market, whatever their origin might be. Are there any partic-

ular institutions whose survival is more likely in the long run? To answer

these questions, we analyze the selection and stability of market institutions

when boundedly rational traders employ certain “rules of thumb” to decide

at which competing institution to trade. The assumption of bounded ra-

tionality seems reasonable since, due to the complexity of the evaluation of

institutional characteristics, rational learning is rather implausible. Follow-

ing the evolutionary approach, we will concentrate on the long-run outcomes

of the discrete-time, stochastic dynamical system which results when traders

revise their institution choices over time on the basis of the behavioral rules.
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Chapter 1 Trader Matching and the Selection of Market Institutions

We use the notion of stochastic stability in a dynamic learning framework

with vanishing mistakes (Kandori et al., 1993; Young, 1993; Blume, 1993;

Ellison, 2000) to determine which institutions survive in the long run.

For practical purposes, a market institution can be defined as a set of trad-

ing rules and conventions which determine the matching and price formation

process, i.e. who trades with whom and at what price. As most of the existing

literature, Alós-Ferrer and Kirchsteiger (2010, 2015), and Alós-Ferrer et al.

(2010) focused on the price-formation part, analyzing market selection when

institutions generate possibly biased prices (implying rationing) but feature a

single price (per good) only. However, institutions also influence who trades

with whom. This paper takes the next natural step and concentrates on

the trader matching process. Specifically, we study whether traders learn to

coordinate on centralized, market-clearing institutions or whether other in-

stitutions can survive in the long run, in a framework where institutions are

solely characterized by a matching mechanism. Hence, we allow for violations

of the law of one price, that is, we study the stability of general institutions

including decentralized non-market clearing ones where a single good might

be traded at different prices within a single institution. In order to isolate

the effects of matching, however, we concentrate on the effects arising from

differences in the matching mechanisms and abstract away from any other

complications. In particular, and unlike in the works cited above, institutions

will be characterized by market clearing (within each institution), excluding

both rationing and price biases. Further, we exclude trader heterogeneity

and consider a model with homogeneous buyers and sellers.

We hence identify each institution with a certain matching pattern for

the traders who choose to use it. Examples include the “bazaar” where buy-

ers and sellers are randomly matched, auction houses where each good is

offered to a subgroup of buyers, and of course centralized markets. Our first

result is that centralized institutions are always stable in the long run. This

clear-cut result is conceptually in line with the stability of market-clearing

institutions in Alós-Ferrer and Kirchsteiger (2010, 2015). It is a rather strong

result, because it holds independently of the number and properties of other

available institutions, of the characteristics of trader demand and supply, of
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Chapter 1 Trader Matching and the Selection of Market Institutions

the behavioral rules within the general class we consider, and of the exact

specification of revision opportunities (and hence speed) in the dynamics.

Stochastic stability, however, only means long-run survival, and not nec-

essarily the identification of a unique prediction. It turns out that other

decentralized institutions can also survive in the long run. Unlike in the case

of a centralized institution, we also show that their survival depends on, e.g.,

the characteristics of the behavioral rules and the specification of the dynam-

ics. In keeping with our aim for generality, we ask ourselves whether general

conditions can be identified without specifying concrete examples of behav-

ioral rules, dynamics, and market characteristics. Our second main result

identifies a general necessary condition for stochastic stability, which we term

matching-efficiency. Informally speaking, a trading institution is matching-

efficient if it leaves no unmatched trader when all or almost all traders have

already coordinated on it. Although many institutions are matching-efficient,

many others, as e.g. a bazaar defined merely by random matching, are not,

and hence the condition does have cutting power.

Interestingly, under a strengthening of our assumptions on revision op-

portunities (requiring the dynamics to be fast enough), matching-efficiency

fully characterizes the set of stochastically stable institutions. However, we

also show that without this strengthening, matching-efficient institutions can

fail to be stochastically stable in general. Hence, the take-home message is

that, while full centralization ensures stochastic stability, other institutions

might also survive, and a full characterization thereof for specific markets

will require active market design, in the sense that institutions will need

to be tailored to the specifics of trader behavior and other relevant market

characteristics.

The article is structured as follows. Section 1.2 briefly reviews the re-

lated literature. Section 1.3 describes the elements of the model, i.e. the

characteristics of market institutions, the behavioral assumptions underlying

institution choice by (boundedly rational) traders, and the actual (discrete-

time, stochastic) learning dynamics. Section 1.4 contains the results, start-

ing with an analysis of the stochastic stability of centralized institutions and

proceeding to the conditions under which decentralized institutions might be
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Chapter 1 Trader Matching and the Selection of Market Institutions

stochastically stable. Proofs are relegated to Appendix 1.A.

1.2 Related Literature

This article belongs to a line of research started in Alós-Ferrer and Kirch-

steiger (2010), which studied the selection of alternative market institutions

in a multi-good, general equilibrium setting, and continued in Alós-Ferrer

and Kirchsteiger (2015), in a partial equilibrium buyers-sellers model. The

main result of those works is that, even if alternative (biased) market institu-

tions exist, market-clearing (unbiased) institutions are always stochastically

stable. However, other, alternative institutions might also be stochastically

stable and hence survive in the long run, giving rise to a multiplicity of insti-

tutions. Which other institutions survive depends on many factors, ranging

from the elasticity of individual demands and the heterogeneity of the traders

to the speed of the particular dynamics considered. Since this implies that

the design of institutions becomes meaningful, Alós-Ferrer et al. (2010) con-

sidered fully rational market designers who actively design alternative mar-

ket platforms, which are then chosen by boundedly rational traders.1 The

present contribution differs from Alós-Ferrer and Kirchsteiger (2010, 2015),

and Alós-Ferrer et al. (2010) in that we allow for violations of the law of one

price and study the effects of different trader matching within an institution,

but we exclude the possibility of price biases and rationing.

The analysis here and in Alós-Ferrer and Kirchsteiger (2010) is also re-

lated to the literature on the stability properties of perfectly competitive

behavior in learning models with boundedly rational agents. Those works

(Alós-Ferrer and Ania, 2005; Mandel and Gintis, 2014) provide a learning-

based foundation for perfectly competitive behavior when the market insti-

tution is fixed. In contrast, we do not consider the stability of outcomes

by themselves, but rather the stability of market institutions which chan-

nel those outcomes. Hence, one of our aims is to examine the stability of

1Hence that work built a bridge to the “asymmetric rationality program” where rational
firms are confronted with boundedly rational consumers (Ellison, 2006; Spiegler, 2006;
Gabaix and Laibson, 2006). See also Shi (2015).
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Chapter 1 Trader Matching and the Selection of Market Institutions

“Walrasian,” centralized institutions allowing for full market clearing.

Conceptually, the current paper bridges the strand of the literature de-

scribed above and the literature on evolutionary dynamics and surplus divi-

sion. The latter asks how cooperative game solutions can be implemented

via learning processes, either for bilateral trading (Nax and Pradelski, 2015;

Klaus and Newton, 2016) or for general cooperative games modeling surplus

sharing among more than two players (Agastya, 1999; Newton, 2012). Our

work is complementary to those in that we examine the evolution of institu-

tions as characterized by matching mechanisms, and, hence, the evolution of

the matching process itself. However, there are also similarities in the results.

The works just mentioned typically select outcomes within the core. Here

and in Alós-Ferrer and Kirchsteiger (2010, 2015), we obtain that states where

all traders coordinate on a single centralized institution are stable, a result

which can be related to the core as no coalition of traders could improve (in

the sense of increasing overall efficiency) by moving away.

1.3 The Model

There is a single homogeneous good to be traded by a finite population of

traders consisting of buyers and sellers. We consider a buyers-sellers model

with a fixed set B of n ≥ 2 homogeneous buyers and a fixed set S of m ≥ 2

homogeneous sellers, where traders’ roles are fixed and predetermined. We

view this setup as reasonably general while ensuring tractability.

Our model has three components, which will be discussed in three sepa-

rate subsections below. First, we need to specify the characteristics of market

institutions and how trade is conducted within an institution. Second, we will

detail the behavioral assumptions underlying institution choice by (bound-

edly rational) traders. Third, we will describe the actual (discrete-time,

stochastic) learning dynamics.

1.3.1 Matching and Institutions

Buyers and sellers can trade the good at different market institutions. We

assume that there is a set of N + 1 different institutions Z = {z0, . . . , zN},

9



Chapter 1 Trader Matching and the Selection of Market Institutions

and traders can choose at which institution they want to trade. For our

purposes, the important part of a market institution is how the matching

process is structured within it, and how the trading prices are determined;

in other words, who can trade with whom and at what price. That is, we

identify an institution with a trading rule that specifies the matching and

price formation process. When modeling the matching process we rely on

the following notion of a matching.

Definition 1. A matching for two (possibly empty) sets X and Y is

• a partition of X, {X0, X1, . . . , Xℓ}, and

• a partition of Y , {Y0, Y1, . . . , Yℓ},

such that Xi 6= ∅ 6= Yi for all i = 1, . . . , ℓ. A matching is non-trivial if ℓ ≥ 1,

or, equivalently, X0 ( X and Y0 ( Y .

The interpretation is as follows. Given a set of buyers X and a set of

sellers Y , all of them present at the same institution, a matching partitions

all traders into matching groups or sub-markets (Xi, Yi) for i = 1, . . . , ℓ, while

possibly leaving a subset of buyers X0 and a subset of sellers Y0 unmatched.

Unmatched traders do not trade at all. Buyers in Xi can potentially trade

with sellers in Yi, and vice versa, at a price to be determined by a specific

price formation process that depends solely on Xi and Yi. That is, within

each matching group there will be a unique trading price, but the prices

within a single institution can differ across matching groups.

The simplest market institutions could now be defined by assigning a

fixed matching to each potential pair of sets (buyers and sellers). Market

institutions, however, are rarely fully deterministic. Hence, an institution

will rather be defined by a distribution over potential matchings, together

with a specific price formation process that determines prices within matching

groups. We formally define an institution as follows.

Definition 2. Given a set of buyers B and a set of sellers S, an institution

z is characterized by a matching function Mz which, for any two subsets

Bz ⊆ B and Sz ⊆ S specifies a probability distribution Mz(Bz, Sz) over all

10
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matchings for Bz and Sz. An institution is non-trivial if suppMz(Bz, Sz)

contains at least one non-trivial matching whenever Bz 6= ∅ and Sz 6= ∅.

For given subsets Bz ⊆ B and Sz ⊆ S of traders and sellers at an in-

stitution z, a realization of the distribution Mz(Bz, Sz) is hence a matching

(Bz
i , S

z
i )

ℓz
i=0 in the support of Mz(Bz, Sz).

We endow buyers with a common demand function d and sellers with a

common supply function s. Demand and supply functions satisfy standard

properties as captured by the following assumptions.2

M1. The demand function d : R+ −→ R+ ∪ {∞} is continuous and strictly

decreasing in p, with d(p) > 0 for all p ≥ 0 and limp−→∞ d(p) = 0.

M2. The supply function s : R+ −→ R+ is continuous and (weakly) increas-

ing in p, with s(0) = 0 and s(p) > 0 for all p > 0.

For any realized matching (Bz
i , S

z
i )

ℓz
i=0 , prices pz1, . . . , p

z
lz

at z are deter-

mined by local market clearing, i.e.

|Bz
i | d(p

z
i ) = |Sz

i | s(p
z
i ) for i = 1, . . . , ℓz. (LMC)

Since all buyers are identical (and characterized by the demand function

d) and all sellers are identical (and characterized by the supply function s),

given the matching, condition (LMC) is enough to describe the results of

trading. Under M1 and M2 there always exists a unique, strictly positive

price pzi solving (LMC) for i = 1, . . . , ℓz, which yields demand and supply

strictly above zero. Further, the price pzi only depends on the buyer-seller

ratio rzi = |Bz
i |/|S

z
i | within the respective matching group (Bz

i , S
z
i ), and of

course on the shape of the supply and demand functions, which we assume

to be fixed. Given a ratio r, we denote the corresponding price by p(r). Note

also that p(r) is strictly increasing in r.

Assume buyers Bz ⊆ B and sellers Sz ⊆ S want to trade at institution z.

The matching function Mz determines all the matchings which occur with

positive probability for Bz and Sz, namely the support of Mz(Bz, Sz) (the

2
M1 and M2 correspond to M1’ and M2’ in Alós-Ferrer and Kirchsteiger (2015).
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exact probability is not important for our results). After matching groups

have been realized trade takes place in the matching groups at the price

specified by (LMC) at group level. Note that under (LMC) traders are not

rationed.3

We will assume that z0 ∈ Z is always a centralized market-clearing in-

stitution as follows, i.e., an institution of this type is always available. This

is an institution where all traders are matched in a single group (no trader

remains unmatched) and hence trade at the same price. The (single) price at

the centralized institution depends only on the number of buyers and sellers

that wish to trade there.

Example 1. A centralized institution, denoted z0, matches traders ac-

cording to a fixed matching with ℓ0 = 1, Bz0
0 = Sz0

0 = ∅, Bz0
1 = Bz0 and

Sz0
1 = Sz0 (whenever Bz0 6= ∅ 6= Sz0). Thus z0 always features a single price

p0 = p(r0) with r0 = |Bz0 |/|Sz0|.

Our definition of market institution, however, is rather general. It in-

cludes “classical,” centralized market-clearing institutions as above, but also

many others. The following is an example of a different institution that leaves

some traders unmatched but still features a unique trading price.

Example 2. A bazaar is any institution zB that matches buyers and sellers

in pairs and leaves the remaining traders unmatched.

If the number of buyers and sellers at a bazaar are not identical, then

this institution leaves some traders unmatched. In this symmetric setting, if

trade occurs it does so in many sub-markets (each consisting of one buyer and

one seller) but at the same single price given by p(1). There are, however,

also institutions that violate the law of one price, as the following, rather

stylized, example shows.

Example 3. A double one-to-many institution is an institution zD that

always selects a single buyer and a single seller (provided at least two traders

3For example, Alós-Ferrer and Kirchsteiger (2015) study institutions characterized by
a rationing parameter.
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of each type are present) and matches all remaining sellers to the singled-

out buyer and all remaining buyers to the singled-out seller. Hence the

institution selects both a random monopolist and a random monopsonist. If

there is only a single buyer (seller), it matches all sellers (buyers) to that

single buyer (seller). This institution features at most two matching groups

and hence at most two prices. Denote them by p
D
≤ pD. If there are at least

3 sellers and at least 3 buyers at zD, then we have p
D
< p(1) < pD and the

institution fails the law of one price.

The double one-to-many institution is, in a sense, as far away from a

centralized market-clearing institution as possible. Most of the time zD will

feature two prices, thus violating the law of one price. In sharp contrast to

centralization, the spread between the realized prices will often be large.

1.3.2 Behavioral Assumptions

Traders select an institution where they want to trade from the set of feasible

institutions Z = {z0, z1, . . . , zN}. The state of the learning dynamics is

completely determined by the choices of traders. Recall that there are n

buyers and m sellers, therefore the state space Ω is given by Zn+m. We denote

by ω(k) ∈ Z the institution chosen by trader k in state ω ∈ Ω. For a state

ω ∈ Ω, we write Bz(ω) = {i ∈ B | ω(i) = z} and Sz(ω) = {j ∈ S | ω(j) = z}

for the sets of buyers and sellers currently at z, respectively. The number

of buyers and sellers at z is given by nz(ω) = |Bz(ω)| and mz(ω) = |Sz(ω)|,

respectively. We will also denote nz(ω), mz(ω) by nz, mz if no confusion can

arise.

Given ω, the sets Bz(ω) and Sz(ω), z ∈ Z, determine the distribution of

traders among the available institutions. For each institution z, a potential

matching realization is an element γz = (Bz
i , S

z
i )

ℓz
i=0 ∈ suppMz(Bz, Sz). Let

Γ(ω) = {(γz)z∈Z | γz ∈ suppMz(Bz(ω), Sz(ω)) ∀z ∈ Z}

be the set of vectors of potential realizations with typical element γ ∈ Γ(ω).

We then call Ω = {(ω, γ) | γ ∈ Γ(ω)} the set of (potential) state-matching

pairs.
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For a given state-matching pair (ω, γ) we say that an institution z is

active if γz is non-trivial, and inactive otherwise. Denote by A(ω, γ) the

set of active institutions at (ω, γ). Further, for each institution z ∈ A(ω, γ),

let Tz(ω, γ) = {pz1, . . . , p
z
ℓz
} be the set of realized prices at z for (ω, γ).

We assume that traders observe the prices at all institutions. From the

point of view of an individual trader k, the relevant market outcome at (ω, γ)

is given by the pair (p(k), q(k)) containing the price at which he trades and

the quantity he can trade. In our setting, however, if a trader trades at

price p he can trade exactly the quantity he desires (that is, either d(p) or

s(p), depending on his role). Thus, traders are never rationed. Hence, it is

reasonable to base traders’ behavior on the observation of prices only, since

demand and supply given a price will always be fulfilled. Note that prices at a

given institution are directly linked to the ratio of buyers to sellers within the

institution’s sub-markets through the local market-clearing condition (LMC).

Specifically, traders’ behavior in our model is based on the following two

main (and minimalistic) assumptions. First, traders prefer trade over no

trade. Second, buyers prefer lower prices and sellers prefer higher prices. Of

course, these assumptions could be obtained from first principles by postu-

lating appropriate utility and profit functions compatible with the supply

and demand functions, or alternatively by deriving decisions from consumer

and producer surplus. We follow here Alós-Ferrer and Kirchsteiger (2010,

2015) and Alós-Ferrer et al. (2010) and base our behavioral model on these

properties only.

We assume that agents look at observed, actually realized outcomes to

(myopically) select an institution in the subsequent period. Traders’ be-

havior is captured by discrete-time, stochastic behavioral rules, which are

mappings specifying the probability of choosing each available institution

given the previous market outcome. We will keep the approach as general as

possible. In particular, the exact choice probabilities will not be important;

rather, the key property of a behavioral rule will be which institutions can

be selected with positive probability. Hence, it will be enough for our anal-

ysis to specify (families of) behavioral rules through the set Sk(ω, γ) ⊆ Z

of institutions which can be chosen with positive probability in the next pe-
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riod if the current state-matching pair is (ω, γ). That is, if (ω, γ) occurs at

time t, trader k will choose some institution in Sk(ω, γ) in t + 1, each one

with positive probability. A similar approach was adopted in Alós-Ferrer and

Weidenholzer (2014).

An example of a behavioral rule is the Imitate-the-Best-Max (IBM) rule

used in Alós-Ferrer and Kirchsteiger (2015). Essentially, for a trader k this

rule is specified by defining Sk(ω, γ) to be the set of active institutions that are

evaluated best according to some evaluation function reflecting the behavioral

fundamentals of the model (e.g., an indirect utility function). While rules of

this type will be an example allowed in our analysis, we adopt a more general

approach.

Our specification through the sets Sk(ω, γ) already focuses on families of

behavioral rules, since the exact choice probabilities might vary from rule

to rule without affecting our results. We allow for even larger classes of be-

havioral rules and use an “axiomatic” approach. In other words, rather than

focusing on a specific behavioral rule, we allow traders to use any behavioral

rule satisfying two general assumptions.

Our first behavioral assumption is that traders prefer trade over no trade,

hence traders never switch to inactive institutions if alternative active insti-

tutions are available. Recall that A(ω, γ) denotes the set of active institutions

for a state-matching pair (ω, γ).

ACT. Consider an arbitrary trader k and a state-matching pair (ω, γ). If

k is matched, or if k is unmatched but there is an active institution

z 6= ω(k), then Sk(ω, γ) ⊆ A(ω, γ).

Matched traders are those currently active, i.e. matched and hence al-

lowed to trade. In our setting, matched traders trade positive quantities,

hence a switch to an inactive institution will never be beneficial for the trader

(at least from his myopic perspective). Under ACT traders never switch to

institutions that are inactive at the current state-matching pair as long as

there is at least one alternative active institution available. For unmatched

traders, ACT only applies if there is actually some active institution other

than the one the trader is currently at. The reason is that, if a trader is
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unmatched but all other institutions are inactive, there is no clear (myopic)

advantage to staying in the only active institution for the trader, and requir-

ing to stay in the current institution would be unnecessarily restrictive.

For each trader k denote the price at which he trades by p(k) (if he does

trade); we abuse notation here by dropping the obvious dependence on (ω, γ).

In the absence of rationing, any sensible model based on first principles will

lead to the conclusion that buyers prefer low prices and sellers prefer high

prices. Following this logic an institution z is “attractive” for a trader k if all

the prices realized at z are weakly better for k than p(k), the price at which

he currently trades. In this case, a myopic trader will expect not to be worse

off at z.

Definition 3. Consider an arbitrary trader k and an institution z 6= ω(k)

with set of realized prices Tz at (ω, γ).

• For a matched trader k trading at price p(k), we say z is attractive

for k at (ω, γ) if Tz 6= ∅ and all p ∈ Tz are weakly better than p(k) for

k (that is, p(k) ≤ p ∀ p ∈ Tz if k is a seller, p(k) ≥ p ∀ p ∈ Tz if k is a

buyer).

• For an unmatched trader k, we say that z is attractive for trader k

at (ω, γ) if z is active.

Our second main behavioral assumption states that if an institution z

is attractive to some trader in the sense described above this trader will (at

least with some positive probability) leave his current institution, for instance

(but not necessarily) towards z.4

SELF. Consider an arbitrary trader k and a state-matching pair (ω, γ). If

there exists an institution other than ω(k) that is attractive for k, then

with positive probability k switches to some active institution z 6= ω(k),

that is, (Sk(ω, γ) \ {ω(k)}) ∩ A(ω, γ) 6= ∅. If k is unmatched and all

4Requiring the trader to move to z with positive probability whenever z is attractive
would be unnecessarily restrictive. For instance, it would exclude all rules of the Imitate-
the-Best-Max type, where the best institution according to some criterion is the only one
selected even if there are several attractive ones.
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institutions other than ω(k) are inactive, then Sk(ω, γ) = Z, i.e. k has

positive probability of switching to every institution.

On the one hand, SELF is quite conservative in evaluating other insti-

tutions because it just requires a trader to leave his current institution with

positive probability only if there exists another institution where all prices

are “better” for the trader. It is, however, less conservative regarding the eval-

uation of the current institution because only the price at which the trader

is actually trading is used for comparison purposes (in the sense of Defini-

tion 3). That is, the condition incorporates a form of self bias because the

trader’s actual decision might occasionally be triggered by the comparison of

his own price (outcome) with the outcomes at another institution, neglect-

ing outcomes of other traders at his own institution. Note, however, that

SELF is just a sufficient condition for switching institutions with positive

probability, but not a necessary one. That is, it only requires that traders

do not stay with probability one if an attractive institution exists, but not

that they always switch. The probability with which they leave can be very

small. That is, SELF still allows for rationalistic rules where traders take

all prices into account and perform complex computations to determine their

next move, but with some small probability bolt into action if they see that

their own price at the current institution is unsatisfactory.

For example, the following behavioral rule would fulfill both ACT and

SELF. Compute the average price at each active institution, taking all prices

into account, and move to the one with the best average (largest for sellers,

smallest for buyers). In case the current institution is the best according to

this criterion, but there exists an attractive institution (in the sense of Defi-

nition 3), switch there with a fixed (small) probability δ. If k is unmatched

and all institutions other than ω(k) are inactive, then randomize uniformly

among all institutions.

1.3.3 Learning Dynamics

We study a dynamic learning model where traders interact repeatedly in

discrete time t = 0, 1, 2, . . . . In each period traders observe all prices realized
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at all institutions in the previous period. Based on this information each

trader k chooses an institution to trade at according to a behavioral rule Sk

(possibly different across traders). Following traders’ institutional choices,

matchings and prices are determined at all institutions and demand and

supply are realized. At the end of each period the proceeds of trade are

consumed. Next period, demand and supply functions are reset, i.e. the

game is played recurrently.

Agents are potentially allowed to revise their decisions (choice of institu-

tion) in any period, but might uphold their decisions (inertia) in some. The

specification of how and when revision opportunities arise is an integral part

of evolutionary dynamics. Results that are fragile with respect to minor vari-

ations regarding the specifications of the revision process could be criticized

as lacking robustness (see, e.g., Alós-Ferrer and Netzer, 2015). We therefore

refrain from imposing a specific form of how revision opportunities arise, but

rather consider a general class of random revision processes that satisfy cer-

tain “minimal” assumptions, following Alós-Ferrer and Kirchsteiger (2015).

Denote by E(k, ω) the event that agent k receives revision opportunity in

state ω, and by E∗(k, ω) the event that agent k is the only agent of his type

with revision opportunity at ω. We allow for any specification of revision

opportunities that satisfy the following two assumptions. For every trader k

and state ω,

D1. Pr(E∗(k, ω)) > 0.

D2. either Pr(E∗(k, ω)
⋂

E∗(k′, ω)) > 0 for any trader k′ of the other type,

or Pr(E∗(k, ω)
⋂

E(k′, ω)) = 0 for all such k′.

The first condition ensures that in any state any trader has positive prob-

ability of being able to revise. Further, it requires that there is always a small

probability that only one trader is allowed to revise. The second condition

implies some form of independence of revision opportunities between buyers

and sellers. Specifically, the assumption implies that there is no correlation

in the presence of revision opportunities as there would be if, e.g., a pair

formed by one buyer and one seller would always receive them together.

18



Chapter 1 Trader Matching and the Selection of Market Institutions

One could also consider stronger conditions on the dynamics, at the ex-

pense of generality. In particular, consider the following additional assump-

tion on revision opportunities.

D3. Pr
(
⋂

k∈B E(k, ω)
)

> 0 and Pr
(
⋂

k∈S E(k, ω)
)

> 0.

Condition D3 requires that there is always some positive probability that

all buyers (respectively all sellers) revise simultaneously. Intuitively, this

makes the dynamics relatively quick, since a whole market side might switch

in a single period. Dynamics with independent inertia (meaning that in any

period every agent has a positive, independent probability of not being able

to adjust) satisfy D3, but dynamics with asynchronous learning (meaning

that each period a single agent is randomly chosen and only that agent is

allowed to revise) not. We will not assume D3, but we will return to this

condition later for a particular result.

1.4 Analysis

1.4.1 Absorbing States

We consider a family of learning processes satisfying the assumptions laid out

above, that is, a behavioral rule satisfying ACT and SELF together with a

revision process satisfying D1 and D2. Given two states ω, ω′ ∈ Ω, denote by

P 0(ω, ω′) the probability of transition from ω to ω′ in one period for a fixed

learning process, which we will refer to as the unperturbed dynamics.5

The transition matrix is given by P 0 = [P 0(ω, ω′)]ω,ω′∈Ω. An absorbing set of

the unperturbed dynamics is a minimal subset of states which, once entered,

is never abandoned. An absorbing state is an element which forms a singleton

absorbing set, i.e. P 0(ω, ω) = 1.

We first introduce some terminology. A state ω determines the sets of

buyers Bz and sellers Sz at each institution z ∈ Z. Thus (Mz(Sz, Bz))z∈Z

induces a probability distribution over vectors of realizations Γ(ω). In what

5Of course the actual transition probabilities depend on the specific behavioral rule,
but in what follows we drop this dependence to increase readability.
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follows we adopt the notation Pr(Bz
0 = ∅ | ω) to denote the probability

(conditional on the state ω) of the set of matchings of the form γ = (γz)z∈Z

with γz = (Bz
i , S

z
i )

ℓz
i=0 such that Bz

0 = ∅. Other expressions of this type are

defined analogously. Last, we say an institution z matches all traders at

ω if Pr(Bz
0 ∪ Sz

0 = ∅ | ω) = 1, i.e. there is no state-matching pair (ω, γ)

with unmatched traders at z (analogously, we will also speak of institutions

“matching all buyers” or “all sellers”).

A particular class of states will be of specific interest. Given an arbitrary

institution z, the monomorphic state ωz is the state where Bz = B and

Sz = S, i.e. all traders are at z. Monomorphic states are absorbing states,

provided the institution manages not to leave traders unmatched when all

traders choose that institution. The reason is simple. Since all traders are

at z, all other institutions are inactive. If all traders at z are matched, by

ACT they will stay at z.

Lemma 1. Let Z be an arbitrary set of institutions. Assume ACT. For

every institution z that matches all traders at ωz, the monomorphic state ωz

is an absorbing state.

This result already indicates that in general there will be a multiplicity of

absorbing states, at least one per each institution which avoids unmatched

traders in case of full coordination. Additionally, in general there might be

non-singleton absorbing sets. Absorbing sets and states, however, are just

an intermediate and not always necessary step of the analysis, as we are

interested in the long-run stability of outcomes. To study the latter, it is not

always necessary to characterize the former, especially if techniques along

the lines of Ellison (2000) are used.

1.4.2 Stochastic Stability

Our analysis of the learning dynamics follows a stochastic stability approach

using methods and concepts introduced by Kandori et al. (1993) and Young

(1993). Detailed overviews can be found, e.g., in Samuelson (1997), Fuden-

berg and Levine (1998), Young (1998), and Sandholm (2010). In our context,
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we aim to analyze the stability of situations where traders coordinate on par-

ticular trading institutions. To this purpose, the dynamics is enriched with

a perturbation in the form of experiments (or mistakes) in the following way.

With an independent, small probability ε > 0, each agent, in each period,

might discard the prescriptions of his behavioral rule and experiment (or

make a mistake, or “mutate”). In that case, the trader simply picks an insti-

tution at random, independently of other considerations, with all institutions

having positive probability.

The dynamics with experimentation is called the perturbed dynamics.

Its transition matrix is denoted by P ε. Since experiments make transitions

between any two states possible, the perturbed process has a single absorbing

set formed by the whole state space (i.e., the process is irreducible). There

is a unique probability distribution over states µε ∈ ∆(Ω) which, if taken as

initial condition, would be reproduced in probabilistic terms after updating

(more precisely, µεP
ε = µε). This µε is called the invariant distribution

of P ε. For the perturbed dynamics P ε the limit invariant distribution

µ∗ = limε→0 µε exists and is an invariant distribution of the unperturbed

dynamics P 0 (see e.g. Kandori et al., 1993; Young, 1993; Ellison, 2000).

The states in the support of µ∗, i.e. {ω ∈ Ω | µ∗(ω) > 0} are the stochas-

tically stable states or long-run equilibria. Standard results (see e.g.

Ellison, 2000, Theorem 1) then imply that the set of stochastically stable

states is a union of some absorbing sets of the original, unperturbed chain

(ε = 0). In other words, stochastic stability selects among the absorbing sets

of the unperturbed dynamics.6

To simplify terminology, we will say that a institution z is stochasti-

cally stable if ωz is stochastically stable. Note, however, that the set of

stochastically stable states might not be a singleton, for example if several

market institutions are stochastically stable.

6In the following, whenever we say absorbing sets or states, we refer to the unperturbed
dynamics. Since the perturbed dynamics is irreducible, no confusion should arise.
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1.4.3 The Stability of Centralized Institutions

The centralized, market-clearing institution z0 always matches all traders

and features a unique price (recall Example 1). Our first result is that this

institution is always stochastically stable, independently of how many and

which other institutions are also available.

The proof of this result proceeds in two steps. Let ω0 be the monomorphic

state with full coordination at z0. First, the following lemma, whose proof is

in Appendix 1.A, shows that from any state (monomorphic or not) where z0

is active, there is a dynamic pressure towards coordination on this institution.

This results in a positive probability path towards the monomorphic state

where all agents are at z0.

Lemma 2. Let Z be an arbitrary set of institutions with z0 ∈ Z. Under D1,

D2, ACT, and SELF, for any state-matching pair (ω, γ) where z0 is active,

there is a positive-probability path (of the unperturbed dynamics) leading to

ω0.

Intuitively, Lemma 2 makes use of the fact that z0 satisfies the law of one

price featuring always a single price p only. For a given alternative institution

z, p is then either larger than all prices at z, making z0 attractive for all

sellers, or smaller than all prices at z, making z0 attractive for all buyers, or

there exist prices at this institution that are both larger and smaller than p,

making z0 attractive for at least one buyer and one seller. This property can

then be used iteratively to construct a path towards full-coordination on z0

as stated in Lemma 2.

The last step relies on standard results from the stochastic stability liter-

ature (see Appendix 1.A). Essentially, the intuition is as follows. From any

state, a few traders experimenting with z0 suffice to make this institution

active. In view of Lemma 2, it is hence easy to construct a path towards

ω0. This strong property allows us to complete the analysis without needing,

for instance, a full characterization of the absorbing sets of the unperturbed

dynamics, because they can all be easily destabilized independently of their

particular characteristics (except for the singleton {ω0}). However, in order

to destabilize ω0 (which is absorbing by Lemma 1), it is necessary to have
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a large number of traders experimenting away, so that z0 becomes inactive;

else, by Lemma 2 again, the dynamics will lead back to ω0 with positive

probability and without further experiments.

Theorem 1. Let Z be an arbitrary set of institutions with z0 ∈ Z. Under

D1, D2, ACT, and SELF, the centralized institution z0 is stochastically

stable.

We conclude that centralized market clearing displays rather strong sta-

bility properties, in the sense that such institutions will survive in the long

run independently of what other trading coordination opportunities are avail-

able. Indeed, Theorem 1 holds independently of how many other institutions

are available and what their characteristics are. Further, the result holds

independently of trader characteristics, as captured by demand and supply

functions, and independently of the exact details of the behavioral rules and

the specification of the dynamics as long as our basic conditions hold.

Note that there might very well be several centralized institutions avail-

able, and by Theorem 1 any such institution is then stochastically stable.

In general, other institutions might also be stable, and their stability might

depend on trader characteristics and the specification of the dynamics. The

following subsections illustrate which and when other institutions are and

are not stochastically stable.

1.4.4 Matching-Efficient Institutions

In the next step we seek to establish that many institutions are always

stochastically unstable in our setting. In fact, a necessary condition for

stochastic stability of an institution is that at or near full coordination on

that institution, there should be no unmatched traders. This is captured by

the following concept (recall that the number of buyers and sellers at z is

given by nz(ω) = |Bz(ω)| and mz(ω) = |Sz(ω)|, respectively).

Definition 4. An institution z is matching-efficient if the following three

conditions hold.

• z matches all traders at ωz;
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• at every state ω with (nz(ω), mz(ω)) = (n,m−1), z matches all buyers

with probability one; and

• at every state ω with (nz(ω), mz(ω)) = (n− 1, m), z matches all sellers

with probability one.

Proposition 1. Let Z be an arbitrary set of institutions with z0 ∈ Z. As-

sume D1, D2, ACT, and SELF. If an institution z ∈ Z is stochastically

stable, then it must be matching-efficient.

To illustrate the intuition behind Proposition 1, consider an institution

z that does not match all traders at ωz, i.e. the first condition in Definition

4 fails. There is at least one unmatched trader k ∈ Sz ∪ Bz at ωz. As all

other institutions are inactive, by SELF there is positive probability that

k switches to any other institution, for instance to z0. We thus reach a

state where a trader is at z0. From this state, a single mutation (a trader

of the other type switching to z0) is enough for z0 to become active. By

Lemma 2, the process then drifts to ω0 with positive probability. However,

reaching ωz from ω0 requires destabilizing ω0, which as commented above is

not easy. It follows that ωz is easier to leave than to reach. Standard results

in stochastic stability (Ellison, 2000) are then enough to establish that ωz is

not stochastically stable.

Proposition 1 states that matching all traders at states where “almost

all” traders are at a given institution is a necessary condition for stochastic

stability. As a consequence, many institutions are unstable. The following

example shows that the bazaar is one of them.

Example 4. Consider the bazaar of Example 2, zB, and let ωB be the corre-

sponding monomorphic state. If n 6= m, there must be an unmatched trader

at ωB. If n = m, then there is no unmatched trader at ωB, but at any

state with (nz, mz) = (n,m− 1) a buyer is unmatched and at any state with

(nz, mz) = (n − 1, m) a seller is unmatched. Therefore, the bazaar is not

matching-efficient and can never be stochastically stable.

This is natural in our setting, because since we concentrate exclusively on

matchings and not, say, price biases, the bazaar is just the institution which
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matches traders in pairs, all of them obtaining the same price. This aspect

of the bazaar (matching groups as pairs) leads to instability. Actually, the

argument above can be generalized to show that no institution with fixed

group size can be stochastically stable.

Strikingly, under the additional assumption D3 on revision opportunities,

we obtain a full characterization of stochastically stable, non-trivial institu-

tions, because the necessary condition to be matching-efficient becomes also

sufficient.

Theorem 2. Let Z be an arbitrary set of institutions with z0 ∈ Z. Assume

D1–D3, ACT, and SELF. A non-trivial institution z ∈ Z is stochastically

stable if and only if it is matching-efficient.

Since matching-efficiency is a relatively weak condition, Theorem 2 reveals

that a large class of institutions is stochastically stable for quick dynamics.

This should not be overinterpreted, though. The results of Theorem 2 depend

heavily on the speed of the dynamics since a quick enough dynamics allows

the process to “jump over” unstable states. As we will show below, this result

fails for slower dynamics.

Further, as already commented above, matching-efficiency does exclude

a relatively large number of potential institutions. For instance, consider

one-sided institutions which try to implement price biases in favor of only

one side. The only way to implement such an outcome is to leave traders

unmatched, in particular in the case of full coordination.

1.4.5 Optimism, Pessimism, and Decentralized Institutions

To better understand the scope of the results, it is worth briefly exploring

the behavioral assumptions, and in particular SELF. Remember that this

assumption states that, if all the prices realized at an institution z are weakly

better for a trader k than the price p(k) at which that trader is currently

trading, there is some positive probability that k leaves his current institu-

tion to some active one, for instance to z. One natural possibility yielding

alternative assumptions is to capture more optimistic or pessimistic behavior.

Consider the following possibility.
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OPT. Consider an arbitrary trader k and a state-matching pair (ω, γ). If

k is matched and there is an institution z 6= ω(k) that features some

price that is weakly better than p(k) (larger for k ∈ S, smaller for

k ∈ B), then there is positive probability that k switches to some active

institution other than ω(k). If k is unmatched, then k has positive

probability of switching to every institution.

Under this (extreme) assumption, a trader can be interpreted as being

optimistic because he focuses on the better prices at z, ignoring the ones

worse than p(k). For instance, if he actually switches to z, one interpretation

is that after switching the trader believes that he will be able to achieve the

best observed outcome at the new institution even if, in the previous period,

it was only obtained by some traders there. Obviously, OPT implies SELF

and the results derived above hold. In particular, in the presence of D3, the

characterization of stochastically stable institutions identified in Proposition

2 remains unchanged.

For general dynamics (in the absence of D3), Theorem 1 shows that, given

ACT and SELF, a centralized institution is stochastically stable indepen-

dently of the details of the dynamics, of which other institutions are avail-

able and of what their specific characteristics are. If SELF is strengthened

to OPT, it can be shown that all other matching-efficient but decentralized

institutions are stochastically stable for all possible dynamics and alternative

institutions. That is, a characterization as that in Theorem 2 holds.

Proposition 2. Let Z be an arbitrary set of institutions with z0 ∈ Z. Under

D1, D2, ACT, and OPT a non-trivial institution z ∈ Z is stochastically

stable if and only if it is matching-efficient.

To gain some quick intuition, consider for example the double one-to-

many institution zD (recall Example 3). This institution usually features two

prices which are highly asymmetric (a monopolistic price and a monopsonistic

one). Hence, zD is rarely attractive for conservative traders as they require

both prices to be better than the one they trade at. However, for optimistic

traders this asymmetry makes zD always appealing for at least one market
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side. Thus OPT facilitates a transition towards the double one-to-many

institution rendering it a long-run equilibrium for general learning dynamics.

The result above is instructive for the general research agenda, since it

does not rely on restrictions on the dynamics but rather concentrates on

a subclass of behavioral rules. For instance, as long as behavioral rules

fulfilling OPT are considered reasonable, Proposition 2 shows that there is

no reasonable strengthening of the current assumptions which would render

centralized institutions uniquely stochastically stable.

Results as Proposition 2 are of course less robust than Theorem 1, as they

hinge on more restrictive assumptions. One can conceive other behavioral

rules or dynamics for which the alternative institutions fail to be stable in

the long run. Consider, for instance, a pessimistic behavioral rule as follows.

PES. Consider an arbitrary trader k and a state-matching pair (ω, γ). If

there exists an institution other than ω(k) that is attractive for k, then

k switches to an institution z 6= ω(k) with positive probability if and

only if z is attractive for k. If k is unmatched and all institutions other

than ω(k) are inactive, then k has positive probability of switching to

every institution.

Obviously, if a behavioral rule satisfies PES, it also fulfills SELF, but it

must violate OPT (note that PES also implies ACT). A trader fulfilling this

assumption can be interpreted as being overly cautious, since he will never

switch to an institution where some realized price is worse than the one he is

currently trading at. Since the double one-to-many institution is matching-

efficient it follows from Theorem 2 that it is also stochastically stable under

PES, provided the dynamics fulfills D3. However, under slower dynamics,

this result is not true any more.

Proposition 3. Let Z = {z0, zD} and n,m > 3. Assume PES. Under asyn-

chronous learning, the double one-to-many institution zD is not stochastically

stable.

In general, the intuition is that for slow dynamics and pessimistic (or

cautious) behavioral rules, the attractiveness of the double one-to-many in-

stitution vanishes and this institution fails to be stochastically stable. Again,
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this result is instructive. While for fast dynamics (fulfilling D3) a full, simple

characterization of the class of stochastically stable institutions is feasible (as

given by Theorem 2), the results above prove that for general dynamics such

a simple characterization is impossible. Institutions as the double one-to-

many example are stochastically stable for all dynamics and certain types of

behavioral rules fulfilling SELF, but stop being stochastically stable for the

same dynamics and other types of behavioral rules which, however, do fulfill

SELF. Hence, there simply exists no characterization in the absence of as-

sumptions on the speed of the dynamics beyond D1–D2 and in the absence

of stronger assumptions on the behavioral rules.

1.5 Conclusion

This contribution is a parsimonious step in the study of the selection of

market institutions by boundedly rational traders. Our results have been

obtained in a setting which is as general as possible in some dimensions

(dynamics, trader behavior) but remains necessarily stylized in others. Ac-

cordingly, they pave the way for a number of possible extensions which are

currently in our research agenda. First, the basic result can be used to study

market design under asymmetric rationality as in Alós-Ferrer et al. (2010).

Second, combining the results here with Alós-Ferrer and Kirchsteiger (2015)

should allow to study more realistic institutions which combine restrictions

on trader matching and price biases (rationing). Third, trader heterogeneity

and multiple goods can be incorporated, either in buyer-seller models or in

general equilibrium settings along the lines of Alós-Ferrer and Kirchsteiger

(2010).

Appendix 1.A: Proofs

We start with some preliminary results. Given two absorbing sets A and B,

denote by c(A,B) the minimal number of mistakes required for a transition

from A to B, called the transition cost from A to B. Note that any transition

along a path that has positive probability under the unperturbed dynamics
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has a cost of zero; we refer to such paths as positive-probability paths. To

show stochastic stability we use the following result, which is a straightfor-

ward adaptation of results in Ellison (2000, Theorem 3) (see also Alós-Ferrer

and Kirchsteiger, 2010, Lemma 2).7

Lemma 3. Let A be an absorbing set and define the Radius of A by

R(A) = min{c(A,B) | B is an absorbing set , B 6= A}

and the Coradius of A by

CR(A) = max{c(B,A) | B is an absorbing set, B 6= A}

Then

(a) If R(A) ≥ CR(A), the states in A are stochastically stable.

(b) If R(A) > CR(A), the only stochastically stable states are those in A.

(c) If the states in an absorbing set B are stochastically stable and R(A) =

c(B,A), the states in A are also stochastically stable.

(d) If B is an absorbing set with c(B,A) < R(A), then B is not stochasti-

cally stable.

We say that an institution z is a single-price institution if the set of

realized prices Tz is a singleton at any (ω, γ) such that z is active. We

now prove a preliminary result for single-price institutions. Lemma 4 shows

that if active, a single-price institution is always attractive for at least some

traders.8

Lemma 4. Consider a state-matching pair (ω, γ) where both a single-price

institution z and another institution z′ 6= z are active. Then (at least) one

of the following cases holds.

7Ellison (2000) credits Evans (1993) with the introduction of the radius-coradius con-
cept.

8This does not hold for an arbitrary decentralized institution. For example, suppose
there are two active institutions z and z′ with p

z
< p

z′
< pz < pz′ . Then none of the cases

from Lemma 4 applies. The crucial part of Lemma 4 is that, given a fixed, single-price
institution z, it can be applied to z and any other institution z′.
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(i) z is attractive for all buyers at z′ (and z′ is attractive for all sellers

at z),

(ii) z is attractive for all sellers at z′ (and z′ is attractive for all buyers

at z), or

(iii) there exist a buyer i and seller j at z′ such that z is attractive for

both i and j.

Proof of Lemma 4. Let z be a single-price institution. Fix a state-matching

pair (ω, γ) with z, z′ ∈ A(ω, γ) and let p be the (unique) price at z. Clearly

Tz′ 6= ∅ as z′ is active. Further, p is larger than all prices in Tz′ (resulting

in case (i)), or p is smaller than all prices in Tz′ (resulting in case (ii)), or p

lies (weakly) between two prices at z′, i.e. there exists p′, p′ ∈ Tz′ such that

p′ ≤ p ≤ p′. In the latter case, there is a buyer at z′ trading at price p′ that

is (weakly) lower than p, and a seller at z′ trading at price p′ that is (weakly)

higher than p, hence we are in case (iii). �

We now prove the results in Subsection 1.4.3. Note that a centralized

institution is also a single-price institution, hence Lemma 4 applies. The

proof of Lemma 2 makes use of Lemma 4 in an iterative fashion.

Proof of Lemma 2. Let z0 ∈ Z. Fix a state-matching pair (ω, γ) where z0 is

active. If z0 is the only active institution, then all traders currently not at

z0 are unmatched. Thus z0 is attractive for all these unmatched traders. By

SELF, given revision opportunity any such trader leaves his current insti-

tution with positive probability towards some active institution, i.e. towards

z0. On the other hand, by ACT no trader leaves z0 as all are matched and

there is no other active institution. As a consequence we reach a state where

all traders are at z0, which yields a positive probability path to ω0 from any

state where only z0 is active.

Now suppose that another institution z 6= z0 is active at (ω, γ). By

Lemma 4, there are three cases to consider.

Case (i). z0 is attractive for all k ∈ Bz (and z is attractive for all k ∈ Sz0).

Let j ∈ Bz be a buyer. Since z0 is attractive for j, by SELF there is

positive probability that, given revision opportunity, j will leave z to some
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active institution ẑ 6= z. By D1, with positive probability j is the only trader

of his type revising this period. Further, by D2 either no seller gets revision

opportunity, or there is positive probability that only j and some i ∈ Sz get

revision opportunity. Hence, with positive probability the process reaches a

new state with strictly less traders at z.

Case (ii). z0 is attractive for all k ∈ Sz (and z is attractive for all k ∈ Bz0).

This case is analogous to case (i).

Case (iii). There exist traders j ∈ Bz and i ∈ Sz such that z0 is attractive

for i and j.

By SELF there is positive probability that given revision opportunity i

and j leave z to some active institution ẑ 6= z. Moreover, by D1 and D2

there is positive probability that either only i, or only j, or only i and j are

allowed to revise this period. Hence, with positive probability the process

reaches a new state with strictly less traders at z.

Our goal is to iteratively construct a positive-probability path from ω

to a state ω′ where z0 is the only active institution. We have just shown

that in all possible cases there is a positive-probability transition from ω to

a new state ω1 with strictly less traders at z, in which no empty institution,

i.e. an institution with zero buyers and zero sellers, has become non-empty

(as traders only leave z towards active institutions). If z is still active we

can apply exactly the same reasoning to this new state ω1 to construct a

positive-probability path to a state ω2 with strictly less traders at z than in

ω1. Continuing in this fashion, after a finite number of steps we eventually

reach a state where either no buyer or no seller remains active at z, thus we

have reached a state where z is inactive. In particular, all remaining traders

at z are unmatched and by SELF leave z towards an active institution if

given revision opportunity, hence we can reach a state ωr where z is empty,

hence inactive. In particular, the number of non-empty institutions is strictly

smaller. If there is another active institution z′ at (ωr, γr), we can repeat

the whole argument and thus obtain a positive-probability path to a state

where also z′ is empty. Proceeding iteratively in this fashion, we can finally

construct a positive-probability path to a state ω′ where z0 is the only active

institution. This completes the proof. �

31



Chapter 1 Trader Matching and the Selection of Market Institutions

Proof of Theorem 1. Let z0 ∈ Z. We first observe that {ω0} is absorbing by

Lemma 1 since z0 always matches all traders, in particular at ω0. From any

given absorbing set two mutations (a buyer and a seller) suffice to reach a

state where z0 is active. By Lemma 2 the state ω0 can then be reached from

this state without further mutations. Hence CR({ω0}) ≤ 2.

On the other hand, by ACT the state ω0 cannot be left with just one

mutation. It follows that R({ω0}) ≥ 2. Hence applying Lemma 3(a), it

follows that ω0 is stochastically stable. �

We now turn to the proofs of results in Subsections 1.4.4 and 1.4.5.

Proof of Proposition 1. Let z0 ∈ Z. Consider a matching-inefficient institu-

tion z. One of the following conditions holds.

• z does not match all traders at ωz.

• At some state with (nz, mz) = (n,m− 1), z leaves a buyer unmatched

with positive probability.

• At some state with (nz, mz) = (n − 1, m), z leaves a seller unmatched

with positive probability.

In the first case, there exists a state-matching pair (ωz, γ) with k ∈ Sz∪Bz

unmatched. Then every institution other than z is inactive, hence, by SELF

k will switch to any institution, in particular z0, with positive probability.

Now one mutation from a trader k′ ∈ Sz ∪ Bz of the other market side is

sufficient to make z0 active.

For the other two cases, a state ω with (nz, mz) ∈ {(n,m−1), (n−1, m)}

can be reached by one mutation towards z0. Now there exists a state-

matching pair (ω, γ) with an unmatched buyer k ∈ Bz, respectively an un-

matched seller k ∈ Sz, and by SELF the unmatched buyer, respectively

seller, switches to z0 with positive probability so that z0 becomes active.

In any case, one mutation from ωz suffices to reach a state from which, by

Lemma 2, ω0 can be reached without further mutations. Hence c(ωz, ω0) =

1 < 2 ≤ R(ω0) and by Lemma 3(d) it follows that ωz is not stochastically

stable. �
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Proof of Theorem 2. Let z0 ∈ Z. Any stochastically stable institution must

be matching-efficient by Proposition 1. To see the converse, let z ∈ Z be a

non-trivial institution that is matching-efficient. Suppose we are in ω0 and a

single buyer j and seller i mutate switching to z so that it becomes active.

In this new state ω there is only one buyer and one seller at z, hence they

must be matched with positive probability by non-triviality of z and we have

Tz(ω, γ) = {p(1)} for some (ω, γ).

Let p0(ω) be the price at z0 in state ω. If p0(ω) ≤ p(1) (p0(ω) ≥ p(1)),

then z is attractive for all k ∈ Sz0 (k ∈ Bz0) and A(ω, γ) \ {z0} = {z},

hence by SELF every member of the respective market side at z0 will switch

to z (the only active institution) with positive probability, given revision

opportunity. By D3, with positive probability all members of the appropriate

market side revise simultaneously, leading to a state with either nz = n or

mz = m; hence, z0 becomes inactive. In particular, no other institution

can become active and z is active by non-triviality, hence z is the only active

institution. If after this transition there are still traders at z0, again by SELF

all remaining members of the other market side (they are all unmatched)

follow with positive probability if given revision opportunity, which happens

with positive probability by D3. We hence reach the state ωz. Since ω0

cannot be left with less than two mutations we obtain c(ω0, ωz) = 2.

On the other hand, by ACT ωz cannot be left with less than two muta-

tions as it is matching-efficient, while two mutations suffice for a transition

towards ω0 (as in the proof of Theorem 1), hence R(ωz) = 2. Thus ωz is

stochastically stable by Lemma 3(c). �

Proof of Proposition 2. First note that, by Proposition 1, and since OPT

implies SELF, every non-trivial, stochastically stable institution must be

matching-efficient. Hence we only need to prove the converse.

By Theorem 1, z0 is stochastically stable. Let z ∈ Z be a matching-

efficient, non-trivial institution, z 6= z0. To show that z is also stochastically

stable, by Lemma 3(c) it suffices to show that c(ω0, ωz) = R(ωz). By Lemma

1, ωz is an absorbing state because, by matching efficiency, it matches all

traders at ωz. By ACT, ωz cannot be left with less than two mutations.
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However, two mutations suffice to leave ωz towards ω0 (recall Lemma 2). It

follows that R(ωz) = 2.

Next, we show that ωz can be reached from ω0 with two mutations. Start-

ing at ω0, two mutations (a buyer and a seller) are sufficient to reach a state

ω where z is active. We now iteratively construct a path from ω to ωz.

Consider a state ω′ where z0 and z are active, and all other institutions are

empty. Let p0 be the (unique) price at z0 and consider a price p ∈ Tz. Then

p ≤ p0 or p0 ≤ p, hence it is either weakly better for buyers at z0 or weakly

better for sellers at z0. By OPT any member k of the respective market

side at z0 will switch to z (as it is the only active institution other than z0)

with positive probability, given revision opportunity. By D1, with positive

probability k is the only trader of his type revising this period. Further,

by D2 either with positive probability k is the only trader with revision

opportunity, or with positive probability only k and some k′ of the other

market side who is currently at z0 receive revision opportunities. Hence, we

can reach a new state with strictly more traders at z (at least k switches

to z) where no other institution than z0 and z is active (by ACT k′ either

switches to z or stays at z0).

Applying this argument iteratively yields a positive-probability path from

ω to a state where all buyers or all sellers are at z, hence z0 is inactive. All

remaining traders at z0 (if there are any) are unmatched, hence switch to the

only active institution z by OPT, given revision opportunity. We have thus

constructed a positive-probability path leading to ωz that requires only two

mutations. This shows that c(ω0, ωz) = 2 and completes the proof. �

Proof of Proposition 3. Let Z = {z0, zD} and assume n,m > 3. Since only z0

and zD are available, R(ω0) = c(ω0, ωD). Thus, by Lemma 3(d), it suffices to

show that c(ωD, ω0) < c(ω0, ωD). As in the proof of Theorem 1, c(ωD, ω0) = 2.

We have to show that a transition from ω0 to ωD requires at least three

mutations. By contradiction, suppose there is a path from ω0 to ωD that

requires at most two mutations. Under asynchronous learning in any transi-

tion along the path at most one trader can switch institutions at the same

time. Along this path zD has to become active, but by ACT no trader at z0
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can switch to zD as long as it is inactive, which is the case at ω0. Hence the

path has to involve two mutations (a buyer and a seller) from ω0 to the first

state in the path where zD is active. Note that, since n,m > 3 and only two

mutations are possible, these transitions do not render z0 inactive.

Hence, the path from ω0 to ωD cannot involve any further mutation.

At some point along this path, z0 has to become inactive, hence the path

needs to contain a transition (without mutation) from a state ω where z0 is

active to a state ω′ where z0 is inactive. If zD were inactive at ω, it would

not be attractive for any trader at z0 (as z0 is active at ω), hence by PES

the transition from ω to ω′ could only occur via an additional mistake, a

contradiction. Hence zD must be active at ω.

The transition from ω to ω′ involves a single trader switching from z0 to

zD. Suppose this trader is a buyer (the case of a seller is symmetric). That

is, n0(ω) = 1, n0(ω
′) = 0, and m0(ω

′) = m0(ω) ≥ 1. By PES, zD must be

attractive at ω for the buyer switching from z0 to zD, that is, p0 ≥ p for all

p ∈ TzD(ω).

As zD is active at ω it either features a single price pD = p(n − 1) (for

mD(ω) = 1), or it features two prices p
D

≤ pD with pD = p(n − 2) (for

mD(ω) > 1). Since n ≥ 4 and p(r) is strictly increasing in r, it follows that

pD ≥ p(2) and pD ≥ p(2). On the other hand, the single price p0 at z0

in state ω is given by p0 = p( 1
m0(ω)

) ≤ p(1) as m0(ω) ≥ 1. It follows that

p0 ≤ p(1) < p(2) ≤ min{pD, pD}, a contradiction to p0 ≥ p for all p ∈ TzD(ω).

We have thus shown that a transition from ω to ω′ requires at least three

mutations. Therefore c(ω0, ωD) ≥ 3, implying that zD is not stochastically

stable.

�
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Chapter 2

Cournot vs. Walras: A Reappraisal through Simulations

2.1 Introduction

One of the main objectives of industrial organization is to determine to which

extent do market outcomes deviate from the competitive, welfare-maximizing

ideal. Both theoretical predictions and empirically estimated outcomes are

measured against the perfectly competitive benchmark. The study of mar-

ket outcomes, however, cannot be disentangled from individual behavior.

Consider the case of quantity competition in oligopolistic markets (Cournot

oligopolies). Perfectly competitive outcomes (Walrasian equilibria) obtain if

individual behavior aims to maximize individual profits under the constraint

that market prices are taken as given (which is a form of bounded ratio-

nality). In contrast, best-reply behavior underlies Cournot-Nash equilibria,

where consumer welfare is lower and industry profits are larger than in the

Walrasian case. Joint profit maximization leads to collusive outcomes, the

mere suspicion of which might trigger market-regulation interventions.

Firm managers are often motivated by relative-performance concerns,

that is, the comparison with the competition’s outcomes. It is well-known

that such concerns go hand-in-glove with imitative behavior, that is, mim-

icking the behavior of the best performers. In a seminal paper Vega-Redondo

(1997) showed that imitative behavior in a noisy evolutionary Cournot oligopoly

leads to the selection of the perfectly competitive Walrasian outcome where

price equals marginal cost. Formally, in a discrete-time, finite-population

stochastic dynamics where firms imitate best performers and make occa-

sional mistakes, the long-run distribution of outcomes concentrates on the

Walrasian outcome as the probability of mistakes vanishes: the selected out-

come is called stochastically stable (for an introduction to stochastic stability

models, see, e.g., Blume, 1993; Kandori et al., 1993; Young, 1993; Samuel-
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son, 1997; Fudenberg and Levine, 1998). This striking result, which can be

generalized to the class of aggregative games (Alós-Ferrer and Ania, 2005), is

driven by the so-called spite effect (Hamilton, 1970; Schaffer, 1989): a devi-

ation from the Cournot equilibrium to the Walrasian solution is detrimental

in that it decreases one’s payoff, but at the same time it decreases the payoffs

of the other firms even more, hence making the deviating firm better off in

relative terms. As a result imitation of highest profits quickly leads firms to

choose the perfectly competitive quantity. This result is important, because

it represents a counterpart to the concerns on reduced market-outcome com-

petitiveness and points out that relative-performance concerns and (bound-

edly rational) imitative behavior might actually increase the competitiveness

of those outcomes.

The analysis of Vega-Redondo (1997) exhibited a clear-cut but highly

stylized result, which rests on some sharp behavioral assumptions. First and

foremost among those is the length of memory. The selection of the Walrasian

outcome under imitative behavior crucially depends on the assumption that

previous (potentially more profitable) outcomes are immediately forgotten

and as a consequence only relative payoffs matter. This is in stark contrast

with the prediction of collusive outcomes arising when market competition

is modeled as an infinitely repeated game, which hinges on the players’ ca-

pability to condition on possibly distant past events (in order to sustain

a subgame-perfect equilibrium in the infinitely repeated game). This limi-

tation of Vega-Redondo (1997) was addressed in Alós-Ferrer (2004), which

introduced bounded but possibly long memory into the dynamic model of

Vega-Redondo (1997). Interestingly, even if imitative behavior is assumed,

the assumption of non-negligible memory opens the door for intertemporal

payoff comparisons and better-reply behavior. For, when firms can imitate

whatever output level delivered the highest profits in memory, intertemporal

comparisons allow to evaluate deviations from a given profile. For example,

if a firm deviates away from the Cournot-Nash equilibrium, imitation will

lead the firm to correct this “mistake”, because the pre-deviation payoffs are

larger than the post-deviation ones. This holds even if by a spite effect after

deviation that firm is better off than the competition, because the remem-
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bered payoffs are even higher. Non-negligible memory hence creates a tension

between actions leading to relative-payoff advantages and those leading to ad-

vantages in terms of absolute payoffs. The main result in Alós-Ferrer (2004)

was that for well-behaved Cournot oligopolies and non-trivial memory (one

round suffices) a non-trivial dynamics arises and all quantities between the

Cournot and Walrasian outcomes are long-run equilibria. That is, all such

states are stochastically stable, implying that the long-run distribution of

outcomes does not concentrate on a single outcome and, as the probability

of mistakes becomes small but positive, the dynamics is concentrated on out-

comes between the Cournot and the Walrasian ones, but remains non-trivial.

Of course, for the memoryless case convergence to the Walrasian outcome

obtains (Alós-Ferrer and Shi, 2012 further showed that the latter result also

holds if some firms are memoryless). This demonstrates the importance

of memory with regard to outcome selection in Cournot oligopolies. Also,

this result qualifies the original insight of Vega-Redondo (1997) and points

to a richer (and possibly more realistic) dynamics, with the Walrasian and

Cournot-Nash outcomes as stylized bounds of predicted market outcomes.

The main result of Alós-Ferrer (2004) has two practical limitations. First,

the proof applies to a large but still specific class of Cournot oligopolies, as

it relies on stronger assumptions on the structure of the underlying Cournot

game compared to Vega-Redondo (1997). Essentially, the result is proven un-

der the additional requirements that the inverse-demand function is strictly

concave and the cost function is strictly convex. Second, the fact that all

outcomes between the Walrasian and the Cournot-Nash ones are stochas-

tically stable does not mean that they are all “alternative equilibria” in a

classical sense. The reason is that stochastic stability refers to the limit as

behavioral noise (the probability of mistakes) vanishes. The result has to be

interpreted in terms of the dynamics for a positive but small noise level. The

actual prediction is that the dynamics will quickly converge towards the in-

terval of quantities between the Walrasian and Cournot-Nash outcomes, and

then a rich, non-trivial dynamics within this interval is to be expected. How

much time the system will spend at each output level compared to others

is measured by the (limit) invariant distribution of the stochastic process.
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Unfortunately, the stochastic stability techniques on which Vega-Redondo

(1997), Alós-Ferrer (2004), and many other works are based do not allow for

an estimation of that distribution, merely for an analysis of its support (the

stochastically stable states). Hence, if one wishes to analyze how far apart

from the Cournot (or Walras) prediction the system will be, one needs to de-

termine the shape of the invariant distribution. Although this is analytically

not feasible, a direct application of the Ergodic Theorem (e.g., Karlin and

Taylor, 1975) shows that simulations can provide a sharp estimation of that

shape.

The logic is simple. The Ergodic Theorem implies that, for almost all

realizations of the dynamical system, in the long run the weights of individual

outcomes in the invariant distribution correspond exactly to the percentage

of time that the system spends in that outcome. Hence, the proportion of

time spent in individual outcomes, averaged across (long enough) simulations,

becomes a numerical estimate of the weights in the invariant distribution. As

a consequence, extensive numerical simulations become an efficient tool for

the systematic study of the characteristics of long-run predictions, and are

particularly valuable when (as in Alós-Ferrer, 2004) the prediction is not a

single outcome. For instance, the stochastic stability result quoted above

cannot discriminate between outcomes where almost all weight is placed on

or near the Walrasian quantity and outcomes where that weight is on or near

the Cournot-Nash quantity. Systematic simulations then become invaluable

to discriminate among such possibilities.

Our objective in this paper is twofold: On the one hand, we want to better

understand the exact shape of the invariant distribution and hence whether

the prediction is closer to the perfectly competitive outcome or rather to

the classical Cournot-Nash outcome. On the other hand, we seek to in-

vestigate whether the main result in Alós-Ferrer (2004) holds beyond the

limitations just described, that is, whether it extends to less well-behaved

Cournot oligopolies. To those ends, we will rely on computational simula-

tions to approximate the invariant distribution, systematically varying the

specifications of the underlying Cournot oligopoly and the dynamical system.

This article is also linked to the literature studying convergence in Cournot
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oligopoly games where learning of boundedly rational agents is modeled

through evolutionary algorithms (EA). An important factor determining the

outcome the EA converges to is the type of learning it is based on. The

literature mainly distinguishes between two types: individual learning exclu-

sively from own past performance (i.e. in the absence of spite and imitation of

others, when firms only learn through introspection) and social learning from

own as well as others’ past performance (i.e. imitation of others as consid-

ered in Vega-Redondo, 1997 and Alós-Ferrer, 2004). An early contribution

in this line was provided by the simulations of Vriend (2000), who found

convergence to the Cournot-Nash equilibrium when learning was individual

(closer to myopic best-reply), but to the Walrasian outcome in the presence

of social learning (closer to imitation). This is a natural observation in view

of the fact that best-reply behavior underlies Nash equilibria and imitative

behavior leads to Walrasian outcomes. Individual learning focuses on the

own experience, while information about the performance of others is either

not available or ignored. Hence there is no room for relative payoff compar-

isons and only absolute payoffs matter, which can, of course, drive behavior

away from the competitive outcome. In a formal-analytical study relying

on stochastic stability, Bergin and Bernhardt (2004) examined imitation dy-

namics and introspective dynamics in isolation and found that individual

agents (which in a Cournot setting means firms, excluding consumer wel-

fare) are worse off in a world of imitators than in a world where agents

learn via introspection. In a similar framework Riechmann (2006) showed

using EA simulations that even individual learning can lead to either Walras

or Cournot, depending on the analytical sophistication of players and their

degree of knowledge of the game. Individual learning mechanisms leading

to the Cournot equilibrium require a sizable degree of knowledge and ana-

lytical sophistication, while simpler behavior might lead towards Walrasian

outcomes.

The simulation results of Vriend (2000) were in contrast to Arifovic (1994),

who found that both social and individual learning converge to the Walrasian

outcome. However, this earlier work relies on an EA which is not based on

best-reply or imitation (of actual past-performance) but rather takes ele-
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ments from both. Firms behave as price-takers, but compute and compare

hypothetical payoffs in a way similar to myopic best-reply considerations,

hence the underlying behavior cannot be directly compared to the models

described above. Arifovic and Maschek (2006) argued that Vriend’s (2000) re-

sult of convergence to the Cournot outcome under individual learning hinged

upon a very specific cost structure and particular EA implementation. Val-

lée and Yıldızoğlu (2009) analyzed the differences between the underlying

mechanisms that lead to those diverging results. Using computational ex-

periments, they confirmed that expectation-based learning (Arifovic, 1994)

cannot converge to the Cournot-Nash equilibrium, while this is possible under

the repetition-based learning model employed by Vriend (2000). The main

reason for this difference is that the latter model belongs to a completely

different family. For instance, trading strategies are tried out for 100 periods

and the EA (actually, a genetic algorithm including recombination) acts only

after each 100-periods block, on the basis of average profits. Hence, the EA

acts only occasionally, which allows individuals to discover the decreasing re-

lationship between market price and quantity. On the other hand, in the case

of social learning the computational results in Vallée and Yıldızoğlu (2009)

are in line with the theoretical prediction of Vega-Redondo (1997) driven by

the spite effect.

Vallée and Yıldızoğlu (2013) use computational experiments to investigate

the role of memory under both social and individual learning in the possi-

ble convergence to outcomes more collusive than the Cournot equilibrium.

Their results for social learning are (up to a significant level of noise) in line

with Alós-Ferrer (2004).1 For specific types of individual learning mecha-

nisms they find convergence towards quantities that are close to the collusive

1Vallée and Yıldızoğlu (2013) conduct simulations with high levels of noise and large
probability of inertia (that is, infrequent strategy adjustments). Unsurprisingly, their
results include distributions with long tails, which arise exclusively due to the levels of
noise. Stochastic stability analyzes the limit as noise vanishes, modeled as the probability
ε of behavioral mistakes. The key insight of the literature is that this limit differs from the
heavily path-dependent behavior when there is no noise at all. Of course, for large ε the
prediction is simply a high level of noise, from which little can be learned. Computational
tests of stochastic-stability results need to concentrate on small but positive values of ε.
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outcome.2 However, although the social learning dynamic they study is,

as ours, based on random experiments, imitation, and memory, the imple-

mentation is very different from the model studied here and in Alós-Ferrer

(2004). First, agents are equipped with finite memory but only occasionally

use it and thus agents act in a “memoryless” way most of the time. As a

consequence, the results of Alós-Ferrer (2004) do not directly apply to their

setting (a better comparison would be to Alós-Ferrer and Shi, 2012). Sec-

ond, they consider imitation (of the best outcome in the previous period, i.e.

with trivial memory) and the act of “using memory” (that is, imitation of

the best outcome within the remembered time frame) as two distinct, inde-

pendent events. Third, Vallée and Yıldızoğlu (2013) use an ad hoc notion of

“convergence” which, regrettably, does not fully exploit the properties of the

actual stochastic system. They simply compare the population distribution

in the last (of many) periods in the simulation to the predicted theoretical

limit distribution. For a single simulation, if the invariant distribution has

a non-trivial support (multiplicity of stochastically stable states), this crite-

rion produces essentially random results, especially if the simulation is too

short. Averaging over simulations but relying only on the last period of each

one is an appeal to the Fundamental Theorem of Markov chains (see, e.g.,

Karlin and Taylor, 1975), which states that the long-run probability of each

individual state is numerically equal to its probability under the invariant

distribution. Vallée and Yıldızoğlu (2013) average over only 500 runs of only

10, 000 periods each. It is unclear whether, with such a short length of the

simulations, this relatively small number of simulations suffices to obtain an

approximation through the Fundamental Theorem. The Ergodic Theorem

(see also Section 2.3), however, provides a better approach, which relies on

the whole simulation instead of just the last period. The key is that time

averages, that is, the fraction of time spent at each state as time goes to

infinity, converges to the invariant distribution, and hence empirical time

2This result requires “selective” memory, where agents can only remember the latest
payoff associated with a given quantity and forget the payoffs associated with earlier,
possibly more profitable instances where the same quantity was chosen. This dynamics is
similar to trial and error learning as studied in Huck et al. (2004) (both analytically and
through simulations).
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averages approximate the invariant distribution.

At a conceptual level, the inconsistencies among the works quoted above

arise because the different simulations they study differ in a relatively large

number of dimensions (and convergence criteria), and it is not clear which of

them are purely technical and which define qualitatively different classes of

learning dynamics. In turn, this is made possible because those simulations

are exploratory in nature (which is of course valuable) but are not, in general,

conceived as a systematic test of the long-run outcomes of a well-defined class

of dynamics. In contrast our research agenda starts with a clearly formulated

theoretical framework (stochastic stability models where agents are endowed

with behavioral rules) and builds upon existing analytical results, exploring

their boundaries.

The article proceeds as follows. Section 2.2 introduces the discrete-time

Cournot oligopoly and the imitation-based learning dynamic with memory.

The main result of Alós-Ferrer (2004) in that framework is that if firms

have positive memory then all quantities between the Walrasian and the

Cournot ones are stochastically stable. Section 2.3 describes the simulation

protocol and the simulation parameters used to generate our computational

results. Section 2.4 contains the main results, starting with an analysis of the

generality of the full support prediction for positive memory and proceeding

to factors that influence the shape of the limit distribution, in particular the

relative weights of the Cournot-Nash and Walrasian outcomes. Section 2.5

concludes.

2.2 Existing Theoretical Results

In this section we briefly review the discrete-time dynamic Cournot oligopoly

studied in Vega-Redondo (1997), introduce the imitation-based learning dy-

namic with bounded memory studied in Alós-Ferrer (2004), state the main

selection result with bounded memory obtained in that work, and discuss its

limitations (which motivate the present work).
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2.2.1 The Discrete Cournot Oligopoly

Consider an N -player, symmetric Cournot oligopoly with inverse-demand

function P : R+ −→ R+ and cost function C : R+ −→ R+. Let P be

twice-differentiable on [0, qmax] with P ′ < 0 and P ′′ < 0 in this interval

(hence P is strictly decreasing and strictly concave). Further, assume that

P (0) = Pmax > 0 and P (q) = 0 ∀q ≥ qmax. Let C be twice differentiable with

C ′ > 0 and C ′′ > 0 (hence C is strictly increasing and strictly convex), and

assume C ′(0) < Pmax. Call such a Cournot oligopoly well-behaved.

The Walrasian quantity qW is defined by

P (NqW )qW − C(qW ) ≥ P (NqW )q − C(q) ∀q,

and it is unique under the assumptions given above. It is well-known that

this quantity is optimal with respect to relative-payoff considerations (see,

e.g., Alós-Ferrer and Ania, 2005). In contrast, the Cournot quantity qC is

optimal with respect to absolute payoffs, since it fulfills that

P (NqC)qC − C(qC) ≥ P ((N − 1)qC + q)q − C(q) ∀q.

Alós-Ferrer (2004) analyzes the (discrete-time) Cournot oligopoly de-

scribed above within a dynamic context with memory. The model without

memory was first studied in the seminal paper Vega-Redondo (1997). Firms

play the Cournot game repeatedly in discrete time t = 0, 1, 2 . . . . Each pe-

riod firms observe quantities chosen and profits realized by all firms in that

period. In addition, firms remember the outcomes, i.e. quantities and profits,

from the last K ≥ 0 periods in addition to the current one. Based on this

information firms subsequently choose a quantity for the next period, taken

from a finite grid Γ = {0, δ, 2δ, . . . , νδ} with step size δ > 0 where νδ = qmax.

For concreteness, we assume that both qW as well as qC belong to Γ.

The state of the learning process for a given period is entirely determined

by a vector (q1, . . . , qN) ∈ ΓN , therefore the state space for the model with

memory K ≥ 0 is given by ΓN(K+1). The dynamics is based on imitation

of strategies that performed best within the remembered time frame and
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occasional experimentation (also called mutation). More precisely, for each

period and every firm, there is a small probability ε > 0 that instead of

imitating the firm experiments with a new quantity at random according

to a probability distribution with full support on Γ. With the remaining

probability (1−ε) the firm imitates a quantity that yielded the highest profit

in memory, i.e. within the last K periods (including the current period).

Formally, let qi(t) be the quantity chosen by firm i in period t and q−i(t) the

quantities of its N − 1 competitors. Then the set of quantities chosen with

positive probability in the next period for a state ω = (q(k))tk=t−K ∈ ΓN(K+1)

is given by

BK
t (ω) ={qi(k) | i ∈ {1, . . . , N}, k ∈ {t−K, . . . , t} and Πi(k) ≥ Πj(k

′)

∀j = 1, . . . , N, ∀k′ = t−K, . . . , t} (2.1)

where Πi(t) = P (Q(t))qi(t)− C(qi(t)) and Q(t) =
∑N

i=1 qi(t).

This behavioral rule is often referred to as Imitate-the-Best-Max (IBM)

rule in this literature.3 Imitation and experimentation are events that hap-

pen independently from each other across firms and time. The learning

dynamics (with imitation and experimentation) defines a stationary Markov

chain on the state space ΓN(K+1) that is analyzed using standard tools in-

troduced by Blume (1993), Kandori et al. (1993) and Young (1993). One

seeks to identify the stochastically stable states, which are those in the sup-

port of the limit invariant distribution of the process as the probability of

experimentation vanishes. Given a quantity q ∈ Γ, denote by mon(q) the

quantity vector where all firms choose q. More generally, for K ≥ 0 we de-

note mon(q,K) = ((q, . . . , q), . . . , (q, . . . , q)) ∈ ΓN(K+1). These states, where

the same quantity has been produced by all firms as long as it is remembered,

are called monomorphic. For imitation-based learning dynamics it is well-

known that the absorbing states are exactly the monomorphic states, and as

3Another reasonable behavioral rule is the so-called Imitate-the-Best-Average (IBA)
rule, however, this rule leads to completely different results. Bergin and Bernhardt (2009)
have shown that IBA together with long enough memory leads to cooperative outcomes in
the long-run, in particular in a Cournot oligopoly context the unique long-run prediction
is the state where all firms choose the collusive quantity.
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an easy consequence only those can be stochastically stable (see Alós-Ferrer,

2004 or Alós-Ferrer and Shi, 2012 for details).

2.2.2 Imitation with Bounded Memory

For the model without memory, i.e. K = 0, Vega-Redondo (1997) has shown

that the unique stochastically stable state is the one where all firms choose

the Walrasian quantity qW , that is, the monomorphic state mon(qW ). The

main result in Alós-Ferrer (2004) is that for positive memory (K ≥ 1) every

quantity q in the interval [qC , qW ] corresponds to a stochastically stable state,

namely to the monomorphic state mon(q,K). Further, those states are the

only stochastically stable states.

Theorem 1 (Alós-Ferrer, 2004). Consider a well-behaved N-player Cournot

oligopoly with memory K on the grid Γ with step size δ (qC , qW ∈ Γ). For

any K ≥ 1, N ≥ 2, and δ small enough, the set of stochastically stable states

is {mon(q,K) | q ∈ [qC , qW ] ∩ Γ}.

This result is in stark contrast to Vega-Redondo (1997) where the com-

petitive equilibrium is the unique prediction. Allowing for positive memory,

however, introduces another force driving selection that acts alongside the

relative payoff comparisons that favor the Walrasian quantity. Memory in-

creases the importance of absolute payoffs through intertemporal compar-

isons, which favor the Cournot quantity.

The selection result for the model with bounded memory has two limita-

tions. First, stochastic stability techniques aim at identifying the stochasti-

cally stable states, but in case of multiplicity of stable states are generally

not able to identify the shape of the limit distribution. With memory all

quantities between the Walrasian and Cournot outcomes are stable under an

imitation dynamics. However, this only implies that coordination on each

of those outcomes will be observed a positive fraction of time in the long-

run. Results based on stochastic stability techniques do not provide further

information about the exact shape of the limit distribution, and as a conse-

quence, we do not know whether those fractions of time are large or small.
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Second, the result in Alós-Ferrer (2004) makes strong structural assump-

tions compared to Vega-Redondo (1997) (well-behaved oligopolies). These

assumptions, however, mainly serve a technical purpose enabling the fairly

involved construction on which the proof of the main result is based. The

technical difficulty is that destabilizing the Walrasian quantity “downwards”

is costly in terms of the number of mutations required. The proof proceeds

through a series of transitions passing through quantities outside the stable

region [qC , qW ] above qW from where a transition to a quantity below qW is

comparably cheap because both forces, relative and absolute payoff improve-

ments, are aligned. The proof, partially based on differential calculus, is

not entirely intuitive and proceeds through a series of intermediate lemmata.

These lemmata make intensive use of the assumptions on the structure of the

game, specifically of the strict concavity of the inverse-demand function and

the strict convexity of the cost function. Hence it is not feasible to general-

ize the proof so that it still applies with weaker assumptions (or at least we

have failed to do so). Besides these technical considerations we hypothesize

that the general logic driving the stability of the complete range of outcomes

between qC and qW still holds in less well-behaved environments. In partic-

ular, we aim to examine oligopoly games with non-concave inverse-demand

functions and cost functions that are not necessarily strictly convex.

In view of the overall motivation, the analysis of the invariant distribu-

tion translates into a series of more specific questions. What are the relative

weights on the Walrasian and Cournot quantities, respectively? What is the

exact shape of this distribution and how is it affected by the specific struc-

ture of the oligopoly, i.e. the specific demand and cost functions chosen?

What are the effects of memory length on the limit distribution? The use of

computational simulations allows us to shed light on these questions. Simu-

lations deliver data on the complete distribution and are an effective means

to explore the validity of the full support prediction beyond the structural

assumptions made in Alós-Ferrer (2004). In the next section we detail the

simulation protocol and the parameters used to tackle these questions.
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2.3 The Simulations

The Ergodic Theorem from the theory of Markov chains allows the follow-

ing interpretation of the limit invariant distribution of a stationary Markov

chain: the fraction of time that the dynamic process spends at a specific

state converges to the weight given to that state by the limit distribution.

This has important consequences, and in particular opens the door for a

computational approach to study the limit distribution through the use of

simulations. Specifically, the Ergodic Theorem enables us to approximate

the limit distribution of a stationary Markov chain, in our specific case the

distribution over the monomorphic states mon(q) with q ∈ Γ, by time aver-

ages obtained via simulations. This is exactly the strategy pursued in this

section. In the following we will give a detailed description of the simulations

used to obtain approximations of the invariant distribution.

2.3.1 Simulation Protocol

In this section the Cournot oligopoly game described in Section 2.2 is trans-

formed into a simple agent-based simulation protocol mimicking the evo-

lutionary process underlying the theoretical results. The initial quantity

qi(0) ∈ Γ chosen by agent i at time t = 0 is randomly drawn according to

a uniform distribution on the grid Γ. In particular, we do not necessarily

start with a monomorphic state. Denote by Q(t) =
∑N

i=1 qi(t) the aggre-

gate quantity in period t. The payoff of player i in period t is then given by

Πi(t) = P (Q(t))qi(t)−C(qi(t)). This determines the set of “best-performing”

strategies in the last K + 1 periods, BK
t (ω), as defined in (2.1).

Agents will adopt strategies from BK
t , randomly (and uniformly) picking

one in case BK
t is not a singleton. With probability (1− ε) agent i uses the

so-determined strategy, however, with probability ε (independently drawn

for each agent) she experiments with a new strategy chosen randomly ac-

cording to the uniform distribution on Γ. This process is then repeated for

a large number of periods. Since monomorphic states are the only absorbing

sets of the unperturbed dynamics, the time spent in non-monomorphic states

approaches zero as ε becomes small. Hence, we know that the system spends
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most of the time in monomorphic states (for small ε). For this reason, we only

record the distribution over those and aggregate all non-monomorphic states

in a residual, denoted res. Specifically, for each simulation (run) we record

the fraction of time spent in each of the monomorphic states mon(q), q ∈ Γ,

denoted by F (q), as well as the fraction of time spent in non-monomorphic

states, denoted by F (res). Formally, our main output is a probability dis-

tribution F over Γ ∪ {res}. The restriction of F to Γ gives us the desired

approximation of the limit invariant distribution. To further improve quality

of the approximation and to guarantee robustness we recorded 150 repeti-

tions (with different initial conditions) and then took the average distribution

over those repetitions for our subsequent analysis.4

To facilitate later analysis and to ensure comparability of the results

across the various configurations we determined the grid Γ endogenously

in order to satisfy certain criteria: the scale (units) was normalized so that

Γ would be contained in [0, 1]; Γ should contain the quantities of interest qC

and qW ; the cardinality of Γ should only depend on the step size δ and not

on any other parameter; the smallest element in Γ should be “close to 0”,

meaning as close to zero as the discretization would allow.

We will conduct simulations for different grid sizes. Grid coarseness will

be captured by the parameter M , which measures the number of steps in the

grid from qC to qW . The step size, i.e. the increment within the discrete grid,

is then given by δ = qW−qC

M
. That is, the step size is determined relative to

the size of the interval [qC , qW ] as to ensure that the number of elements in

the grid that lie within the interval [qC , qW ] is M + 1. We take the grid size

to be a fixed multiple of
∣

∣qW − qC
∣

∣, specifically we set ν = 7M and hence

|Γ| = 7M + 1. The position of the grid within [0, 1] is specified as follows.

For a given starting point q0 ∈ R+ we set Γ(q0) = {q0, q0 + δ, . . . , q0 + νδ}.

We then determine the smallest element of the grid q0 such the criteria above

are met through an iterative procedure. Set q0 = qC − ⌊ qC

δ
⌋δ > 0. If qW ≤

q0 + 6Mδ, set Γ = Γ(q0) and end the procedure. If not, set q1 = q0 +Mδ. If

qW ≤ q1 +6Mδ, set Γ = Γ(q1) and end the procedure, else set q2 = q1 +Mδ.

4Due to the presence of mutations, the simulated dynamics is ergodic, that is, long-run
predictions are independent of initial conditions.
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Table 2.1: Inverse-demand functions used in the simulations.

Inverse-Demand Function Properties
P1(Q) = max{1−Q2, 0} strictly concave

P2(Q) = max{ log(2−Q)
log(2)

, 0} strictly concave

P3(Q) = max{ e
e−1

· (1− eQ−1), 0} strictly concave

P4(Q) = max{1−Q, 0} linear
P5(Q) = ( 1

Q+1
)2 log-convex

P6(Q) = e−Q convex, log-concave, isoelastic

P7(Q) = max{
log( 4

5
Q+ 1

5
)

log( 1
5
)

, 0} convex

P8(Q) = (24Q+ 1)−
1
2 convex, (α, β)-biconcave for α, β ≤ 1

100

P9(Q) = 1Q≤1(1−Q
3
4 )

4
3 convex, (α, β)-biconcave for α, β ≤ 3

4

P10(Q) = max{1+(1−2Q)3

2
, 0} non-concave, non-convex, S-shaped

P11(Q) = max{1−arctan((2+tan(1))Q−2)
1−arctan(−2)

, 0} non-concave, non-convex, inverted S-shaped

P12(Q) = 2(1−Q2)

2
non-concave, non-convex, inverted S-shaped

Proceed iteratively generating qk+1 = qk+Mδ until qW ≤ qk+6Mδ and then

set Γ = Γ(qk). This procedure ensures that Γ satisfies all the criteria just

mentioned except the last one. In particular, we always have qC , qW ∈ Γ,

and that Γ exceeds qW by at least
∣

∣qW − qC
∣

∣ so that neither qW nor qC is at

the border of the grid. Due to the large variance in the distance
∣

∣qW − qC
∣

∣

across the different configurations, sometimes the grid could not start just

above 0 because
∣

∣qW − qC
∣

∣ was relatively small. Hence, “close to 0” means

“as close as possible without violating one of the other criteria”. As we will

mainly focus on values between the Walrasian and the Cournot quantities,

we view this as an acceptable simplification.

2.3.2 The Simulation Parameters

Inverse-demand functions are taken from a set of twelve different functions

designed to cover a wide spectrum of properties (e.g. linear, convex, concave,

log-concave, log-convex, S-shaped). The specific inverse-demand functions

used in the simulations and their properties are listed in Table 2.1 below. All

demand functions are normalized so that Pi(0) = 1 and qmax(Pi) = inf{q ∈
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Table 2.2: Cost functions used in the simulations.

Cost function Properties
C1(q) = 0.25q linear
C2(q) = 0.5q linear
C3(q) = 0.75q linear
C4(q) = 0.25q2 convex
C5(q) = 0.5q2 convex
C6(q) = 0.75q2 convex

R+ | Pi(q) = 0} = 1 if this latter quantity is finite5 for i = 1, . . . , 12. Note

that only P1, P2 and P3 satisfy the strict concavity assumption from Alós-

Ferrer (2004), and hence only those are covered by Theorem 1. We employ

a set of six cost functions, three linear ones and three quadratic ones. The

specific cost functions used are shown in Table 2.2.

The set of demand functions was determined as follows. The functions

P1, P2, and P3 are strictly concave demand functions that are normalized

versions of common examples in the literature (Anderson and Engers, 1992;

Amir and Lambson, 2000). We then included P4 as a very simple linear

demand function. Function P5 belongs to a class of log-convex functions used

by Amir (1996, Example 3.3). Functions P6 and P7 were chosen as examples

of convex demand functions with varying curvature. Functions P8 and P9

are examples of convex functions that are also biconcave (Ewerhart, 2014),

that is, they become concave after simultaneous monotone transformations

of price and quantity. Function P10 represents an example of an S-shaped

function that is concave below and convex above a certain value. On the

other hand, the functions P11 and P12 are examples of inverted S-shaped

functions, i.e. their first part is convex, while they become concave above a

certain threshold. The three last functions were included as they are neither

always concave, nor always convex within the region of interest.

Each pair of inverse-demand and cost functions (P,C) defines a particular

5Demand functions P5, P6, P8, and P12 approach 0 asymptotically, hence qmax = ∞.
For these four functions, the normalization was such that Pi(1) was reasonably close to
zero.
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Table 2.3: Range of parameters used in the simulations.

Description Name Values
Inverse-Demand Function P P1, . . . , P12

Cost Function C C1, C2, C3, C4, C5, C6

Number of Firms N 2, 3, 4, 5, 10, 15, 20
Pr(Experimentation) ε 0.001, 0.005, 0.010
Grid Coarseness M 10, 20, 30, 40, 50
Memory Length K 1, 5, 10, 50

Notes: The inverse demand functions are as in Table 2.1. The cost functions are as in

Table 2.2.

Cournot oligopoly for a total of 72 different configurations. For each config-

uration we calculated the Cournot and Walras quantities.6 Besides varying

the inverse-demand functions P , the cost functions C, and the coarseness of

the grid M , we also vary the number of firms N , probability of experimenta-

tion ε and the memory length K (K = 0 refers to the case without memory,

see Vega-Redondo, 1997). Table 2.3 summarizes the parameters used in the

simulations.

We therefore have a total of 30, 240 different parameter combinations.

For each combination we ran 150 simulations for a total of 150 × 30, 240 =

4, 536, 000 (about 4.5 million) simulations. Additionally, we run 150× 7, 560

simulations for the no-memory case K = 0 in order to make sure that the

algorithms run correctly (of course, for all those convergence was as pre-

dicted in Vega-Redondo, 1997). We let each simulation run for a minimum

of 100, 000 periods and up to a maximum of one million periods.7

When dealing with limit results, naturally, one has to deal with the ques-

tion of how long is long enough (Ellison, 1993). As a first indicator we can

compare the empirical distribution in the no-memory case K = 0 to the the-

6We used analytical solutions whenever feasible, and numerical solutions otherwise.
7We also implemented an endogenous stopping condition beyond a certain threshold to

save computing time. For any period t > 100, 000, the simulation stopped if the propor-
tion of occurrences of monomorphic states lying between the Cournot and the Walrasian
outcome exceeded 99%, i.e. whenever the condition ft([q

C , qW ])/(1 − ft(res)) > 0.99 was
fulfilled for some t > 100, 000 where ft : Γ∪{res} −→ [0, 1] is the relative frequency distri-
bution up to period t. Our large-scale simulations nevertheless took a significant amount
of time on a Super Computer (in total about 8.5 CPU years).
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oretical distribution, which in this case places all weight on the Walrasian

outcome (Vega-Redondo, 1997). Indeed, for K = 0 the process spends on av-

erage about 80% of the time at the Walrasian quantity for low levels of noise

suggesting that the length of our simulations is sufficient to obtain a good

approximation of the limit distribution. For positive memory, the results

in Alós-Ferrer (2004) can be used (via a straightforward Radius-Coradius

approach following Ellison, 2000) to show that the expected time of first ar-

rival in the interval [qC , qW ] is of order ǫ−1, which corresponds to (a constant

times) 100, 200, and 1000 periods for low, medium and high noise, respec-

tively. In our data the average time of first arrival in the interval was 381,

691, and 3475 periods for low, medium and high levels of noise, respectively,

and hence well below the minimal simulation length of 100, 000 periods. For

the averaged data (across the 150 repetitions per parameter combination)

all monomorphic states within the interval were visited for each and every

parameter combination with the coarsest grid (M = 10). With the finest

grid (M = 50), still all monomorphic states within [qC , qW ] were visited for

90.3% of the parameter combinations.

In our analysis we will mainly use averages over the 150 repetitions for

each parameter combination, hence we have a total of 30, 240 “observations”

(data points) for our main variables of interest. The simulation was coded in

C++ and run on the high performance computing cluster CHEOPS (Cologne

High Efficient Operating Platform for Science) at the University of Cologne.

The pseudo-code is given in Table 2.4.

2.4 Computational Results

In this section we present the results of our computational simulations.

Specifically, we show that the main result of Alós-Ferrer (2004) holds be-

yond the assumptions considered in that paper. We then proceed to a more

detailed analysis of the shape of the limit invariant distribution.

The objective of the simulations is to obtain estimates of the (limit)

invariant distribution µ∗ through the average time spent by the system at

each monomorphic state. Formally, µ∗ is a distribution over ΓN(K+1), i.e. over

53



Chapter 2 Cournot vs. Walras: A Reappraisal through Simulations

vectors of length K + 1, with each vector entry being a profile of quantities

across firms. However, in practice the computational analysis can be greatly

simplified. Formally, the system evolves over states of length K + 1 (which

include what is available in memory), but of course each such system induces

a dynamics on the state of strategy profiles (q1, . . . , qN). In the limit, since

only monomorphic states can be observed a positive fraction of time, it is

immediate that the system spends a proportion r of the time in the K +

1-length state mon(q,K) if and only if the induced system evolving over

strategy profiles spends the same proportion r of the time in the profile

mon(q). Hence, computationally, for the purposes of the approximation it is

enough to keep track of the proportion of time that the profiles mon(q) are

visited. In turn, the latter are one-to-one with quantities, that is, we can

consider the estimated invariant distribution as a mapping µ∗ : Γ −→ [0, 1].

Hence, our computational results below are referred to strategy profiles of

the form mon(q), indexed by the quantities q. This also allows us to avoid

introducing artificial difficulties in the comparison across different values of

K.

2.4.1 Cournot, Walras, or Both?

Our first objective is to investigate whether the full support prediction of

Theorem 1 still holds when the assumptions of strict concavity of P and

strict convexity of C are dropped. The theoretical prediction is that the in-

variant distribution µ∗ : Γ −→ [0, 1] has full support on [qC , qW ] and is iden-

tically zero outside of this interval (identifying each q with the corresponding

monomorphic state). Formally, µ∗(q) > 0 ∀q ∈ [qC , qW ] and µ∗([qC , qW ]) = 1.

Recall that using the Ergodic Theorem we can approximate µ∗ through the

time averages obtained in our simulations. Specifically, for ε small enough

the restriction of the relative frequency distribution f : Γ ∪ {res} −→ [0, 1]

to Γ converges to the theoretical limit distribution µ∗. Although our com-

putational results are based on low experimentation probabilities, this limit

result can of course not be obtained for non-vanishing ε as it is the case in

our simulations, hence we will have f([qC, qW ]) < 1.
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Table 2.4: Pseudo-code of the N -player learning model.

Set parameters: P , C, N , ε, M , and K.
Generate discrete grid Γ (with cardinality |Γ| = 7M + 1): Determine

step size as δ = qW−qC

M
. For q ∈ R+ set Γ(q) = {q, q + δ, . . . , q + 7Mδ}. Set

q0 = qC − ⌊ qC

δ
⌋δ. For k ≥ 0: If qW ≤ qk + 6Mδ, set Γ = Γ(qk) and stop the

procedure. Otherwise, set qk+1 = qk +Mδ.
Period 0: An initial population profile q(0) ∈ ΓN is selected where each
qi(0), i = 1, . . . , N , is randomly drawn from the uniform distribution over Γ.
Period t:
- Aggregate quantity is determined as Q(t) =

∑N

i=1 qi(t).
- Determine individual payoffs as Πi(t) = P (Q(t))qi(t)− C(qi(t)).
- Determine set of best-performing strategies in the last K + 1 periods as

BK
t ={qi(k) | i ∈ {1, . . . , N}, k ∈ {t−K, . . . , t} and Πi(k) ≥ Πj(k

′)

∀j = 1, . . . , N, ∀k′ = t−K, . . . , t}.

- For each i = 1, . . . , N draw εi ∈ B(1, ε) (Bernoulli distribution).
- If εi = 0, agent i randomly imitates one of the strategies in BK

t (uniform),
that is qi(t+ 1) ∼ U(BK

t ).
- If εi = 1, agent i experiments and chooses a strategy at random (uniform)
from the whole grid Γ, that is qi(t+ 1) ∼ U(Γ).
- The population profile for next period is q(t+ 1) = (qi(t+ 1))Ni=1.
- If t+ 1 > 1, 000, 000 or if t > 100, 000 and ft([q

C , qW ])/(1− ft(res)) > 0.99
(where ft : Γ ∪ {res} −→ [0, 1] is the relative frequency distribution over
monomorphic states up to period t), then stop. Otherwise, increase the
period counter t and proceed to next period.

Notes: N -player learning model with memory K, grid coarseness M , mutation probability

ε, cost function C, and inverse-demand function P .

The fraction of time spent at monomorphic states with quantities within

the interval [qC , qW ], formally defined as
∑

q∈[qC ,qW ]∩Γ f(q) and denoted by

f([qC , qW ]), will serve us as a measure of convergence towards the theoretical

result. The closer the values of f([qC , qW ]) are to one the more likely it is

that the approximated distribution µ∗ will indeed have full support between

qC and qW . The left-hand part of Table 2.5 presents the average value of

f([qC , qW ]) across different memory lengths and noise levels. For the right-

hand part we have calculated the average value of f([qC , qW ]) for each of the
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Table 2.5: Overview average and minimum fraction of time spent within the interval
[qC , qW ].

mean(f([qC, qW ])) min(P,C)f̄P,C([q
C , qW ])

K low ε med ε high ε low ε med ε high ε
1 .97134 .90418 .82716 .96578 .89475 .81348
5 .97445 .91769 .84797 .96880 .90508 .82969
10 .97445 .91731 .84429 .96919 .90587 .82667
50 .97417 .90076 .78764 .96912 .87468 .67634

Notes: Left-hand panel shows the average fraction of time spent within the interval

[qC , qW ] across all 30,240 simulation runs split by memory length K and experimenta-

tion probability ε. For the right-hand panel we computed for each (P,C) combination

the average proportion of time spent within the interval [qC , qW ] across runs and report

the minimum of those averages over all 72 (P,C) configurations. Low ε = 0.001, med

ε = 0.005, high ε = 0.010.

72 (P,C) combinations, denoted by f̄P,C([q
C , qW ]), and we report the mini-

mum of those averages, i.e. min(P,C) f̄P,C([q
C , qW ]), over the 72 (P,C) pairs

for different memory lengths and different probabilities of experimentation.

Our results clearly show that f([qC , qW ]) approaches one as the proba-

bility of experimentation decreases. For high, medium, and low levels of ε

we obtain average values of f([qC , qW ]) that are always above 0.97, 0.90, and

0.78, respectively. For low ε the minimal value of f([qC , qW ]) across all 72

combinations of inverse-demand and cost functions never drops below 0.96

independently of the length of memory. We interpret this as first evidence

that the result of convergence towards full support on [qC , qW ] holds beyond

the case of strictly concave inverse-demand and strictly convex cost.

2.4.2 The Shape of the Invariant Distribution

We want to have a closer look at the shape of the estimated invariant distribu-

tion, in particular over quantities within the main range of interest between

the Cournot and the Walrasian outcomes. Of course, for the simulations the

process will still spend at least some time at non-monomorphic states, that

is f(res) > 0. Clearly a higher noise level leads to more experimentations,
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but the same is true for more firms (for a given level of ε) because each

firm experiments with the same probability, hence the likelihood for a single

experiment increases. Hence the weight placed on non-monomorphic states

f(res) will be increasing in ǫ and N due to an increased likelihood of muta-

tions. The consequence is a general level effect, that is, non-monomorphic

states occur more often for larger values of ε and N . To control for this

effect, we focus in our analysis on the restriction of the relative frequency

distribution to Γ, which we denote by F : Γ −→ [0, 1]. That is, we con-

sider the relative frequency of monomorphic states conditioning on the total

number of monomorphic states. As a second step, in order to aggregate the

relative frequency distributions, e.g. over different pairs of (P,C), we nor-

malize F by identifying each quantity q ∈ Γ with its position within the grid

Γ relative to qC for a fixed grid coarseness M . Specifically, for a given value

of M , we consider the set of indices {0, . . . , 2.5M + 1} where the first M/2

indices are quantities below qC , the last M are quantities above qW , and the

remaining M + 1 correspond to the quantities qC , qC + δ, qC + 2δ, . . . , qW ,

where δ = qW−qC

M
. To accomplish this, for each quantity q in the interval

[qC − qW−qC

2
, qW + (qW − qC)] we assign the index ιM (q) = M

2
+ k, where

k is such that q = qC + k qW−qC

M
. Hence the quantities qC and qW always

have the indices M/2 and 3M/2, respectively. This allows us to compare

the so-obtained normalized relative frequency distribution, denoted by F̂M

(or abusing notation simply by F̂ ), across different values of P , C, δ, and

N , although the quantities of qC and qW clearly vary with all four of those

variables.

Of course, the exact shape of the distribution F̂ and in particular F̂ (qC)

and F̂ (qW ) vary across P1 to P12 and C1 to C6. All individual plots, how-

ever, share a number of general features which can be illustrated by averaged

plots across appropriate subsets of simulations. Before we proceed to a formal

analysis of the data, it is worth to look at these illustrative representations.

Figures 2.1 to 2.3 plot the normalized relative frequency distribution F̂M av-

eraged over several subsamples split along the dimensions strictly concave

or not strictly concave inverse-demand function (dummy; Fig. 2.1a), linear

or quadratic cost function (dummy; Fig. 2.1b), memory (K; Fig. 2.2), and
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Figure 2.1: Effect of strict concavity of P and strict convexity of C.
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(a) Effect of P strictly concave.

0.0

0.1

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

qC qW

C linear C quadratic

(b) Effect of C linear.

Notes: Normalized relative frequency distribution F̂ centered around [qC , qW ]. Subsamples

are limited to the finest grid with the highest number of steps M = 50.

number of firms (N ; Fig. 2.3). The normalized relative frequency distribu-

tions F̂M look qualitatively very similar across the different grid coarseness

values M (compare, e.g., the two panels of Fig. 2.2), hence in several of the

figures we will present only the graphs for M = 50 (the regression analysis

will of course rely on the whole data set).

The first observation is that the qualitative shape of the normalized rel-

ative frequency distribution is quite similar across the different subsamples

(Fig. 2.1 to Fig. 2.3). In the unstable region outside the interval [qC , qW ] the

value of the distribution F̂ is close to zero, while it is well above zero for

all values between the Cournot and the Walrasian quantities. In general the

process spends the largest amount of time at the Walrasian quantity across

all specifications, indicating that the Walrasian outcome is a robust long-

term prediction in the sense that it is stable independently of the length of

memory (as long as the latter is non-trivial), the number of firms, the specific

inverse-demand function, and the specific cost function used in the under-

lying oligopoly game. The general shape is bimodal and generally convex,
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Figure 2.2: Effect of memory.
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(a) Effect of memory K for M = 10.
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(b) Effect of memory K for M = 50.

Notes: Normalized relative frequency distribution F̂ centered around [qC , qW ]. For the

left figure the subsample is limited to M = 10, while for the right figure it is limited to

M = 50.

with a large peak at the Walrasian quantity and another at or close to the

Cournot quantity.

The second observation concerns the stability of the prediction of The-

orem 1. Fig. 2.1a compares the frequency distributions of simulations with

strictly concave inverse demand functions and those with not strictly concave

ones. Fig. 2.1b compares the frequency distributions averaged across simu-

lations with strictly convex cost functions and those with linear ones. These

figures confirm that F̂ approaches a full support on [qC , qW ]. This obviously

had to be the case for the combinations (P,C) covered by Theorem 1, but

the result is also confirmed for non-concave inverse-demand and quadratic

cost functions. That is, this general prediction seems unaffected by different

specifications of P and C. This provides a further positive answer to the

question of whether the result of Alós-Ferrer (2004) holds beyond the class

of Cournot oligopolies considered in that work.

The third observation is that, even at this descriptive level, it can be

readily observed that changes in the key variables do influence the relative
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Figure 2.3: Effect of number of firms N .
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Notes: Normalized relative frequency distribution F̂ centered around [qC , qW ]. Subsamples

are limited to the finest grid with the highest number of steps M = 50.

weights on qC and qW , although the general shape of the distribution re-

mains unaffected. As can be seen in Fig. 2.2, short memory (K = 1) clearly

favors the Walrasian outcome, while longer memory shifts weight towards

the Cournot quantity. This result confirms the intuition that longer memory

makes intertemporal comparisons more important. Those comparisons es-

sentially rely on absolute payoffs, hence longer memory benefits the Cournot

quantity. This figure also includes different panels for M = 10 and M = 50

illustrating that the general characteristics of the distribution are not affected

by the step size discretization.8

Another key variable is the number of firms, N . Fig. 2.3 plots the fre-

quency distributions as a function of N and shows that there is also a clear

effect. In the duopoly case, a much larger weight is placed on the Cournot

quantity qC compared to the settings with N > 2. That is, coordination on

the Cournot equilibrium is more likely in the duopoly case, where strategic

complexity is lowest. For more than two firms, however, there is no clear

8There is, of course, a purely mechanical “level effect:” for a smaller value of M , the
individual values of µ∗(q) will be higher, since they capture weight which will be spread
across several consecutive quantities for a larger M (finer grid).
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Table 2.6: Overview average quantity and median quantity.

P C m(F̂ ) med(F̂ ) P C m(F̂ ) med(F̂ )
P1 C1 .675 .735 P7 C1 .675 .735
P1 C2 .676 .735 P7 C2 .678 .738
P1 C3 .676 .734 P7 C3 .680 .741
P1 C4 .687 .750 P7 C4 .685 .747
P1 C5 .689 .753 P7 C5 .693 .759
P1 C6 .687 .750 P7 C6 .705 .775
P2 C1 .672 .731 P8 C1 .671 .728
P2 C2 .672 .730 P8 C2 .671 .729
P2 C3 .674 .732 P8 C3 .676 .736
P2 C4 .686 .750 P8 C4 .847 .900
P2 C5 .681 .744 P8 C5 .854 .909
P2 C6 .694 .762 P8 C6 .852 .909
P3 C1 .673 .731 P9 C1 .674 .736
P3 C2 .673 .731 P9 C2 .678 .738
P3 C3 .670 .726 P9 C3 .679 .740
P3 C4 .687 .750 P9 C4 .687 .751
P3 C5 .680 .741 P9 C5 .708 .778
P3 C6 .693 .758 P9 C6 .706 .777
P4 C1 .686 .748 P10 C1 .673 .730
P4 C2 .684 .745 P10 C2 .675 .730
P4 C3 .688 .751 P10 C3 .677 .737
P4 C4 .681 .743 P10 C4 .675 .733
P4 C5 .701 .766 P10 C5 .684 .746
P4 C6 .697 .764 P10 C6 .692 .759
P5 C1 .670 .726 P11 C1 .670 .727
P5 C2 .674 .735 P11 C2 .673 .731
P5 C3 .681 .743 P11 C3 .676 .736
P5 C4 .759 .841 P11 C4 .677 .737
P5 C5 .772 .855 P11 C5 .692 .755
P5 C6 .778 .860 P11 C6 .693 .758
P6 C1 .669 .727 P12 C1 .671 .729
P6 C2 .675 .736 P12 C2 .684 .746
P6 C3 .682 .745 P12 C3 .673 .731
P6 C4 .729 .807 P12 C4 .695 .762
P6 C5 .743 .824 P12 C5 .706 .777
P6 C6 .758 .840 P12 C6 .721 .794

Notes: Average quantity m(F̂ ) and median quantity med(F̂ ) for the distribution F̂ on the

subsamples corresponding to the 72 combinations of P and C. Inverse-demand functions

P are as in Table 2.1. Cost functions C are as in Table 2.2.
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pattern. The intuitive reason for a larger weight on qC in the duopoly case

is that, if there are just two firms, a downward transition within the stable

interval [qC , qW ] can readily be achieved by both firms simultaneously ex-

perimenting with a smaller quantity. Such a move yields a gain in terms of

absolute payoff, and with only two firms there is no firm left at the original

quantity, hence at least one of the firms is also better off in relative terms.

For N > 2 a similar transition would require simultaneous mutations by at

least three firms and is therefore very unlikely in comparison. Whereas a

downward transition with only two mutations is also possible for N > 2, it is

more complex than in the duopoly case requiring a series of transitions each

involving simultaneous mutations by two firms.9 Although both transitions

occur with positive probability in the limit, our results show that this “dif-

ference in complexity” is reflected in the shape of the invariant distribution,

as demonstrated by the larger weight on qC for the duopoly.

We now shift to more analytical measures of the shape of the normalized

relative frequency distribution F̂ , and of how it changes across the different

combinations of (P,C). To this purpose, we construct two measures describ-

ing the main features of F̂ , which we will also use in the regression analysis

below. First, we define the average quantity for a distribution F̂ as

m(F̂ ) =

∑

q∈[qC ,qW ](ι(q)− ι(qC))F̂ (q)

(ι(qW )− ι(qC))
∑

q∈[qC ,qW ] F̂ (q)

where ι(q) is the index of q within the grid Γ. The value of m(F̂ ) indicates

the position of the average quantity within [qC , qW ] weighted by its relative

frequency according to F̂ . For higher values of m(F̂ ) the distribution F̂

puts more mass on quantities closer to qW . For example m(F̂ ) = 0 means

F̂ (q) = 0 for all q ∈ (qC , qW ], i.e. full mass on qC , while m(F̂ ) = 1 would

imply F̂ (q) = 0 for all q ∈ [qC , qW ), i.e. full mass on qW . Second, we define

9Indeed the actual proof in Alós-Ferrer (2004) for the duopoly case was handled differ-
ently than the case N > 2.
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the median quantity within [qC , qW ] for a distribution F̂ as

med(F̂ ) = ι(min{q ∈ [qC , qW ] |
∑

q′≤q

F̂ (q′) ≥
1

2

∑

q∈[qC ,qW ]

F̂ (q)}).

The median med(F̂ ) is the index ι(q) of the smallest quantity q ∈ [qC , qW ]

such that at least half of the mass of F̂ within [qC , qW ] is on values weakly

smaller than q. Table 2.6 summarizes the shape of the distribution F̂ for

the 72 possible combinations of (P,C) by means of these two measures. It

illustrates that there is considerable variance with regard to the shape of

the distribution as m(F̂ ) varies from a minimum of 0.669 to a maximum of

0.853 over the different specifications of P and C. However, the most impor-

tant observation is that both m(F̂ ) and med(F̂ ) are consistently above 0.6.

This indicates that the distribution is highly skewed towards the Walrasian

outcome, confirming the qualitative features observed in Fig. 2.1 to Fig. 2.3.

2.4.3 Regression Analysis

The shape of the relative frequency distribution is strongly influenced by the

choice of a specific pair (P,C). However, to obtain a systematic relation

describing the effect of a change from a pair (P,C) to another pair (P ′, C ′)

one would need to order those along meaningful dimensions. In absence of

those, it is more instructive to focus on variables that come with a clear-cut

order and therefore can serve as an effective means to guide our intuition on

how they influence the relative frequency distribution. We seek to investigate

how the shape of the distribution F̂ is affected by the following variables:

memory length K, number of firms N , concavity of P , and linearity of C.

Table 2.7 shows the results of a linear regression on the measures m(F̂ )

and med(F̂ ) including the aforementioned dimensions as independent vari-

ables. As Fig. 2.3 suggests a special role of the duopoly we also include a

dummy variable for the duopoly in the regression. The results indicate that

both mean quantity m(F̂ ) and median quantity med(F̂ ) are significantly

decreasing in the length of memory K. This result is in line with the pre-

diction that longer memory K allows firms to focus more on intertemporal
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Table 2.7: Linear regressions on average and median quantity.

m(F̂ ) med(F̂ )
K −0.00066∗∗∗ −0.00091∗∗∗

(0.00002) (0.00003)
Duopoly −0.08491∗∗∗ −0.11758∗∗∗

(0.00124) (0.00164)
N −0.00109∗∗∗ −0.00275∗∗∗

(0.00007) (0.00009)
Psconcave −0.02281∗∗∗ −0.02858∗∗∗

(0.00091) (0.00120)
Clinear −0.04354∗∗∗ −0.05767∗∗∗

(0.00079) (0.00104)
ε 3.55312∗∗∗ 2.64964∗∗∗

(0.10738) (0.14149)
Observations 30240 30240

Notes: Standard errors in parentheses. ∗ p < 0.001, ∗∗ p < 0.0001, ∗∗∗ p < 0.00001. Linear

regressions with dependent variables m(F̂ ) and med(F̂ ). Dummy variable Duopoly = 1 if

N = 2. Dummy variable Psconcave = 1 if P is strictly concave. Dummy variable Clinear = 1

if C is linear.

comparisons. Those rely more heavily on absolute payoffs, and hence the

distribution of outcomes is shifted in the direction of the Cournot quantity,

although most of the weight remains closer to the Walrasian one (recall Table

2.6).

The coefficients for the duopoly dummy as well as for N show a significant

negative effect. For the duopoly the distribution places more weight on states

closer to the Cournot quantity compared to situations with more than two

firms, which confirms the observation in Fig. 2.3 of a larger weight on qC for

the duopoly. In contrast, beyond the duopoly case increasing the number

of firms slightly shifts weight from Walras to Cournot. This effect, however,

might simply be due to a higher level of noise. For a larger number of

firms the probability of simultaneous mutations increases (for a given level

of ε), and this results in an overall flatter distribution. As the weight on

qW is generally larger than that on qC this “mechanical” flattening of the

distribution can explain this weak negative trend beyond the duopoly.
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The dummies for strictly concave inverse demand functions and linear

cost functions are significant and negative. This indicates that both classes of

functions place more weight on states closer to the Cournot outcome and thus

result in a distribution that is less skewed towards the Walrasian outcome.

That is, although the prediction from Theorem 1 holds beyond the class

of well-behaved oligopolies, it seems that, if inverse demand functions are

strictly concave or costs are linear, states closer to the Cournot outcome will

be observed more frequently.

Last, the regressions in Table 2.7 also control for the level of noise (ε ∈

{0.001, 0.005, 0.010}). The coefficients are significantly positive, which in-

dicates that for vanishing noise, more weight is shifted in the direction of

the Cournot quantity. Fig. 2.4 clarifies this effect. While the shape of the

distribution remains qualitatively unchanged, the spike at qC becomes larger

as ε becomes smaller. However, this effect has to be understood in relative

terms: across all our simulations, the weight close to the Walrasian quantity

always remains larger than the weight close to the Cournot quantity.

We also seek to examine the effects of memory length or the number of

firms in the market on convergence, as proxied by the percentage of time that

the system spends in the interval [qC , qW ], and on the invariant distribution’s

weights on qC and qW . Since those quantities are frequencies, we turn to

fractional logit regressions (see Papke and Wooldridge, 2008). Table 2.8

shows the results of fractional logit regressions. Dependent variables are

the normalized relative frequencies of qC and qW , the mass strictly between

qC and qW (excluding F̂ (qC) and F̂ (qW )), and the mass within the interval

[qC , qW ].

The fractional logit regressions confirm again that violating the main as-

sumptions made in Alós-Ferrer (2004), namely strictly concave P or strictly

convex C, does not negatively affect convergence towards full support on

[qC , qW ] as captured by F̂ ([qC , qW ]). Allowing for non-concave inverse-demand

functions does not result in a significant decrease on the average time the

process spends on quantities between Cournot and Walras. For linear cost

functions convergence even increases significantly compared to quadratic cost

functions. Thus the prediction of Theorem 1 seems to hinge neither on the
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Figure 2.4: Effect of noise.
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(a) Effect of noise ε for M = 10.
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(b) Effect of noise ε for M = 50.

Notes: Normalized relative frequency distribution F̂ centered around [qC , qW ]. For the

left figure the subsample is limited to M = 10, while for the right figure it is limited to

M = 50.

strict concavity of P nor on the strict convexity of C. However, as we have

already seen from Table 2.7 the characteristics of the inverse-demand func-

tion and the cost function affect the shape of the invariant distribution, it is

less skewed towards qW for strictly concave P and linear C.

For linear cost functions the distribution shifts more weight towards the

Cournot outcome (see also Fig. 2.1b), while at the same time the weight on

the Walrasian quantity decreases slightly. We seek to identify what drives this

shift of weight from Walras to Cournot. To that end, consider a monomorphic

state where all N firms produce the quantity q∗ < qW and a single mutant

firm experiments with a larger quantity, q, closer to the Walrasian quantity,

that is, q∗ < q < qW . The chance of success of such an upwards deviation

depends on whether the mutant fares better than the incumbents after the

deviation has occurred. Denote the profit of a firm producing q when the

total output in the market is Q by Π(q|Q) = qP (Q) − C(q). Then, the

post-deviation payoff of the mutant is Π(q | q + (N − 1)q∗), whereas the

post-deviation payoff of the non-mutants is Π(q∗|q + (N − 1) + q∗). The
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Table 2.8: Fractional logit regressions.

F̂ (qC) F̂ (qW ) F̂ ((qC , qW )) F̂ ([qC , qW ])
K 0.00351∗∗∗ −0.00602∗∗∗ −0.00036 −0.00893∗∗∗

(0.00021) (0.00023) (0.00017) (0.00019)
Duopoly 0.85686∗∗∗ 0.08372∗∗∗ −0.33407∗∗∗ −0.15500∗∗∗

(0.01240) (0.01302) (0.00983) (0.01164)
N −0.02021∗∗∗ −0.01201∗∗∗ −0.02251∗∗∗ −0.08230∗∗∗

(0.00078) (0.00093) (0.00058) (0.00051)
Psconcave −0.00043 −0.21172∗∗∗ 0.13788∗∗∗ 0.02762∗∗∗

(0.00986) (0.00943) (0.00676) (0.00608)
Clinear 0.07979∗∗∗ −0.37862∗∗∗ 0.28314∗∗∗ 0.18333∗∗∗

(0.00879) (0.00882) (0.00626) (0.00612)
ε −50.89090∗∗∗ −5.33708∗∗ −52.48244∗∗∗ −192.65921∗∗∗

(1.25759) (1.21091) (0.88524) (0.92550)
Obs. 30240 30240 30240 30240

Notes: Standard errors in parentheses. ∗ p < 0.001, ∗∗ p < 0.0001, ∗∗∗ p < 0.00001.

Dummy variable Duopoly = 1 if N = 2. Dummy variable Psconcave = 1 if P is strictly

concave. Dummy variable Clinear = 1 if C is linear. F̂ ((qC , qW )) =
∑

q∈(qC ,qW )∩Γ F̂ (q) is

the mass that is strictly between qC and qW .

relative payoff advantage of an upward deviation to q > q∗ is thus Π(q |

q+(N−1)q∗)−Π(q∗ | q+(N−1)q∗) = (q−q∗)P (q+(N−1)q∗)−(C(q)−C(q∗)).

In our simulations we used two types of cost functions, linear functions of

the form C(q) = aq and quadratic functions of the form C(q) = aq2 with the

same coefficients (recall Table 2.2). As an illustration, a pairwise comparison

for a fixed coefficient a shows that a deviation upwards is more attractive

in relative terms for quadratic costs if a(q2 − (q∗)2) < a(q − q∗), which is

equivalent to q + q∗ < 1 (recall that we normalized qmax to 1). As a result a

firm experimenting with a larger quantity q > q∗ makes larger profits than

the incumbent firms for both types of cost functions, however, for q + q∗ <

1 the increase in costs is larger for linear costs than for quadratic costs,

and thus dampens the additional profits. Of course, for q + q∗ > 1 the

opposite holds, however, for our choices of P and C most values of qW are

below 1/2.10 Moreover, a similar argument shows that an upward deviation

10For our parameter combinations the Walrasian quantity qW is smaller than 1/2 for all
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towards qW is also more likely to generate an absolute payoff advantage

compared to the previous period, which increases the likelihood that this

deviation is successful. Therefore deviations upwards in the direction of qW

are more attractive in both relative and absolute terms if C is quadratic,

which potentially explains the lower weight on qW for linear cost functions.

We can also confirm our previous observation that the relative weight on

qC is increasing in memory length, while it has the opposite effect on qW .

That is, longer memory shifts some weight within the invariant distribution

towards quantities closer to the Cournot one, although most of the weight

remains closer to the Walrasian equilibrium.

Regarding the effect of the number of firms, the regressions show that

the time spent at both qC and qW is decreasing in N . However, for N > 2

the interior mass does not increase significantly for higher N , but instead

it even decreases. This indicates that beyond the duopoly the effect of N

on the weight on the Cournot and Walras quantities is rather mechanical:

as the number of firms increases, the probability of simultaneous, successful

deviations to quantities outside the interval [qC , qW ] is higher, leading to a

relative decrease of the weight on all states within the interval. However,

for the duopoly we observe larger weights on both qC and qW while, at the

same time, the interior mass F̂ ((qC , qW )) decreases significantly compared

to situations with more than two firms. This effect on the relative weight is

especially pronounced for qC , which is in line with our previous observation

that for the duopoly the distribution shifts more weight towards the Cournot

quantity.

Last, the regressions also show that a larger level of noise increases the

weight on states outside the stable interval [qC , qW ] and decreases the weight

at all monomorphic states within [qC , qW ]. This is a trivial effect: the

presence of higher noise increases the lower bound for the weight on ev-

ery monomorphic state (for positive epsilon the invariant distribution is ir-

reducible) resulting in a general flattening of the distribution. As remarked

before, the predictions of stochastic stability refer to the vanishing-noise limit

and have to be tested with small values of ε. For larger values, all one can

but four cases, and only slightly above 1/2 in those four.
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learn is “noise in, noise out.”

2.5 Discussion

This paper makes two main contributions. First, using computational simu-

lations we show that the main prediction of Alós-Ferrer (2004) – full support

of the limit invariant distribution on [qC , qW ] for K > 0 – holds beyond the

set of well-behaved Cournot games used in that article. We provide evi-

dence that this result is more general than previously shown. Specifically,

our simulations suggest that the result holds for a wide spectrum of inverse-

demand and cost functions which do not necessarily satisfy the assumptions

of Alós-Ferrer (2004).

Second, we shed light on the exact shape of the limit distribution for im-

itative dynamics with memory in Cournot games, and how it is affected by

different variables such as memory length and the number of firms. It turns

out that the limit distribution is bimodal, with peaks at the Cournot and

Walras extremes, but highly skewed towards the Walrasian quantity. This

result is surprisingly robust across a large number of different specifications.

Although longer memory increases the importance of the Cournot equilib-

rium the competitive outcome remains the dominant quantity. Throughout

all specifications the process spends most time on the Walrasian quantity.

Interestingly, the Cournot quantity is most attractive in a duopoly setting,

while for more than three firms the exact number of competitors apparently

has only minor influence on the relative weights on Cournot and Walras.

Overall, the main message of our analysis is that, even when one consid-

ers more realistic behavior than in Vega-Redondo (1997) and less restrictive

assumptions than in Alós-Ferrer (2004), relative-performance concerns and

imitative behavior in quantity-setting markets will generally lead to increased

competitiveness in market outcomes, even if the expected behavior is cap-

tured by a rich dynamics rather than a point prediction.

In summary, we have used simulations to numerically “prove” that the set

of stochastically stable states derived in Alós-Ferrer (2004) is unchanged for

more general Cournot oligopolies, while at the same time exploring a number
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of natural dimensions as the number of firms or the convexity of costs. Of

course, simulations do not provide analytical results and are not meant to

replace them. If analytical results are not feasible, however, simulations are

clearly an efficient way to make progress and open new directions for theory

development. In this sense, we hope that the work presented here can serve

as an illustration of how computer simulations can serve as a useful tool for

the analysis of dynamic, stochastic learning models where agents are endowed

with behavioral rules.
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Chapter 3

Cognitive Sophistication and Deliberation Times

3.1 Introduction

Cognitive capacities differ among individuals. Inter-individual differences in

sophistication and cognitive effort have been put forward as an explanation

for disparities in observed behavior, e.g. differences in the effectiveness of in-

centives and differences in cognitive ability. This gave rise to a rich theoretical

literature that endows individuals with differing degrees of strategic sophisti-

cation or reasoning capability. Prominent models, such as the level-k model

(Stahl, 1993; Nagel, 1995; Stahl and Wilson, 1995) and models of cognitive

hierarchies (Ho et al., 1998) are build on the assumption that heterogeneity in

depth of reasoning is the source of individual differences in behavior. These

models have proven to perform well in describing observed behavior, how-

ever, there is also some recent behavioral evidence (Goeree et al., 2016) that

is inconsistent with most models of iterative thinking. Reconciling behavior

in their experiment with a model of iterative thinking, such as level-k, would

require inordinate high levels compared to what is usually observed in the

literature. This, at least, casts some doubt on whether these models can be

understood as procedural, describing how decisions are arrived at, or whether

they should rather be understood as purely descriptive, outcome-based mod-

els. Studying this question requires an individually measurable correlate of

cognitive effort, we argue that deliberation times can be purposefully used

as such a measure.

The use of response times is well-established in (cognitive) psychology

as a tool to help understand decision processes in the human brain, that

is, how decisions are made.1 A well-studied stylized fact in that literature

1For a recent discussion of the benefits, challenges, and desiderata of response time
analysis in experimental economics see Spiliopoulos and Ortmann (2017).
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is that the human ability to discriminate between two stimuli is a function

of the difference between the respective stimuli. With increasing difference

the mean response time decreases, or in other words, decisions closer to

indifference are found to be slower (Dashiell, 1937; Mosteller and Nogee, 1951;

Moyer and Landauer, 1967). It is important to note that response times in

that literature are usually very short (below one second), and hence have to

be distinguished from deliberation times (or decision times) in more complex

tasks, as the ones used to study iterative thinking. However, there is some

recent evidence that this distance-to-indifference effect can also be found for

longer decision times, to which we refer as deliberation times (Krajbich et al.,

2014, 2015).

So far there has been little direct evidence that depth of reasoning (level

of thinking) corresponds to cognitive effort. Most of the experimental liter-

ature has used observed choices to classify individuals in different cognitive-

reasoning categories or types. This way, choice data is used to make infer-

ences regarding the processes that lead to a particular choice. The problem

with this approach is that the same choice is always attributed to the same

level, although it might very well be the result of completely different deci-

sion rules. Choice data alone is not sufficient to distinguish such cases and,

hence, additional data is necessary to make better inferences regarding the

underlying processes. We argue that deliberation times can provide such

evidence.

There is a growing literature employing other sources of evidence sug-

gesting that individuals follow step-wise reasoning processes (e.g., Coricelli

and Nagel, 2009; Brañas-Garza et al., 2012; Gill and Prowse, 2016). Those

works show that reasoning in the beauty contest game (Nagel, 1995), which

is the workhorse in the literature on iterative thinking, correlates with neu-

ral activity in areas of the brain associated with mentalizing (Theory of

Mind network) and relate higher cognitive ability (as measured, e.g., by the

Cognitive Reflection Test or the Raven test) with more steps of reasoning.

Others have used click patterns recorded via MouseLab and eye-tracking to

obtain information on search behavior, which is then used to make inferences

regarding level-k reasoning (Costa-Gomes et al., 2001; Crawford and Costa-
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Gomes, 2006; Polonio et al., 2015). Lindner and Sutter (2013) find that

under time pressure behavior in the 11-20 game is, perhaps coincidentally,

closer to the Nash equilibrium. Recently, Alaoui and Penta (2016b) have

incorporated deliberation times into a model of endogenous depth of reason-

ing, with the key assumption being that each additional step of reasoning

increases deliberation times. Gill and Prowse (2017) use deliberation times

to measure strategic complexity in a repeated p-beauty contest game and

show that “overthinking,” that is, thinking longer than usual, is detrimental

to performance.

We provide a simple model linking cognitive sophistication and deliber-

ation times, taking into account stylized facts from the psychophysiological

literature on response times. In our model we view the total deliberation

time of an observed choice as the sum of “decision times” for a chain of

binary “hypothetical choices” as implicitly postulated in the literature on it-

erative thinking, and explicitly assumed in Alaoui and Penta (2016b). The

key assumption of the model is then that the time required for each step is a

decreasing function of the distance to indifference, as captured by the poten-

tial gain of conducting an additional step of reasoning. The model provides

empirically testable predictions regarding the relation of deliberation times,

choices and cognitive sophistication, as well as regarding the effects of in-

centives on both the level of cognitive sophistication, as revealed by choices,

and the psychophysiological correlate embodied in deliberation times. We

then test the predictions in an experiment using two different games com-

monly used to study iterative thinking: the beauty contest game (or guessing

game) (Nagel, 1995), which is the workhorse in that literature, and the 11-20

money request game, recently introduced by Arad and Rubinstein (2012),

in the graphical version of Goeree et al. (2016). In our experiment subjects

play different variants of the 11-20 game, which allows us to vary the payoff

structure, hence the incentives, without affecting the underlying best-reply

structure. Using deliberation times as a proxy for cognitive effort in these

strategic situations, we then argue that process data, such as deliberation

times, can provide additional evidence that the underlying decision processes

are indeed based on some form of step-wise reasoning.
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In the beauty contest game we find longer deliberation times for choices

commonly associated with more steps of reasoning, confirming the prediction

of our model that deliberation time is increasing in cognitive effort. In three

variants of the 11-20 game, we show that deliberation times are longer for

higher-level choices, at least in situations where the payoff structure is such

that following level-k type of reasoning is salient enough. However, when

iterative thinking is not natural or when a conflict with alternative decision

rules (e.g., based on the salience of high payoffs) is likely, we find no system-

atic relation between higher-level choices and deliberation times. Rather, in

this situation we find overall longer deliberation times suggesting a conflict

between competing decision rules. That is, features besides the best-reply

structure matter as well, but deliberation times can serve as a tool to identify

such situations. The second prediction of our model relates changes in the

incentives to deliberation times and predicts shorter deliberation times for a

given number of steps when the incentives are increased. This captures the

stylized fact that “decisions” closer to indifference require more deliberation.

In one treatment we find overall shorter deliberation times when incentives

are increased, while at the same we observe more higher-level choices. This

might sound counterintuitive at first, since intuitively more steps of reasoning

should increase deliberation times. However, our model predicts that at the

same time higher incentives decrease the time required for each single step,

which can explain this finding. Indeed, in that treatment we find that when

incentives are increased the deliberation time per step decreases. Further, we

show that a decrease in incentives only leads to longer deliberation times and

can be explained by longer deliberation times per step, as predicted by our

model, if it is systematic and sufficiently large. Further, we find a systematic

effect of incentives on the depth of reasoning, that is in line with previous

findings in the literature (Alaoui and Penta, 2016a).

The paper is structured as follows. Section 3.2 introduces our model

and relates it to existing models in the literature. Section 3.3 describes

the experimental design. Section 3.4 presents the results of our experiment.

In Section 3.5 we presents additional analysis. Section 3.6 discusses and

summarizes our findings.
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3.2 The Model

We explicitly model decision making as a process of iterative reasoning as

put forward in the literature on iterative thinking (Nagel, 1995; Stahl, 1993;

Stahl and Wilson, 1995; Ho et al., 1998). Our model yields testable predic-

tions linking deliberation times to choices and incentives in a specific class

of strategic games.

Consider a symmetric, two-player game Γ = (π, S) with finite strategy

space S and payoff function π : S × S −→ R. Assume that for any s ∈ S

there is a unique best-reply, denoted by BR(s), that maximizes π(·, s). The

best-reply structure of Γ for a starting point s0 ∈ S is a sequence (s∗k)k∈N such

that s∗0 = s0 and s∗k = BR(s∗k−1). Fix a best-reply structure (s∗k)k∈N with

starting point s0. We model a process of iterative thinking as a sequence of

binary “choices,” where in each step a player evaluates the current strategy

s∗k−1, reached after k− 1 steps of thinking, against strategy s∗k by comparing

π(s∗k−1, s
∗
k−1) against π(s∗k, s

∗
k−1). In other words, the player considers the

case where his opponent has also conducted k − 1 steps of thinking, hence

uses strategy s∗k−1, and then evaluates the potential gain from conducting

an additional step of thinking, that is π(s∗k, s
∗
k−1)− π(s∗k−1, s

∗
k−1). Note that

this last evaluation does not necessarily involve conscious calculations, but

should rather be understood as a proxy that determines whether to engage

in additional deliberation. For example, one way to think about is that this

evaluation happens automatically and that the controlled process of iterative

thinking only takes over when the payoff is large enough. In addition, we

assume that each step of thinking comes with a cognitive cost. The cognitive

cost associated with the kth step of thinking is given by ci(k) with ci : N −→

R+ weakly increasing. Thus the maximal number of steps of thinking player

i is willing (or able) to conduct is given by Ti = min{k ∈ N | π(s∗k+1, s
∗
k) −

π(s∗k, s
∗
k) < ci(k)}.

Denote by uk = π(s∗k, s
∗
k−1) − π(s∗k−1, s

∗
k−1) the potential gain of the kth

step of thinking. We link this simple model of iterative thinking to delibera-

tion times via two basic assumptions. First, we assume that the deliberation

time for conducting k steps of thinking is the sum of the deliberation times
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required for each step. Second, we assume that the deliberation time for a

given step of thinking is larger the smaller the potential gain/loss for that

step. This models a well-established fact in psychology that “decisions” closer

to indifference are slower (Dashiell, 1937; Mosteller and Nogee, 1951; Moyer

and Landauer, 1967). The deliberation time of player i for choosing strategy

s∗k is given by

DTi(s
∗
k) =

k
∑

i=0

fi(|ui|) with fi : R+ −→ R++ strictly decreasing and positive.

We say that a strategy s requires more cognitive effort compared to s′, if

it is the result of more steps of reasoning, that is s = s∗k and s′ = s∗k′ with

k > k′. In that case, our model implies that DTi(s) > DTi(s
′) if s requires

more cognitive effort than s′.

Prediction 1 (Cognitive Effort). Deliberation time is increasing in cognitive

effort.

This prediction is straightforward and is also a prediction of Alaoui and

Penta (2016b). The following prediction, however, is particular to our model

where we in addition assume that that deliberation time per step is a decreas-

ing function of the utility differences. This allows us to derive predictions on

how changing the incentives, that is, the payoff structure of the game, affects

deliberation times. Consider two symmetric, two-player games Γ = (π, S)

and Γ′ = (π′, S) with the same strategy space S and the same best reply

structure (s∗k)k∈N with starting point s0. We say that Γ′ has higher payoff

differences than Γ for step k if u′
k > uk where uk = π(s∗k, s

∗
k−1)−π(s∗k−1, s

∗
k−1)

and u′
k = π′(s∗k, s

∗
k−1) − π′(s∗k−1, s

∗
k−1). Suppose Γ′ has higher payoff differ-

ences than Γ for any step l ≤ k for some k, then DT ′
i (s

∗
k) =

∑k

i=0 fi(|u
′
i|) <

∑k

i=0 fi(|ui|) = DTi(s
∗
k) because f(|u′

l|) < f(|ul|) for all l ≤ k.

Prediction 2 (Incentives). The deliberation time for a choice corresponding

to k steps of thinking is shorter (longer) if the payoff differences for all steps

up to k are increased (decreased).
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For a fixed number of steps of thinking our model predicts shorter de-

liberation times for higher payoff differences, because a player requires less

time for each step. Note that this does not necessarily imply that one should

observe longer total deliberation times for higher payoff differences. This is

because higher payoff differences might increase the gain from conducting

another step of thinking as well, hence subjects potentially conduct more

steps of thinking, which in turn increases deliberation time.

It is conceivable that individual differences in cognitive ability affect delib-

eration times. In our model cognitive ability could affect deliberation times

in two ways: First, higher cognitive ability could translate into uniformly

lower cognitive costs of reasoning ci. In that case, players with higher cogni-

tive ability are likely to conduct more steps of reasoning, because Ti ≥ T ′
i if

ci(k) ≥ c′i(k) for all k ≤ Ti, which would increase overall deliberation time.

Second, higher cognitive ability could also translate into shorter deliberation

times per step, which would decrease deliberation times. However, that does

not mean that deliberation time for players with high cognitive ability will

generally be shorter (independently of the number of steps). This is because

higher cognitive ability might also result in more steps of reasoning requiring

additional deliberation time, so that the overall effect on deliberation times

is indeterminate.

3.2.1 Related Models

In this subsection, we discuss related models that account for response or

deliberation times. The model closest to ours is Alaoui and Penta (2016b)

which extends the model of “Endogeneous Depth of Reasoning” in Alaoui and

Penta (2016a) to account for deliberation times. Alaoui and Penta (2016a)

provide a model of iterative thinking where the depth of reasoning is endoge-

nously determined and results from a cost-benefit analysis. Alaoui and Penta

(2016b) discuss how this model can be used to make comparative statics pre-

dictions for deliberation times. Total response time for a given number of

steps of reasoning is the sum of the times required to attain the necessary

unit of understanding for each step. Hence their model also predicts (for
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sufficiently similar games) that response time is increasing in the depth of

reasoning. Like we do, they assume that the depth of reasoning is deter-

mined by the “value of reasoning” and the “cost of reasoning.” The former

is linked to the payoff structure of the game, whereas the latter depends on

the complexity of the game. They assume that the value of reasoning has

a maximum gain representation (Alaoui and Penta, 2015), that is, it equals

the highest possible payoff improvement that an agent could obtain by using

the “next step strategy” instead of the current one. The key difference to

our model is that we assume that deliberation time of a given step is de-

creasing in the utility differences. In their model the value of reasoning is

also related to differences in payoffs between alternatives, however, a higher

value of reasoning only affects total deliberation times because it increases

the probability of conducting another step, but not the time required for a

given step, which is a key assumption in our model.

Chabris et al. (2009) study the allocation of time across decision prob-

lems. Their model is similar in spirit to ours in that it is motivated by the

closeness-to-indifference effect. They also model response time as a decreas-

ing function of differences in expected utility. However, in contrast to our

model they focus on binary intertemporal choices and do not consider iter-

ative reasoning. They report empirical evidence that choosing among two

options whose expected utilities are close requires longer decision times than

when expected utilities are far apart, thus indicating an inverse relationship

between average response time and utility differences. They argue that their

results support the view that decision-making is a cognitive costly activity

that allocates time according to cost-benefit principles, which is also in line

with the interpretation in Alaoui and Penta (2016b).

Echenique and Saito (2017) give an axiomatic characterization for when

data on choices and deliberation times is consistent with a monotonic re-

lationship between response time and differences in utility. Their model is

related to ours in that we also assume that there is a monotone relationship

between deliberation time and the utility difference between staying with

the current strategy or conducting an additional step of reasoning. However,

their model focuses on binary, discrete choices, while the focus of our model
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is iterative thinking of the level-k type.

3.3 Experimental Design

In the previous section we have introduced a simple model linking depth of

reasoning to deliberation times. In this section we report results from an

experiment which allows us to test the predictions of this model. Our main

objective is to study whether depth of reasoning can be linked to a sim-

ple measure of cognitive effort, namely deliberation times. The motivation

for this is to use an independent measure as a potential validation of iter-

ative thinking. We use two games commonly employed to study cognitive

sophistication, the beauty contest game (Nagel, 1995), the workhorse model

of iterative thinking, and the 11-20 money request game, a more recent al-

ternative that was explicitly designed to study level-k behavior (Arad and

Rubinstein, 2012). We ask whether a higher level of reasoning is reflected

in higher cognitive effort, or in other words, is there a direct link between

higher levels of reasoning and deliberation times? We use different variations

of the 11-20 game, including a variant introduced in Goeree et al. (2016),

that vary the incentives for iterative thinking, but do not affect the underly-

ing best-reply structure of the game. This allows us to study how behavior

and deliberation times react to systematic changes in the payoff structure.

3.3.1 The Games

The Beauty Contest Game

The standard work horse for the study of cognitive sophistication is the

guessing game, or p-beauty contest game (Nagel, 1995). We use a standard,

one-shot p-beauty game with p = 2/3. In the (discrete) beauty contest

game a population of players has to simultaneously guess an integer number

between 0 and 100. The winner is the person whose guess is closest to p times

the average of all chosen numbers. The winner receives a fixed price, which is

split equally among all winners in case of a tie. The beauty contest game is a

game with usually more than two players. Since our model is about bilateral
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A9 A8 A7 A6 A5 A4 A3 A2 A1 20

9 8 7 6 5 4 3 2 1 0

Figure 3.1: Generalized 11-20 game.

interactions it cannot be directly applied to this situation. However, in the

beauty contest game a player’s payoff depends only on the average number

chosen by all other players and iterative thinking in this game is typically

based on beliefs about an representative agent. Thus we can apply our model

by viewing this game as a two-player game against a representative agent,

who selects that average number.

In this game it is usually assumed that non-strategic (level-0) players pick

a number at random from the uniform distribution over {0, . . . , 100}, which

yields an expected average of 50. Hence, we assume that the starting point

for iterative thinking is given by s∗0 = 50. If all players choose s∗0, then the

average of all numbers chosen is 50 and hence the best-reply to s∗0 is to choose

s∗1 = 33, that is the integer closest to (2/3) · 50. Iterating, this defines the

best-reply structure of the beauty contest game (s∗k) where s∗k is the integer

closest to (2/3)k · 50. This game has two Nash equilibria at 0 and 1.

The 11-20 Game

The second part of our experiment focuses on variants of the 11-20 money

request game, that was introduced by Arad and Rubinstein (2012) as a

two-player game that is specifically well-suited to study iterative reason-

ing. Alaoui and Penta (2016a) used the 11-20 game to test their model of

endogenous depth of reasoning. Goeree et al. (2016) introduced a graphical

version of the 11-20 game that allows to vary the payoff structure without

affecting the underlying best-reply structure of the game. We now describe

a generalized version of this graphical 11-20 game. In what follows, we will

refer to this game (and variants thereof) simply as “11-20 game.”

Consider ten boxes horizontally aligned and numbered from 9 (far left)

to 0 (far right) as depicted in Figure 3.1. Each box b ∈ {1, . . . , 9} contains
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BASE 11 12 13 14 15 16 17 18 19 20

EXTR 19 18 17 16 15 14 13 12 11 20

FLAT 17 17 17 17 17 17 17 17 17 20

Figure 3.2: Payoff structure for the different variants with low cost.

an amount Ab < 20 and the rightmost box contains the highest amount of

A0 = 20. There are two players, i = 1, 2 and each has to choose a box

bi ∈ {0, . . . , 9}. Each player receives the amount Abi in the box he chose

plus a bonus of R if he chose the box that is exactly one to the left of his

opponent’s box. That is, payoffs are given by

Πi(bi | b−i) =







Abi if bi 6= b−i + 1

Abi +R if bi = b−i + 1
.

A feature of this game is that choosing box 0 is the salient and obvious

candidate for a non-strategic level-0 choice, because it awards the highest

“sure payoff” of 20 that can be obtained without any strategic considerations.

Thus, the rightmost box 0 is a natural anchor serving as a starting point

for iterative thinking. If the bonus R is large enough, that is, R > 20 −

min{Ab|b = 1, . . . 9}, then the best-reply structure for the salient starting

point s∗0 = 0 is (s∗k)k with s∗k = k for k = 1, . . . , 9.2 In other words, for

a sufficiently large bonus the best-reply is always to choose the box that is

exactly one to the left of your opponent (if there is such a box). Note that for

s∗0 = 0 the best-reply structure is independent of the specific payoff structure

given by A9, . . . , A1 if R > 20−min{Ab|b = 1, . . . 9} and A0 = 20, that is, if

the bonus is large enough and the rightmost box contains the salient amount

of 20.

2Note that the best-reply to an opponent choosing box 9 is to choose box 0, hence for
k > 9 the best-reply structure cycles repeatedly from 0 to 9. For simplicity, we abstract
from this issue and focus only on steps 1-9. Alaoui and Penta (2016a) use a slightly different
payoff structure with an additional bonus in case of a tie that breaks this best-reply cycle.
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We use the three versions of the 11-20 game shown in Figure 3.2.3 The

sure payoffs given by the amounts A0, . . . , A9 differ across versions, however,

they are always chosen such that they feature the best-reply structure just

described above. In the baseline version (BASE) the amounts are increasing

from the left box to the rightmost box, containing the highest amount of

20. BASE corresponds to the original version of Arad and Rubinstein (2012)

and to the baseline version of Goeree et al. (2016). In BASE there is a nat-

ural trade-off between the sure payoffs A1, . . . , A9 and the bonus, that can

be obtained by outsmarting ones opponent, with each incremental step of

reasoning being equally costly in terms of sure payoff. The extreme version

(EXTR) was previously used in Goeree et al. (2016). In this version, the

amounts in the boxes are rearranged so that they are decreasing from left

to right with the second highest amount in the leftmost box. While this

rearrangement does not alter the underlying best-reply structure, it crucially

affects the cost in terms of sure payoff associated with different levels of rea-

soning. Choosing box 1 is now disproportionately expensive, and further

increments come, in terms of sure payoff, at no cost but instead at a gain.

Moreover, this asymmetry potentially opens the door for alternative heuris-

tics, such as choosing the highest amount that still grants the possibility for

a bonus, which in this case would imply choosing the leftmost amount. The

third version we use was introduced to remove the trade-off between higher

steps of reasoning and sure payoff. This flat cost version (FLAT) is a modifi-

cation of BASE, where the first iteration results in a flat cost, but after that

all additional steps are identical and come at no further cost in terms of sure

payoff. FLAT could be viewed as a modification of Arad and Rubinstein’s

(2012) costless iterations version. In FLAT all boxes except the rightmost

box contain the same amount, which is by some fixed amount lower than

the salient amount of 20. Thus, choosing any box except the rightmost gives

the same sure payoff and, hence, after the first step any additional step is

“costless.”

3For each of the three versions BASE, EXTR, and FLAT there is a unique
mixed strategy Nash equilibrium. For the low cost and low bonus versions those
are given by (0, 0, 0, 0, 0.25, 0.25, 0.2, 0.15, 0.1, 0.05), (0, 0, 0, 0, 0, 0, 0, 0.15, 0.40, 0.45), and
(0, 0, 0, 0.10, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15), respectively.
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BASE 2 4 6 8 10 12 14 16 18 20

EXTR 18 16 14 12 10 8 6 4 2 20

FLAT 14 14 14 14 14 14 14 14 14 20

Figure 3.3: Payoff structure for the different variants with high cost.

We varied these three versions of the 11-20 game along two additional

dimensions: First, for each treatment we have a “high cost” version, where for

BASE and EXTR the amounts A1, . . . , A9 range from 2 to 20 in increments

of 2 instead of from 11 to 20 in increments of 1, and for FLAT all amounts

other than 20 were set to 14 in the high cost version instead of 17 (see Figure

3.3). Depending on the treatment, the trade-off between bonus and sure

payoff for an additional step of reasoning is decreased or increased under

high cost. Second, we vary the incentive to reason in that we change the size

of the bonus for choosing the box exactly one to the left of the other subject.

In the high bonus condition, subjects obtain R = 40 additional points for

the “correct” box, while in the low bonus condition they only get R = 20

additional points.

3.3.2 Design and Procedures

The experiment consisted of three parts during which subjects could earn

points with 10 points being worth e 0.25. First, each subject played a series of

different versions of the money request game. Each treatment BASE, EXTR,

and FLAT was played four times, once for each bonus-cost combination.

Second, subjects participated in a single p-beauty contest with p = (2/3). In

the third part we collected several individual correlates intended to control for

cognitive ability, social value orientation, aversion to strategic uncertainty,

swiftness, and demographics. There was no feedback during the course of

the experiment, that is, subjects did not learn the choices of their opponents

nor did they get any information regarding their earnings until the very end

of the experiment. All decisions were made independently and at a subject’s

individual pace. In particular, subject’s never had to wait for the decisions of
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another subject except for the very end of the experiment, at that point they

had to wait until everybody had completed the experiment so that outcomes

and payoffs could be realized.

We now describe each part of the experiment in detail. For the 11-20

games, we randomly assigned the subjects within a session to one of four

randomized sequences of the games to control for order effects.4 Subjects

were informed that for every game they would be randomly matched with

a new opponent to determine their payoff for that round, hence preserving

the one-shot character of the interaction. Each of the three variants BASE,

EXTR and FLAT was played exactly four times, once for each possible com-

bination of cost (low/high) and bonus (low/high).

In the second part, subjects played a single p-beauty game with p = 2/3

among all 32 participants in the session. The winner, that is, the subject

whose guess was closest to 2/3 times the average of all choices, received 500

points. In case of a tie, that is, when there were multiple winners, the amount

was split equally among all winners.

In the final part of the experiment, participants answered a series of

questions. First, subjects completed a combined version of the CRT with

nine items consisting of the classical three items from Frederick (2005), three

additional items taken from Toplak et al. (2014), and two further items in-

troduced by Primi et al. (2015).5 Subjects received 5 points for each correct

answer. Next, we elicited aversion to strategic uncertainty using the method

by Heinemann et al. (2009) with random groups of four. The task involves

measuring certainty equivalents, similarly to Holt and Laury (2002a)’s mul-

tiple price list method, for a situation where payoffs depend on the decision

of another subject, that is, strategic uncertainty. In ten situations subjects

have to choose between different amounts of sure payoffs (5 to 50 points)

and a binary coordination game, in which they can earn 50 points if at least

4The exact sequences are provided in Table 3.9 in Appendix 3.A. Besides our main
treatments the sequences contained a further treatment with four additional games dis-
cussed in Section 3.5.2.

5Other studies (Cappelen et al., 2013; Gill and Prowse, 2016) have also used the Raven
test as a proxy for cognitive ability. Brañas-Garza et al. (2012) used the Raven test and
the CRT by Frederick (2005) in a series of six one-shot p-beauty games and find that CRT
predicts lower choices (i.e. higher level), while performance in the Raven test does not.
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two other members of their group have also chosen the coordination game

and zero points otherwise. Subjects were randomly allocated into groups of

four, and for each group one of the decision situations was randomly selected

for payment. Finally, we collect a measure to control for differences in me-

chanical swiftness (Cappelen et al., 2013). To that end we recorded the time

needed to complete four simple demographic questions on gender, age, field of

study, and native language. This part was integrated into a larger question-

naire, which also comprised questions regarding subjects’ understanding of

the tasks, their perception of its complexity, number of university semesters,

left- or right-handedness, average amount of money needed per month, and

previous attendance of a lecture in game theory.

To determine a subject’s earning in the experiment the payoffs from each

part were added up and converted to e at rate of e 0.25 for each 10 points. In

addition subjects received a show-up fee of e 4 for an average total renumera-

tion of e 15.67. A session lasted on average 60 minutes including instructions

and payment.

A total of 128 subjects (79 female) participated in 4 experimental ses-

sions with 32 subjects each. Participants were recruited from the student

population of the University of Cologne using ORSEE (Greiner, 2015), ex-

cluding students of psychology, economics, and economics related fields, as

well as experienced subjects who already participated in more than 10 ex-

periments. The experiment was conducted at the Cologne Laboratory for

Economic Research (CLER) and was programmed in z-Tree (Fischbacher,

2007).

3.4 Results

In Subsection 3.4.1 we analyze behavior and deliberation times in the beauty

contest game. Subsection 3.4.2 presents the results for the 11-20 games.

Results regarding the effect of incentives in the 11-20 game are presented in

Subsection 3.4.3.
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Figure 3.4: Choices and deliberation times in the beauty contest game.

Notes: Left panel shows histogram of guesses (0-100) in the beauty contest game (N =

128). Right panel shows a scatter plot of guesses (0-100) vs associated deliberation time

(in s) in the beauty contest game and plots the result of a linear regression of choice on

deliberation times with 95% confidence interval.

3.4.1 Results for the Beauty Contest Game

We first explore the relation of depth of reasoning, as revealed by choices,

cognitive ability and deliberation times in the beauty contest game.

The left panel of Figure 3.4 depicts the distribution of choices in the

beauty contest game. Of the 128 subjects only 2 chose the Nash Equilibrium

strategy of 0, 23 chose a number close to 33 (level-1), 9 chose a number close

to 22 (level-2), 15 chose a number close to 15 (level-3), and 3 chose a num-

ber corresponding to higher levels. The target numbers in our four sessions

were 27, 28, 29 and 32 and the respective winning numbers were 28, 27, 30

and 32. Hence, the best-performing strategy (among the level-k strategies)

would have been the level-1 choice of 33. We classify all choices that are at

a distance of at most 2 from the level-k strategy as level-k.6 Overall behav-

ior is in line with previous results in the literature, that commonly observe

mostly one to three steps of reasoning and a significant amount of unclassified

(random) choices usually thought of as level-0. The right panel of Figure 3.4

shows a scatter plot of subjects’ guesses and the corresponding time taken for

6Choices between 31 and 35 were classified as level-1, choices between 20 and 24 as
level-2, choices between 13 and 17 as level-3, choices between 8 and 12 as level-4, choices
between, 5 and 7 as level-5, and choices of 0 as Nash Equilibrium. There were no choices
between 1 and 5. Our results are unchanged for narrower classifications, e.g. where only
the level-k strategy ±1 are classified as level-k.
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Table 3.1: Linear regressions on log DT for the beauty contest game.

log DT 1 2 3
Level 0.1264∗∗ 0.1352∗∗

(0.0593) (0.0617)
CRTExtended 0.0017 −0.0173

(0.0316) (0.0323)
Swiftness −0.2836 −0.2780 −0.3225

(0.4463) (0.4306) (0.4399)
Female −0.2640∗ −0.2237 −0.2420∗

(0.1418) (0.1353) (0.1400)
Constant 3.1202∗∗∗ 3.0158∗∗∗ 3.1016∗∗∗

(0.2353) (0.1668) (0.2319)
Adjusted R2 0.0114 0.0468 0.0412
F-Test 1.4784 3.0456∗∗ 2.3422∗

Observations 126 126 126

Notes: Standard errors in parentheses. ∗ p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Two subjects

with very fast choices of 0 were excluded from the analysis. Our results are robust when

those choices are included and classified as level-0. Classification of levels: Level 1 (31-35),

Level 2 (20-24), Level 3 (12-17), Level 4 (7-11), Level 0 (rest). There were no choices in

the range 1-6. CRTExtended (number of correct answers; 0-7); Swiftness (time needed to

answer 3 demographic questions); Female (dummy).

that choice. The slope of the regression line suggests a negative correlation

between deliberation times and “higher-level” choices. Hence, indicating that

choices corresponding to more steps of reasoning require longer deliberation

times.

Our model predicts that deliberation time is increasing in cognitive ef-

fort (Prediction 1), that is, we expect longer deliberation times for choices

associated with more steps of reasoning. We now test this prediction using a

series of three linear regressions with log transformed deliberation times (log

DT) as dependent variable and controls for gender and individual differences

in mechanical swiftness (Cappelen et al., 2013). The results of those regres-

sions are presented in Table 3.1. In model 1, we see that cognitive ability,

measured by the extended CRT, has no effect on deliberation times. Recall

that in our model the overall effect of cognitive ability on deliberation time is
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indeterminate because there are two possible effects that might be counter-

vailing. Model 2 shows a significant positive effect of higher-level choices on

deliberation time. Thus, we find, in line with Prediction 1, that deliberation

time is increasing in cognitive effort. This result remains robust when we

additionally control for cognitive ability (model 3).7

Performance in the CRT was previously found to be correlated with level

in the beauty contest (Brañas-Garza et al., 2012). Conducting an additional

linear regression with level as dependent variable on CRT, we find a signif-

icant and positive coefficient for CRT (β = 0.1462, p = 0.009). This result

indicates that, in line with previous results in the literature, subjects with

higher cognitive ability conduct more steps of reasoning.

3.4.2 Results for the 11-20 Games

In this section we analyze the relation between deliberation times, choices

and cognitive ability in the three versions of the 11-20 game.

We first consider the observed behavior across the different variants of

the 11-20 game.8 Choices in BASE closely resemble the behavioral patterns

found in Arad and Rubinstein (2012) and Goeree et al. (2016). Most subjects

selected one of the 3 rightmost boxes corresponding to levels 0 to 3. In EXTR,

behavior is comparable to that observed in Goeree et al. (2016) and vastly

different from that observed in BASE. There is a large fraction of subjects

(between 38% and 62%) choosing the rightmost box containing the salient

amount of 20, but box 1 and 2 to its left are chosen very rarely compared to

BASE. Instead between 25% and 33% of subjects chose one of the leftmost

boxes 8 and 9, which were essentially not chosen at all in BASE. These choices

correspond to eight or nine steps of reasoning. In contrast, behavior in FLAT

is again very similar to that in BASE with most choices corresponding to not

more than three steps of reasoning. Compared to BASE there is a larger

7Throughout the paper we use the results from the 7-item CRT by Toplak et al. (2014)
as measure of cognitive ability. Subject’s also answered the two additional items proposed
by Primi et al. (2015). Our results do not change if we use their version or a combination
of both instead.

8Figure 3.6 in Appendix 3.B shows the distribution of choices across all instances of
the 11-20 game.
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Table 3.2: Random effects log DT regressions on level (full sample).

log DT 1 2 3
Level 0.0385∗∗∗ 0.0272∗∗∗ 0.0282∗∗∗

(0.0057) (0.0060) (0.0060)
EXTR 0.1631∗∗∗ 0.1614∗∗∗

(0.0351) (0.0352)
FLAT −0.0309 −0.0308

(0.0337) (0.0338)
CRTExtended 0.0572∗∗∗

(0.0165)
Swiftness 0.2607 0.2626 0.4155∗

(0.2406) (0.2407) (0.2335)
Female 0.0943 0.0932 0.1654∗∗

(0.0744) (0.0744) (0.0738)
Period −0.0884∗∗∗ −0.0889∗∗∗ −0.0889∗∗∗

(0.0030) (0.0030) (0.0030)
Constant 2.5943∗∗∗ 2.5788∗∗∗ 2.2628∗∗∗

(0.0928) (0.0944) (0.1284)
R2 (overall) 0.3056 0.3132 0.3417
Wald-Test 1299.4016∗∗∗ 1371.6146∗∗∗ 1385.4388∗∗∗

Observations 1536 1536 1536

Notes: Standard errors in parentheses. ∗ p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. A choice of box

k ∈ {0, . . . , 9} is classified as level k; EXTR and FLAT are treatment dummies; CRTEx-

tended (number of correct answers; 0-7); Swiftness (time needed to answer 3 demographic

questions); Female (dummy); Period controls for position in the sequence of games.

fraction of level-0 choices in FLAT, which is most likely due to the first step

being more costly in terms of sure payoff. When playing against the empirical

distribution of choices the best-performing strategies for BASE, EXTR and

FLAT would correspond to level 2, level 1 and level 1, respectively.9

Table 3.2 shows a series of four GLS random-effects regressions with log

DT as the dependent variable including as observations all 12 choices in

BASE, EXTR, and FLAT. In all models we control for mechanical swiftness,

gender and the position within the sequence of games (Period). We find a

significant and positive relation between deliberation times and depth of rea-

9Controlling for empirical payoffs does not affect our results.
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soning. As predicted, choices associated with more steps of thinking require

more deliberation (model 1). This relation is unaffected when we include

the treatment dummies EXTR and FLAT in model 2. Further, we observe

a significant positive coefficient on EXTR indicating that choices in EXTR

generally required more deliberation time. In fact, the average deliberation

time in EXTR was 12.6 seconds, whereas the average deliberation time in

BASE and FLAT was only 9.9 seconds. Pairwise Wilcoxon signed rank tests

confirm that the average deliberation time in EXTR is significantly higher

compared to both BASE (N = 128, z = 4.6778, p < 0.001) and FLAT

(N = 128, z = 4.3746, p < 0.001). In model 3 we include performance in

the CRT, as measured by the number of correct answers, as an independent

variable to control for cognitive ability. The coefficient of CRT is significant

and positive, that is, subjects scoring higher on the CRT take more time to

make their decisions. More importantly, controlling for cognitive ability does

not alter the effects of level and EXTR on deliberation times.

In a next step, we repeat the same exercise separately for each of the

three treatments BASE, EXTR and FLAT. To that end, we run separate

regressions considering only the four choices taken for each of the variants.

Table 3.3 presents the results of these regressions. The results confirm our

previous findings, there is a positive significant relation between deliberation

times and higher-level choices in all three variants of the game. There is no

effect of cognitive ability on deliberation times in BASE, whereas we find a

positive and significant effect in EXTR and FLAT.

Considering the different variants separately has the advantage that we

now can check for potential explanations for the previously observed relation

between deliberation times and higher-level choices. In all variants a choice

of the rightmost box is appealing for various reasons. First, it maximizes the

sure payoff as the requested sure amount by selecting this box is 20 and thus

maximal. Second, it minimizes strategic uncertainty as it yields a payoff of

20 independent of the choice of the other player, which is also what makes

it a salient level-0 strategy. To better understand how the differences in the

payoff structure between the treatments affect the relation of deliberation

times, choices and cognitive ability we ran additional regressions where we
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Table 3.3: Random effects log DT regressions on level.

BASE EXTR FLAT
log DT 1 2 3
Level 0.0449∗∗ 0.0277∗∗∗ 0.0532∗∗∗

(0.0182) (0.0079) (0.0152)
CRTExtended 0.0280 0.0848∗∗∗ 0.0628∗∗∗

(0.0186) (0.0207) (0.0186)
Swiftness 0.5335∗∗ 0.2254 0.4919∗

(0.2632) (0.2925) (0.2617)
Female 0.1313 0.1926∗∗ 0.1883∗∗

(0.0834) (0.0925) (0.0830)
Period −0.0878∗∗∗ −0.0843∗∗∗ −0.0934∗∗∗

(0.0049) (0.0053) (0.0050)
Constant 2.3286∗∗∗ 2.3157∗∗∗ 2.1742∗∗∗

(0.1511) (0.1649) (0.1497)
R2 (overall) 0.3298 0.3148 0.3621
Wald-Test 352.7159∗∗∗ 300.5368∗∗∗ 378.8169∗∗∗

Observations 512 512 512

Notes: Standard errors in parentheses. ∗ p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Models

are restricted to subsamples including only the four decisions in BASE, EXTR or FLAT,

respectively. A choice of box k ∈ {0, . . . , 9} is classified as level k; CRTExtended (number

of correct answers; 0-7); Swiftness (time needed to answer 3 demographic questions);

Female (dummy); Period controls for position in the sequence of games.

add further variables controlling for specific features of the payoff structure.

First, to check whether choices of the rightmost box are particularly fast,

we include a dummy indicating those choices, denoted Rightmost20, in the

regressions. Further, in EXTR a choice of the leftmost box could also be

salient because it combines a high sure payoff with a chance of getting the

bonus. We thus include another dummy, denoted LeftmostBox, into the

regression for EXTR. Table 3.4 shows the results of these regressions.

In BASE we still observe a clear positive relation between deliberation

time and level after controlling for choices of the rightmost box, which in

turn are not significantly faster. In EXTR choices of the rightmost box are

significantly faster and this explains most of the effect of level on deliberation

times, in particular, level becomes insignificant when adding the dummy
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Table 3.4: Random effects log DT regressions with controls for the payoff structure.

BASE EXTR FLAT
log DT 1 2 3
Level 0.0658∗∗∗ −0.0164 0.0202

(0.0210) (0.0183) (0.0182)
Rightmost20 0.1634∗ −0.3438∗∗∗ −0.2356∗∗∗

(0.0835) (0.0991) (0.0728)
LeftmostBox 0.1010

(0.1201)
CRTExtended 0.0330∗ 0.0860∗∗∗ 0.0570∗∗∗

(0.0189) (0.0207) (0.0183)
Swiftness 0.5424∗∗ 0.1841 0.4671∗

(0.2646) (0.2893) (0.2571)
Female 0.1359 0.1912∗∗ 0.2034∗∗

(0.0839) (0.0911) (0.0817)
Period −0.0862∗∗∗ −0.0845∗∗∗ −0.0921∗∗∗

(0.0049) (0.0053) (0.0050)
Constant 2.2255∗∗∗ 2.6161∗∗∗ 2.3138∗∗∗

(0.1605) (0.1881) (0.1534)
R2 (overall) 0.3294 0.3330 0.3785
Wald-Test 360.2338∗∗∗ 317.7823∗∗∗ 394.5066∗∗∗

Observations 512 512 512

Notes: Standard errors in parentheses. ∗ p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Models

are restricted to subsamples including only the four decisions in BASE, EXTR or FLAT,

respectively. A choice of box k ∈ {0, . . . , 9} is classified as level k; Rightmost20 (dummy

for choosing rightmost box); LeftmostBox (dummy for choosing leftmost box); CRTEx-

tended (number of correct answers; 0-7); Swiftness (time needed to answer 3 demographic

questions); Female (dummy); Period controls for position in the sequence of games.

Rightmost20. Also in FLAT we observe very fast level-0 choices, and no

further relation between deliberation times and level. In BASE iterative

thinking is associated with an increasing cost and in this variant we observe

the strongest link between deliberation times and level. This effect also goes

beyond the observation that choices of the rightmost box containing the

salient amount of 20 are faster (in fact they are even slower in BASE). In

contrast, for EXTR and FLAT most of the effect is explained by fast level-0

choices. In EXTR we find no systematic relation between deliberation times
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and higher level choices. Also there is no effect on deliberation times for

the leftmost box. This result suggests that iterative thinking might be less

dominant in EXTR than for example in BASE although they feature the

same best-reply structure. In FLAT the comparably large cost associated

with the first step of reasoning results in a large fraction of subjects choosing

the rightmost box and these choices are faster. However, beyond that we

do not find evidence for a similar relation between higher-level choices and

deliberation times in FLAT.

In summary, we find generally longer deliberation times for higher-level

choices, which is in line with Prediction 1. But, this result has to be qual-

ified. Although deliberation time increases with cognitive effort in all three

treatments, we find this relation to be strongest in BASE. In EXTR, we find

that level-0 choices are significantly faster, however, we find no evidence that

there is a relation between cognitive effort and deliberation times for higher-

level choices. In particular, choices of the leftmost box, while frequent, are

not accompanied by longer deliberation times. It is possible that the partic-

ular payoff structure of EXTR renders the best-reply structure less salient,

which might explain why we find only limited support for iterative thinking

in EXTR. Also in FLAT, most of the effect of level on deliberation times is

explained by fast level-0 choices. However, in FLAT choices corresponding to

more than two steps of reasoning are very rare, which might explain the ab-

sence of a relationship for higher-level choices. This does not apply to EXTR

where a large fraction of choices corresponds to nine steps of reasoning.

3.4.3 Effect of Incentives in the 11-20 Game

According to Alaoui and Penta (2016a) a higher bonus increases the value

of reasoning and hence leads to a higher depth of reasoning. Following this

argument, one would expect that the observed level is weakly higher for a

high bonus compared to a low bonus for all treatments. On the other hand,

choices should correspond to weakly lower levels for high cost for a similar

reason.

Table 3.5 shows the results of three random-effects Tobit regressions, one
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Table 3.5: Random effects Tobit regressions of level with controls for bonus and
cost.

Level BASE EXTR FLAT
HighBonus 0.2811∗∗ 0.7425 0.2829

(0.1295) (0.8704) (0.1943)
HighCost −0.2485∗ −3.0640∗∗∗ −0.8270∗∗∗

(0.1292) (0.8871) (0.1947)
CRTExtended −0.0474 −0.4359 −0.0968

(0.0642) (0.3992) (0.0892)
StratUnc −0.0186 −0.0330 −0.0864

(0.0522) (0.3257) (0.0722)
Gametheory 0.1071 4.2876 0.5795

(0.4282) (2.6932) (0.5932)
Female −0.3388 0.6374 −0.7885∗∗

(0.2867) (1.8018) (0.3966)
Period −0.0185 −0.2085∗∗ −0.0334

(0.0137) (0.0954) (0.0209)
Constant 2.0234∗∗∗ 4.2326 2.7137∗∗∗

(0.4745) (2.9572) (0.6579)
Log likelihood −892.1128 −803.4438 −897.4692
Wald-Test 13.2723∗ 21.3988∗∗∗ 30.3227∗∗∗

Observations 512 512 512

Notes: Standard errors in parentheses. ∗ p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Models are

restricted to subsamples including only the four decisions in BASE, EXTR, or FLAT,

respectively. A choice of box k ∈ {0, . . . , 9} is classified as level k; HighBonus (dummy for

high bonus); HighCost (dummy for high cost); CRTExtended (number of correct answers;

0-7); StratUnc (number of B choices in the strategic uncertainty task; 0-10); Gamethe-

ory (previous knowledge of game theory; dummy); Female (dummy); Period controls for

position in the sequence of games.

for each treatment, where we control for the size of the bonus and the size of

the increment (cost). In treatment BASE there is a significant and positive

effect, with more high-level choices for a high bonus. For EXTR and FLAT

we find no effect of high bonus on level. For high cost, we consistently find

that observed levels are lower in all three treatments. These results are

consistent with the effect of changing incentives on the depth of reasoning

previously observed in Alaoui and Penta (2016a).
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Table 3.6: Random effects log DT regressions with interaction of level and bonus.

BASE EXTR FLAT
log DT 1 2 3 4 5 6
Level 0.0664∗∗∗ 0.0936∗∗∗ −0.0046 −0.0141 0.0224 0.0128

(0.0209) (0.0264) (0.0126) (0.0145) (0.0181) (0.0212)
HighBonus −0.1153∗∗ −0.0278 0.0272 −0.0294 0.1318∗∗∗ 0.0975

(0.0461) (0.0679) (0.0483) (0.0642) (0.0468) (0.0613)
Level × HighBonus −0.0536∗ 0.0171 0.0224

(0.0304) (0.0128) (0.0257)
CRTExtended 0.0326∗ 0.0329∗ 0.0887∗∗∗ 0.0891∗∗∗ 0.0574∗∗∗ 0.0575∗∗∗

(0.0189) (0.0185) (0.0205) (0.0203) (0.0183) (0.0184)
Rightmost20 0.1407∗ 0.1532∗ −0.3117∗∗∗ −0.3218∗∗∗ −0.2107∗∗∗ −0.2120∗∗∗

(0.0836) (0.0839) (0.0957) (0.0960) (0.0729) (0.0729)
Swiftness 0.5413∗∗ 0.5395∗∗ 0.2083 0.2079 0.4695∗ 0.4690∗

(0.2646) (0.2583) (0.2892) (0.2863) (0.2572) (0.2580)
Female 0.1363 0.1451∗ 0.1938∗∗ 0.1927∗∗ 0.2012∗∗ 0.2026∗∗

(0.0839) (0.0820) (0.0914) (0.0905) (0.0817) (0.0819)
Period −0.0876∗∗∗ −0.0874∗∗∗ −0.0838∗∗∗ −0.0839∗∗∗ −0.0908∗∗∗ −0.0907∗∗∗

(0.0049) (0.0049) (0.0053) (0.0053) (0.0050) (0.0050)
Constant 2.3001∗∗∗ 2.2481∗∗∗ 2.5451∗∗∗ 2.5815∗∗∗ 2.2234∗∗∗ 2.2369∗∗∗

(0.1631) (0.1634) (0.1837) (0.1846) (0.1565) (0.1577)
R2 (overall) 0.3352 0.3418 0.3310 0.3343 0.3850 0.3857
Wald-Test 371.3798∗∗∗ 370.6184∗∗∗ 317.6695∗∗∗ 318.7950∗∗∗ 409.2548∗∗∗ 410.3835∗∗∗

Observations 512 512 512 512 512 512

Notes: Standard errors in parentheses. ∗ p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Models

are restricted to subsamples including only the four decisions in BASE, EXTR or FLAT,

respectively. A choice of box k ∈ {0, . . . , 9} is classified as level k; HighBonus (dummy

for high bonus); CRTExtended (number of correct answers; 0-7); Rightmost20 (dummy

for choosing rightmost box); Swiftness (time needed to answer 3 demographic questions);

Female (dummy); Period controls for position in the sequence of games.

We now analyze the effect of a change in the incentives resulting from an

increased bonus on deliberation times, separately for each treatment. Increas-

ing the bonus has a twofold effect on deliberation times: First, it increases the

potential gain from an additional step of reasoning by 20 and thus increases

the payoff differences for the first nine steps. Hence, according to Predic-

tion 2 deliberation times per step should be shorter for a high bonus. On

the other hand, assuming that the cognitive cost is unaffected by a change

in the bonus, subjects potentially conduct more steps of reasoning, which

in turn increases overall deliberation time. As a consequence the aggregate

effect on deliberation times is indeterminate. Controlling for the size of the

bonus and the interaction of level with bonus allows us to dissect these two

explanations.
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Table 3.6 shows the results of a series of random-effects GLS regressions

of log DT on level, separately for each variant, where we additionally control

for the size of the bonus (models 1, 3 and 5) and the interaction of level

with bonus (model 2, 4 and 6). We have already seen in Subsection 3.4.2

that level-0 choices are significantly faster and, being non-strategic, they are

likely not to be affected by changes in the bonus. For that reason, we control

for non-strategic choices by including a dummy for the rightmost box. In

BASE, we find shorter deliberation times when the bonus is high (model 1),

however, this effect becomes non-significant when we include the interaction

of level with high bonus (model 2). The coefficient for the latter is signifi-

cant with negative sign, that is, when the bonus is high subjects require less

additional deliberation time per step. We find no evidence that bonus has

any systematic effect on deliberation times in EXTR (model 3 and 4). In

FLAT, subjects overall deliberate longer in the high bonus condition (model

5), however, this effect becomes non-significant when we additionally control

for the interaction of level with bonus (model 6). The latter is not signifi-

cant. Summarizing, we find that increasing the bonus decreases deliberation

times in BASE, increases deliberation times in FLAT, and has no effect on

deliberation times in EXTR. The decrease in BASE is a result of shorter de-

liberation times per step, as predicted by our model, which can also explain

why overall deliberation time decreases although observed levels are higher.

Next, we study the effect of an increase in the cost, in terms of sure

payoff, of an additional step of reasoning, again separately for each treatment.

The predicted effect of an increase in cost differs across treatments as it

depends on the particular payoff structure. In BASE high cost has a twofold

effect: First, the potential gain for conducting an additional step decreases

by 1 for high cost for the first nine steps. Hence according to Prediction 2

we expect shorter deliberation times per step for high cost. However, the

decrease in payoff differences is very small compared to the one resulting

from a change in the bonus, and hence this effect is likely to be small. On

the other hand, because high cost implies smaller payoff differences, subjects

potentially conduct less steps of reasoning (again assuming that cognitive

cost is unaffected), which would decrease overall deliberation time. The
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Table 3.7: Random effects panel log DT regressions with interaction of level and
cost.

BASE EXTR FLAT
log DT 1 2 3 4 5 6
Level 0.0653∗∗∗ 0.0505∗∗ −0.0067 −0.0115 0.0233 0.0066

(0.0211) (0.0242) (0.0124) (0.0137) (0.0181) (0.0204)
HighCost −0.0179 −0.0781 0.1550∗∗∗ 0.1203∗ 0.1343∗∗∗ 0.0639

(0.0462) (0.0669) (0.0481) (0.0640) (0.0474) (0.0626)
Level × HighCost 0.0374 0.0105 0.0457∗

(0.0301) (0.0128) (0.0265)
CRTExtended 0.0330∗ 0.0338∗ 0.0898∗∗∗ 0.0895∗∗∗ 0.0571∗∗∗ 0.0585∗∗∗

(0.0189) (0.0189) (0.0205) (0.0205) (0.0183) (0.0182)
Rightmost20 0.1640∗∗ 0.1730∗∗ −0.3628∗∗∗ −0.3587∗∗∗ −0.2608∗∗∗ −0.2404∗∗∗

(0.0836) (0.0839) (0.0947) (0.0949) (0.0729) (0.0737)
Swiftness 0.5425∗∗ 0.5480∗∗ 0.2062 0.2024 0.4655∗ 0.4846∗

(0.2646) (0.2647) (0.2888) (0.2889) (0.2571) (0.2547)
Female 0.1357 0.1389∗ 0.1939∗∗ 0.1946∗∗ 0.2079∗∗ 0.2085∗∗∗

(0.0839) (0.0839) (0.0913) (0.0913) (0.0817) (0.0808)
Period −0.0860∗∗∗ −0.0855∗∗∗ −0.0857∗∗∗ −0.0856∗∗∗ −0.0933∗∗∗ −0.0927∗∗∗

(0.0049) (0.0049) (0.0052) (0.0052) (0.0050) (0.0050)
Constant 2.2338∗∗∗ 2.2469∗∗∗ 2.5255∗∗∗ 2.5429∗∗∗ 2.2581∗∗∗ 2.2659∗∗∗

(0.1619) (0.1622) (0.1792) (0.1805) (0.1544) (0.1532)
R2 (overall) 0.3296 0.3294 0.3413 0.3410 0.3856 0.3903
Wald-Test 321.5910∗∗∗ 327.7389∗∗∗ 367.0965∗∗∗ 369.0819∗∗∗ 356.5129∗∗∗ 365.6349
Observations 512 512 512 512 512 512

Notes: Standard errors in parentheses. ∗ p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Models

are restricted to subsamples including only the four decisions in BASE, EXTR or FLAT,

respectively. A choice of box k ∈ {0, . . . , 9} is classified as level k; HighCost (dummy

for high bonus); CRTExtended (number of correct answers; 0-7); Rightmost20 (dummy

for choosing rightmost box); Swiftness (time needed to answer 3 demographic questions);

Female (dummy); Period controls for position in the sequence of games.

payoff structure in EXTR, does not allow for a clear-cut prediction for the

effect of high cost on deliberation times. The reason is that for high cost,

the potential gain for the first step decreases sharply, but the potential gain

for all further steps increases slightly. This would lead to longer deliberation

times for the first step, and shorter deliberation times for all subsequent

steps. It is unclear, which of these countervailing effects should dominate. In

FLAT, only the potential gain from the first step is lower for high cost, while

the remaining steps are unaffected. Hence, we expect longer deliberation

times for the first step. Again, the decrease in potential gain for the first

step might lead to subjects conducting less steps of reasoning, which in turn

might increase overall deliberation time.
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Table 3.7 reports the results of a series of random-effects GLS regressions

of log DT on level, separately for each variant, where we additionally include

a dummy for high cost (models 1, 3 and 5) and the interaction of level with

high cost (model 2, 4 and 6). Again we also control for fast level-0 choices. We

find no effect of high cost on deliberation time in BASE (model 1 and 2). This

is not surprising, since, as explained above, the resulting change in potential

gains per step is very small. In EXTR, deliberation times are longer for

high cost with no systematic effect of the interaction with level. For FLAT,

model 5 indicates longer deliberation times for high cost. This effect becomes

non-significant when we additionally control for the interaction of level with

high cost (model 6). The coefficient for the latter is significant and positive,

as predicted by our model. Summarizing we find overall longer deliberation

times in EXTR and FLAT for high cost, but not in BASE. The increase in

FLAT is a result of longer deliberation times per step, as predicted by our

model. That is, our model can explain why deliberation times in FLAT are

increasing for high cost although observed choices correspond to less steps of

reasoning.

3.5 Additional Observations

3.5.1 Other Level-0 Specifications in the 11-20 Game

Arad and Rubinstein (2012) argue that choosing 20 in the 11-20 game is a

natural anchor for an iterative reasoning process. A further appeal of the

original 11-20 game, which essentially corresponds to BASE, is that it is

fairly robust to the level-0 specification. That is, choosing 19 in the original

11-20 game, or box 1 in BASE, is the level-1 strategy for a wide range of

level-0 specifications. This robustness of course depends on the particular

payoff structure of the game and hence might be different across the various

versions used in our experiment. In this subsection we explore the robustness

of BASE, EXTR and FLAT to the level-0 specification.

Let σ0 = (pi)i∈{0,...,9} denote a level-0 specification that assigns probability

pi to box i. Recall that box 0 always contains the salient amount of 20. We
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Table 3.8: Lower bounds on p0

BASE EXTR FLAT
bonus low high low high low high
low cost 5% 2.5% 45% 22.5% 15% 7.5%
high cost 10% 5% 90% 45% 30% 15%

want to study the range of specifications σ0 such that choosing box 1 is still

the unique level-1 strategy, that is, BR(σ0) = {1}. Since the sure payoff

of box 1 is strictly smaller than 20, any such specification has to satisfy

A1 + p0R > 20. If the probability of obtaining the bonus when choosing box

1 times the bonus can not compensate for the loss in sure payoff by moving

away from box 0, giving 20 for sure, then choosing box 0 is weakly preferred

to choosing box 1. This already provides a lower bound p0 on the probability

assigned to the rightmost box. Table 3.8 gives an overview over the values of

p0 across BASE, EXTR and FLAT for each combination of bonus and cost.

Thus, we have identified p0 > p0 as a necessary condition. Note, however,

that in general this condition is not sufficient, because some box j 6= 0 might

be a best reply to σ0 if the probability pj+1 assigned to box j + 1 is high

enough. It turns out that as long as box 1 contains the second highest sure

amount, that is, A1 ≥ Aj for all j 6= 0, 1, and p0 > p0, it is sufficient that no

box j 6= 0 is assigned a probability larger than p0. This condition is satisfied

for BASE as long as box 0 is most probable under σ0 (note that p0 being

most probable already implies p0 > 10%, hence p0 > p0). For FLAT this

condition is satisfied if box 0 is most likely under σ0 and p0 is larger than the

corresponding lower bound p0 (similar to BASE, this latter condition is void

for high bonus and low cost). EXTR does not satisfy this condition because

box 1 contains the lowest sure amount, hence the probability assigned to

the rightmost box has to exceed the probability of any box j by more than

(Aj −A1)/R. This condition together with p0 > p0 is sufficient to make box

1 the unique best-response in EXTR.

We identified sufficient conditions on the level-0 specification that ensure

that choosing box 1 is the unique level-1 strategy. The requirements for
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BASE are fairly weak, in particular they are satisfied when σ0 is assumed to

be uniform randomization, which is often done in games without a salient

strategy.10 Thus BASE can be considered robust to a wide range of level-0

specifications. The conditions for FLAT are slightly stronger, because the

lower bounds p0 are tighter. In particular, when σ0 is uniform randomization

the level-1 strategy remains to choose box 1 only for high bonus and low

cost, while it prescribes to stay with box 0 for the other conditions. The

same cannot be said with regard to EXTR. Here both, the lower bounds

and the additional condition are very demanding. In particular, choosing

the leftmost box that grants the second highest sure payoff is the level-1

strategy for a relatively wide range of specifications that include uniform

randomization. We conclude that BASE and FLAT can be considered robust

to the level-0 specification, but not EXTR. In EXTR, there is an alternative

level-1 strategy for a relatively wide range of alternative level-0 specifications.

In Section 3.4.2 we have assumed that the starting point in the 11-20 game

for our model of iterative thinking is to choose the rightmost box containing

the salient amount of 20. As just illustrated, the best-reply structure in BASE

and FLAT is robust for a wide range of alternative level-0 specifications.

Thus, even if, different from our assumption, the starting point does not

assign probability one to choosing the rightmost box, the best-reply structure

and hence our results are unaffected as long as p0 is not too small. However,

this is not true for EXTR. Here, the best-reply structure is less robust to

changes in the level-0 specification, and there is a clear alternative best-reply

structure where the leftmost box is the level-1 strategy.

To check for robustness we consider an alternative best-reply structure in

the following way: We assume that the level-0 specification is mixed in such

a way that the best-reply is to choose the leftmost box, containing the second

highest sure payoff, which we then classify as the level-1 strategy. The best-

reply to that is to choose the rightmost box containing the salient amount

of 20, now classified as level 2. From there the best-reply structure follows

the known pattern from right to left. We then repeat the complete analysis

10For high cost and low bonus, choosing box 1 is a best-reply, but not a unique one,
because it ties with choosing the rightmost box.
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conducted for EXTR in Section 3.4.2 for this alternative classification. Com-

paring the so obtained results to those presented earlier for EXTR, we find

no qualitative difference.11 Hence, we conclude that our results, presented in

the previous section, cannot be explained by differences in the robustness to

the level-0 specification between treatments.

3.5.2 A Social Preference Variant - SOCP

Our experiment included an additional treatment to check for an alternative

explanation of the frequent “high-level” choices of the two leftmost boxes in

EXTR, as previously observed by Goeree et al. (2016). By choosing the

leftmost box in EXTR a subject can get the second highest sure amount,

while at the same time granting his opponent the chance to receive the bonus.

If a subject is motivated by some form of other-regarding preferences, then

choosing the leftmost box is very attractive because it grants somebody else

the chance to get a bonus that is relative large in comparison to the subject’s

own sacrifice in terms of sure payoff. We thus added an additional treatment,

denoted SOCP, that is a variation of FLAT where the two rightmost boxes

contain both the salient amount of 20. Figure 3.5 shows both the low and

high cost version of SOCP. Here choosing the rightmost box guarantees the

highest safe amount of 20, while also, at least theoretically, granting the other

player the chance to obtain the bonus by selecting the second, inner box that

also contains 20. On the other hand, a purely self-interested individual should

never choose the rightmost box, since it is weakly dominated by the inner

20 for all possible beliefs. However, it is conceivable that an altruist would

select the rightmost alternative to grant his opponent the chance to get the

bonus by selecting the inner box with the second 20.12

As a proxy for prosociality we measured the social value orientation (SVO)

of each subject using a computerized version (Crosetto et al., 2012) of the

scale developed by Murphy et al. (2011). We used a scaled version of their

11We do not present these alternative regressions here. They are available from the
authors upon request.

12Note that this is also the most efficient outcome in the sense that it maximizes joint
profits.
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SOCP 17 17 17 17 17 17 17 17 20 20

SOCP 14 14 14 14 14 14 14 14 20 20

Figure 3.5: Payoff structure for SOCP in the low (top panel) and high (bottom
panel) cost version.

six primary items in which subjects were asked to choose among different

allocations of points between themselves and a randomly selected partner.

For the SVO task one of the six items was randomly selected and paid out

using a ring matching procedure, that is, each subject received two payments

of up to 25 points, one as a sender and one as a receiver. A higher SVO score

indicates that a subject is more prosocial.

In SOCP 36 out 128 subjects chose the rightmost box at least once. To

explore whether behavior in SOCP is driven by other-regarding preferences,

we first test whether subjects choosing the rightmost box have a higher SVO

score. Conducting separate Wilcoxon rank sum tests for each of the four in-

stances of SOCP we find no difference in SVO score for subjects choosing the

rightmost box compared to those choosing another box. Next, we consider

the relative frequency of choosing the rightmost box across all four instances

of SOCP per subject. We run a fractional logit regression of this relative

frequency with the SVO score as a independent variable. The coefficient of

social value orientation is positive but not significant. Summarizing, we find

no evidence that the prosocial motive of granting the opponent the chance

to obtain a bonus is a driver of behavior in the 11-20 game.

3.6 Discussion

In this work, we have introduced a simple model linking cognitive sophisti-

cation, incentives, and deliberation times, incorporating stylized facts from

the psychophysiological literature on response times. We model the total

deliberation time of an observed choice as the sum of the deliberation times

resulting from a sequence of binary hypothetical decisions that model steps

of reasoning. As an immediate consequence we obtain the prediction that
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exerting higher cognitive effort, that is, conducting more steps of reasoning

implies longer deliberation times. They key assumption then builds on the

closeness-to-indifference effect, that is, decisions take longer the smaller the

utility difference of the options. We assume that deliberation time for a

given step is a decreasing function of the potential gain (or loss) of that step.

This model provides empirically testable predictions regarding the relation

of deliberation times, cognitive sophistication, as revealed by choices, and

incentives.

We then test the predictions of our model using experimental data. We

find longer deliberation times for choices associated with more steps of rea-

soning, confirming our prediction that deliberation time is increasing in cog-

nitive effort. This link is strongest, when the payoff structure of the un-

derlying game is such that iterative thinking is salient. However, for games

without a salient iterative structure, there is no clear relation between de-

liberation times and cognitive effort. That is, features besides the best-reply

structure matter as well, but deliberation times can serve as a tool to iden-

tify such situations. Further, we find effects of changes in the incentives

that systematically vary the utility difference of a step of reasoning which

are consistent with the predictions of our model. Hence, our results suggest

that our closeness-to-indifference account can serve as a helpful tool to better

understand processes of iterative thinking.

Overall, the answer to the question whether deliberation times support

level-k models is “yes, but.” If the underlying processes are clearly identified,

we observe a clear link between deliberation times and steps of reasoning

supporting level-k thinking. Additionally, however, deliberation times also

allow us to detect when other elements enter the picture, and hence are also

helpful for further theory development.
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Appendix 3.A: Sequence of Games

To control for order effects we counter-balanced the order of the different

11-20 games using the following four randomized sequences. We denote the

low cost, low bonus version of BASE, EXTR, FLAT, and SOCP by B, E,

F, and SP, respectively. Similarly for X ∈ {B,E, F, S} we use the notation

+X to indicate high cost, and X+ to indicate high bonus, e.g. +B+ denotes

BASE with high cost and high bonus.

Table 3.9: Pseudo-randomized sequences of the 11-20 games used in the experi-
ment.

Sequence 1 B F E S E+ B+ S+ F+ +F +S +B +E +S+ +E+ +F+ +B+

Sequence 2 +E +B +S +F +B+ +F+ +E+ +S+ S E F B F+ S+ B+ E+

Sequence 3 +F+ +S+ +B+ +E+ B+ F+ E+ S+ +S +E +F +B E B S F

Sequence 4 S+ E+ F+ B+ F S B E +E+ +B+ +S+ +F+ +B +F +E +S
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Appendix 3.B: Behavior in the 11-20 Games

Figure 3.6 shows the distribution of choices in our experiment across all 16

instances of the 11-20 game including the four instances of the additional

treatment SOCP described in Section 3.5.
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Figure 3.6: Distribution of choices in the 11-20 games.
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Chapter 4

Institutional History, Leniency and Collusive Tax Evasion

4.1 Introduction

Corruption and tax evasion are among the most pervasive forms of illicit

behavior inducing negative externalities on both the economic and societal

level (Banerjee, 2016a; Slemrod, 2007). Understanding their drivers and im-

plementing suitable institutional measures to curb their severity has been

at the center of the past decade’s theoretical, empirical and experimental

research.

In this paper, we focus on the effectiveness of providing legal immunity to

the bribe-giver for blowing the whistle as a measure to deter collusive bribery.

In our experiment corruption is embedded in a tax evasion framework, in

which underreporting taxes is only possible through collusive cooperation

among tax payers and public officials. We study the exchange of bribes as one

explicit collaboration-inducing mechanism. This has previously been found

to be effective in sustaining illicit cooperation. This literature also highlights

the importance of studying the collaborative roots of deviant behavior due

to their inherent negative economic and societal externalities (Weisel and

Shalvi, 2015).

Our results shed light on the effectiveness of leniency programs as a means

to distort collusive relationships between public officials and tax payers and

to reduce tax fraud. We consider a mechanism that offers tax payers a “a

safe way out” by blowing the whistle on the corrupt public official and co-

operating with the auditors. This mechanism resembles a leniency program

for tax evasion in which audited tax fraudsters can turn state’s evidence.

In many countries, the introduction of some form of leniency mechanism

represents an integral institutional feature aimed at suppressing criminal be-

havior, for example, in the context of collusion among firms (Buccirossi and
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Spagnolo, 2006; Abbink and Hennig-Schmidt, 2006; Bigoni et al., 2012). We

are interested in examining the effects of a leniency program for tax payers

on collusive bribery and tax evasion. We contribute to the corruption and

tax evasion literature by shedding light on how collusive tax evasion is af-

fected by the specifics of the strategic interaction between a tax payer and an

intermediary, a dimension not present in a setting of individual tax evasion.

While most of the economic research in that literature has focused on

deterrence of income tax evasion or its related variants, other forms of tax

evasion, such as trade/import or custom taxes, where taxes are in some way

collected through the direct intermediation of a third party (for example

custom duties), have received little attention (Banuri and Eckel, 2012). This

is particularly true for the case of “corruption within tax evasion.” Existing

experimental studies have for example focused on the role of the fear of being

caught or public disclosure in deterring tax evasion (Orviska and Hudson,

2003; Bø et al., 2015).

In a related setting, Abbink and Wu (2017) study whether rewarding self-

reports is effective in reducing collusive bribery. They find this mechanism

to be effective in some circumstances, especially in a context of repeated

interaction. However, they study different mechanisms with a focus on re-

wards for reporting, whereas we focus on the shift of the risk of being caught

between two colluding parties. Further, in our experiment bribe-givers face

two decisions, whether and how much to bribe, and also how much taxes

to declare, which in turn determines the consequences of bribery. Christöfl

et al. (2017) study the possibility to cooperate with the authorities (princi-

pal witness) in combination with a leniency policy that offers reduced fines

for cooperation in a setup where two bidders compete for a contract. They

find a lower number of bribes when a leniency policy is present, while at

the same time offering a bribe becomes more profitable for a corrupt bidder.

Closely related to our work, Heinemann and Kocher (2013) study the effects

of regime changes on tax compliance, however, they focus on changes in the

tax rate and consider neither corruption nor reforms that incentivize whistle-

blowing. By and large, the economics of whistleblowing are understudied and

have only recently attracted attention (see Spagnolo, 2004; Apesteguia et al.,
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2007; Spagnolo, 2006; Heyes and Kapur, 2009; Breuer, 2013; Schmolke and

Utikal, 2016). In particular, Butler et al. (2017) study the effectiveness of fi-

nancial rewards and public scrutiny as triggers to motivate employees to blow

the whistle against their managers. Their findings indicate that both finan-

cial rewards and public visibility increase the likelihood of whistleblowing (see

also Bartuli et al., 2016). The recent surge in cases of whistleblowing and the

lack of international institutional uniformity to achieve sufficient protection

for whistleblowers renders the importance to further study the economics of

whistleblowing (Dyck et al., 2010).

We use a controlled laboratory experiment modeling an income reporting

scenario that requires the interaction between two parties, a tax payer and a

tax officer, thus opening the door for collusive corruption. Our experimen-

tal design employs a collusive bribery game (Abbink et al., 2002) nested in

a tax evasion scenario, in which corrupt tax officers face little to no conse-

quences for accepting bribes and for providing assistance to the tax payer

in order to evade taxes. This mimics a situation where tax authorities do

not have the means to sufficiently control the tax officers, for example due

to the institutional environment rendering enforcement of adequate conse-

quences impossible. Excessive costs of monitoring are among the reasons

why authorities might be unable to detect dishonest officers.

In the basic bribery game without leniency each tax payer receives a fixed

income, taxed at a fixed rate, that has to be reported to the authorities repre-

sented by a tax officer. A distinct feature of our design is that underreporting

requires the cooperation of the tax officer. Thus, the tax payer can offer the

tax officer a bribe as reward for his assistance in evading taxes. Tax reports

are subject to audits with a known probability.1 Detection of tax evasion

during an audit results in a penalty for the tax payer, but not for the tax

officer. This game is then extended by adding an additional stage in the

spirit of a leniency mechanism. The resulting bribery game with leniency

1Our focus is on the effectiveness of a leniency mechanism as a policy intervention,
thus we decided to keep a fixed audit probability instead of implementing an endogenously
determined audit probability, e.g. by modeling the tax authority as an additional player.
For a theoretical analysis of endogenous audit probabilities see Landsberger and Meilijson
(1982) or Raymond (1999). For an experimental treatment see Alm et al. (1993).
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follows the same rules except for the situation when an audit occurs. In that

case a tax payer can report the corrupt tax officer and avoid the pending

penalty. Instead, now the reported tax officer incurs a fine. This whistle-

blowing mechanism offers a save way out for the tax payer and shifts the risk

of a being detected and fined to the tax officer. Moreover, it renders the tax

officer formally responsible for engaging in collusive bribery as she now faces

the threat of a fine as well.

The goals of this study are twofold: First, we seek to analyze collusive

bribery and its drivers under a regime with and without leniency for the

tax payer in a setting where corruption is feasible due to the interaction

between tax payers and tax officers. Second, we investigate the effectiveness

of the introduction of such a mechanism and the consequences of its removal

on collusion, the frequency of bribe offers and their size, the tax officers’

willingness to accept bribes as well as overall tax compliance.

Our main results can be summarized as follows. We find that in the pres-

ence of a leniency mechanism successful collusion between tax payers and tax

officers is less frequent and this is mainly driven by a lower willingness of tax

officers to accept bribes. Further, we find no support that leniency for tax

payers encourages them to offer bribes, that is, there is no significant increase

in the frequency of bribes being offered. Thus, our results suggest that le-

niency is effective in deterring tax officers from engaging in bribery and that

this translates into more taxes being collected. Our results regarding the role

of institutional changes also highlight the importance of institutional history

for the evaluation of policy measures. We show that the introduction of the

opportunity to blow the whistle decreases collusion, deters tax officers from

accepting bribes, as reflected in a lower acceptance rate of bribe offers and

increases the tax yield collected, while at the same time it does not encour-

age bribe offers. In contrast, the removal of the institutional mechanism does

not cause similar effects in the opposite direction, which suggests a positive

spillover effect of leniency that persists even after the mechanism has been

removed (see also d’Adda et al., 2017).

The paper is organized as follows: Section 4.2 describes the experimental

design. Section 4.3 presents the analysis of our empirical results. In Section
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4.4 we discuss our results and conclude.

4.2 Experimental Design

Both of our institutional setups mimic a scenario where collusive bribery is

nested in a tax evasion framework. Taxes are collected through an intermedi-

ary, the tax officer. Hence, to successfully evade taxes the tax payer requires

the cooperation of the tax officer, for example by “looking the other way.”

We now give a detailed description of the two institutional frames used in

our experiment.

4.2.1 The Bribery Game with and without Leniency

The upper part of Figure 4.1 illustrates the bribery game (BG).2 A tax payer

(TP) receives an income of 80 Experimental Currency Units (ECU) and has

to submit a declaration of his income to the tax authorities. The tax officer

(TO), acting as an intermediary, is in charge of processing the tax report.

Declared income D is subject to a tax rate of 50%.3 The TP can decide

whether he wants to truthfully declare his full income of 80 or whether he

wants to evade taxes, that is, potentially declare a lower income D ≤ 80. In

order to evade taxes, the TP has to convince the TO to collude with him.

To that end, the TP can offer a bribe b to the TO that can range from 0

to 30 ECU. The situation we have in mind is one, where the TP can vastly

increase the chance of his false tax declaration not being detected by colluding

with the TO, who is in charge of processing the report. For simplicity, we

assume that it is impossible for the TP to evade taxes without the TO’s

support. That is, declaring less than the full income is only possible if the

TO accepts the TP’s bribe offer and hereby agrees to collude with the TP,

e.g. by manipulating the report. If a bribe is offered, the TO observes the

2The TO only observes the bribe b but not the declared income D as indicated by the
dashed line. The stage below the dotted line is only available in the bribery game with
leniency. For the sake of a simpler exposition the tax officer’s fixed wage of 50 is not
depicted.

3Subjects were informed that this tax rate is in line, according to a recent study of
Confcommercio, with the mean tax burden in Italy.
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Figure 4.1: Representation of the bribery game (with leniency).

amount that is offered and can accept or reject it. It is important to note that

the TO cannot observe the amount of taxes declared prior to his decision,

hence cannot condition her decision on the amount of taxes evaded.4 Not

informing the TO about the exact amount the TP intends to evade allows

us to establish a minimal level of uncertainty regarding the TO’s payoffs,

which are fully determined (in the absence of whistleblowing) by the bribe

and the amount of taxes declared as described in more detail below. If the

TO rejects a bribe, then she refuses to collude with the TP, which forces the

TP to truthfully declare his full income of 80. Upon acceptance the TP is

able file the original report declaring D.5 Tax reports are audited by the

tax authorities with an exogenous probability of 20%. In case of an audit

4For example, imagine a situation where the TO does not know the actual income of
the TP, which is only known to the official tax authority conducting the audits.

5Note that this differs from Abbink and Wu (2017) in that the tax officer is not able
to pocket the bribe without delivering the corrupt favor of colluding with the tax payer.
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incorrect reports are detected and the TP has to pay both the evaded amount

of taxes 0.5(80 − D) and an additional fine proportional to the amount of

evaded taxes.6 The fine is set to 25% evaded taxes, hence the maximum

fine is 10 ECU. The fine rate of 25% was chosen such that together with the

upper bound (of 30) of bribe payments the TP can never incur a net loss.

Thus, the TP’s payoff is his income minus taxes on the declared income D

and potentially the bribe and/or fine paid. The TO’s payoff consists of three

components: a fixed wage of 50, a commission of 15% of the taxes collected,

and the amount of bribes accepted.7

The bribery game with leniency (BGL) is very similar to the bribery

game just described, but with one important difference. In the BGL we

add an additional stage to the BG intended to mimic a leniency program for

blowing the whistle.8 Decisions in BGL are identical to those in BG, however,

following detection of an incorrect tax report during an audit the TP now

has the opportunity to “blow the whistle” by reporting the TO. If the TP

chooses to report, he has to correct the (false) tax report and declare taxes

truthfully, however, he does not incur an additional monetary punishment,

that is, the fine is waived. A TO that has been reported, on the other hand,

incurs a fine for colluding with the TP to evade taxes. This fine equals the

bribe received from the TP plus an additional penalty of 10 ECU.

In Appendix 4.A we analyze the one-shot bribery game with and without

a leniency mechanism assuming standard preferences based on maximization

of own payoffs. Under that assumption, attempting collusion, that is, bribing

the tax officer and evading taxes, is always optimal for a tax payer in the

bribery game with and without leniency. In the bribery game with leniency

the tax payer always reports the tax officer in equilibrium, resulting in a

6Proportional fines are an institutional feature often observed in developed countries
(Mittone, 2006).

7The introduction of a commission for the TO mimics something existing in reality. In
Italy for example the tax authority delegates inspections and audits to a private organi-
zation (Equitalia) and pays Equitalia with a percentage of the money collected.

8In the BG punishment can be viewed as asymmetric as only tax payers are running
the risk of being fined, however, in BGL leniency shifts, at least partially, this risk towards
the tax officer, hence creating a situation that might be perceived as more symmetric. See
also Engel et al. (2013) for a discussion of symmetric vs asymmetric punishment regimes.
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higher bribe acceptance threshold on the side of the tax officer. As a result

optimal bribe offers are higher when leniency is in place. Recall that the tax

officer is only able to observe the bribe but not the amount of taxes declared,

hence her exact acceptance threshold also depends on her belief regarding the

amount of taxes declared by the tax payer. The threshold is increasing in

her belief regarding the amount of taxes evaded, since this negatively affects

her payoff. As a consequence there are many equilibria involving different

levels of tax compliance by the tax payer and beliefs by the tax officer. For

example there is one equilibrium in which the tax payer declares zero taxes

and the tax officer correctly anticipates this behavior, hence expects declared

taxes to be zero.

4.2.2 Treatments

One can to think of the introduction of a leniency mechanism as a stylized

situation where tax authorities decide to invest in establishing control mech-

anisms that allow for better monitoring of public officials. Hence, allowing

them to enforce legal consequences not only on tax payers but also on corrupt

tax officers, for example via improved monitoring. We mimic transitions of

that type by employing not only static treatments, where exactly one regime

is present for the whole duration of the experiment, but also dynamic treat-

ments involving a regime change from one to the other. This allows us to

study both the effectiveness of either setup in isolation and how subjects re-

act to a change in either direction. For example, we are interested in whether

the transition from a scenario without the opportunity to blow the whistle to

a situation in which this is feasible can break collusive behavior established

during a earlier periods. If that is the case, then this would provide strong

evidence that such a measure can serve as a tool to reduce collusive corrup-

tion and tax evasion in a world where the absence of such a mechanism is

the status quo.

In our experiment subjects repeatedly played the bribery game and/or

its extended version (with leniency) over the course of a total of 20 rounds.

We ran four different treatments. In treatment NoLEN, participants play
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the bribery game without leniency for 20 rounds. In treatment LEN subjects

play the bribery game with leniency instead, also for 20 rounds. These two

treatments allow a between-subject comparison of the role that leniency plays

with respect to collusive bribery and tax compliance. In addition, these

treatments represent a benchmark for treatments NoL-L and L-NoL in which

institutional shocks occur. These treatments were designed to study the

effects of institutional transitions, e.g. potential spillover effects from one

regime to another, since in those treatments the rules of the game change

unannounced midway through the experiment after round 10. In particular,

in treatment NoL-L subjects start with the basic bribery game and are then

transitioned into an environment in which reporting the tax officer becomes

feasible. Treatment L-NoL captures the same dynamics but in reverse order,

that is, first the option to report is available and is then abolished after

round 10. These two treatments involve a regime change that allows us to

analyze the effectiveness of both the introduction and the removal of leniency

relative to a “status quo,” that is, the regime present during the first block

of 10 rounds. Table 4.1 summarizes the four treatments.

Table 4.1: Overview over the treatments and number of subjects assigned to each
treatment.

Treatment Round 1-10 Round 11-20 Tax Payers Tax Officers
NoLEN BG BG 30 10
LEN BGL BGL 36 12
NoL-L BG BGL 66 22
L-NoL BGL BG 42 14

4.2.3 Experimental Procedures

Subjects were randomly assigned either the role of a tax payer or the role of

a tax officer. Participants were randomly matched in groups of four consist-

ing of one tax officer and three tax payers, that is, each tax officer assigned

three tax payers to interact with simultaneously. There was no direct interac-

tion between different tax payers in the same group. Groups remained fixed
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throughout the experiment, which consisted of 20 rounds. Subjects were

informed that the number of rounds was predetermined, but were not in-

formed about the exact number of rounds.9 In each period subjects played,

depending on the treatment, the bribery game with or without leniency.

For treatment NoLEN and treatment LEN no institutional change occurred.

In treatments NoL-L and L-NoL the participants were informed about a

change in the institutional setting after the 10th round via an announcement

on screen that provided a detailed description of the new institutional envi-

ronment. We emphasized that there would be no additional change of the

institution until the end of the experiment. Subjects were informed in the

instructions that the existing institution may be subject to change but no

information regarding the nature of the change was provided.10 Thus, we

use both within- and between-subject variations of the institutional setting

to study the effect of leniency on corruption and tax compliance. Since ini-

tial tax declarations were not observable by the tax officer, we also elicited

the tax officer’s beliefs about the amount of taxes evaded by each of the

tax payers offering a bribe. Beliefs were elicited in each round after the tax

officer’s decision to accept or reject a bribe offer, but before any feedback

regarding the outcome of this round was provided. At the end of each round

tax officers were informed about whether they were reported, how much they

were fined (if at all) and how much they earned from the tax yield collected.

Tax payers received information regarding whether their bribe was accepted,

whether they were audited and how much (if at all) they were fined.

To make tax evasion more salient in the laboratory setting, we introduced

a third party that incurs a monetary damage as a result of tax evasion. All

participants were informed that the total tax yield collected would be used

to finance future research of doctoral students at the University of Trento.11

That is, tax evasion in the experimental laboratory translates into an actual

9We choose not to announce the number of rounds to avoid potential end-game effects.
10Subjects in treatments NoLEN and NoL-L were provided with identical information

at the start of the experiment. The same holds for subjects in treatments LEN and L-NoL.
In particular, participants assigned to treatment NoLEN and LEN were informed about
the possibility of a change although, ultimately, they would not experience one.

11This is a common procedure in tax evasion experiments in order to link tax evasion
to a negative externality, for example see Fortin et al. (2007) or Coricelli et al. (2010).
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social welfare loss outside the lab (Eckel and Grossman, 1996; Lambsdorff

and Frank, 2010).

The experiment was conducted at the Cognitive and Experimental Eco-

nomics Laboratory at the University of Trento. A total of of 268 undergrad-

uate students (46% females) participated in the experiment, each in exactly

one treatment. Table 4.1 shows the distribution of subjects over the four

experimental treatments. Sessions consisted of 20 rounds followed by an in-

centivized risk-elicitation task (Holt and Laury, 2002b) and a demographic

questionnaire. The final payoff of each subject was determined as the sum of

all earnings over the 20 rounds plus their earnings from the risk-elicitation

task, which were then converted to Euro at a rate of 100 ECU = e0.7. All

participants were paid their final payoff plus an additional show-up fee of e3

in cash at the end of the experiment. On average, a session lasted about 60

minutes and subjects earned e12 excluding the show-up fee of e3.

4.3 Results

An important feature of our experiment is that tax evasion is nested within

a corruption framework that requires collusive behavior for tax evasion to be

successful. We believe that this additional layer of interaction is important

to help us to better understand unethical behavior in situations in which

cooperation is necessary. This interaction possibly increases the impact of

behavioral factors such as psychological costs and uncertainty on tax com-

pliance and the willingness to engage in collusive bribery.

We structure our analysis in the following way: first, we will discuss

the effectiveness of leniency in affecting collusive agreements between public

officials and tax payers. In a next step, we will break down the behavior

of tax payers and public officials individually. We employ a very cautious

approach in our data analysis. Following our design, we regard the behavior

of one group (consisting of one public official and three tax payers) averaged

over all rounds, or over all rounds in the first and second part, respectively,

as one independent observation. This allows us to conduct between- as well

as within-subject comparisons.
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4.3.1 Collusive Behavior

One of our main objectives is to study the effectiveness of a leniency mecha-

nism as a means to hinder collusive corruption. The presence of the possibil-

ity to blow the whistle effectively reduces the risk the tax payer faces when

evading taxes, while shifting responsibility to the tax officer, thus potentially

reducing the tax payer’s psychological costs. Intuitively, in the bribery game

with leniency the possibility to report the tax officer offers the tax payer a

“safe way out”. Leniency effectively allows the tax payer to avoid an addi-

tional fine when evading taxes, and if the fine is what is keeping a tax payer

from offering a bribe and evading taxes this should encourage the tax payer

to engage in collusive bribery. On the other hand, leniency also affects the

chances that an attempt to collude is successful, since this requires the co-

operation of the tax officer, who now faces the additional threat of being

reported. Thus, leniency is likely to decrease the tax officers willingness to

engage in collusive corruption. It is unclear which of these opposing effects

will dominate.

In line with our primary interest to study the effectiveness of leniency on

collusive arrangements, our experimental design allows us to approach this

question from two perspectives:

1. Is collusion generally different in an environment where leniency exists?

2. How does an institutional change from an environment with (without)

leniency to an environment without (with) leniency affect collusive be-

havior?

To address these two questions, we compare the rate of collusion between

NoLEN and LEN, between NoLEN and NoL-L, and between LEN and L-

NoL, respectively. We define collusion as the successful exchange of bribes

in return for the avoidance of taxes.

We first analyze the effect of leniency in absence of institutional history

by comparing treatments NoLEN and LEN. To that end, we calculated for

each group the collusion rate as the proportion of successful illicit agreements
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Figure 4.2: Average collusion in NoLEN and LEN.

relative to all rounds in which paying a bribe and evading taxes was possi-

ble. Figure 4.2 shows the average collusion rate for each treatment as well

as the evolution of the average collusion rate, calculated for each round. In

the NoLEN treatment, the average collusion rate per group was 52.3%. In

contrast, in the presence of a leniency mechanism the incidence of collusion

was only 34.6% in the LEN treatment. This difference is significant accord-

ing to a Mann-Whitney-Wilcoxon test (N = 22, z = 2.1448, p = 0.0320)

indicating that collusion is less frequent in LEN compared to the NoLEN.

The right panel of Figure 4.2 suggests that collusion is increasing over the

course of the experiment in both treatments. To check whether this is indeed

the case we calculated for each group the average collusion rate for the first

and second half of the experiment, separately. In the first part of NoLEN

the average collusion rate is 43.7% and rises to 61% in the second half. This

difference is significant according to a Wilcoxon Signed Rank test (N = 10,

z = −2.6711, p = 0.0076). In LEN the collusion rate is 31.9% and 37.2% in

first and second half of the experiment, respectively, with the difference not

being significant (WSR, N = 12, z = −1.2183, p = 0.2231). With respect to

the first question, we find less collusion when a leniency mechanism is in place

compared to an environment without such a mechanism. Moreover, we find

that collusion is increasing significantly over time in the NoLEN treatment,

while there is no significant increase in LEN when leniency is in place.

Next, we turn to our second question regarding the effect of an institu-

tional change on collusion. Treatment NoL-L allows us to study the effect
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of the introduction a leniency mechanism into a setting in which corrupt be-

havior has already been able to thrive in the absence of leniency. There is

some evidence that fear of being reported has a deterrent effect, which might

decrease the tax officer’s acceptance rate (Engel et al., 2013; Abbink et al.,

2014). On the other hand, we are able to study whether a period in which

leniency was implemented affects behavior even after it was removed, for ex-

ample because a successful relationship is harder to build after developing

mistrust in earlier periods. In treatment L-NoL subjects start under a regime

with leniency followed by its removal. Following the same logic one would

expect low acceptance rates in the first part when facing the bribery game

with leniency, but an increased acceptance rate as a result of the removal of

the mechanism in the second part of treatment L-NoL.

The left panel of Figure 4.3 shows the average rate of collusion for each

part of treatment NoL-L and L-NoL. The right panel illustrates how collusion

evolves over the course of the experiment in each of the treatments. We

again observe that collusion is increasing over time, moreover, the graph

suggests that the introduction of a reporting option in NoL-L causes a drop in

collusion. Since collusion is increasing over time, we cannot simply compare

the means before and after an institutional change has occurred. Thus, we

evaluate the effect of the introduction or removal of a leniency mechanism by

comparing the change in collusion rates resulting from the introduction or

removal of leniency to the corresponding change in the absence of an regime

change. Thus, we calculated the change of the collusion rate between the

first and second half of the experiment for each group in all treatments. We

then compare the changes between NoLEN and NoL-L, and between LEN

and L-NoL, respectively. This difference in differences analysis is necessary

to account for the increase in collusion over time.

In treatment NoL-L the average collusion rate before and after a leniency

mechanism was introduced are 43.2% and 41.7%, respectively. Hence, the

introduction of a leniency mechanism in NoL-L results in a decrease of col-

lusion by 1.5 percentage points. Recall that in NoLEN there was an increase

in collusion by 16.3% from the fist part to the second part. Comparing the

change from part one to part two between NoLEN and NoL-L reveals that the
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Figure 4.3: Average collusion in NoL-L and L-NoL.

introduction of leniency has a significant negative effect on collusion (MWW,

N = 32, z = 2.2249, p = 0.0261).

Similarly, we now consider the effect of the removal leniency. In the first

part of treatment L-NoL the collusion rate is 38.3% when leniency is present

and following its removal rises to 48.8% in the second part. Thus we observe

an increase in collusion by 10.5 percentage points in L-NoL compared to an

increase of 5.3 percentage points in LEN from part one to part two. There is

no significant difference between the increase of collusion in LEN and L-NoL

(MWW, N = 26, z = −0.6978, p = 0.4853). Thus we find no evidence that

the removal of the possibility to blow the whistle does lead to an additional

increase in collusion that goes beyond the gradual increase over time observed

in LEN in the absence of a regime change. In particular, there is no upwards

“jump” in the frequency of collusive cooperation following the removal of the

leniency mechanism.

Summarizing, our results suggest that the presence of a leniency mech-

anism indeed deters collusion. Interestingly, we also see some evidence for

an increase in successful collusive cooperation over time in the absence of

leniency, while under leniency we see no such effect. This is in line with

the idea that leniency makes it more difficult to reach a collusive agreement,

that is honored by both parties. Regarding the effects of a regime change we

find that the introduction of a leniency mechanism in treatment NoL-L has a

deterrent effect on collusion. This result suggests that implementing such a

measure is likely to hinder collusive bribery. On the other hand, the removal
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of whistleblowing in L-NoL does not foster collusion. That is, collusion rates

show no significant “jump” upwards after the mechanism is removed. This

points towards a potential positive spillover effect from the first part, where

a leniency mechanism was in place, that persists even after its removal. A

potential explanation for this spillover effect is that leniency saws mistrust

between the tax officer and the tax payer, hence reduces the tax officer’s will-

ingness to cooperate also in later periods although reporting is not feasible

anymore.

4.3.2 What Are the Drivers of Collusion?

Collusion requires the cooperation of both, the tax payer and the tax officer.

In order to pin down the drivers of the effects on collusion found in the

previous section we now analyze the behavior of tax payers and tax officers

separately. To that end, we first consider the rate of collusion attempts

initiated by the tax payer, that is, the incidence of bribe offers relative to

all relevant situations where offering a bribe was feasible. Since collusion

requires the cooperation of the tax officer, in a second step we investigate

the bribe acceptance rate, that is, the fraction of bribes that were accepted

by the tax officer relative to the number of bribe offers received. Clearly,

collusion is the result of a combination of both, the frequency of bribe offers

and the fraction of bribe offers that are accepted. Moreover, the size of the

bribes is likely to affect the acceptance rate, since it is natural that tax officers

accept large bribes more often than small bribes. Hence, we also consider

the treatment effects on the size of the bribes offered by the tax payer and

how they affect the acceptance rate.

In the absence of leniency the tax payers decision to collude with the

tax officer and evade taxes comes at the risk of being detected and fined.

The presence of a reporting opportunity effectively reduces this risk, while

shifting responsibility to the tax officer. This not only renders tax evasion

more profitable, but also potentially reduces the tax payer’s psychological

cost associated with paying a bribe in order to evade taxes. Intuitively,

leniency offers the tax payer a “safe way out” when getting caught, hence,
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they are likely to offer bribes more frequently. On the other hand, accepting

a bribe is more risky for a tax officer when a leniency mechanism is in place,

since she now faces the threat of being reported and fined. Thus, we expect

tax officers to reject more bribes when blowing the whistle is possible.

As in the previous section, we first seek to understand the drivers of

collusion in treatments NoLEN and LEN, where there was no regime change.

In a second step we analyze the role of the institutional history, that is, the

effect of the introduction of a leniency mechanism in NoL-L and the effect of

the removal of such a mechanism in NoL-L.

Incidence of bribe offers and acceptance rate in NoLEN and LEN

We first consider the behavior of the tax payer in that we analyze the inci-

dence of bribe offers. The left panel of Figure 4.4 shows the dynamics of the

average frequency of bribe offers per round over the course of the experiment.

Surprisingly, we see that bribe offers are not more frequent but rather less

frequent in LEN compared to NoLEN. In fact, the average incidence of bribe

offers per group over all rounds was 67.7% in NoLEN and 55.1% in LEN and

thus even lower in the presence of leniency. However, this difference fails

to reach significance according to a Mann-Whitney-Wilcoxon test (N = 22,

z = 1.4870, p = 0.137). Further, the graphs suggest that the frequency

of bribe offers is increasing over time in NoLEN, whereas it appears to be

slightly decreasing in treatment LEN. According to Spearman rank order cor-

relations there is a positive trend in NoLEN (ρ = 0.3803, p < 0.001), whereas

the bribe offers exhibit a negative trend in LEN (ρ = −0.2496, p < 0.001).

For both treatments we again calculated the average frequency of bribe offers

for the first and second half of rounds, separately. In NoLEN the average

incidence of bribe offers is 68.3% in rounds 1-10 and 73.7% in rounds 11-20

with the difference not being statistically different. In LEN the frequency of

bribe offers is with 56.6% in the second half of the experiment slightly lower

than in the first ten rounds, where it is 58.1%. Again this difference is not

statistically significant.

In treatment LEN the tax payer not only faces less risk than in treatment
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Figure 4.4: Frequency of bribes offered and bribe acceptance rate in NoLEN and
LEN.

NoLEN but this risk is also effectively shifted to the tax officer as leniency

exposes her to the possibility of being reported and fined. In Appendix 4.A

we show that this raises the optimal bribe acceptance threshold in equilib-

rium. A failure of the tax payers to acknowledge this increased risk for the

tax officers is likely to result in more rejections of bribes. Next, we consider

the behavior of the tax officer, more precisely we look at the average fraction

of bribes accepted by tax officers. The right panel of Figure 4.4 shows the

evolution of the bribe acceptance rate over the 20 rounds for the two treat-

ments without a regime change. The graphs indicate a higher acceptance

rate in NoLEN compared to LEN and clearly show that the acceptance rate

is increasing in both treatments over time. The average acceptance rate in

LEN is 58.8% and thus lower compared to the average acceptance rate of

73.2% in NoLEN, however, this difference fails to reach significance (MWW,

N = 22, z = 1.51657, p = 0.1294). Spearman rank order correlations con-

firm our observation of a significant positive trend in both treatments that

is of about the same magnitude in NoLEN (ρ = 0.5245, p < 0.001) and

LEN (ρ = 0.5073, p < 0.001). Comparing the average acceptance rate for

the first ten rounds with the average acceptance rate in the second part, we

find a significant increase in NoLEN from 64.4% to 81.6% (MWW, N = 10,

z = −2.7557, p = 0.0059) as well as an significant increase in LEN from

52.9% to 65.0% (MWW, N = 12, z = −2.353393). Thus, our results suggest

that the acceptance rate is increasing over time in both treatments without

123



Chapter 4 Institutional History, Leniency and Collusive Tax Evasion

a regime change.

In combination these results suggest that the decrease collusion in LEN

compared to NoLEN is likely the result of both, the absence of an increase

in the number of bribes offered by the tax payer (which are even slightly

less frequent, but not statistically significant) and a reduced acceptance rate

by the tax officer in LEN, which, however, fails to reach significance. The

increase in collusion over time seems to be mainly driven by an increase in

the acceptance rate of the tax officer, especially for LEN where the number of

bribes offered is even slightly decreasing. In NoLEN there is a positive trend

also for the frequency of bribe offers, which might explain why in NoLEN

collusion seems to be increasing more rapidly than in LEN.

Incidence of bribe offers and acceptance rate in NoL-L and L-NoL

We now study the effects of the introduction and the removal of a leniency

mechanism that allows for whistleblowing on the frequency of bribe offers

by the tax payer and on the bribe acceptance rate by the tax officer. The

left panel of Figure 4.5 shows the dynamics of the frequency of bribe offers

in treatments NoL-L and L-NoL. We observe that there is an upward jump

in the frequency of bribe offers after the introduction of leniency in NoL-L,

from that point on we see a steep decrease until the end of the experiment.

Overall bribe offers seem to be more frequent in the presence of leniency for

both treatments, but more so for L-NoL. In the latter there is a positive

trend before and after the removal of the reporting option, but the frequency

of bribe offers drops sharply.

In treatment NoL-L the average frequency of bribe offers is 65.0% in the

first part and rises by 5.5 percentage points to 70.5% in the second part when

a leniency mechanism is introduced. This increase is identical to the increase

observed in NoLEN where no regime change occurred. A Mann-Whitney-

Wilcoxon test comparing the increase in NoL-L to the increase in NoLEN

from part one to part two confirms this observation (N = 32, z = 0.0001, p =

1.000). We conclude that the introduction of a leniency mechanism has no

significant effect on the average incidence of bribe offers. However, Figure 4.5
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Figure 4.5: Frequency of bribes offered and bribe acceptance rate in NoL-L and
L-NoL.

suggests that the introduction of whistleblowing affects the dynamics of bribe

offers over rounds. Spearman rank order correlations reveal that during the

first part of NoL-L bribe offers show no clear trend (ρ = 0.0369, p = 0.5859),

whereas there is a significant negative trend following the introduction of a

reporting mechanism (ρ = −0.8924, p < 0.001).

We now turn to the effect of the removal of leniency on bribe offers. In

treatment L-NoL on average tax payers offered bribes in about 72.5% of all

cases when whistleblowing was possible. This rate is 6.5 percentage points

higher than in the second part, where this number falls to 66.0% following

the removal of the mechanism. This change is very close to the decrease

by 1.5 percentage points observed in LEN and indeed the difference in the

effects from the first part to the second part between LEN and L-NoL is

not statistically significant (MWW, N = 26, z = 0.7232, p = 0.4696). We

also observe from Figure 4.5 that there is a positive similar positive trend,

both before (ρ = 0.4075, p < 0.001) and after the removal of the leniency

mechanism (ρ = 0.4909, p < 0.001).

Next, we consider how the behavior of tax officers, as revealed by the

average acceptance rate of bribe offers, is affected by the introduction and

the removal of a leniency mechanism. The right panel of Figure 4.5 shows

the evolution of the acceptance rate of tax officers over the course of the

experiment for treatments NoL-L and L-NoL. The graphs suggest that tax

officers accept less bribes after the introduction of leniency, which is likely due
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to the potential risk of being reported and fined. Our findings in treatment

NoL-L indicate that the average acceptance rate of bribes decreases from

64.4% to 59.7% following the transition to an institutional environment with

leniency. Recall that in NoLEN, where no such measure was introduced, we

have seen that the acceptance rate increases by 17.2 percentage points from

the first part to the second part. The difference in the change between parts

across NoLEN and NoL-L is highly significant (MWW, N = 32, z = 3.0910,

p = 0.0020). This result suggests that the introduction of a reporting option

is an efficient deterrent for the tax officer as reflected by a stark negative

effect in bribe acceptance rates. Moreover, the dynamic pattern in NoL-L

confirms our earlier observation that acceptance rates are increasing over

time independently of the presence of a leniency mechanism.

The removal of the reporting mechanism in L-NoL appears to have a dif-

ferent effect as revealed by the dynamics in the right panel of Figure 4.5.

Acceptance rates are increasing over time in a similar fashion as we have

observed in treatment LEN where the mechanism was not removed. Most

importantly, in treatment L-NoL the dynamics does not indicate any behav-

ioral change in acceptance rates from the first to the second part, but only a

steady increase over time. The average acceptance rate increases from 52.2%

in part one where whistleblowing was possible to 74.2% in the second part

without such a mechanism. This increase is not statistically different from

the increase observed in LEN (MWW, N = 26, z = −0.4115, p = 0.6807).

Thus, we find no evidence that the removal of leniency significantly increases

acceptance rates. Further, also in treatment L-NoL the dynamic pattern over

the course of the experiment confirms that acceptance rates are increasing

as subjects gain more experience.

We find no evidence that the introduction of leniency for the tax payer

has a strong effect on bribe offers, in particular that leniency encourages tax

payers to offer bribes more frequently is not supported by our data. At most,

there is weak evidence for a temporary increase in bribe offers following the

introduction of leniency, but this is coupled with a sharp and steady decrease

over later periods. On the other hand, our data suggests that the introduc-

tion of a whistleblowing mechanism, that renders the tax officer formally
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responsible, is able to discourage tax officers from accepting bribes. More-

over, we find no evidence that the removal of such a mechanism triggers an

effect in the opposite direction, that is, acceptance rates show no significant

jump upwards when the threat of whistleblowing is removed, which indicates

a positive spillover effect of whistleblowing. We find consistent evidence for

a general increase of acceptance rates over time that is independent of the

presence of a leniency mechanism. Thus, our results identify a deterrent ef-

fect of leniency on tax officers as the driver behind the effects on collusion

rates reported in Subsection 4.3.1. That is, tax officers reject more bribe

offers after leniency is introduced and do not accept more bribes when it is

removed. Moreover, this effect outweighs any potential encouragement for

tax payers to offer more bribes under leniency, for which our data offers only

limited support.

Effects of Bribe size, Reporting and Beliefs on the Bribe Acceptance Rate

Let us now consider the amount of bribes paid. Recall that in the bribery

game with leniency, the optimal bribe acceptance threshold is higher, hence

in order to sustain collusion the tax payer has to compensate the tax officer

for the additional risk with higher bribe payments. As shown in Appendix

4.A in equilibrium bribe payments are by about 3.7 ECU higher in the bribery

game with leniency compared to when it is absent. In line with these theo-

retical predictions we observe that average bribe payments are 14.4 ECU in

treatment NoLEN compared to 16.6 ECU in treatment LEN. Although this

difference is smaller than predicted we find that the difference is statistically

significant (MWW, N = 22, z = −1.7808, p = 0.0749). Similarly, there is

a significant upwards shift in the size of bribes paid following the introduc-

tion of a whistleblowing mechanism in treatment NoL-L from 13.2 ECU to

15.4 ECU (WSR, N = 22, z = −2.3538, p = 0.0186). Analogously, bribe

payments are 16.6 ECU during the first part of treatment L-NoL, whereas

they decrease to 15.2 ECU following the removal of whistleblowing, however,

this difference is not statistically significant. Evidently, taxpayers acknowl-

edge the higher risk that public officials have to bear in the presence of a
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Figure 4.6: Bribe size over rounds across treatments.

leniency mechanism and as a consequence compensate them, at least par-

tially, with higher bribes. It is important to note that for a tax officer all

bribe payments above 6 ECU, respectively 8.16 ECU, are profitable in the

presence, respectively absence, of leniency. Bribe offers below the respective

threshold occurred only in about 10% of the cases in both treatments NoLEN

and LEN, hence those were relatively rare. Non-profitable bribe offers were

slightly more common but equally likely in treatments NoL-L and L-NoL

occurring in 15.5% and 16.3% of all cases, respectively. Hence, differences

in the frequency of non-profitable bribe offers cannot explain the effects of

leniency on collusion and bribe acceptance rates.

Figure 4.6 illustrates the evolution of bribe payments over the course of

the experiment across treatments. In both NoLEN and LEN the size of bribe

payments remains fairly constant over time, apart from an initial adjustment

period during the first five rounds of treatment LEN. In treatment NoL-L

bribe payments show some positive trend following the introduction of the

reporting option. There is a similar trend in treatment L-NoL, but also

only in the presence of leniency. In our setting, a tax payer’s decision on

whether to evade taxes goes hand in glove with the decision to pay a bribe

and make the tax officer look the other way. Ceteris paribus, higher bribe

payments should naturally lead to higher collusion rates. To test whether this

is indeed the case we ran a logistic panel regression with random effects and

standard errors clustered at the group level for each treatment separately.

The dependent variable is whether a bribe was accepted or not, that is, any
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instance of a bribe offer is one observation. We include the size of the bribe

offer as an independent variable and for treatments NoL-L and L-NoL we

also include a dummy for the presence of a leniency mechanism and the

interaction with bribe size. Table 4.3 in 4.4 reports the results of these four

regressions. The regression results show that larger bribes are more likely to

be accepted by the tax officer across all treatments and independent of the

possibility to blow the whistle, which confirms our intuition. The effect of

bribe size appears to be smaller in the presence of a leniency mechanism, but

is still positive and significant. This somewhat suggests that when reporting

is possible tax officers react to a lesser extend to the size of the bribe offer,

possibly because some tax officers are sufficiently deterred by the threat of

being reported that the size of the bribe becomes less relevant.

We briefly discuss also the use of the whistleblowing mechanism among

tax payers. Tax payers made use of the possibility to report almost to the full

extent with an overall average propensity to report the tax officer of about

91.4%. Reporting was most frequently used in treatment L-NoL (98.6%), but

not significantly different from the frequency observed in NoL-L (87.4%) and

LEN (90.0%). We thus do not find any evidence for reciprocity among tax

payers and tax officers, which may partially be attributed to the fact that in

our setting tax payers who chose to report were granted partial anonymity.

Tax officers were only informed that and by how many tax payers they were

reported, but not exactly by whom. Hence, depending on the particular

situation tax officers were not able to determine whether a particular tax

payer did blow the whistle or not. This limits the scope for retaliation, for

example via withholding future cooperation, and hence may explain the high

rate of reporting decisions. In contrast it has been argued that betrayal,

such as reporting, is associated with a moral or psychological cost (see also

Coricelli et al., 2010), which is not supported by our data.

4.3.3 Effects on Tax Evasion

Experimental evidence suggests that subjects’ tax compliance usually is well

above the theoretically optimal level, for example due to moral costs of en-
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Figure 4.7: Amount of taxes finally paid over rounds and across treatments.

gaging in illicit behavior.12 In our experiment tax payers had to make two

decisions: First, whether and how much to bribe the tax officer, and second,

how much taxes they wanted to declare. Since in our setup tax evasion is

nested within a framework of collusive bribery, the amount of taxes actual

paid is the result of a tax payer’s decision about the amount of taxes declared

as well as tax officer’s decision to accept or reject the report (and thus the

bribe offered). We hence have to distinguish between attempted tax eva-

sion, as revealed by the amount of taxes declared, and actual tax evasion,

as revealed by the amount of taxes finally reported. Recall that following a

rejection by the tax officer, the tax payer is forced to truthfully report taxes.

While attempted tax evasion is also of some interest and can surely cause

moral damage to society as a whole, it is the actual amount of taxes evaded

what directly causes a negative externality on society. In this subsection we

therefore focus on actual tax evasion, that is, the amount of taxes finally

reported. The results for attempted tax evasion are very similar to those of

actual tax evasion and hence we omit them for brevity.

The average amount of taxes paid in NoLEN is 20.1 ECU and is thus

smaller than the average of 27.9 ECU observed in treatment LEN. This dif-

ference is statistically significant (MWW, N = 22, z = −2.4397, p = 0.0147)

showing that the lower rate of collusion in LEN observed previously also

12It was shown in Banerjee (2016b) that a loaded frame that creates the right sense of
entitlement significantly decreases corruption, suggesting that moral costs are indeed at
work.
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translates into a higher tax yield collected. As illustrated by Figure 4.7

the amount of taxes paid also shows a negative trend across all treatments

independent of the presence of a leniency mechanism. In fact, in NoLEN

the amount of taxes paid decreases from 23.9 ECU to 16.2 ECU from part

one to part two, whereas in LEN this decrease is smaller with average tax

payments of 29.7 ECU in part one and 26.2 ECU in part two. In treat-

ment NoL-L taxes paid show almost no decrease following the introduction

of whistleblowing being 26.1 ECU before and 24.8 ECU on average after the

mechanism was introduced, respectively. Comparing the changes in taxes

paid between NoLEN and NoL-L, we find a significantly smaller decrease in

treatment NoL-L (MWW, N = 32, z = −1.8093, p = 0.0704). Thus the in-

troduction of a whistleblowing mechanism has a significant positive effect on

the tax yield collected. In contrast, in treatment L-NoL paid taxes decrease

from 27.5 ECU on average in the first part of the experiment to 23.4 ECU

on average in the second half of the experiment where leniency was removed.

This decrease is similar in size to the one observed in treatment LEN and a

Mann-Whitney-Wilcoxon test confirms that the removal of the reporting op-

tion has no significant negative effect on the amount of taxes paid (N = 26,

z = 0.4115, p = 0.6807).

4.4 Discussion and Conclusion

Our results shed light on the effects of a leniency mechanism on collusive

bribery in a tax evasion framework utilizing a controlled laboratory setting.

We nest collusive corruption in a tax evasion framework, in which tax payers

require the cooperation of a tax officer to evade taxes, thus opening the door

for collusive bribery. The leniency mechanism we consider offers leniency to

tax payers for reporting corrupt tax officers. In our setup leniency not only

shifts the risk and negative consequences (fines) of collusive bribery from the

tax payer to the tax officer, who otherwise faces little to no consequences,

but also renders her formally responsible. Compared to most studies in the

tax evasion literature we add a dimension of strategic interaction that allows

us to capture a richer strategic environment, which is applicable to other
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domains, such as custom duties, that are understudied so far. Further, we

investigate the dynamics of institutional changes and their effects on both

corruption and tax evasion by considering not only environments with and

without leniency, but also the introduction and the removal of such a policy.

By doing so we have identified a positive spillover effect of the presence of

a whistleblowing mechanism present from the first half of the experiment to

the second half of the experiment where it is no longer in place.

Comparing settings with and without leniency, in the absence of an in-

stitutional change, we found leniency to be effective in combating collusive

bribery. When leniency for a tax payer is in place successful collusion be-

tween tax payer and tax officer is less frequent. Further, it effectively deters

the tax officer from accepting bribes, while at the same time we find no ev-

idence that leniency encourages the tax payer to offer bribes. We identify a

lower willingness of the tax officer to accept bribes as the main driver behind

the observed effects on collusion. We also find a positive effect of leniency

on tax compliance with more taxes being collected when such a mechanism

is in place. In addition, our results highlight the role of institutional changes

and its importance to the evaluation of policy measures. We show that the

introduction of the opportunity to blow the whistle is effective in breaking up

already established collusive pattern by sowing distrust between the colluding

parties, which prevents collusive bribery and tax evasion to thrive further. In

contrast, the removal of the institutional mechanism does not cause similar

effects in the opposite direction, which points towards a positive spillover

effect of the particular institutional mechanism we consider. That is, the

positive effects of offering leniency to whistleblowers persists even after the

mechanism has been removed. This in in line, with some recent evidence

emphasizing the importance of spillover effects (e.g., see d’Adda et al., 2017;

Engl et al., 2017).

We provide empirical evidence emphasizing that a political measure should

not be judged in isolation by disregarding the reference point provided by

the pre-reform system, since this might lead to an incomplete or even flawed

assessment of its effectiveness. It is therefore crucial to consider the history

of political or legal systems when deciding upon means to combat corrup-
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tion and tax evasion. The classical economic model of tax evasion does

not consider the fact that individuals are “born into” a certain legal system,

but exactly this status quo might determine whether a potential reform is

effective or not. Taking this evidence into account will be crucial for un-

derstanding why sometimes reforms are highly effective in a certain country

or cultural environment, while they are ineffective in others. This might be

related to the echo effect found in Mittone (2006), that is, a change in the

audit sequence affects behavior because subjects “learn” to be risk-averse or

risk-seeking through experiencing early or late first audits. This indicates

that past experience can create some sort of reference behavior that cannot

easily be “unlearned,” and hence might enhance or hinder the effectiveness

of a subsequent reform. Following that line of argument reforms can turn

out to be a one-way street, once implemented their effects cannot simply be

undone by reestablishing the pre-reform regime. Hence rolling out reforms is

a process that ought to be taken with great caution by policy makers.

Appendix 4.A: Theoretical Analysis of the Bribery Game

Consider the bribery game with and without leniency described in Subsection

4.2.1 above as one-shot interaction between a TP and a TO, both assumed

to be rational in the sense of being risk-neutral expected payoff-maximizers.

Assuming the rational model of crime (Allingham and Sandmo, 1972) we

now derive theoretical predictions regarding tax compliance and bribe ex-

change. Our analysis shows that predicted tax compliance of the TP is the

same for both institutional frames. On the other hand, the optimal bribe

payment is higher in the BGL where reporting is possible. Moreover, bribe

exchange (collusion) is optimal under both regimes. Denote the amount of

taxes declared by D and the bribe offered by b.

In the BG a rational TO will accept any bribe b that is (weakly) above

the expected foregone commission of 15% from the taxes declared, that is

7.5% of the declared income D. Since the TO does not observe the income

declared by the TP we assume that she holds a belief µ : {0, . . . , 80} −→ [0, 1]

over D. The expected amount of declared income given this belief µ is then
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D(µ) =
∑

µ(D)D. Hence, the TO will accept a bribe if she beliefs that the

bribe is larger than her foregone commission, that is if and only if

b ≥ 4.8− 0.06D(µ).

The bribe acceptance threshold, which we denote by bBG(µ), depends only

on the expected amount of declared income D(µ). For example, if the TO

expects the TP to declare zero taxes, that is D(µ) = 0, then only bribes of at

least 4.8 are accepted. Note that the threshold is strictly increasing in D(µ).

On the other hand, if the TP offers a bribe b and the TO accepts (which is

the case for b ≥ bBG(µ)), the TP’s expected payoff for reporting an amount

of D is

ΠTP(D, b | accept) = 70− b− 0.375D.

Note that ΠTP is decreasing in D and b, hence a rational TP will optimally

declare an income of D = 0 and pay the smallest bribe that is accepted by

the TO, which is b = 4.8− 0.06D(µ).

In the BGL leniency introduces the possibility for a TP to report a cor-

rupted TO following an audit. In the one-shot scenario it is optimal for the

TP to report the TO when being audited, in which case the TP now has an

expected payoff of

ΠTP(D, b, report | accept) = 72− b− 0.4D.

This payoff is still decreasing in D and b, and thus the TP prefers to declare

zero taxes and pay the smallest bribe that is accepted by the TO. However,

the bribe threshold in the BGL is not the same as in the BG. To see this,

suppose the TO anticipates that the TP will always report her when audited,

then a rational TO will accept a bribe if and only if

b ≥ 8.5− 0.075D(µ).

We denote this threshold by bBGL(µ). Intuitively, now the TP has to com-

pensate the TO not only for his forfeited (expected) salary, but also for the
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risk of being reported and its consequences.

The game described above is a game of imperfect information (the TO

does not observe D) and as such it has many equilibria. We use Perfect

Bayesian Equilibrium (PBE) as our solution concept of choice. Given a point

belief µ with µ(0) = 1 and µ(D) = 0 for D 6= 0 there is a PBE of BG where

the TP declares exactly D = 0 and offers a bribe b = bBG(µ), which the TO

accepts. Similarly, given the same belief there is a PBE for BGL where the

TP declares D = 0, offers a bribe b = bBGL(µ), which the TO accepts, and

always reports the TO when audited. In both, BG and BGL, collusion is

an equilibrium of the one-shot game. However, since bBGL(µ) > bBG(µ) for

any µ, the bribe acceptance threshold in BGL is higher compared to BG. It

is important to note that for both games the bribe acceptance threshold is

decreasing in the mean of the TO’s belief µ.
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Appendix 4.B: Summary Statistics

Table 4.2 provides an overview of the behavior in all four treatments. We

report the frequency of successful bribe exchange (collusion), the frequency

of bribe offers, the amount of bribes paid, the proportion of bribes accepted

by the tax officer, tax compliance, both attempted and effective, and the

propensity of tax payers to report tax officers when given the chance.

Table 4.2: Summary statistics across treatments.

Treatment NoLEN LEN NoL-L L-NoL
Rounds 1-20 1-20 1-10 11-20 1-10 11-20
Collusion (in %) 52.3 34.6 43.2 41.7 38.3 48.8
BribeOffered (in %) 71.0 57.3 65.0 70.5 72.4 66.0
BribeSize (in ECU) 14.4 16.6 13.1 15.4 16.6 15.2
AccRate (in %) 73.1 58.8 64.5 59.7 52.2 74.2
TaxDeclared (in ECU) 13.9 20.6 20.2 14.9 18.1 18.3
TaxPaid (in ECU) 20.1 27.9 26.8 24.8 27.5 23.4
Reporting (in %) - 85.5 - 91.5 98.7 -

Note: Collusion denotes the incidence of successful bribe exchange (bribe offered and ac-

cepted); BribeOffered denotes the incidence of a bribe being offered relative to all situation

where this was possible; BribeSize is the average size of the offered bribes (0-30 ECU);

AccRate denotes the fraction of bribe offers that were accepted by tax officers; TaxesDe-

clared denotes the amount of taxes initially reported (0-40 ECU); TaxesPaid denotes that

taxes actually paid according to the final, accepted report (0-40 ECU); Reporting denotes

the fraction of reporting decision by tax payers when audited.
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Appendix 4.C: Additional Analysis

Table 4.3: Logistic panel regression with random effects of acceptance on bribe
size.

Accepted NoLEN LEN NoL-L L-NoL
BribeSize 0.3987∗∗∗ 0.1613∗∗∗ 0.2434∗∗∗ 0.2403∗∗∗

(0.1219) (0.0445) (0.0501) (0.0578)
Leniency −0.1954 −2.5350∗

(0.5717) (1.3143)
Leniency × BribeSize −0.0607∗∗ 0.0229

(0.0296) (0.0750)
Constant −4.1264∗∗ −2.1187∗∗∗ −2.1590∗∗∗ −1.9292∗

(1.8780) (0.7271) (0.7008) (1.0607)
Linear combination test 0.1828∗∗∗ 0.2632∗∗

BribeSize + Leniency × BribeSize (0.03703) (0.1142)
Observations 426 413 894 581

Note: Standard errors clustered at the group level in parentheses. ∗ p < 0.1,∗∗ p <

0.05,∗∗∗ p < 0.01.
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Chapter 5

Timing, Uncertainty and Institutional Deterrence

5.1 Introduction

Governments all over the world use substantial resources to keep society safe

and punish people for criminal acts. Annually, the US spends approximately

$75 billion on incarceration (not including costs for courts, trials, etc.). Thus,

it is hardly surprising that extensive research has been done to understand

the determinants of deviant behavior and shed light on alternative deterrence

mechanisms. Existing economic literature not only stresses the relevance of

institutional environments in shaping prosperity and growth (La Porta et al.,

1999; Acemoglu et al., 2005), but also their importance in effectively deter-

ring criminal and immoral behavior in ways that include staff rotations in

public administration, crown witness regulations, and changes in punishment

regimes (Shleifer and Vishny, 1993; Abbink, 2004; Abbink et al., 2014; Engel

et al., 2016). Due to the inherent methodological challenges of studying de-

viant behavior, where reliable observational data is unavailable, economists

have turned to controlled experiments to address these pressing questions

(Abbink, 2006). We follow this methodological approach in our paper.

There is vast literature on criminal deterrence that focuses on the rele-

vance of the certainty and severity of punishment in deterring deviant be-

havior (see e.g. Becker, 1968; Baker et al., 2004; DeAngelo and Charness,

2012; for a recent review of economic research see Chalfin and McCrary,

2017 and for a cross-disciplinary discussion of experimental work see Engel,

2016). However, the swiftness of punishment (often referred to as celerity),

frequently mentioned alongside certainty and severity (Bailey, 1980; Howe

and Brandau, 1988; Yu, 1994; Nagin and Pogarsky, 2001, 2004), has been

under researched by those in the economic field. Understanding the mecha-

nisms underlying deterrence of deviant behavior yields important policy im-
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plications. Given the high costs involved in increasing punishment’s certainty

(e.g. costs for an executive body) or punishment’s severity (e.g. incarcer-

ation costs), we argue that the timing of conviction and punishment, that

is, their delay with respect to the transgression in question, can potentially

serve as a powerful tool for deterrence that is often available at a relatively

low cost.

The classic theoretical approach towards the deterrence of criminal ac-

tivity (e.g. Becker, 1968) is based on the assumption that potential offenders

mainly weigh the potential gains against the potential adverse consequences

of an offense. In the standard framework of discounted expected utility,

delayed punishment should reduce deterrence due to a discounting effect,

whereas the timing of resolution of uncertainty should have no effect on

behavior. Starting with the seminal paper of Loewenstein (1987), several

theories propose that anticipation of future events is an important determi-

nant of inter-temporal utility (see e.g., Wu, 1999; Lovallo and Kahneman,

2000; Caplin and Leahy, 2001; Dillenberger, 2010; Strzalecki, 2013; Golman

and Loewenstein, 2015). These models are based on the idea that a non-

negligible proportion of the overall consequences from future consumption

(be it negative or positive) is already consumed in the form of so-called antic-

ipatory utility before actual consumption takes place. While there is growing

theoretical literature supporting anticipatory utility theory and its implica-

tions, there is little empirical work being done and even less experimental

investigation. 1

The goal of the present paper is to experimentally test the implications of

anticipatory utility in the context of institutional deterrence mechanisms. In

particular, we are interested in how the timing of sanctions (be it conviction

or sentencing) and the timing of the resolution of uncertainty surrounding

these sanctioning mechanisms affects deterrence. We systematically vary the

celerity of a sanction within a new, stylized, experimental paradigm along

the following two dimensions: first, we vary the delay between offense and

1Two recent exceptions are Falk and Zimmermann (2016), who experimentally tested
the implications of anticipatory utility in the context of information preferences and Kogler
et al. (2016), who showed that delayed resolution of a tax audit results in higher tax
compliance.
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detection/conviction; second, we vary the delay between offense and sanc-

tioning. Our main objective is to better understand the role of celerity, in

our opinion, an important dimension of most deterrence mechanisms, that

has received surprisingly little attention in previous literature. We argue

that celerity could potentially serve as a useful tool for policy makers to

design more efficient and/or less expensive institutional deterrence mecha-

nisms. However, delayed punishment is not necessarily less deterrent (due

to discounting) if utility from anticipation is taken into account. Addition-

ally, we study the role of the timing of resolution of uncertainty. We vary the

point in time when the information about whether or not a transgression was

detected is revealed to subjects. We show that in theory, depending on the

impact of anticipatory utility, delayed resolution of uncertainty may increase

deterrence.

Our experimental analysis is based on a simple guessing game where sub-

jects may cheat in some periods to increase payoffs. After these periods there

is an investigation such that cheaters will be detected and fined with a given

probability. In the single treatments, we vary both the timing of the potential

fine, as well as, the timing of the resolution of uncertainty, i.e. when the par-

ticipants learn the results of the investigation. We analyze behavior alongside

two dimensions: total cheating behavior and recidivism (conditional cheat-

ing). Our results show that delayed resolution has no systematic impact on

cheating. With respect to the relation between the delay of punishment and

deterrence, we observe an inverted U-shape relationship where deterrence is

lowest for a short delay of punishment and significantly lower for either no

delay or a long delay when combined with a late resolution of uncertainty.

This result is at odds with discounted expected utility and theories of

anticipatory utility, but can be explained by the recent model of Baucells

and Bellezza (2016). They extended anticipatory utility by a reference point,

a utility of recall and a magnitude effect in discounting. We conclude that

in order to increase the deterrence of sanctioning mechanisms, punishment

should either be swift or sufficiently delayed and paired with the psychological

dread of uncertainty.

The paper is organized as follows. The next section provides a brief review
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of the theoretical and empirical background on the relation between celerity

and deterrence. Section 3 details our experimental procedures and discusses

the hypotheses we aim to test. Results are presented in Section 4. The final

section discusses our results and derives some conclusions.

5.2 Theoretical and Empirical Background

The benefits of criminal behavior are usually immediate. Any proceeding

detection, conviction, and implementation of legal consequences are gener-

ally delayed and stochastic. This poses an inter-temporal decision problem

under uncertainty. Classically, celerity meant only the temporal delay of a

potential sanction following a transgression. We will adopt a wider definition

of celerity, using it as a catch-all phrase for the timing of the various facets of

a deterrence mechanism. There are several prominent economic theories of

inter-temporal decision making. Here we want to focus on two. First, theories

of temporal discounting suggest that future costs or benefits receive a lower

weight than immediate ones; this weight decreases as one moves further into

the future (Frederick et al., 2002). The implications are simple. If a poten-

tial offender discounts delayed legal consequences, then deterrence decreases

the longer the delay. As a consequence, higher celerity (less delay) would

increase the efficiency of legal sanctions, which is the classical hypothesis in

criminological literature (Nagin and Pogarsky, 2004; Paternoster, 2010).

Second, theories of anticipatory utility that incorporate anticipatory feel-

ings such as excitement, fear or dread into classical expected utility theory

suggest that one might want to bring forward an unpleasant event to shorten

the period of dread (or delay a positive event to enjoy the excitement for

a longer period of time). The idea is that future events influence current

utility. More precisely, negative (positive) future events cause negative (pos-

itive) utility today the further away the event is (at least up to a certain

point). Caplin and Leahy (2001) extend Loewenstein’s model by allowing for

uncertainty and point toward the importance of anticipatory feelings prior

to the resolution of uncertainty. However, anticipatory emotions, such as

anxiety, are often predicated on an uncertain future. Thus, they are mainly
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relevant prior to the resolution of uncertainty. This suggests that the point in

time at which uncertainty is resolved is particularly important. For example,

Kreps and Porteus (1978) and Kocher et al. (2014) show that preferences over

temporal lotteries also depend on the point in time when the uncertainty is

resolved. That is, agents can show a preference for earlier or delayed resolu-

tion of uncertainty. Further evidence comes from consumer literature. An-

ticipatory emotions, compared with outcome-based emotions, are central in

prospective consumption situations. Furthermore, the uncertainty associated

with anticipatory emotions negatively affects intentions (Bee and Madrigal,

2013). Psychological learning theories (Skinner, 1963; Tversky and Kahne-

man, 1986; Ehrlich, 1996; Hackenberg, 2009) second the argument that the

time between a transgression and the punishment and the uncertainty that

is associated with the punishment are driving forces for effective behavioral

changes. If this is indeed the case, then the classical interpretation of celerity

as the time between committing an offense and the actual punishment (e.g.

fine or imprisonment) should be complemented by the time the uncertainty

is resolved, thus, the time of sentencing.

The implications of the timing of a sanction on deterrence derived from

anticipatory utility theory could oppose those suggested by temporal dis-

counting. Clearly this is an important point that has to be taken into con-

sideration for the design of legal institutions. A systematic study of the

role of celerity for deterrence poses a serious empirical challenge, because

changing the celerity of an enforcement mechanism would most likely impact

existing institutional structures on multiple levels. For that reason, isolating

the impact of such an intervention is hardly possible in the field. In addi-

tion, it is unclear whether an actual or would-be offender is aware of this

change or not, making identification almost impossible. Thus, a systematic

study of celerity calls for a highly controlled environment that allows for the

isolation of the direct effect of institutional changes varying celerity on be-

havior. Fortunately, the experimental laboratory provides such a controlled

environment.
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5.3 Design and Hypotheses

5.3.1 Experimental Design

We use a simple guessing game that is played repeatedly by our subjects. In

certain rounds subjects are presented with the option to “cheat.” Cheating

guarantees them the maximum possible payoff for that round. Our goal was

to design a simple game where the option to cheat was not integral; we wanted

the game to be easy-to-understand, but meaningful regardless of whether or

not the option to cheat was presented. Specifically, we wanted to make sure

that cheating was not considered part of the game, but a clear violation of said

games rules. In our guessing game a card is randomly drawn from a deck of 32

cards and subjects have to guess which card was drawn. A subject received

10 Experimental Currency Units (ECU) for a correct guess and 4 ECU for an

incorrect guess. In some rounds participants are given the option to cheat. By

cheating, participants are allowed to uncover the randomly drawn card before

making one’s guess, ensuring a correct answer and the maximum payoff of 10

ECU less a possible fine if detected.2 Participants were informed that each

instance of cheating would be followed by an “investigation” that would detect

cheating with a fixed probability of 25%. Hence, cheating exposes them to

the risk of being caught. If caught the consequences are two-fold. First, the

subject has to pay a fine of 10 ECU. Second, the subject is suspended from

the game for one round, is not allowed to make any decision and cannot earn

any ECU. Furthermore, suspended participants are forced to wait 60 seconds

before they are allowed to continue in the next period. We deliberately chose

suspension as part of the sanctioning mechanism to increase salience with

regard to the timing of sanctions. While one might argue that a delayed

fine in a laboratory context where all “actual” payments are realized at the

very end of the experiment decreases the result’s robustness, such concerns

do not apply to the suspension as it is clearly linked to the particular round

2When subjects decide to cheat, we automatically implement the “right guess” for them.
Subjects are informed about this procedure in the instructions. We implement this forced
guess to avoid “second thoughts” where a subject cheats, views the drawn card, but chooses
a different card.
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Figure 5.1: Timeline of the experiment for each treatment.

1
RIR−ND

RIR−SD

2
PIR−ND

3
RDR−SD

RDR−KD

4
PDR−SD

PIR−SD

5 6

PDR−LD

Notes: P and R indicate the timing of resolution of uncertainty and timing of punishment
for each of the treatments IR-ND, IR-SD, DR-SD, and DR-LD, respectively.

a subject is suspended.

In order to make the moral dimension of cheating more salient in our

laboratory context we introduce a third party, represented by a charity, that

incurs a monetary damage as a result of cheating. Specifically, for each ex-

perimental session there is a charity pool of 250 ECU (worth $25) from which

50 ECU is deducted each time a particular subject decides to cheat.3 At the

end of the experiment one subject is randomly selected whose decisions de-

termine the charity pool, the remainder of which will be donated to “Doctors

without Borders.”

In our experiment, we vary the timing along the following two dimensions:

the timing of punishment and the timing of the resolution of uncertainty.

Punishment is either immediate, delayed by two rounds or delayed by four

rounds. In addition, the resolution of uncertainty regarding whether cheating

is detected (and hence whether there are sanctions) is either immediate or

delayed by two periods. Figure 5.1 illustrates the timeline for each treatment.

All treatments consist of 28 rounds: four training rounds followed by

four blocks of six rounds each. In the first four rounds participants play

the guessing game without cheating to familiarize themselves with the game

and the interface. In the first round of each block subjects can cheat. In

the remaining rounds of a block (rounds 2-6) they play the guessing game

without the option to cheat. Using blocks of 6 rounds allows us to vary

both the timing of the resolution of uncertainty, as well as, the timing of

3For each subject there are exactly four cheating opportunities, all in the first round
of a “block” of six rounds. That is, in rounds 5, 11, 17 and 23 subjects are given the
opportunity to cheat. Subjects are informed that “occasionally” they will be presented
with the option to cheat, but not about the exact timing and frequency of this option.
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Table 5.1: Overview of timing of resolution of uncertainty and punishment in the
different treatments.

Treatment Timing of resolution of uncertainty Timing of punishment
IR-ND immediate no delay
IR-SD immediate short delay (2 rounds)
DR-SD delayed (2 rounds) short delay (2 rounds)
DR-LD delayed (2 rounds) long delay (4 rounds)

punishment without an overlap with subsequent cheating decisions.

Table 5.1 summarizes the four treatments. In treatment IR-ND, we have

immediate resolution of uncertainty and no delay of punishment. Subjects

receive immediate feedback within the same round about whether cheating

was detected and there is no delay in punishment. That is, the fine (if due) is

deducted and a potential suspension is implemented immediately for the next

period.4 In treatment IR-SD, resolution of uncertainty is again immediate,

but now there is a short delay in punishment of two periods; when cheating

in period t the uncertainty will be resolved immediately, but the potential

fine and suspension are executed only in period t+ 3 (as opposed to t+ 1 in

IR-ND). We will also refer to IR-SD as immediate resolution of uncertainty

and short delay of punishment. In treatment DR-SD, the investigation into

cheating does not conclude immediately, but lasts for two additional periods.

Only after that is the participant informed about whether his cheating was

detected or not. As in IR-SD, there is a short delay of punishment. We

hence refer to DR-SD as delayed resolution of uncertainty and short delay of

punishment. Finally, in treatment DR-LD resolution is again delayed, but

now punishment is delayed for four periods rather than two. That is, cheating

in period t results in resolution of uncertainty in period t + 2, followed by

the actual punishment (if due) in period t + 5.

4Clearly punishment cannot precede the resolution of uncertainty which determines
whether a subject was detected and hence will have to face a punishment.
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5.3.2 Experimental Procedures

We conducted 32 experimental sessions at the Decision Science Lab at Har-

vard University. Participants were recruited vie e-mail invitation from the

laboratory’s database which contains students, as well as, non-students. A to-

tal of 296 subjects (out of which 46.6 % were males) participated in the exper-

iment split between treatments as follows: 66 subjects in IR-ND, 85 subjects

in IR-SD, 69 subjects in DR-SD and 76 subjects in DR-LD. The experiment

was programmed and run using z-Tree (Fischbacher, 2007).5 Within each ses-

sion participants were randomly assigned to a computer booth in which they

would participate in the experiment anonymously. The consent forms and in-

structions for the corresponding treatment were distributed. Upon agreeing

to the informed consent page the participants were given sufficient time to

read the instructions carefully. Before the start of the experiment subjects

had to answer a series of comprehension questions in order to check their

understanding of the game and its payoff structure. Subjects then played

28 periods after which they were informed of their total earnings via a de-

tailed summary screen. One subject was randomly drawn to determine the

charity pool and all participants were informed about the final amount left

in the pool to be donated to “Doctors without Borders.”6 At the end of the

experiment subjects completed a questionnaire containing questions on per-

sonal characteristics (demographics, education, income, age), risk-attitudes

(SOEP), consideration of future consequences (Strathman et al., 1994) and

self-control (Tangney et al., 2004).

Sessions lasted approximately 45 minutes excluding the time for payment.

A participant’s payoff was determined by the sum of his earnings over all 28

rounds. The total payoff in ECU was then converted to dollars at a rate of

5It is worth noting that we observed an influx of disproportionately older participants
due to a bug in the recruitment software in our first sessions. This was quickly resolved.
Participants of 41 years and older represent around 11% of our data set. Unless noted
otherwise, our results are robust with respect to this subgroup.

6Prior to the experiment subjects received a short description of the work of “Doctors
without Borders.” Although we cannot know for sure that all participants endorse their
work, we wanted to enforce a minimal level of common knowledge to increase salience. A
receipt of the amount actually donated was made available to all participants via email.
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10 ECU = $1. The average payment was $14.29 which includes a show-up

fee of $2.50.

5.3.3 Hypotheses

In this section, we further detail our main hypothesis on how deterrence

could be affected by the delay of punishment and the timing of resolution

of uncertainty. In the standard discounted expected utility (DEU) model,

optimal decisions do not depend on the timing of resolution of uncertainty.

In our model a delay of punishment should decrease deterrence. The utility

of not cheating (NC) is identical in all treatments and is given by

DEU(NC) =
31

32
4 +

1

32
10 (5.1)

where we assume for convenience a linear utility function.7 In what follows

we denote DEU(NC) by ūNC . We restrict attention to a single block con-

sisting of six periods, where cheating was possible in the first round of that

block. Further, we only consider the utility generated from the decision about

cheating in the first period of such a block in all our analyses. The remaining

utility components within a block are identical across treatments. In IR-ND,

detected cheaters are fined (10 ECU plus one round suspension) directly in

the next period. For a discount factor δ < 1, the utility of cheating (C)

amounts to

DEU(C, IR-ND) = 10−
1

4
δ(10 + ūNC) (5.2)

as cheating is not possible in the next period. Compared to IR-ND, pun-

ishment is delayed by two further periods in IR-SD. The same is true for

DR-SD. As the timing of resolution of uncertainty is immaterial under DEU,

we get

DEU(C, IR-SD) = DEU(C,DR-SD) = 10−
1

4
δ3(10 + ūNC). (5.3)

7While risk aversion modeled by a concave utility function certainly influences the deci-
sion between cheating and not cheating, it does not imply differences between treatments.
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Finally, we have

DEU(C,DR-LD) = 10−
1

4
δ5(10 + DEU(NC)). (5.4)

as punishment is delayed by a total of four periods in DR-LD. Since

DEU(C, IR-ND) < DEU(C, IR-SD) = DEU(C,DR-SD) < DEU(C,DR-LD)

where the utility of not cheating is independent of the treatments, we get the

following hypothesis:

Hypothesis 1. Increasing the delay of punishment decreases deterrence,

leading to more violations in IR-SD compared to IR-ND and in DR-LD

compared to DR-SD.

Hypothesis 2. The timing of resolution of uncertainty does not affect behav-

ior, implying that violations in treatments IR-SD and DR-SD are identical.

Hypothesis 3. Since the timing of resolution of uncertainty does not change

deterrence and increasing the delay of punishment decreases deterrence, we

will have more violations in DR-SD than in IR-ND and more violations in

DR-LD than in IR-SD.

Following Loewenstein (1987) negative future outcomes can cause imme-

diate disutility through negative anticipatory emotions such as fear, dread or

anxiety. DEU fails to take this into consideration. Suppose you were cheat-

ing in treatment IR-ND. Then you dread in the first period that you will be

fined in the next one, i.e. you dread a loss of 10 + ūNC . For a discount rate

γ which measures the degree to which current utility is influenced by antici-

pated emotions from consumption in the next period, the utility of cheating

is given by

UAE(C, IR-ND) = 10−
1

4
(δ + γ)(10 + ūNC) (5.5)

where UAE denotes utility with anticipated emotions. We now consider IR-

SD where there is a short delay of punishment by two periods. Note that

the utility from anticipation is discounted with discount factor δ. While the

discounting effect in (5.3) increases utility compared to IR-ND, anticipation
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leads to decreasing utility as dread is now experienced in more than one

period. More specifically, we get

UAE(C, IR-SD) = 10−
1

4
δ3(10+ ūNC)−

1

4
(γ3+ δγ2+ δ2γ)(10+ ūNC) (5.6)

Comparing (5.5) and (5.6), it may well be that the utility of cheating is

lower in IR-SD than in IR-ND if γ is sufficiently high. Since the utility of

not cheating is identical across treatments, we get the following hypothesis

as alternative to Hypothesis 1:

Hypothesis 1*. If the effect of anticipation is sufficiently high, delaying

punishment increases deterrence leading to less violations in IR-SD compared

to IR-ND and in DR-LD compared to DR-SD.

Anticipated emotions in the model of Loewenstein (1987) refers to future

consumption under certainty. In treatments DR-SD and DR-LD resolution

of uncertainty is delayed which may alter anticipatory emotions. While in

IR-SD a detected cheater may feel dread in periods 1-3 due to anticipating

the punishment in period 4, in DR-SD a cheater may experience the anxiety

of being detected in the later investigation. Following Caplin and Leahy

(2001) the anxiety experienced one period before resolution should depend

on the probability of being detected and the size of the fine. As all these

parameters are identical in treatments DR-SD and DR-LD we simply use

the terms A to denote the anxiety of a cheater one period before resolution.

We now introduce a third discount rate α, such that anxiety experienced t

periods before resolution is given by αtA. This yields the following utility of

cheating in DR-SD:

UAE(C,DR-SD) = 10−
1

4
δ3(10+ ūNC)−(α+δα2)A−

1

4
δ2γ(10+ ūNC) (5.7)

Typically, it is observed that people prefer early resolution of uncertainty for

negative outcomes. In our model this is the case if

(α2 + δα)A >
1

4
(γ3 + δγ2)(10 + ūNC) (5.8)
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and leads to the following hypothesis:

Hypothesis 2*. Delayed resolution of uncertainty increases deterrence lead-

ing to less violations in DR-SD compared to IR-SD.

Obviously, if the resolution of uncertainty should be delayed in order to

increase deterrence, punishment has to be delayed as it cannot precede the

resolution of uncertainty. The combined effect of delayed resolution and de-

layed punishment can be grasped by comparing DR-SD to IR-ND. If both

delaying punishment according to Hypothesis 1* and delaying resolution ac-

cording to Hypothesis 2* increases deterrence, our model implies the follow-

ing:

Hypothesis 3*. If delaying punishment increases deterrence due to dread

and delayed resolution also increases deterrence due to anxiety, then the

combined effect of delaying punishment and resolution results in less cheating

and, therefore, less violations in DR-SD compared to IR-ND.

Let us finally consider the utility of cheating in DR-LD. Here we get

UAE(C,DR-LD) = 10−
1

4
δ5(10+ ū)−

1

4
(γ3+δγ2+δ2γ3+δ3γ2+δ4γ)(10+ ū)

(5.9)

The cheater experiences anxiety prior to the resolution of uncertainty as

in DR-SD, but there is also an extended period where he may experience

dread due to delayed punishment. The second component is similar to the

dread experienced in IR-SD, additionally discounted as the experience starts

two periods later. Assuming (5.8), a comparison of (5.9) and (5.6), reveals

that the utility of cheating in DR-LD will be smaller than that of cheating in

IR-SD under the conditions of Hypothesis 1*. This results in the following

hypothesis:

Hypothesis 4*. If (5.8) holds and the effect of anticipation is sufficiently

high (γ is large enough), then delayed resolution combined with delaying pun-

ishment results in less cheating leading to less violations in DR-LD compared

to IR-SD and less violations in DR-LD compared to IR-ND.
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5.4 Results

Here, we present our results using parametric and non-parametric compar-

isons,8 as well, various regression techniques to analyze differences in cheat-

ing behavior, as motivated by our hypotheses. Please note that not only

the number of cheating opportunities (4) were the same in all treatments,

but also their timing (always in the first round of each block). Hence, any

difference in behavior can only result from our systematic variation in the

timing of punishment and the timing of resolution of uncertainty.

First, we look at the mean differences in total cheating across all treat-

ments as outlined in the theory part of our paper. Total cheating is defined

as the total number of individual cheating incidences across all rounds. We

calculate the percentage as the ratio of actual individual cheating decisions

to the maximum possible number of cheating opportunities (4). We present

the test results in Table 5.2 and a graphical illustration in Figure 5.2. Results

illustrate that the amount of cheating is 15 percentage higher in IR-SD when

compared to cheating in IR-ND (BSM, p = 0.03). Cheating is 13 percentage

lower in DR-LD compared to DR-SD (BSM, p = 0.07). Furthermore, cheat-

ing is 12 percentage lower in IR-ND than in DR-SD (BSM, p = 0.09) and

roughly 15 percentage lower in DR-LD than in IR-S (BSM, p = 0.02). We

test the theoretical predictions derived from our two theoretical frameworks

(DEU and UAE) in Table 5.4 and Table 5.5, respectively. This can be found

in Appendix 5.A. Overall, our hypotheses are partially supported by both

theoretical approaches. We discuss the implications in greater detail in the

next section.

In order to check for robustness, we ran a series of regressions to analyze

the behavioral motivations that result in cheating and the total amount of

cheating that took place. Treating decisions across rounds in the fashion of

8We follow Moffatt (2015) and employ the bootstrap two-sample t-test method (here-
after BSM) with 9999 replications to analyze mean differences of average return behavior.
This has the advantage that we can retain the rich cardinal information in the data with-
out making any assumptions about the distribution. Unless noted otherwise, the use of
non-parametric Mann-Whitney-Wilcoxon (hereafter MWW) tests yields results that are
in line with our bootstrap approach.
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Figure 5.2: Average Total Cheating.

panel data, our dependent variable in Table 5.2 is a count variable adding up

the total amount of cheating decisions across blocks.We present two types of

regressions. The first analyzes behavior by timing (models 1 and 2), while

the second analyzes behavior across treatment specifications (model 3 and

4). This allows us to dissect the impact of the timing of punishment from

the timing of resolution of uncertainty, as well as, the effect of their inter-

action on total cheating behavior. To this end, we use IR-SD with a short

delay of punishment and no delayed resolution of uncertainty as our reference

category. The extended form regressions (column 2) include a battery of rele-

vant covariates (gender, age, number of correct card guesses, experience with

punishment from past cheating, round indicator, risk tendencies, awareness

of future consequences, self-control, and a dummy indicating a participant’s

previous participation in economic experiments).

Our analysis in Table 5.2 suggests that, relative to a short delay of pun-

ishment, both swifter and more delayed punishment renders individual cheat-

ing decisions significantly less likely. The introduction of delayed uncertainty

resolution itself does not significantly affect cheating behavior. A direct com-

parison of our treatments mirrors this finding, indicating that higher deter-

rence can be achieved by either implementing swift punishment (IR-ND) or

152



Chapter 5 Timing, Uncertainty and Institutional Deterrence

Table 5.2: Total Cheating using GLS Random Effects Regressions

Analysis by timing Analysis by treatment
TotalCheating (1) (2) (3) (4)
No Delay −0.3066∗∗ (0.1560) −0.3277∗∗ (0.1566)
Long Delay −0.2849∗ (0.1577) −0.2813∗ (0.1582)
Uncertainty −0.0212 (0.1615) −0.0437 (0.1643)
IR-ND −0.3066∗∗ (0.1560) −0.3277∗∗ (0.1566)
DR-SD −0.0212 (0.1615) −0.0437 (0.1643)
DR-LD −0.3062∗∗ (0.1527) −0.3250∗∗ (0.1523)
Male 0.4020∗∗∗ (0.1147) 0.4361∗∗∗ (0.1252) 0.4020∗∗∗ (0.1147) 0.4361∗∗∗ (0.1252)
Age −0.4847∗∗∗ (0.1671) −0.4800∗∗∗ (0.1816) −0.4847∗∗∗ (0.1671) −0.4800∗∗∗ (0.1816)
GuessCorrect −0.0668 (0.0681) −0.0510 (0.0693) −0.0668 (0.0681) −0.0510 (0.0693)
Punishment 0.3404∗∗∗ (0.1157) 0.2881∗∗∗ (0.0689) 0.3404∗∗∗ (0.1157) 0.2881∗∗∗ (0.0689)
Round 0.4263∗∗∗ (0.0242) 0.4263∗∗∗ (0.0242)
Risk −0.0625 (0.0624) −0.0625 (0.0624)
FutCons −0.0249 (0.0610) −0.0249 (0.0610)
SelfControl −0.0692 (0.0595) −0.0692 (0.0595)
ExpParticipation 0.1472 (0.1204) 0.1472 (0.1204)
Constant 1.1450∗∗∗ (0.1373) −0.0318 (0.1545) 1.1450∗∗∗ (0.1373) −0.0318 (0.1545)
Observations 1184 1184 1184 1184

Note: Standard errors in parentheses and clustered at the individual level. ∗ p < 0.1,∗∗ p <

0.05,∗∗∗ p < 0.01. Reference categories are Short Delay and IR-SD, respectively. Age is

1 for participants older than 40 years. Higher values for Risk, Future Consequences, and

Self-Control depict higher willingness to take risks, to be forward-looking and to exhibit

higher self-control, respectively. These values are standardized. Total Punishment relates

to the overall frequency of inflicted punishment on the individual if caught cheating.

through the combination of delayed uncertainty resolution and significantly

delayed punishment (DR-LD). Post estimation tests yield no difference be-

tween the coefficients of IR-ND and DR-LD (p = 0.88), suggesting that

the effectiveness of deterrence is comparable in both cases. It is worth not-

ing that we observe substantial gender heterogeneity indicating that males

cheat significantly more than females. The results also suggest that de-

viant behavior increases with punishment inflicted for caught cheating. This

finding indicates that individuals try to make up for incurred losses by in-

creasing the frequency of cheating and taking larger risks, thus being more

risk-seeking in losses. Additionally, a participant’s age is inversely and sig-

nificantly correlated with cheating, while our other covariates cannot explain

deviant behavior in our sample. Noteworthy, the amount of correct guesses

in non-cheating rounds, which are the driving force behind wealth accumu-

lation in our setting, has no significant predictive power for cheating. This
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Figure 5.3: Conditional Cheating.

indicates that potential wealth effects cannot explain cheating behavior. All

this suggests that swifter punishment or delayed punishment in combination

with delayed resolution of uncertainty significantly increases the deterrence

of deviant behavior. The delay of uncertainty alone remains non-effective.

We conclude that both very efficient (no delays of punishment) and very

inefficient (long delays of punishment in combination with long uncertainty

about the status of discovery) punishment institutions are equally effective

in deterring deviant behavior.

It is worth noting that one could also plausibly assume the presence of

learning effects. A large body of existing literature suggests that the learning

effects that emerge through experience are shaped by the timing of rewards

and punishments. Due to this, they affect subsequent behavior (cf. Camp

et al., 1967; Parke and Deur, 1972). This is of particular importance in the

punishment context, because such learning effects would directly speak to

the occurrence of recidivism among former felons. Following this logic, the

experience of uncertainty and punishment following transgressive behavior

could lead to differences in subsequent transgressions. We call this Condi-

tional Cheating. Conditional Cheating is defined as the number of individual

cheating decisions that proceed the first cheating decision (which can oc-
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Table 5.3: Conditional Cheating using OLS

Analysis by timing Analysis by treatment
ConditionalCheating (1) (2) (3) (4)
No Delay −0.1666∗∗ (0.0742) −0.1757∗∗ (0.0743)
Long Delay −0.2129∗∗ (0.0844) −0.1932∗∗ (0.0851)
Uncertainty −0.0782 (0.0709) −0.0871 (0.0717)
IR-ND −0.1666∗∗ (0.0742) −0.1757∗∗ (0.0743)
DR-SD −0.0782 (0.0709) −0.0871 (0.0717)
DR-LD −0.2911∗∗∗ (0.0785) −0.2803∗∗∗ (0.0789)
Male 0.0881 (0.0570) 0.1178∗ (0.0625) 0.0881 (0.0570) 0.1178∗ (0.0625)
Age −0.1298 (0.1033) −0.1362 (0.1083) −0.1298 (0.1033) −0.1362 (0.1083)
GuessCorrect −0.0831∗∗ (0.0348) −0.0830∗∗ (0.0360) −0.0831∗∗ (0.0348) −0.0830∗∗ (0.0360)
Punishment 0.0759 (0.0738) 0.0684 (0.0736) 0.0759 (0.0738) 0.0684 (0.0736)
Risk −0.0185 (0.0306) −0.0185 (0.0306)
FutCons 0.0343 (0.0313) 0.0343 (0.0313)
SelfControl −0.0151 (0.0320) −0.0151 (0.0320)
ExpParticipation 0.0691 (0.0627) 0.0691 (0.0627)
Constant 0.7549∗∗∗ (0.0587) 0.6975∗∗∗ (0.0762) 0.7549∗∗∗ (0.0587) 0.6975∗∗∗ (0.0762)

Observations 189 189 189 189

Note: Odds ratio reported. Standard errors in parentheses and clustered on the individual

level. ∗ p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Reference categories are Short Delay and

IR-SD, respectively. Age is 1 for participants older than 40 years. Higher values for

Risk, Future Consequences, and Self-Control depict higher willingness to take risks, to

being forward-looking and to exhibit higher self-control, respectively. These values are

standardized. Total Punishment relates to the overall frequency of inflicted punishment

on the individual if caught cheating.

cur at the beginning of any of the first three blocks). The idea behind this

measure is to understand whether experiencing the drain of uncertainty of

punishment following their first cheating decision will affect the individual’s

subsequent propensity to cheat. Our results do not indicate that any such

learning effect exists. In fact, cheating behavior following the experience of

uncertainty and punishment is congruent to our previous findings on general

cheating behavior. We present a graphical illustration in Figure 5.3.

In order to shed light on this mechanism, we employ a series of OLS

regressions. Through these regressions we look to analyze the total amount

of cheating that took place following the individual’s first cheating decision

and any resulting punishment that he or she incurred. In our attempt to

proxy recidivism, our dependent variable measures the amount of cheating

that occured after one’s first cheating decision. The less frequent or the later

participants recidivise, the lower the value of our dependent variable.
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Our results for conditional cheating are consistent with our previous find-

ings, suggesting that the recidivism of individuals is lowest when punishment

is either immediate or late when paired with uncertainty. The delay of uncer-

tainty alone is non-effective. In particular, relative to immediate resolution

and immediate punishment, a short-term delay of punishment (IR-SD) leads

to a significant increase in deviant behavior, while the additional introduc-

tion of uncertainty (DR-SD) alone does not affect cheating rates relative to

IR-ND. We again find an inverted U-shape relationship; when combining the

long delay of punishment with uncertainty of resolution, cheating rates re-

turn to levels similar to those found when immediate punishment is paired

with no uncertainty resolution (IR-ND). In support of this, post estimation

tests show that the drop in cheating rates in DR-LD is significant compared

to cheating in IR-SD (p < 0.01) and DR-SD (p = 0.02). In contrast to

total cheating behavior, we do not observe robust gender heterogeneity or a

traceable impact of age, self-control or experienced punishment. The latter

finding indicates that it is not the experience of punishment that affects re-

cidivism rates, but the combined initial experience of uncertainty and timing

of punishment.

In summary, we can conclude that the same institutional settings that

are capable of reducing recidivism are also the ones deterring deviant be-

havior in the first place. Our results demonstrate that swift or sufficiently

delayed punishment, where the latter is accompanied by an extensive dread

of uncertainty regarding one’s detection, reduces future criminal behavior.

5.5 Discussion and Conclusion

We investigate along two dimensions how timing can impact the effectiveness

of sanctions. We use a controlled laboratory experiment designed to study

the effect of delayed punishment and delayed resolution of uncertainty on

deterrence. Our experimental findings show that the timing of resolution of

uncertainty has no effect on deterrence. For the delay of punishment, we

observe the following inverted U-shape relationship: deterrence is highest

for no delay or a large delay of punishment and lowest for a short delay of
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punishment.

The observed inverted U-shape is at odds with both discounted expected

utility theory and anticipatory utility theory. According to the first theory,

deterrence should decrease monotonically with the delay of punishment. Ac-

cording to the second, there should also be a monotonous relation between

deterrence and delay which would be the inverse of that in the previous case if

the effect of anticipation is sufficiently high. Recently, Baucells and Bellezza

(2016) proposed a new theory of inter-temporal decision making. They ex-

tend the existing models of anticipatory utility by a reference point which

adjusts. It does so during the anticipation phase by altering a utility of re-

call in the periods succeeding the consumption and changing the magnitude

effect in discounting. In this theory it is possible that the utility maximizing

timing of an unpleasant event is somewhere in the middle of the time horizon,

i.e. fines in earlier or later periods hurt more and should, therefore, lead to

higher deterrence. While our experiment was not designed to test the theory

of Baucells and Bellezza (2016) it is the only theory which is compatible with

the findings of our experiment.

It is important to note that the effects of the treatments on the total

cheating behavior can be obtained by two different, possibly simultaneously

operating processes. First, the variations in the experimental treatments

could have affected anticipatory reasoning in the participants about how a

possible punishment would impact them. If the impact is anticipated to

be severe, this could lead to no or delayed cheating. Second, learning pro-

cesses may have affected cheaters (who at least once underwent the respective

treatments) differently by experiencing the (non)waiting for a resolution of

uncertainty and the potential execution of an immediate or delayed pun-

ishment. This may have influenced their likelihood to cheat again in the

future. Inspecting the results for conditional cheating (i.e. future cheating

upon having cheated before) shows that they closely mirror the results of

the total cheating behavior. Even if some experience for the treatments to

become effective would be needed, basic learning theories (e.g. Azrin, 1956;

Banks and Vogel-Sprott, 1965) are at odds with the inverted U-shaped re-

lation between deterrence and delay of punishment which is also observed
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for conditional cheating. Arguably, the highly effective deterrence of deviant

behavior in DR-LD could be interpreted in one of the following two ways:

one, only an extensive delay of punishment, and not the existence of uncer-

tainty resolution, is responsible for the decrease in cheating; two, it is the

combination of both the extensive delay in punishment and the existence of

uncertainty that imposes additional dread and, thus, the interaction of both

is driving the strength of deterrence. Our regression analysis and theoretical

foundation suggests that it is most likely the former. We consider this as a

promising venue for future research.

Our findings yield important insights for optimally designing sanctioning

schemes in legal systems. Existing deterrence literature has almost exclu-

sively focused on the role of severity and certainty of legal consequences in

deterring proscribed actions. Our study shows that celerity, the timing of

sanctions through sentencing, may also be a crucial component of an effec-

tive legal system. Our results imply that punishment should either follow

the criminal act quickly or be sufficiently delayed if deterrence is to be max-

imized. As immediate punishment may be relatively costly, an optimally

delayed punishment could be the most efficient solution.

Our study provides a first step into analyzing the effects of deterrence in a

sanctioning system. In order to make conclusions for an optimal policy in the

real world, future research needs to tackle several limitations of our study. In

particular, it seems necessary to study celerity when the delay of punishment

extends to the real payout of subjects. Also, the optimal delay may be very

sensitive to the type of punishment, e.g. the optimal delay may be rather

different for monetary fines than for imprisonment. Despite these limitations

we think that our study highlights the role of celerity in designing optimal

sanctioning systems and points to fruitful avenues for future research.
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Appendix 5.A: Overview Predictions

Table 5.4: Predictions for Total Cheating under DEU

Hypothesis Predictions Confirmed? Sign. Level
H1 IR− SD > IR−ND Yes **

DR− LD > DR− SD No -
H2 IR− SD = DR− SD Yes Not rejected
H3 DR− SD > IR−ND Yes **

DR− LD > IR− SD No -

Note: Significance levels are the result of one-sided t-tests examining the direction of mean

differences based on the theoretical predictions.

Table 5.5: Predictions for Total Cheating under UAE

Hypothesis Predictions Confirmed? Sign. Level
H1* IR− SD < IR−ND No -

DR− LD < DR− SD Yes **
H2* DR− SD < IR − SD No -
H3* DR− SD < IR−ND No -
H4* DR− LD < IR− SD Yes ***

DR− LD < IR−ND No -

Note: Significance levels are the result of one-sided t-tests examining the direction of mean

differences based on the theoretical predictions.

159



References

Abbink, K. (2004): “Staff Rotation as an Anti-Corruption Policy: an Ex-

perimental Study,” European Journal of Political Economy, 20, 887–906.

——— (2006): “14 Laboratory experiments on corruption,” in The In-

ternational Handbook on the Economics of Corruption, ed. by S. Rose-

Ackermann, Edward Elgar, 418–438.

Abbink, K., U. Dasgupta, L. Gangadharan, and T. Jain (2014):

“Letting the Briber Go Free: an Experiment on Mitigating Harassment

Bribes,” Journal of Public Economics, 111, 17–28.

Abbink, K. and H. Hennig-Schmidt (2006): “Neutral Versus Loaded

Instructions in a Bribery Experiment,” Experimental Economics, 9, 103–

121.

Abbink, K., B. Irlenbusch, and E. Renner (2002): “An Experimental

Bribery Game,” Journal of Law, Economics, and Organization, 18, 428–

454.

Abbink, K. and K. Wu (2017): “Reward Self-Reporting to Deter Corrup-

tion: An Experiment on Mitigating Collusive Bribery,” Journal of Eco-

nomic Behavior & Organization, 133, 256–272.

Acemoglu, D., S. Johnson, and J. Robinson (2005): “The Rise of

Europe: Atlantic Trade, Institutional Change, and Economic Growth,”

The American economic review, 95, 546–579.

Agastya, M. (1999): “Perturbed Adaptive Dynamics in Coalition Form

Games,” Journal of Economic Theory, 89, 207–233.

Alaoui, L. and A. Penta (2015): “Cost-Benefit Analysis in Reasoning,”

Mimeo: University of Wisconsin.

160



——— (2016a): “Endogenous Depth of Reasoning,” The Review of Economic

Studies, 83, 1297–1333.

——— (2016b): “Endogenous Depth of Reasoning and Response Time, with

an application to the Attention-Allocation Task,” Mimeo: Universitat

Pompeu Fabra.

Allingham, M. G. and A. Sandmo (1972): “Income Tax Evasion: A

Theoretical Analysis,” Journal of Public Economics, 1, 323–338.

Alm, J., M. B. Cronshaw, and M. McKee (1993): “Tax Compliance

with Endogenous Audit Selection Rules,” Kyklos, 46, 27–45.

Alós-Ferrer, C. (2004): “Cournot vs. Walras in Oligopoly Models with

Memory,” International Journal of Industrial Organization, 22, 193–217.

Alós-Ferrer, C. and A. B. Ania (2005): “The Evolutionary Stability of

Perfectly Competitive Behavior,” Economic Theory, 26, 179–197.

Alós-Ferrer, C. and G. Kirchsteiger (2010): “General Equilibrium

and the Emergence of (Non) Market Clearing Trading Institutions,” Eco-

nomic Theory, 44, 339–360.

——— (2015): “Learning and Market Clearing: Theory and Experiments,”

Economic Theory, 60, 203–241.

Alós-Ferrer, C., G. Kirchsteiger, and M. Walzl (2010): “On the

Evolution of Market Institutions: The Platform Design Paradox,” Eco-

nomic Journal, 120, 215–243.

Alós-Ferrer, C. and N. Netzer (2015): “Robust Stochastic Stability,”

Economic Theory, 58, 31–57.

Alós-Ferrer, C. and F. Shi (2012): “Imitation with Asymmetric Mem-

ory,” Economic Theory, 49, 193–215.

Alós-Ferrer, C. and S. Weidenholzer (2014): “Imitation and the

Role of Information in Overcoming Coordination Failures,” Games and

Economic Behavior, 87, 397–411.

161



Amir, R. (1996): “Cournot Oligopoly and the Theory of Supermodular

Games,” Games and Economic Behavior, 15, 132–148.

Amir, R. and V. E. Lambson (2000): “On the Effects of Entry in Cournot

Markets,” Review of Economic Studies, 67, 235–254.

Anderson, S. P. and M. Engers (1992): “Stackelberg versus Cournot

Oligopoly Equilibrium,” International Journal of Industrial Organization,

10, 127–135.

Apesteguia, J., M. Dufwenberg, and R. Selten (2007): “Blowing the

Whistle,” Economic Theory, 31, 143–166.

Arad, A. and A. Rubinstein (2012): “The 11–20 Money Request Game:

A Level-k Reasoning Study,” The American Economic Review, 102, 3561–

3573.

Arifovic, J. (1994): “Genetic Algorithm Learning and the Cobweb Model,”

Journal of Economic Dynamics and Control, 18, 3–28.

Arifovic, J. and M. K. Maschek (2006): “Revisiting Individual Evo-

lutionary Learning in the Cobweb Model – an Illustration of the Virtual

Spite-Effect,” Computational Economics, 28, 333–354.

Azrin, N. H. (1956): “Some Effects of Two Intermittent Schedules of Im-

mediate and Non-Immediate Punishment,” The Journal of Psychology, 42,

3–21.

Bailey, W. C. (1980): “Deterrence and the Celerity of the Death Penalty:

A Neglected Question in Deterrence Research,” Social Forces, 58, 1308–

1333.

Baker, T., A. Harel, and T. Kugler (2004): “The Virtues of Uncer-

tainty in Law: An Experimental Approach,” Iowa Law Review, 89, 443.

Banerjee, R. (2016a): “Corruption, Norm Violation and Decay in Social

Capital,” Journal of Public Economics, 137, 14–27.

162



——— (2016b): “On the Interpretation of Bribery in a Laboratory Corrup-

tion Game: Moral Frames and Social Norms,” Experimental Economics,

19, 240–167.

Banks, R. K. and M. Vogel-Sprott (1965): “Effect of Delayed Pun-

ishment on an Immediately Rewarded Response in Humans,” Journal of

Experimental Psychology, 70, 357.

Banuri, S. and C. Eckel (2012): “Experiments in Culture and Corrup-

tion: A Review,” New Advances in Experimental Research on Corruption,

15, 51.

Bartuli, J., B. Djawadi, and R. Fahr (2016): “Business Ethics in Orga-

nizations: An Experimental Examination of Whistleblowing and Person-

ality,” IZA Discussion Paper No. 10190.

Baucells, M. and S. Bellezza (2016): “Temporal Profiles of Instant

Utility during Anticipation, Event, and Recall,” Management Science, 63,

729–748.

Becker, G. S. (1968): “Crime and Punishment: An Economic Approach,”

Journal of Political Economy, 76, 169–217.

Bee, C. C. and R. Madrigal (2013): “Consumer Uncertainty: The Influ-

ence of Anticipatory Emotions on Ambivalence, Attitudes, and Intentions,”

Journal of Consumer Behaviour, 12, 370–381.

Bergin, J. and D. Bernhardt (2004): “Comparative Learning Dynam-

ics,” International Economic Review, 45, 431–465.

——— (2009): “Cooperation through Imitation,” Games and Economic Be-

havior, 67, 376–388.

Bigoni, M., S.-O. Fridolfsson, C. Le Coq, and G. Spagnolo (2012):

“Fines, Leniency, and Rewards in Antitrust,” The RAND Journal of Eco-

nomics, 43, 368–390.

163



Blume, L. (1993): “The Statistical Mechanics of Strategic Interaction,”

Games and Economic Behavior, 5, 387–424.

Bø, E. E., J. Slemrod, and T. O. Thoresen (2015): “Taxes on the

Internet: Deterrence Effects of Public Disclosure,” American Economic

Journal: Economic Policy, 7, 36–62.

Brañas-Garza, P., T. García-Muñoz, and R. H. González (2012):

“Cognitive Effort in the Beauty Contest Game,” Journal of Economic Be-

havior and Organization, 83, 254–260.

Breuer, L. (2013): “Tax Compliance and Whistleblowing: The Role of

Incentives,” The Bonn Journal of Economics, 2, 7–44.

Buccirossi, P. and G. Spagnolo (2006): “Leniency Policies and Illegal

Transactions,” Journal of Public Economics, 90, 1281–1297.

Butler, J., D. Serra, and G. Spagnalo (2017): “Motivating Whistle-

blowers,” Mimeo: Available at SSRN: https://ssrn.com/abstract=2970551.

Camp, D. S., G. A. Raymond, and R. M. Church (1967): “Temporal

Relationship Between Response and Punishment,” Journal of Experimental

Psychology, 74, 114.

Caplin, A. and J. Leahy (2001): “Psychological Expected Utility Theory

and Anticipatory Feelings,” Quarterly Journal of Economics, 116, 55–79.

Cappelen, A. W., K. O. Moene, E. Ø. Sørensen, and B. Tungod-

den (2013): “Needs versus Entitlements—An International Fairness Ex-

periment,” Journal of the European Economic Association, 11, 574–598.

Chabris, C. F., C. L. Morris, D. Taubinsky, D. Laibson, and J. P.

Schuldt (2009): “The Allocation of Time in Decision-Making,” Journal

of the European Economic Association, 7, 628–637.

Chalfin, A. and J. McCrary (2017): “Criminal Deterrence: A Review

of the Literature,” Journal of Economic Literature, 55, 5–48.

164



Christöfl, A., U. Leopold-Wildburger, and A. Rasmußen (2017):

“An Experimental Study on Bribes, Detection Probability and Principal

Witness Policy,” Journal of Business Economics, forthcoming.

Coricelli, G., M. Joffily, C. Montmarquette, and M. C. Villeval

(2010): “Cheating, Emotions, and Rationality: An Experiment on Tax

Evasion,” Experimental Economics, 13, 226–247.

Coricelli, G. and R. Nagel (2009): “Neural Correlates of Depth of

Strategic Reasoning in Medial Prefrontal Cortex,” Proceedings of the Na-

tional Academy of Sciences, 106, 9163–9168.

Costa-Gomes, M., V. P. Crawford, and B. Broseta (2001): “Cog-

nition and Behavior in Normal-Form Games: An Experimental Study,”

Econometrica, 69, 1193–1235.

Crawford, V. and M. Costa-Gomes (2006): “Cognition and Behav-

ior in Two-Person Guessing Games: An Experimental Study,” American

Economic Review, 96, 1737–1768.

Crosetto, P., O. Weisel, and F. Winter (2012): “A Flexible z-Tree

Implementation of the Social Value Orientation Slider Measure (Murphy

et al. 2011),” Jena Economic Research Paper.

d’Adda, G., V. Capraro, and M. Tavoni (2017): “Push, Don’t Nudge:

Behavioral Spillovers and Policy Instruments,” Economics Letters, 154,

92–95.

Dashiell, J. F. (1937): “Affective Value-Distances as a Determinant of

Aesthetic Judgment-Times,” American Journal of Psychology, 50, 57–67.

DeAngelo, G. and G. Charness (2012): “Deterrence, Expected Cost,

Uncertainty and Voting: Experimental Evidence,” Journal of Risk and

Uncertainty, 44, 73–100.

Dillenberger, D. (2010): “Preferences for One-Shot Resolution of Uncer-

tainty and Allais-Type Behavior,” Econometrica, 78, 1973–2004.

165



Dyck, A., A. Morse, and L. Zingales (2010): “Who Blows the Whistle

on Corporate Fraud?” The Journal of Finance, 65, 2213–2253.

Echenique, F. and K. Saito (2017): “Response Time and Utility,” Jour-

nal of Economic Behavior & Organization, 139, 49–59.

Eckel, C. and P. Grossman (1996): “Altruism in Anonymous Dictator

Games,” Games and Economic Behavior, 16, 181–191.

Ehrlich, I. (1996): “Crime, Punishment, and the Market for Offenses,” The

Journal of Economic Perspectives, 10, 43–67.

Ellison, G. (1993): “Learning, Local Interaction, and Coordination,”

Econometrica, 61, 1047–1071.

——— (2000): “Basins of Attraction, Long-Run Stochastic Stability, and the

Speed of Step-by-Step Evolution,” Review of Economic Studies, 67, 17–45.

——— (2006): “Bounded Rationality in Industrial Organization,” in Ad-

vances in Economics and Econometrics: Theory and Applications, ed. by

R. Blundell, W. K. Newy, and T. Persson, Cambridge: Cambridge Univer-

sity Press, 142–180.

Engel, C. (2016): “Experimental Criminal Law. A Survey of Contributions

from Law, Economics and Criminology,” Mimeo.

Engel, C., S. J. Goerg, and G. Yu (2013): “Symmetric vs. Asymmetric

Punishment Regimes for Bribery,” Mimeo.

——— (2016): “Symmetric vs. Asymmetric Punishment Regimes for Collu-

sive Bribery,” American Law and Economics Review, 18, 506–556.

Engl, F., A. Riedl, and R. A. Weber (2017): “Spillover Effects of Insti-

tutions on Cooperative Behavior, Preferences and Beliefs,” IZA Discussion

Paper No. 10781.

Evans, R. (1993): “Observability, Imitation and Cooperation in the Re-

peated Prisoners’ Dilemma,” Working Paper, University of Cambridge.

166



Ewerhart, C. (2014): “Cournot Games with Biconcave Demand,” Games

and Economic Behavior, 85, 37–47.

Falk, A. and F. Zimmermann (2016): “Beliefs and Utility: Experimental

Evidence on Preferences for Information,” .

Fischbacher, U. (2007): “z-Tree: Zurich Toolbox for Ready-Made Eco-

nomic Experiments,” Experimental Economics, 10, 171–178.

Fortin, B., G. Lacroix, and M.-C. Villeval (2007): “Tax Evasion and

Social Interactions,” Journal of Public Economics, 91, 2089–2112.

Frederick, S. (2005): “Cognitive Reflection and Decision Making,” The

Journal of Economic Perspectives, 19, 25–42.

Frederick, S., G. Loewenstein, and T. O’Donoghue (2002): “Time

Discounting and Time Preference: A Critical Review,” Journal of Eco-

nomic Literature, 40, 351–401.

Fudenberg, D. and D. Levine (1998): The Theory of Learning in Games,

Cambridge, Massachusetts: The MIT Press.

Gabaix, X. and D. Laibson (2006): “Shrouded Attributes, Consumer

Myopia, and Information Suppression in Competitive Markets,” Quarterly

Journal of Economics, 121, 505–540.

Gill, D. and V. Prowse (2016): “Cognitive Ability, Character Skills, and

Learning to Play Equilibrium: A Level-k Analysis,” Journal of Political

Economy, 124, 1619–1676.

Gill, D. and V. L. Prowse (2017): “Using Response Times to Mea-

sure Strategic Complexity and the Value of Thinking in Games,” Mimeo:

https://ssrn.com/abstract=2902411.

Goeree, J. K., P. Louis, and J. Zhang (2016): “Noisy Introspection in

the ‘11–20’ Game,” Economic Journal, forthcoming.

167



Golman, R. and G. Loewenstein (2015): “The Demand For, and Avoid-

ance of, Information,” Mimeo.

Greiner, B. (2015): “Subject Pool Recruitment Procedures: Organizing

Experiments with ORSEE,” Journal of the Economic Science Association,

1, 114–125.

Hackenberg, T. D. (2009): “Token Reinforcement: A Review and Analy-

sis,” Journal of the Experimental Analysis of Behavior, 91, 257–286.

Hamilton, W. (1970): “Selfish and Spiteful Behavior in an Evolutionary

Model,” Nature, 228, 1218–1220.

Heinemann, F. and M. G. Kocher (2013): “Tax Compliance under Tax

Regime Changes,” International Tax and Public Finance, 20, 225–246.

Heinemann, F., R. Nagel, and P. Ockenfels (2009): “Measuring

Strategic Uncertainty in Coordination Games,” The Review of Economic

Studies, 76, 181–221.

Heyes, A. and S. Kapur (2009): “An Economic Model of Whistle-Blower

Policy,” Journal of Law, Economics, and Organization, 25, 157–182.

Ho, T.-H., C. Camerer, and K. Weigelt (1998): “Iterated Dominance

and Iterated Best Response in Experimental ‘p-Beauty Contests’,” The

American Economic Review, 88, 947–969.

Holt, C. A. and S. K. Laury (2002a): “Risk Aversion and Incentive

Effects,” American Economic Review, 92, 1644–1655.

——— (2002b): “Risk Aversion and Incentive Effects,” American Economic

Review, 92, 1644–1655.

Howe, E. S. and C. J. Brandau (1988): “Additive Effects of Certainty,

Severity, and Celerity of Punishment on Judgments of Crime Deterrence

Scale Value,” Journal of Applied Social Psychology, 18, 796–812.

168



Huck, S., H.-T. Normann, and J. Oechssler (2004): “Through Trial

and Error to Collusion,” International Economic Review, 45, 205–224.

Kandori, M., G. J. Mailath, and R. Rob (1993): “Learning, Mutation,

and Long Run Equilibria in Games,” Econometrica, 61, 29–56.

Karlin, S. and H. M. Taylor (1975): A First Course in Stochastic Pro-

cesses, 2nd Ed., San Diego: Academic Press.

Klaus, B. and J. Newton (2016): “Stochastic Stability in Assignment

Problems,” Journal of Mathematical Economics, 62, 62–74.

Kocher, M. G., M. Krawczyk, and F. van Winden (2014): “‘Let Me

Dream on!’ Anticipatory Emotions and Preference for Timing in Lotter-

ies,” Journal of Economic Behavior and Organization, 98, 29–40.

Kogler, C., L. Mittone, and E. Kirchler (2016): “Delayed Feedback

on Tax Audits Affects Compliance and Fairness Perceptions,” Journal of

Economic Behavior & Organization, 124, 81–87.

Krajbich, I., B. Bartling, T. Hare, and E. Fehr (2015): “Rethinking

Fast and Slow Based on a Critique of Reaction-time Reverse Inference,”

Nature Communications, 6, 7455.

Krajbich, I., B. Oud, and E. Fehr (2014): “Benefits of Neuroeconomic

Modeling: New Policy Interventions and Predictors of Preference,” The

American Economic Review, 104, 501–506.

Kreps, D. M. and E. L. Porteus (1978): “Temporal Resolution of Un-

certainty and Dynamic Choice Theory,” Econometrica, 46, 185–200.

La Porta, R., F. Lopez-de Silanes, A. Shleifer, and R. Vishny

(1999): “The Quality of Government,” The Journal of Law, Economics,

and Organization, 15, 222–279.

Lambsdorff, J. G. and B. Frank (2010): “Bribing versus Gift-Giving –

an Experiment,” Journal of Economic Psychology, 31, 347–357.

169



Landsberger, M. and I. Meilijson (1982): “Incentive Generating state

Dependent Penalty System: The Case of Income Tax Evasion,” Journal of

Public Economics, 19, 333–352.

Lindner, F. and M. Sutter (2013): “Level-k Reasoning and Time Pres-

sure in the 11–20 Money Request Game,” Economics Letters, 120, 542–545.

Loewenstein, G. (1987): “Anticipation and the Valuation of Delayed Con-

sumption,” The Economic Journal, 97, 666–684.

Lovallo, D. and D. Kahneman (2000): “Living with Uncertainty: At-

tractiveness and Resolution Timing,” Journal of Behavioral Decision Mak-

ing, 13, 179.

Mandel, A. and H. Gintis (2014): “Stochastic Stability in the Scarf

Economy,” Mathematical Social Sciences, 67, 44–49.

Mittone, L. (2006): “Dynamic Behaviour in Tax Evasion: An Experimen-

tal Approach,” The Journal of Socio-Economics, 35, 813–835.

Moffatt, P. G. (2015): Experimetrics: Econometrics for Experimental

Economics, Palgrave Macmillan.

Mosteller, F. and P. Nogee (1951): “An Experimental Measurement

of Utility,” Journal of Political Economy, 59, 371–404.

Moyer, R. S. and T. K. Landauer (1967): “Time Required for Judge-

ments of Numerical Inequality,” Nature, 215, 1519–1520.

Murphy, R. O., K. A. Ackermann, and M. J. J. Handgraaf (2011):

“Measuring Social Value Orientation,” Judgment and Decision Making, 6,

771–781.

Nagel, R. (1995): “Unraveling in Guessing games: An Experimental

Study,” The American Economic Review, 85, 1313–1326.

Nagin, D. S. and G. Pogarsky (2001): “Integrating Celerity, Impulsiv-

ity, and Extralegal Sanction Threats into a Model of General Deterrence:

Theory and Evidence,” Criminology, 39, 865–892.

170



——— (2004): “Time and Punishment: Delayed Consequences and Criminal

Behavior,” Journal of Quantitative Criminology, 20, 295–317.

Nax, H. H. and B. S. R. Pradelski (2015): “Evolutionary Dynamics and

Equitable Core Selection in Assignment Games,” International Journal of

Game Theory, 44, 903–932.

Newton, J. (2012): “Recontracting and Stochastic Stability in Cooperative

Games,” Journal of Economic Theory, 147, 364–381.

Orviska, M. and J. Hudson (2003): “Tax Evasion, Civic Duty and the

Law Abiding Citizen,” European Journal of Political Economy, 19, 83–102.

Papke, L. E. and J. M. Wooldridge (2008): “Panel Data Methods for

Fractional Response Variables with an Application to Test Pass Rates,”

Journal of Econometrics, 145, 121–133.

Parke, R. D. and J. L. Deur (1972): “Schedule of Punishment and Inhi-

bition of Aggression in Children,” Developmental Psychology, 7, 266.

Paternoster, R. (2010): “How Much Do We Really Know About Criminal

Deterrence?” The Journal of Criminal Law and Criminology, 765–824.

Polonio, L., S. Di Guida, and G. Coricelli (2015): “Strategic Sophis-

tication and Attention in Games: An Eye-Tracking Study,” Games and

Economic Behavior, 94, 80–96.

Primi, C., K. Morsanyi, F. Chiesi, M. A. Donati, and J. Hamilton

(2015): “The Development and Testing of a New Version of the Cogni-

tive Reflection Test Applying Item Response Theory (IRT),” Journal of

Behavioral Decision Making.

Raymond, M. (1999): “Enforcement Leverage when Penalties are Re-

stricted: a Reconsideration under Asymmetric Information,” Journal of

Public Economics, 73, 289–295.

171



Riechmann, T. (2006): “Cournot or Walras? Long-Run Results in

Oligopoly Games,” Journal of Institutional and Theoretical Economics,

162, 702–720.

Samuelson, L. (1997): Evolutionary Games and Equilibrium Selection,

Cambridge, Massachusetts: The MIT Press.

Sandholm, W. H. (2010): Population Games and Evolutionary Dynamics,

Cambridge, Massachusetts: The MIT Press.

Schaffer, M. (1989): “Are Profit-Maximisers the Best Survivors?” Journal

of Economic Behavior and Organization, 12, 29–45.

Schmolke, K. U. and V. Utikal (2016): “Whistleblowing: Incentives

and Situational Determinants,” Mimeo: FAU.

Shi, F. (2015): “Long-run Technology Choice with Endogenous Local Ca-

pacity,” Economic Theory, 59, 377–399.

Shleifer, A. and R. W. Vishny (1993): “Corruption,” The Quarterly

Journal of Economics, 108, 599–617.

Skinner, B. F. (1963): “Operant Behavior,” American Psychologist, 18,

503.

Slemrod, J. (2007): “Cheating Ourselves: The Economics of Tax Evasion,”

The Journal of Economic Perspectives, 21, 25–48.

Spagnolo, G. (2004): “Divide et Impera: Optimal Leniency Programs,”

Mimeo: CEPR.

——— (2006): “Leniency and Whistleblowers in Antitrust,” in Handbook

of Antitrust Economics, ed. by P. Buccirossi, Cambridge, Massachusetts:

MIT Press.

Spiegler, R. (2006): “Competition Over Agents with Boundedly Rational

Expectations,” Theoretical Economics, 1, 207–231.

172



Spiliopoulos, L. and A. Ortmann (2017): “The BCD of Response Time

Analysis in Experimental Economics,” Experimental Economics, forthcom-

ing.

Stahl, D. O. (1993): “Evolution of Smart n Players,” Games and Economic

Behavior, 5, 604–617.

Stahl, D. O. and P. W. Wilson (1995): “On Players’ Models of Other

Players: Theory and Experimental Evidence,” Games and Economic Be-

havior, 10, 218–254.

Strathman, A., F. Gleicher, D. S. Boninger, and C. S. Edwards

(1994): “The Consideration of Future Consequences: Weighing Immediate

and Distant Outcomes of Behavior,” Journal of Personality and Social

Psychology, 66, 742.

Strzalecki, T. (2013): “Temporal Resolution of Uncertainty and Recursive

Models of Ambiguity Aversion,” Econometrica, 81, 1039–1074.

Tangney, J. P., R. F. Baumeister, and A. L. Boone (2004): “High

Self-Control Predicts Good Adjustment, Less Pathology, Better Grades,

and Interpersonal Success,” Journal of personality, 72, 271–324.

Toplak, M. E., R. F. West, and K. E. Stanovich (2014): “Assessing

Miserly Information Processing: An Expansion of the Cognitive Reflection

Test,” Thinking & Reasoning, 20, 147–168.

Tversky, A. and D. Kahneman (1986): “Rational Choice and the Fram-

ing of Decisions,” Journal of business, S251–S278.

Vallée, T. and M. Yıldızoğlu (2009): “Convergence in the Finite

Cournot Oligopoly with Social and Individual Learning,” Journal of Eco-

nomic Behavior & Organization, 72, 670–690.

——— (2013): “Can They Beat the Cournot Equilibrium? Learning with

Memory and Convergence to Equilibria in a Cournot Oligopoly,” Compu-

tational Economics, 41, 493–516.

173



Vega-Redondo, F. (1997): “The Evolution of Walrasian Behavior,” Econo-

metrica, 65, 375–384.

Vriend, N. J. (2000): “An Illustration of the Essential Difference Between

Individual and Social Learning, and Its Consequences for Computational

Analyses,” Journal of Economic Dynamics and Control, 24, 1–19.

Weisel, O. and S. Shalvi (2015): “The Collaborative Roots of Corrup-

tion,” Proceedings of the National Academy of Sciences of the United States

of America, 112, 10651.

Wu, G. (1999): “Anxiety and Decision Making with Delayed Resolution of

Uncertainty,” Theory and Decision, 46, 159–199.

Young, H. P. (1993): “The Evolution of Conventions,” Econometrica, 61,

57–84.

——— (1998): Individual Strategy and Social Structure, Princeton, New Jer-

sey: Princeton University Press.

Yu, J. (1994): “Punishment Celerity and Severity: Testing a Specific Deter-

rence Model on Drunk Driving Recidivism,” Journal of Criminal Justice,

22, 355–366.

174


