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Scaling method for the pair-density-functional theory in combination with energy functionals
satisfying the virial theorem: Checking the validity via atomic-structure calculations
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We perform atomic-structure calculations for the neutral Ne, Mg, and Ar atoms on the basis of the recently
proposed correction method (scaling method) for the pair-density (PD) -functional theory [Phys. Rev. A 84,
044502 (2011)]. The formal features of the scaling method are that the search region of PDs is substantially
extended and that the resultant variationally best PD, which can be obtained without the heavy calculation tasks,
satisfies the virial theorem rigorously. To enjoy the benefit of these features, we also develop the approximate
form of the kinetic energy functional. It is shown by the atomic-structure calculations that the scaling method
can improve well not only various energy functionals but also the spatial profiles of the electron density and
exchange-correlation hole. Especially it is found that the scaling method makes preferential modifications to the
energetically effective regions of the electron density and exchange-correlation hole. These results suggest that
the scaling method efficiently puts the PD close to the correct ground-state PD.
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I. INTRODUCTION

The density-functional theory (DFT) [1,2] is one of useful
first-principles theories that provide the ground-state proper-
ties of the condensed-matter systems. Aiming at developing the
theory that guarantees to reproduce various physical quantities
besides the electron density, the DFT has been generalized or
extended [3–39]. Specifically, the physical quantities that are
characteristic of the ground state of the system are chosen
as basic variables of the theories [3–39]. Among them,
the pair-density (PD) -functional theory [15–39], in which
the PD is chosen as the basic variable, is considered as a
promising theory that goes beyond the conventional DFT. This
is because the PD includes more information about the electron
correlation than the electron density.

In order to develop the PD functional theory, there are two
problems that need to be overcome. In what follows, we shall
denote them as (I) and (II), and explain the outlines in order.

(I) One is how to search the best PD over the whole set of
N -representable PDs when we employ the variational principle
with respect to the PD. This problem is attributed to the lack
of practical knowledge about the necessary and sufficient
conditions for the N -representability of PDs [40–56]. This
problem is very important because the variational principle
may possibly lead to an unphysical solution as the best PD
unless we devise some practical method to avoid this problem.
As such a device, we have previously proposed an effective
initial scheme, in which the set of PDs that are calculated
from single Slater determinants (SDs) is used as the search
region of PDs [28,30,32]. As other ones, the Jastrow wave
function [29] and the linear combination of the SDs [33] have
also been attempted in constructing the search region of PDs.
More recently, we have proposed an efficient method to extend
the search region of PDs [34] by adding the scaled PDs as
elements of the search region. The scaled PDs are calculated
from the antisymmetric wave functions that are transformed

by uniformly scaling the electron coordinates, and they are
obviously N -representable [34]. The striking feature of this
method is that it satisfies the virial theorem rigorously [34].
Although it is a preliminary work, we have shown that the PD
can be corrected to be close to the ground-state one by this
method [34]. Hereafter, in this paper, this method is called the
scaling method [34].

(II) Another problem in developing the PD functional
theory is that the approximate form of the kinetic energy
(KE) is needed to be developed as a functional of the PD
[35–39]. This is because the KE cannot be rigorously written
by only the PD [35–39]. Concerning this problem, we have
taken two strategies for developing the approximate functional.
(a) One is to develop the approximate form on the basis of
the coupling-constant expression for the KE functional [39].
(b) The other is to develop the approximate form by imposing
on it relations and bounds that are fulfilled by the exact KE
functional as restrictive conditions [33,34,39]. Along each
strategy, we have begun to propose the approximate forms
of the KE functional [33,34,39].

For developing the PD functional theory, we have to
consider both problems, (I) and (II), simultaneously. In this
paper, we employ the scaling method [problem (I)], and adopt
the approximate KE functional which is suitable to bring out
the advantageous features of the scaling method [problem (II)].
In order to check the validities of the present scheme,
numerical calculations are performed for the neutral Ne, Mg,
and Ar atoms systematically. We investigate not only the
electron-electron interaction energy, external potential energy,
and KE but also the electron density and exchange-correlation
(xc) hole. The spatial profile of the xc hole especially seems
to be interesting in a sense of the direct investigation of the
PD. These results will be shown in the subsequent sections.
Furthermore in this paper, the derivation of the approximate
KE functional is given in details because it would be useful
for developing other kinds of approximate forms.
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Organization of this paper is as follows. In Sec. II, the
scaling method is explained with stressing its formal features.
In Sec. III, we first derive the restrictive conditions on the
KE functional, and secondly we propose the approximate KE
functional by using these conditions. To check the validity of
the scaling method combined with the proposed KE functional,
numerical calculations for the neutral Ne, Mg, and Ar atoms
are performed in Sec. IV. Finally, some concluding remarks
are given in Sec. V.

II. SCALING METHOD FOR THE PD
FUNCTIONAL THEORY

In Sec. II A, we first derive the virial theorem of the PD
functional theory and show that the virial theorem can be
utilized in evaluating the incompleteness of the search region
of PDs. In Sec. II B, we present the concrete prescription for
how to augment the incomplete search region of PDs, i.e.,
we shall present the scaling method. The formal feature of the
scaling method is that the search region of PDs is augmented so
that the corrected PD satisfies the virial theorem. It is discussed
in Sec. II C.

A. Incompleteness of the search region of PDs

The PD γ (2)(rr′; rr′) is defined as the diagonal elements of
the second-order reduced density matrix, which is written as

γ (2)(rr′; rr′) = N (N − 1)

2

∫
�∗(r, r′,r3, · · · , rN )

×�(r, r′,r3, · · · , rN )d3r3 · · · d3rN , (1)

where �(r1, · · · , rN ) is the antisymmetric wave function of
the N -electron system. We consider the transformation of
electron coordinates ri (i = 1, · · · ,N ) into λ−1ri , where λ

denotes the scaling factor and is assumed to be positive. This
type of transformation is called a uniform coordinate scaling
of electrons. By the uniform coordinate scaling of electrons,
the wave function �(r1, · · · , rN ) is transformed into

�λ(r1, · · · , rN ) = λ
3N
2 �(λr1, · · · , λrN ), (2)

where λ3N/2 is a normalizing constant. Using Eq. (1), the PD
that is calculated from �λ(r1, · · · , rN ) is given by

γ
(2)
λ (rr′; rr′) = λ6γ (2)(λrλr′; λrλr′). (3)

This PD is hereafter called the scaled PD. It should be noted
that the scaled PD is necessarily N -representable.
The total energy functional of the PD functional theory is given
by

E[γ (2)] = T [γ (2)] + W [γ (2)] + V [γ (2)], (4)

where T [γ (2)], W [γ (2)] and V [γ (2)] denote the functionals
of the KE, electron-electron interaction energy, and external
potential energy, respectively. As is shown in the previous
work [19], the KE functional for the scaled PD is related to
T [γ (2)] by

T
[
γ

(2)
λ

] = λ2T [γ (2)]. (5)

This exact relation is utilized in Sec. III as one of the restrictive
conditions on the approximate form of the KE functional. In the

following discussions, we assume that the approximate form
of the KE functional satisfies the exact relation Eq. (5) [57].

Unlike T [γ (2)], both W [γ (2)] and V [γ (2)] are exactly
expressed in terms of the PD, i.e.,

W [γ (2)] = e2

2

∫∫
γ (2)(rr′; rr′)

|r − r′| d3rd3r ′, (6)

V [γ (2)] = 2

N − 1

∫∫
vext(r)γ (2)(rr′; rr′)d3rd3r ′, (7)

respectively, where vext(r) denotes the external potential. Using
Eqs. (3), (6), and (7), the electron-electron interaction and
external potential energies for the scaled PD are calculated as

W
[
γ

(2)
λ

] = λW [γ (2)], (8)

V
[
γ

(2)
λ

] = 2

N − 1

∫∫
vext

(
r
λ

)
γ (2)(rr′; rr′)d3rd3r ′, (9)

where we suppose in the derivation of Eq. (9) that the surface
integral at infinity can be neglected. If vext(r) is the external
potential energy of an isolated atomic system, i.e., vext(r) ∝
1/ |r|, then Eq. (9) is simply rewritten as

V
[
γ

(2)
λ

] = λV [γ (2)]. (10)

Next, we consider two cases that are shown in Figs. 1(a)
and 1(b). One is the case where the search region of PDs
(C1) is identical with the set of all N -representable PDs (Call),
and another case is that C1 is a proper subset of Call. Before
considering these two cases, we summarize in advance the
notations used below. We denote by γ̃

(2)
0 the PD that belongs

to C1 and gives the minimum of E[γ (2)], i.e.,

Min
γ (2)∈C1

E[γ (2)] = E
[
γ̃

(2)
0

]
. (11)

The scaled PD that is calculated from γ̃
(2)
0 is denoted by γ̃

(2)
0, λ.

By changing the value of λ, the set of γ̃
(2)
0, λ can be obtained. We

denote the set as C2, and call γ̃
(2)
0 the “seed PD” in this paper.

Let us consider the former case [Fig. 1(a)], namely the
case of C1 = Call. In this case, C1 contains all elements of C2

because all scaled PDs γ̃
(2)
0, λ are N -representable. Therefore,

E[γ̃ (2)
0, λ] should take a minimum value at λ = 1. Namely, we

1 allC C

2C

allC

2C1C

(a) (b)

(2)
0

(2)
0

(2)
0,

FIG. 1. Schematic view of the search region of PDs. The symbols
Call, C1, and C2 denote the set of N -representable PDs, the search
region of PDs, and the set of scaled PDs, respectively. (a) The case
where C1 is identical with Call. (b) The case where C1 is a proper
subset of Call.
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have

dE
[
γ̃

(2)
0, λ

]
dλ

∣∣∣∣
λ=1

= 0. (12)

Using Eqs. (5), (8), and (9), Eq. (12) leads to the virial theorem
of the PD functional theory:

2T
[
γ̃

(2)
0

] + W
[
γ̃

(2)
0

] − 2

N − 1

∫
{r · ∇vext(r)}

×
{∫

γ̃
(2)
0 (rr′; rr′)d3r ′

}
d3r = 0, (13)

where we use the fact that γ̃ (2)
0, 1 is identical with γ̃

(2)
0 . If Eq. (10)

is used instead of Eq. (9), then Eq. (13) is rewritten as a more
familiar form of the virial theorem:

2T
[
γ̃

(2)
0

] + W
[
γ̃

(2)
0

] + V
[
γ̃

(2)
0

] = 0. (14)

Equation (13) [or (14)] means that the virial theorem holds for
the seed PD γ̃

(2)
0 in the case of C1 = Call. That is to say, if the

virial ratio Rvirial[γ (2)] is defined by

Rvirial[γ
(2)]

= W [γ (2)] − 2
N−1

∫ {r · ∇vext(r)}{∫ γ (2)(rr′; rr′)d3r ′}d3r

T [γ (2)]
,

(15)

then Rvirial[γ̃
(2)
0 ] takes a value of −2 in the case of C1 = Call:

Rvirial
[
γ̃

(2)
0

] = −2, if C1 = Call. (16)

Next we consider the latter case [Fig. 1(b)], namely the case
of C1 ⊂ Call. Since C1 incompletely covers Call in the latter
case, C2 is not always included in C1. Therefore, E[γ̃ (2)

0, λ] does
not always take the minimum at λ = 1 as opposed to the former
case. Namely, we have

dE
[
γ̃

(2)
0, λ

]
dλ

∣∣∣∣
λ=1

�= 0. (17)

This leads to

Rvirial
[
γ̃

(2)
0

] �= −2, if C1 ⊂ Call. (18)

This inequality is in stark contrast to Eq. (16). From Eqs. (16)
and (18), the theorem concerning the search region of PDs
holds:

“If Rvirial[γ̃
(2)
0 ] deviates from the exact value of −2, then

the search region of PDs is incomplete.”
As the contrapositive, this theorem is restated as follows:

“If the search region of PDs is fully extended, Rvirial[γ̃
(2)
0 ]

is identical with −2.”
It should be noted that this theorem can be applicable so long
as the approximate form of T [γ (2)] satisfies the exact relation
Eq. (5). Furthermore, note that the inverse statement of the
above theorem is not always satisfied.

This theorem is useful in judging whether the search region
of PDs is sufficient or not. We can judge the incompleteness
of the search region only by calculating the virial ratio
Rvirial[γ̃

(2)
0 ]. The concrete steps to use this theorem are as

follows:
(i) We first calculate the virial ratio Rvirial[γ̃

(2)
0 ].

(ii) If Rvirial[γ̃
(2)
0 ] deviates from −2, it is found from the

theorem that the search region of PDs is insufficient.
(iii) Then, we have to develop and use some scheme which

makes the search region of PDs be extended within the set Call.
In the next subsection, we shall present the scaling method for
the PD functional theory as a promising scheme to extend the
search region.

B. Extension of the search region of PDs: Scaling method

The inequality (17) means that E[γ̃ (2)
0, λ] may take a min-

imum value at the PD that belongs to C̄1 ∩ C2, where C̄1

denotes the complementary set of C1. If we add to the search
region the set of PDs that belong to C̄1 ∩ C2, i.e., we retake
C1 ∪ C2 as the search region of PDs, then the variationally
best PD within C1 ∪ C2 can be obtained from

dE
[
γ̃

(2)
0, λ

]
dλ

∣∣∣∣
λ=�

= 0, (19)

where � is the optimum value at which E[γ̃ (2)
0, λ] takes a

minimum [Fig. 1(b)]. Namely, the variationally best PD within
the substantially extended search region, C1 ∪ C2, is given
by γ̃

(2)
0, �, which is referred to as the “corrected PD.” Using

Eqs. (5), (8), and (9), Eq. (19) is rewritten by

2�T
[
γ̃

(2)
0

] + W
[
γ̃

(2)
0

] − 2

�2(N − 1)

∫
{r · ∇r/�vext(r/�)}

×
{∫

γ̃
(2)
0 (rr′; rr′)d3r ′

}
d3r = 0. (20)

In the case of the isolated atomic system, by using Eq. (10)
instead of Eq. (9), Eq. (19) is easily rewritten as

� = −W
[
γ̃

(2)
0

] + V
[
γ̃

(2)
0

]
2T

[
γ̃

(2)
0

] . (21)

Figure 2 shows the flow chart of the scaling method. The
scaling method starts with the calculations of the seed PD γ̃

(2)
0

and the corresponding energies, T [γ̃ (2)
0 ], W [γ̃ (2)

0 ], and V [γ̃ (2)
0 ].

Using these results, the value of � is determined from Eq. (20)
or (21). Using this �, we get the corrected PD γ̃

(2)
0, � from

Eq. (3). If the initial search region C1 is small compared to
Call, the value of � would generally deviate from 1.0. The
corresponding energies, T [γ̃ (2)

0,�], W [γ̃ (2)
0,�], and V [γ̃ (2)

0, �], can
also be calculated from Eqs. (5), (8), and (9), respectively.
Here note that the load of these calculations is quite light since

Calculations of      ,               ,               and (2)
0

Calculation of from Eq. (20) or (21)

Calculations of       ,              ,               and

from Eqs. (3), (5), (8) and (9), respectively

(2)
0,

(2)
0,T (2)

0,W (2)
0,V

(2)
0T (2)

0W (2)
0V

Scaling method

FIG. 2. Flow chart of the scaling method.
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T [γ̃ (2)
0,�], W [γ̃ (2)

0,�], and V [γ̃ (2)
0,�] are easily calculated using

already available values of T [γ̃ (2)
0 ], W [γ̃ (2)

0 ], V [γ̃ (2)
0 ], and �.

C. Formal features of the scaling method

The above-mentioned scaling method has three formal
features. One is that the corrected PD is necessarily N -
representable if the seed PD is N -representable. This is
because the corrected PD is the variationally best PD within
the extended search region (C1 ∪ C2) that consists of N -
representable PDs. The second formal feature is that the scaling
method does not need to add heavy calculation tasks. As
mentioned in Sec. II B, γ̃

(2)
0,� and related quantities such as

T [γ̃ (2)
0,�], W [γ̃ (2)

0, �], and V [γ̃ (2)
0, �] can be easily calculated only

by using the seed PD. The third formal feature is that the
corrected PD necessarily satisfies the virial theorem. Namely,
we have

Rvirial
[
γ̃

(2)
0, �

] = −2. (22)

This striking feature can be proven as follows. Multiplying
� on both sides of Eq. (20), using Eqs. (5) and (8), and
transforming the integration variable in the third term of the
left-hand side, we get

2T
[
γ̃

(2)
0,�

] + W
[
γ̃

(2)
0,�

] − 2

N − 1

∫
{r · ∇vext (r)}

×
{
�3

∫
γ̃

(2)
0 (�rr′; �rr′)d3r ′

}
d3r = 0. (23)

On the other hand, integrating both sides of Eq. (3) with
respect to r′, and transforming the integration variable, we
have λ3

∫
γ̃

(2)
0 (λrr′; λrr′)d3r ′ = ∫

γ̃
(2)
0,λ (rr′; rr′)d3r ′. Substitu-

tion of this relation into Eq. (23) results in

2T
[
γ̃

(2)
0, �

] + W
[
γ̃

(2)
0, �

] − 2

N − 1

∫
{r · ∇vext(r)}

×
{∫

γ̃
(2)
0, �(rr′; rr′)d3r ′

}
d3r = 0. (24)

This equation immediately leads to Eq. (22). Thus, the virial
theorem holds rigorously for the corrected PD.

III. APPROXIMATE FORM OF THE KE FUNCTIONAL

In this section, we explain how to develop the approximate
form of the KE functional that is indispensable for the PD
functional theory. In order to bring out the formal features of
the scaling method, especially the third feature mentioned in
Sec. II C, the approximate form is required to satisfy the exact
relation Eq. (5). The strategy we used for the development is
(a), which has been described in Sec. I. In this strategy, it seems
to be physically desirable that the strong restrictive (necessary)
condition and/or a lot of restrictive conditions are satisfied
with the approximate KE functional. In the present work,
specifically, two kinds of relations and bounds are utilized
as restrictive conditions. One is the exact relation Eq. (5), and
the other is the exact relation that is derived by means of the
Hohenberg-Kohn theorem of the PD functional theory [33].

By applying lim
λ→1

∂
∂λ

to both sides of Eq. (5), and using the

fact that integrals over an infinitely distant surface vanish in

the isolated system, we have [33]

2T [γ (2)]=−
∫∫

r ·
{
∇ δT [γ (2)]

δγ (2)(rr′; rr′)

}
γ (2)(rr′; rr′)d3rd3r ′

−
∫∫

r′ ·
{
∇′ δT [γ (2)]

δγ (2)(rr′; rr′)

}
γ (2)(rr′; rr′)d3rd3r ′,

(25)

where ∇ and ∇′ denote the nabla operators with respect to r
and r′, respectively. This is the form of the exact relation used
in developing the approximate form.

Using the Hohenberg-Kohn theorem of the PD functional
theory [33], the other relation for the KE functional can be
obtained as∫∫

γ
(2)
0 (rr′; rr′)

δT [γ (2)]

δγ (2)(rr′; rr′)

∣∣∣∣
γ (2)=γ

(2)
0

d3rd3r ′ = T
[
γ

(2)
0

]
,

(26)

where the functional derivative in the left-hand side should
be calculated by varying the PD with keeping the N -
representability [33].

As shown in the previous papers [33,34], Eq. (26) is fulfilled
if the KE functional is given by the following form:

T [γ (2)] =
∫∫

f (r,r′)γ (2)(rr′; rr′)d3rd3r ′, (27)

where f (r,r′) is an arbitrary function, and should be deter-
mined by the other condition. Substitution of Eq. (27) into
Eq. (25) leads to the condition for f (r,r′):∫∫

{2f (r, r′) + r · ∇f (r, r′) + r′ · ∇′f (r, r′)}

× γ (2)(rr′; rr′)d3rd3r ′ = 0. (28)

Note that if f (r,r′) is determined by requiring it to satisfy
Eq. (28), then the KE functional, i.e., Eq. (27) with such
f (r,r′), fulfills both Eqs. (25) and (26).

In order to determine f (r,r′) by means of Eq. (28), we
utilize the following equation that is satisfied by an arbitrary
N -representable PD;∫∫

G(r, r′)γ (2)(rr′; rr′)d3rd3r ′ = 0, (29)

where G(r, r′) is an arbitrary antisymmetric function. From
Eqs. (28) and (29), we have

2f (r, r′) + r · ∇f (r, r′) + r′ · ∇′f (r, r′) = G(r, r′). (30)

It is preferable that G(r, r′) is chosen on the basis of some
physically sound reason. For this aim, we here adopt the
condition that the total force acting on the system is zero,
i.e., [58] ∫

ρ(r)∇vext(r)d3r = 0, (31)

where ρ(r) denotes the electron density that is given by ρ(r) =
2

N−1

∫
γ (2)(rr′; rr′)d3r ′. By using the symmetric property of

PDs, i.e., γ (2)(rr′; rr′) = γ (2)(r′r; r′r), Eq. (31) is rewritten as∫∫ {∇vext(r) − ∇′vext(r′)}γ (2)(rr′; rr′)d3rd3r ′ = 0. Choosing
the external potential of the isolated atomic system as vext(r),
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and considering the force in the z direction, we get

∫∫ {
cos θ

r2
− cos θ ′

r ′2

}
γ (2)(rr′; rr′)d3rd3r ′ = 0, (32)

where θ and θ ′ stand for polar angles of r and r′, respectively.
Comparing Eq. (29) with Eq. (32), we may choose the
following function as G(r, r′):

G(r, r′) = cos θ

r2
− cos θ ′

r ′2 . (33)

Substituting Eq. (33) into Eq. (30), and solving Eq. (30), we
have

f (r,r′) = K

(
1

2r2
+ 1

2r ′2

)
+

(
cos θ

r2
− cos θ ′

r ′2

)
ln r ′

+ a
cos θ

r2
ln

(
r

r ′

)
+ b

cos θ ′

r ′2 ln

(
r ′

r

)
, (34)

where K , a, and b are arbitrary constants. This solution is a
particular solution of the partial differential equation (30). It
should be noted that the general solution of Eq. (30) can be
obtained by the method of characteristics [59]. The general
solution is given by

f (r,r′) =
(

cos θ

r2
− cos θ ′

r ′2

)
ln r ′ + 1

r ′2 g

(
r ′

r

)
, (35)

where g(r ′/r) is an arbitrary function of r ′/r . It is easily
confirmed that Eq. (34) corresponds to a particular form of
Eq. (35).

It is obvious that Eq. (34) thus determined satisfies Eq. (28)
and provides a promising form of T [γ (2)] which satisfies
Eqs. (25) and (26). However, it is also noticed that we can
choose as f (r,r′) the other types of functions which satisfy
Eq. (28). Specifically, as can be seen from the above derivation,
it is possible to choose G(r, r′) and g(r ′/r) which are different
from the present functions, i.e., Eq. (33) and g(r ′/r) in
Eq. (34), respectively. In order to judge whether the choices
of these functions are appropriate or not, there is nothing for it
but to perform the numerical calculations or check them by the
other restrictive conditions which differ from two ones used
here. As shown later by numerical calculations, the present
choices of G(r, r′) and g(r ′/r) lead to reasonable results. The
details are presented in Sec. IV.

Substituting Eq. (34) into Eq. (27), and using the symmetric
property γ (2)(rr′; rr′) = γ (2)(r′r; r′r), we get the approximate
form [34],

T [γ (2)] =
∫∫ [

K

(
1

r2
+ 1

r ′2

)

+ K ′
{

cos θ

2r2
ln

( r

r ′
)

+ cos θ ′

2r ′2 ln

(
r ′

r

)}]

× γ (2)(rr′; rr′)d3rd3r ′, (36)

where K ′ is the arbitrary constant that is related to a and b

by K ′ = a + b − 1. In the next section, we explain how to
determine the values of K and K ′ in conjunction with details
of the calculation method.

TABLE I. Total numbers of SDs (NSD) used in atomic structure
calculations.

Ne Mg Ar

NSD in constructing PDs of the set C1 1821 2569 3167
NSD in the scaling method 1821 2569 3167
Maximum NSD 10478 10285 14618

IV. ATOMIC STRUCTURE CALCULATIONS

A. Details of calculations

In order to evaluate the scaling method that is combined
with Eq. (36), we perform electronic structure calculations for
the neutral Ne, Mg, and Ar atoms. First, we have to determine
the seed PD γ̃

(2)
0 and the corresponding energy functionals,

T [γ̃ (2)
0 ], W [γ̃ (2)

0 ], and V [γ̃ (2)
0 ]. In this paper, to calculate these

quantities, we utilize the previously proposed scheme [33]. The
search region of the previously proposed scheme [33], which
corresponds to the set of C1 of the present scheme, consists
of PDs that are constructed from the linear combination of
SDs. The SDs are prepared by using eigenfunctions of the
effective initial scheme [28,30,32] as the constituent single-
particle orbitals. We choose as the basis SDs employed in
the linear combination the zero- and doubly excited SDs that
have numerically non-negligible contributions to the resultant
PD. As a result, the total numbers of SDs (NSD) used in
constructing PDs of the set C1 are 1821, 2569, and 3167 for
the cases of the Ne, Mg, and Ar atoms, respectively. The
calculation conditions are summarized in Table I.

After getting γ̃
(2)
0 , T [γ̃ (2)

0 ], W [γ̃ (2)
0 ], and V [γ̃ (2)

0 ], we
calculate the corrected PD γ̃

(2)
0, � and the corresponding energy

functionals, T [γ̃ (2)
0,�], W [γ̃ (2)

0, �], and V [γ̃ (2)
0,�], along the way

illustrated in Fig. 2. We also evaluate the virial ratios, electron
densities, and xc holes in order to check the validity of the
scaling method. To highlight the efficiency of the scaling
method in extending the search region, we further perform
numerical calculations by using the other search regions that
are extended by naively increasing the NSD without the scaling
method. The maximum NSDs adopted here are 10 478, 10 285,
and 14 618 for the cases of the Ne, Mg, and Ar atoms,
respectively (Table I).

Let us explain how to determine the values of K and K ′ that
appear in Eq. (36). These are determined by two conditions.
One is that Eq. (36) should be coincident with the Hartree-Fock
KE when the Hartree-Fock PD is substituted in it. The second
condition is that among the pairs (K,K ′) that satisfy the first
condition, we will choose the pair (K,K ′) that minimizes the
root-mean-square error (RMSE) of the external potential and
electron-electron interaction energies. Thus, the values of K

and K ′ are determined by requiring the approximate functional
to have these two sound features.

B. Calculation results

1. Errors of the external potential and electron-electron
interaction energies

Since both the external potential and electron-electron
interaction energies are exactly calculated from the PD, the
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FIG. 3. The RMSEs of the external potential and electron-electron interaction energies for the cases of (a) Ne, (b) Mg, and (c) Ar. The
solid and open circles denote RMSEs with the scaling method and those with the conventional method, respectively. Details of each method
are explained in the text.

errors of the external potential energy and electron-electron
interaction energy, i.e., 
V and 
W , indicate the error of the
PD directly. Therefore, the RMSE of the external potential
and electron-electron interaction energies, which is defined by√

{(
V )2 + (
W )2}/2, can be regarded as a good benchmark
of the accuracy of the PD. The error is estimated by 
A =
(Apresent − Areference)/Areference, where A corresponds to the
external potential energy, electron-electron interaction energy
or etc., and where Apresent and Areference denote the present
result and the reference data, respectively. In calculating 
V

and 
W , we adopt as the reference data the results of the
1/Z expansion method [60,61] that is based on the data by
Davidson and coworkers [62,63]. The results are shown as
a function of the NSD in Figs. 3(a)–3(c). In these figures,
results done by the scaling method, i.e., RMSE of W [γ̃ (2)

0,�] and

V [γ̃ (2)
0, �], are denoted as “scaling method” (solid circles), and

results done by the method which is accompanied with naively
increasing NSD and without the scaling method, i.e., RMSE
of W [γ̃ (2)

0 ] and V [γ̃ (2)
0 ], are denoted as “conventional method”

(open circles). It is found that the scaling method much reduces
RMSEs, the reduction rate of which are about 1/100, 1/30,
and 1/10 for the Ne, Mg, and Ar atoms, respectively. Although

RMSEs are improved also by the conventional method, the
reduction rates are worse than those by the scaling method.
For instance, RMSEs for Ne and Ar are down only about
1% even though the NSD increases over 10 000 [Figs. 3(a)
and 3(c)].

In order to inquire the RMSE further in more details, we
show 
W and 
V individually for the Ne, Mg, and Ar atoms
in Figs. 4, 5, and 6, respectively. For each atom, both 
W

and 
V are more reduced by the scaling method than by the
conventional method. We can say from these figures that the
improvements in RMSEs are achieved through the reductions
in both 
W and 
V . This implies that the seed PD itself is
improved reasonably by the scaling method.

Here, we shall comment on dependencies of the RMSE,

W and 
V on the NSD for Mg, which are a bit different
from those for Ne and Ar (Figs. 3–6). In general, to what
extent the search region of PDs is extended by the conventional
method depends on the choice of the basis SDs. It is found from
Figs. 3–6 that the search region of PDs for the case of Mg is
extended relatively well, as compared with the cases of Ne and
Ar. Nevertheless, it should be noticed from Figs. 3–6 that such
the extension by the conventional method is definitely inferior
to that by the scaling method.
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FIG. 4. Errors of the electron-electron interaction energy (
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external potential energy (
V ), KE (
T ), and virial ratio (
Rvirial)
for the Ne atom as a function of the NSD. The solid and open symbols
denote errors with the scaling method and those with the conventional
method, respectively.

Thus, the superior efficiency of the scaling method in
extending the search region of PDs is explicitly shown.

2. Error of the kinetic energy

The dependencies of the errors of the KE (
T ) on the NSD
are also shown in Figs. 4–6. It is found that 
T is reduced more
effectively by the scaling method than by the conventional
method. In general, the accuracy of the KE depends on both
the appropriateness of the approximate form of the functional
and that of the resultant PD. As mentioned in Sec. IV B-1,
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FIG. 5. Errors of the electron-electron interaction energy (
W ),
external potential energy (
V ), KE (
T ), and virial ratio (
Rvirial)
for the Mg atom as a function of the NSD. The solid and open symbols
denote errors with the scaling method and those with the conventional
method, respectively.
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FIG. 6. Errors of the electron-electron interaction energy (
W ),
external potential energy (
V ), KE (
T ), and virial ratio (
Rvirial)
for the Ar atom as a function of the NSD. The solid and open symbols
denote errors with the scaling method and those with the conventional
method, respectively.

γ̃
(2)
0, � seems to be reproduced appropriately. Therefore, the

improvement of the KE suggests that the approximate form
itself, which is given by Eq. (36), would be also sound.

In this work, the coefficients K and K ′ for Eq. (36) are
determined along the way mentioned in Sec. IV A. If Eq. (36)
includes the form close to the correct KE functional and if the
search region of PDs is sufficiently extended, thus determined
K and K ′ are expected to become the universal constants
on their own. The resultant K and K ′ of this work take the
values ranging 0.0423–0.0688 (K), and 0.125–0.360 (K ′),
respectively. Comparing to the approximate forms of the xc
energy functional of the conventional DFT [64], the present
functional is not so far from the universal one, and it has a
promising form though there is still room for improvement.

3. Virial ratio

As mentioned in Sec. II A, the deviation of the virial ratio
from −2 implies the incompleteness of the search region of
PDs. The errors of the virial ratio (
Rvirial) for the Ne, Mg,
and Ar atoms are shown in Figs. 4, 5, and 6, respectively.
It is found from Figs. 4–6 that Rvirial[γ̃

(2)
0 ] (the virial ratio

by the conventional method) deviates from the correct value
of −2 even though the search region of PDs is extended by
increasing the NSD. This means that the search region is not
always extended efficiently by increasing the NSD naively. A
huge number of SDs would be needed for satisfying the virial
theorem if the conventional method was used in extending
the search region of PDs. On the other hand, Rvirial[γ̃

(2)
0,�] (the

virial ratio by the scaling method) is rigorously equal to −2,
as mentioned in Sec. II C. The seed PD can be corrected to the
PD that satisfies the virial theorem, along a simple calculation
procedure without additional and heavy calculation tasks, as
shown in Fig. 2. Thus, also from the viewpoint of the virial
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theorem, the scaling method makes the search region of PDs
be extended efficiently.

There seems to be a mutual relation between the virial
theorem and improvements of various energy functionals
mentioned in the preceding subsections. Namely, the electron-
electron interaction energy, external potential energy, and KE
are improved in a well-balanced manner due to the feature of
satisfying the virial theorem rigorously.

4. Electron density

In the previous subsections, the appropriateness of the cor-
rected PD is shown from the viewpoints of energy functionals
and virial ratio. In this and subsequent subsections, to clarify
the details of how the PD is spatially improved by the scaling
method, we examine the spatial distributions of the electron
density (this subsection) and the xc hole (the next subsection).

The electron densities of the Ne atom that are calculated
from γ̃

(2)
0, � [scaling method (NSD = 1821)] and γ̃

(2)
0 [con-

ventional method (NSD = 1821 and 10 478)] are shown in
Fig. 7(a), together with the electron density of the configuration
interaction (CI) method [67]. The first peak of the electron
density with the scaling method is in a better agreement with
that of the CI method [67] than those of the electron densities
with the conventional method (NSD = 1821 and 10 478)
[Fig. 7(b)]. On the other hand, the second peak is modified
excessively by the scaling method [Fig. 7(c)]. Let us discuss
this tendency below.

The scaling method has the property that if � is larger than
1 as is the present case, then both the first and second peaks
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FIG. 7. Profiles of electron densities of the Ne atom. The solid
line denotes electron density calculated with the scaling method
[ρ̃0,�(r)]. The dashed and chained lines stand for electron densities
that are calculated with the conventional method [ρ̃0(r)] in the cases
of NSD = 1821 and NSD = 10 478(maximum), respectively. The
density profiles are zoomed in around the first peak (b) and the second
peak (c).

are simultaneously enhanced by the scaling method. This is
because the corrected electron density ρ̃0,�(r) is given by

ρ̃0,�(r) = 2

N − 1

∫
γ̃

(2)
0, �(rr′; rr′)d3r ′

= 2�3

N − 1

∫
γ̃

(2)
0 (rr′; rr′)d3r ′

= �3ρ̃0(�r), (37)

where ρ̃0(r) is the electron density that is calculated from the
seed PD γ̃

(2)
0 . The enhancement of the first peak [Fig. 7(b)]

causes the decrease of |
V |, while the excessive modification
of the second peak [Fig. 7(c)] causes the increase of |
V |.
Since it is located closer to the nucleus than the second peak,
and since its magnitude is larger than that of the second peak,
the first peak contributes to the external potential energy more
significantly than the second one. Therefore, it is expected that
|
V | decreases due to the improvement of the first peak, and
indeed it is much improved as shown in Fig. 4.

The above-mentioned correction of the electron density also
has an important role in the improvement of the Hartree energy
that is the main term of the electron-electron interaction energy.
This is because since the first peak is higher than that of the
second peak [Fig. 7(a)], the electron density around the first
peak contributes to the Hartree energy more significantly than
that around the second peak.

Thus, the scaling method improves the spatial distribution
of the electron density in such a way that the errors of
the external potential energy and Hartree energy are reduced
effectively. Namely, the dominant part (the first peak of the
electron density) that largely contributes to both the external
potential energy and Hartree energy is preferentially improved
by the scaling method.

In the next subsection, we shall mention that the improve-
ment of the Hartree energy leads to the decrease of |
W | in
conjunction with discussing the improvement of the xc energy
term.

5. Exchange-correlation hole

In order to check where the PD is corrected spatially via
the scaling method, in this subsection we shall investigate the
xc hole nxc(r,r′). The xc hole reflects the spatial shape of the
PD explicitly. The xc hole is defined as

nxc(r , r′) = 2γ (2)(r r′; r r′ ) − ρ(r)ρ(r′)
ρ(r)

. (38)

The calculation results are shown in Fig. 8 for the Ne atom and
shown in Fig. 9 for the Mg and Ar atoms. They are calculated
from γ̃

(2)
0, � (scaling method) and γ̃

(2)
0 (conventional method)

under the condition that the reference electron is placed at
z = 0.2 or z = 0.4. For comparison, the corresponding profiles
calculated by the CI method [68] are also shown in Figs. 8(a)
and 8(b).

Let us consider the properties of nxc(r,r′) in the case of
z = 0.2, which are shown in Fig. 8(a). Judging from the spatial
distribution of each constituent electron of the Ne atom, the
large hole around z′ − z = −0.2 would be firstly due to the
Pauli principle between the 1s electrons, and secondly due
to the Pauli principles between the 2s electrons, and between
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the 2p electrons. Also, the small hole around z′ − z = −0.7
would be mainly due to the Pauli principle between the
2s electrons. As an example among them, we shall explain
the Pauli principle between the 1s electrons. The existence
probability of electrons at z = 0.2 is largely attributed to the
1s electron. Therefore, we have to consider the Pauli principle
between the 1s electrons at z = 0.2. Since the 1s electron is
large near the nucleus, i.e., z′ = 0, the xc hole becomes large
near z′ − z = −0.2.

Similarly to the above case, properties of nxc(r,r′) in the
case of z = 0.4 [Fig. 8(b)] can be described as follows. The
large hole observed around z′ − z = −0.2 would be firstly due
to the Pauli principle between the 2p electrons, and secondly
due to the Pauli principles between the 1s electrons and
between the 2s electrons. The small hole around z′ − z = −0.8
would be due to the Pauli principles between the 2p electrons
and between the 2s electrons, to the same degree.
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FIG. 9. Profiles of the xc holes [nxc(r,r′)] along z axis for
(a) Mg and (b) Ar, respectively. The reference electron is placed at
z = 0.2. The solid and dashed lines denote xc holes calculated with
the scaling method and conventional one, respectively. The position
of the nucleus is denoted by the arrow.

It is found from Fig. 8(a) (z = 0.2) that the xc hole profile
calculated with the scaling method is in a better agreement
with the corresponding CI result than that calculated with the
conventional method. On the other hand, it is found from
Fig. 8(b) (z = 0.4) that the peak height around z′ − z = −0.6
is improved by the scaling method while the shape of the valley
around z′ − z = −0.8 is not improved.

It is shown that the accuracy of the xc hole at z = 0.2
affects the reproducibility of the xc energy more strongly than
that at z = 0.4. To confirm this, we consider the usual relation
between the xc hole and xc energy εxc;

εxc = e2

2

∫∫
ρ(r)nxc(r , r′)

|r − r′| d3rd3r ′. (39)

From this equation, the integration region, where ρ(r) and
1/|r − r′| that appear in the integrand are large, makes a
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large contribution to the xc energy. Since ρ(r) is large
near the nucleus (r = 0), the region that satisfies the above
condition is the vicinity of r = r′ = 0. This means that the
accuracy of nxc(r,r′) at z = 0.2 is more important than that at
z = 0.4 in evaluating the xc energy. Thus, the scaling method
would preferentially improve the spatial parts of nxc(r,r′), the
accuracy of which have a stronger affect to the xc energy.

Combining this fact with that of the previous subsection, we
can conclude that the scaling method would provide correction
preferentially for the certain parts of ρ(r) and nxc(r,r′), which
reduce the error 
W effectively.

V. CONCLUDING REMARKS

In order to make the PD functional theory progress, two
problems of the PD functional theory, i.e., the search region
of PDs and approximate KE functional, should be addressed
simultaneously. In this paper, we tackle two problems by
means of the scaling method and approximate KE functional
that are, respectively, described in Secs. II and III. Both
the validity of the scaling method and the soundness of the
approximate KE functional are successfully confirmed by
actual calculations for the neutral Ne, Mg, and Ar atoms.

The striking feature of the scaling method is that it
necessarily yields the corrected PD that satisfies the virial
theorem rigorously. This is true so long as the KE functional is
consistent with the exact relation Eq. (5) like Eq. (36). Due to
this striking feature, the resultant electron-electron interaction
energy, external potential energy, and KE are well balanced.
The well-balanced correction leads to not only the drastic
reductions of 
W , 
V , and 
T but also the improvements
of the electron density and xc hole. Especially concerning the
latter, it is emphasized that the scaling method preferentially
correct their spatial parts that affect the reductions of 
V

and 
W more strongly. These improvements suggest that the
corrected PD gets close to the ground-state one.

Furthermore, the scaling method does not need a heavy
calculation additionally. This implies that the scaling method
would be applicable not only to light atoms but also to heavier
atoms.
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