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On the Ricci tensor and the generalized
Tanaka-Webster connection of real hypersurfaces

in a complex space form

By MAYUKO KON

Abstract. We prove that the Ricci tensor Ŝ with respect to the gen-
eralized Tanaka-Webster connection of a real hypersurface with the almost
contact structure (η, ϕ, ξ, g) in a complex space form of complex dimen-

sion n ≥ 3 satisfies Ŝ(X,ϕY ) = λg(X,ϕY ) for any vector field X and Y ,
λ being a function, if and only if the real hypersurface is locally congruent
to some type (A) hypersurface.

1. Introduction

Tanaka-Webster connection is a unique affine connection on a
non-degenerate, pseudo-Hermitian CRmanifold which associated with
the almost contact structure ([12], [14]). Tanno [13] gave the gen-
eralized Tanaka-Webster connection (g-Tanaka-Webster connection)
for contact metric manifolds, which coincides with Tanaka-Webster
connection if the associated CR-structure is integrable. For a real
hypersurface in a Kählerian manifold with an almost contact metric
structure (η, ϕ, ξ, g), in [3] and [4], Cho defined the g-Tanaka-Webster
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connection ∇̂(k) for a non-zero real number k. Then we can see that
∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)ϕ = 0. Moreover, if the shape
operator A of a real hypersurface satisfies ϕA+Aϕ = 2kϕ, then the g-
Tanaka-Webster connection ∇̂(k) coincides with the Tanaka-Webster
connection.

For real hypersurfaces in a complex space form Mn(c) of constant
holomorphic sectional curvature 4c ̸= 0, one of the major problem
is to determine real hypersurfaces satisfying certain geometrical as-
sumptions. Cho [5] determined flat Hopf hypersurfaces in a non-flat
complex space form with respect to the g-Tanaka-Webster connec-
tion. Besides, he classified Hopf hypersurfaces in a non-flat complex
space form which admits a pseudo-Einstein CR-structure for the g-
Tanaka-Webster connection.

The purpose of this paper is to study real hypersurfaces in a com-
plex space form whose Ricci tensor Ŝ with respect to the g-Tanaka-
Webster connection ∇̂(k) satisfies Ŝ(X,ϕY ) = λg(X,ϕY ) for any vec-
tor fields X and Y .

The author would like to express her sincere gratitude to Professor
P. F. Leung for his valuable advice. Also, the author would like to
thank the referee for valuable comments.

2. Preliminaries

Let Mn(c) denote the complex space from of complex dimension
n (real dimension 2n) of constant holomorphic sectional curvature 4c.
For the sake of simplicity, if c > 0, we only use c = +1 and call it the
complex projective space CP n, and if c < 0, we just consider c = −1,
so that we call it the complex hyperbolic space CHn. We denote by
J the almost complex structure of Mn(c). The Hermitian metric of
Mn(c) will be denoted by G.

Let M be a real (2n − 1)-dimensional hypersurface immersed in
Mn(c). We denote by g the Riemannian metric induced on M from
G. We take the unit normal vector field V of M in Mn(c). For any
vector field X tangent to M , we define ϕ, η and ξ by

JX = ϕX + η(X)V, JV = −ξ,
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where ϕX is the tangential part of JX, ϕ is a tensor field of type
(1,1), η is a 1-form, and ξ is the unit vector field on M . Then they
satisfy

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ϕX) = 0,

η(X) = g(X, ξ), g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ).

Thus (ϕ, ξ, η, g) defines an almost contact metric structure on M . Let
H0 denote the holomorphic distribution on M defined by H0(x) =
{X ∈ Tx(M)|η(X) = 0}.

We denote by ∇̃ the operator of covariant differentiation inMn(c),
and by ∇ the one in M determined by the induced metric. Then the
Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + g(AX, Y )V, ∇̃XV = −AX

for any vector fields X and Y tangent to M . We call A the shape
operator of M .

From the Gauss and Weingarten formulas, we have

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ.

We denote by R the Riemannian curvature tensor field of M . Then
the equation of Gauss is given by

R(X, Y )Z = c{g(Y, Z)X − g(X,Z)Y + g(ϕY, Z)ϕX − g(ϕX,Z)ϕY

−2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY,

and the equation of Codazzi by

(∇XA)Y − (∇YA)X = c{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ}.

If Aξ = λξ, λ being a function, then M is called a Hopf hypersur-
face. There are many results for real hypersurfaces in complex space
forms under the assumption that they are Hopf hypersurfaces. By
the Codazzi equation, we have the following result (c.f. [8]).
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Proposition A. Let M be a Hopf hypersurface in Mn(c), n ≥ 2, If
X ⊥ ξ and AX = βX, then α = g(Aξ, ξ) is constant and

(2β − α)AϕX = (βα + 2c)ϕX.

We use the following results for the proof of the main theorem.

Theorem B ([7]). Let M be a Hopf hypersurface in CP n. Then M
has constant principal curvatures if and only if M is locally congruent
to one of the following :

(A1) a geodesic hypersphere of radius r, where 0 < r < π/2,

(A2) a tube over a totally geodesic CP l (1 ≤ l ≤ n− 2), where 0 < r <
π/2,

(B) a tube of radius r over a complex quadric Qn−1 and RP n, where
0 < r < π/4.

(C) a tube of radius r over CP 1 × CP n−1
2 , where 0 < r < π/4 and

n (≥ 5) is odd,

(D) a tube of radius r over a complex Grassmann CG2,5, where 0 <
r < π/4 and n = 9,

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5),
where 0 < r < π/4 and n = 15.

Theorem C ([1]). Let M be a Hopf hypersurface in CHn. Then M
has constant principal curvatures if and only if M is locally congruent
to one of the following :

(A0) a horosphere,

(A1) a tube over a complex hyperbolic hyperplane CHk (k = 0, n− 1),

(A2) a tube over a totally geodesic CH l (1 ≤ l ≤ n− 2),

(B) a tube over a totally real hyperbolic space RHn.
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Next we introduce the notion of Tanaka-Webster connection and
its generalization. Tanaka [12] defined the canonical affine connec-
tion on a non-degenerate, pseudo-Hermitian CR manifold. As a gen-
eralization of Tanaka-Webster connection, Tanno [13] defined the g-
Tanaka-Webster connection for contact metric manifolds by

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)ϕY,

where (η, ϕ, ξ, g) is a contact metric structure. Using the naturally
extended affine connection of Tanno’s g-Tanaka-Webster connection,
the g-Tanaka-Webster connection ∇̂(k) for real hypersurfaces in Kähler
manifold is given by,

∇̂(k)
X Y = ∇XY + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY

for a non-zero real number k (see Cho [3], [4]). Then we see that

∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)ϕ = 0.

In particular, if the shape operator of a real hypersurface satisfies
ϕA + Aϕ = 2kϕ, then the g-Tanaka-Webster connection coincides
with the Tanaka-Webster connection. Next we define the g-Tanaka-
Webster curvature tensor R̂ with respect to ∇̂(k) by

R̂(X,Y )Z = ∇̂X(∇̂YZ)− ∇̂Y (∇̂XZ)− ∇̂[X,Y ]Z

for all vector fields X, Y, Z in M . We denote by Ŝ the g-Tanaka
Webster Ricci tensor, which is defined by

Ŝ(Y, Z) = trace of {X 7→ R̂(X, Y )Z}.

3. The Ricci tensor of real hypersurfaces in a complex
space form

To prove the theorem, we prepare the following lemma.
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Lemma 3.1. Let M be a real hypersurface in a complex space
form Mn(c), n ≥ 3, c ̸= 0. If there exists an orthonormal frame
{e1, · · · , e2n−2, ξ} on a sufficiently small neighborhood N of x ∈ M
such that the shape operator A can be represented as

A =


a1 0 h1

. . .
... 0

. . .
...

0 a2n−2 0
h1 0 · · · 0 α

 ,

then we have

(a1 − aj)g(∇eie1, ej) + (aj − ai)g(∇e1ei, ej) + aih1g(ϕei, ej)

= 0, (3.1)

(aj − a1)g(∇eiej, e1)− (ai − a1)g(∇ejei, e1) + h1(ai + aj)g(ϕei, ej)

= 0, (3.2)

{2c− 2aiaj + α(ai + aj)}g(ϕei, ej)− h1g(∇eiej, e1) + h1g(∇ejei, e1)

= 0, (3.3)

(a1 − ai)g(∇eie1, ei)− (e1ai) = 0, (3.4)

h1(2ai + a1)g(ϕei, e1) + (a1 − ai)g(∇e1ei, e1) + (eia1) = 0, (3.5)

(c+ a1α− a1ai − h2
1)g(ϕe1, ei)− (a1 − ai)g(∇ξe1, ei)

+h1g(∇e1e1, ei) = 0 (3.6)

for any i, j ≥ 2, i ̸= j.

Proof. By the equation of Codazzi, we have

g((∇eiA)e1 − (∇e1A)ei, ej) = 0,

where i, j = 2, · · · , 2n− 2. On the other hand, we have

g((∇eiA)e1 − (∇e1A)ei, ej)

= g(∇ei(Ae1)− A∇eie1 −∇e1(Aei) + A∇e1ei, ej)

= (a1 − aj)g(∇eie1, ej) + (aj − ai)g(∇e1ei, ej) + aih1g(ϕei, ej).

Thus we obtain (3.1). By the similar computation, we have our re-
sults. □
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Theorem 3.2. Let M be a real hypersurface in a complex space
form Mn(c), n ≥ 3, c ̸= 0. We suppose that the Ricci tensor Ŝ of

the generalized Tanaka-Webster connection ∇̂(k) satisfies Ŝ(X,ϕY ) =
λg(X,ϕY ) for any vector fields X and Y , λ being a function.

(1) If c > 0 and k2 ̸= 4c, then M is a Hopf hypersurface.

(2) If c < 0, then M is a Hopf hypersurface.

Proof. By the definition of the g-Tanaka-Webster connection,
we have (see [5])

R̂(X, Y )Z = R(X, Y )Z + g
(
ϕ((∇XA)Y − (∇YA)X), Z

)
ξ

+2g(ϕAY,Z)ϕAX − 2g(ϕAX,Z)ϕAY (3.7)

+g
(
(∇Xϕ)AY − (∇Y ϕ)AX,Z

)
ξ

−η(Z)
(
ϕ
(
(∇XA)Y − (∇YA)X

)
+ (∇Xϕ)AY − (∇Y ϕ)AX

)
−k

(
g
(
(ϕA+ Aϕ)X, Y

)
ϕZ + η(Y )(∇Xϕ)Z − η(X)(∇Y ϕ)Z

)
+g(ϕAX,FYZ)ξ − η(FYZ)ϕAX − kη(X)ϕFYZ

−g(ϕAY, FXZ)ξ + η(FXZ)ϕAY + kη(Y )ϕFXZ,

where F is given by

FXY = g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY.

By the definition of g-Tanaka-Webster Ricci tensor, equation of Gauss
and Codazzi, direct calculation shows that

Ŝ(Y, Z) = 2ncg(Y, Z) + (trA− η(Aξ) + k)g(AY,Z)

−g(A2Y, Z)− g(ϕAϕAY,Z)− kg(ϕAϕY, Z) + η(AY )g(Aξ, Z)

+η(Z)
(
−2ncη(Y )− η(AY )trA+ η(A2Y )− kη(AY )

)
.

Now we use the following lemma of Ryan [10].

Lemma D. Let A be a symmetric tensor field of type (1,1) on a
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connected Riemannian manifold Mn. Then there exists λ1 ≥ λ2 ≥
· · · ≥ λn such that for each point x, {λi(x)}(i = 1, · · · , n) are the
eigenvalues of Ax.

For the shape operator A of a real hypersurface M , we consider
the symmetric tensor field ϕAϕ of type (1,1). By the above lemma,
we can take an ortonormal frame {v1, ..., v2n−2, ξ} in a neighborhood
of a point x such that ϕAϕξ = 0, ϕAϕv1 = −a1v1, · · · , ϕAϕv2n−2 =
−a2n−2v2n−2. Then we have

g(Aϕvi, ϕvj) = −g(ϕAϕvi, vj) = 0 (i ̸= j),

g(Aϕvi, ϕvi) = −g(ϕAϕvi, vi) = ai.

We take an orthonormal frame {e1 = ϕv1, ..., e2n−2 = ϕv2n−2, ξ} in a
neighborhood N of a point x. Then, in the neighborhood, A is of the
form

A =


a1 · · · 0 h1
...

. . .
...

...
0 · · · a2n−2 h2n−2

h1 · · · h2n−2 α

 ,

where we have put hi = g(Aei, ξ), i = 1, · · · , 2n−2, and α = g(Aξ, ξ).

The condition Ŝ(X,ϕY ) = λg(X,ϕY ) for any vector fields X and

Y is equivalent to Ŝ(X, Y ) = λg(X, Y ) for any vector field X and
any vector field Y orthogonal to ξ. By the direct computation using
the previous equation, we have

Ŝ(ξ, ξ) = 0, Ŝ(ei, ξ) = 0,

Ŝ(ξ, ei) = (trA− α + k − ai)hi − g(ϕAϕAξ, ei) = 0, (3.8)

Ŝ(ei, ei) (3.9)

= 2nc+ (trA)ai − a2i − αai + kai + (ai + k)g(Aϕei, ϕei) = λ,

Ŝ(ei, ej) = (ai + k)g(Aϕei, ϕej) = 0 (i ̸= j). (3.10)

In the following, we suppose that M is not a Hopf hypersurface.
Then there is a point x and hence an open neighborhood N of x
where Aξ ̸= αξ on N . Then hi ̸= 0 for some i.
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If ai = −k for all i at some x ∈ N , then (3.9) and trA = −(2n−
2)k + α imply that

2nc+ (2n− 4)k2 = λ.

By (3.8),

(trA− α + 2k)hi + g(ϕAξ,Aϕei) = 0.

Since g(ϕAξ,Aϕei) = −khi, trA− α = −(2n− 2)k, we have

(2n− 3)khi = 0.

for all i. Thus we have k = 0. This contradicts to our assump-
tion. Therefore, ai ̸= −k for some i. From (3.10), if ai ̸= −k, then
g(Aϕei, ϕej) = 0 for all j ̸= i. Thus we set

Aϕei = āiϕei + h̄iξ,

where we have put āi = g(Aϕei, ϕei) and h̄i = g(Aϕei, ξ). We also
have

Ŝ(ϕei, ϕei) = 2nc+ (trA)āi − ā2i −αāi + kāi + (āi + k)ai = λ. (3.11)

Using (3.9) and (3.11), we obtain

(ai − āi)(trA− α− ai − āi) = 0.

When ai = āi, (3.9) implies

2nc− λ = ai(α− 2k − trA).

Otherwise, if ai ̸= āi, then trA− α = ai + āi. Using (3.9), we obtain

2a2i − 2(trA− α)ai − k(trA− α)− 2nc+ λ = 0,

from which

(ai − aj)(trA− α− ai − aj) = 0
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for aj that satisfies aj ̸= k and aj ̸= āj. If ai ̸= aj, then trA − α =
ai + aj = ai + āi. Hence we have aj = āi. We put b = ai and b̄ = āi.
They satisfy

b+ b̄ = trA− α, (3.12)

bb̄ = −k

2
(trA− α)− nc+

λ

2
. (3.13)

We remark that b ̸= −k or b̄ ̸= −k.
From these, in N , we have

A =



b h1

. . .
b

b̄
...

. . .

b̄
d

. . .
d

−k
. . .

−k h2n−2

h1 · · · h2n−2 α



,

where

d = g(Aes, es) = g(Aϕes, ϕes) ̸= −k,

2nc− λ = d(α− 2k − trA). (3.14)

In the following, we use integers y, z, · · · for Aey = bey + hyξ, s · · ·
for Aes = des + hsξ and v · · · for Aev = −kev. We denote by H1(x),
H2(x), H3(x) and H4(x) the subspaces of a tangential space at x
spanned by {ey}, {ϕey}, {es} and {ev}, respectively.
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We suppose that dimH3(x) ̸= 0 and dimH4(x) ̸= 0 at some
x ∈ N . Taking es ∈ H3(x) and ev ∈ H4(x), (3.9) implies

Ŝ(ev, ev) = 2nc− k(trA)− 2k2 + αk = λ.

From this and (3.14), we have

(d+ k)(α− 2k − trA) = 0.

Since d ̸= −k, then we have trA− α = −2k and 2nc− λ = 0.
Moreover, if dimH1(x) = dimH2(x) ̸= 0, taking ey ∈ H1(x),

(3.12), (3.13) and (3.14) imply ay = b = −k and āy = b̄ = −k. This
case cannot be occured. Hence we have dimH1(x) = dimH2(x) = 0.
Then, by ϕes ∈ H3(x) and ϕev ∈ H4(x), we have ai = āi for any
i ∈ {1 · · · , 2n− 2}. Thus, by (3.8) and trA− α = −2k,

(−k − ai)hi − g(ϕAϕAξ, ei) = −khi = 0

for all i. This implies k = 0. This contradicts to our assumption.
So, we see that dimH3(x) = 0 or dimH4(x) = 0 at any point

x ∈ N , that is,

A =



b h1

. . .
b

b̄
...

. . .

b̄
f

. . .
f h2n−2

h1 · · · h2n−2 α


,

When dimH4 = 0, f denotes as = d. We remark that f = d satisfies
(3.14). Otherwise, when dimH3 = 0, f denotes av = −k. In this
case, we see that āv = −k by the definition of b and b̄. Thus, using
(3.9), f = −k also satisfies

2nc− λ = −k(α− 2k − trA).
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Hence, f = f̄ and f satisfies

2nc− λ = f(α− 2k − trA) (3.15)

in both cases.
In the following, we use integers s · · · for Aes = fes + hsξ and

redefine H3(x) as the subspaces of a tangential space at x spanned
by {es}.

By a direct computation using (3.8),

(trA− α + k − b+ b̄)hy = 0, (3.16)

(trA− α + k + b− b̄)h̄y = 0, (3.17)

(trA− α + k)hs = 0. (3.18)

Lemma 3.3. We have hs = 0 for all es ∈ H3.

Proof. If there exists es ∈ H3 that satisfies hs ̸= 0 at some x,
and hence on some neighborhood N ′ ⊂ N , then

trA− α + k = 0.

From (3.16) and (3.17), we have

(−b+ b̄)hy = 0, (b− b̄)h̄y = 0.

Since b ̸= b̄, we have hy = 0 and h̄y = 0 for all y. The direct
computation shows that

|tE − A| = (t− b)p(t− b̄)p(t− f)q−1{(t− f)(t− α)−
q∑

s=1

h2
s},

where p and q are the multiplicities of b and f , respectively. We
remark that 2p+ q = 2n− 2.

Suppose Ae′ = fe′ is satisfied by e′ = X + βξ, where X ∈ H3.
Since AX = fX + hξ for some h, we obtain

Ae′ = fX + hξ + β(
∑

hses + αξ).
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On the other hand, we have

Ae′ = f(X + βξ) = fX + fβξ.

From these equations, we obtain

β
∑

hses + (h+ αβ − fβ)ξ = 0.

Since hs ̸= 0 for some es, we have β = 0, that is, g(e′, ξ) = 0. Thus, in
N ′, we can represent the shape operator A by a following matrix with
respect to a local orthonormal frame {e1, · · · , ep, ϕe1, · · · , ϕep, e2p+1,
· · · , e2n−2, ξ}:

A =



b 0
. . .

b
b̄

. . .
...

b̄
f

. . . 0
f h2n−2

0 · · · 0 h2n−2 α


.

From (3.15) and (3.18) we obtain

2nc− λ = −fk, trA− α = −k.

We now suppose that there is a point x in N ′ where p ̸= 0. Then
(3.12) implies

−(p− 1)k + qf = 0.

By (3.13), we also have

bb̄ =
1

2
(k2 + fk).

Using b+ b̄ = trA− α = −k, we see

(b+
k

2
)2 +

1

4
(k + 2f)k = 0.
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Since (p − 1)k = qf , we see fk ≥ 0. This implies that k + 2f = 0
and hence (2p − 2 + q)k = 0. Thus we have k = 0. This contradicts
to our assumption.

Let us suppose that p = 0 onN ′ of x. Then trA−α = (2n−2)f =
−k shows that f is non-zero constant onN ′ of x. By (3.5), we see that
h2n−2f = 0. This is also a contradiction. This proves our lemma. □

If there exist ey ∈ H1 and ϕez ∈ H2 that satisfy hy ̸= 0 and
h̄z ̸= 0, (3.16) and (3.17) implies b = b̄. This case cannot be occured.
So it is sufficient to consider the case that h̄y = 0 for any ϕey ∈ H2.
Using (3.12) and (3.16), we have

b = trA− α +
k

2
, b̄ = −k

2
. (3.19)

By the similar calculation as Lemma 3.3, in N , we can represent the
shape operator A by a following matrix with respect to an orthonor-
mal frame {e1, · · · , ep, ϕe1, · · · , ϕep, e2p+1, · · · , e2n−2, ξ}:

A =



b h1

. . . 0
b

b̄
. . .

b̄
...

f
. . .

f 0
h1 0 · · · 0 α


.

Then we have
trA = p(b+ b̄) + qf + α.

Using (3.12),
(p− 1)(b+ b̄) + qf = 0. (3.20)

First, we suppose that trA − α = b + b̄ ̸= 0 at a point x and hence
an open neighborhood N ′′ ⊂ N of x. Then (3.20) implies that q ̸= 0
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on N ′′. Because, if q = 0 at some point x ∈ N ′′, then p− 1 = 0 and
hence n = 2. This contradicts to n ≥ 3. From (3.13) and (3.19), we
have

−k2

4
= −nc+

λ

2
, (3.21)

from which we see that −nc + (λ/2) ̸= 0 and λ is constant on N ′′.
Thus, by (3.15) and (3.20), we obtain f ̸= 0 and p ̸= 1. So we have
p ≥ 2. Using (3.15) and (3.19),

2nc− λ = f(α− 2k − trA) = f
(
−b− 3

2
k
)
. (3.22)

From (3.19), (3.20), (3.22) and 2p+ q = 2n− 2, we obtain

b2 + kb− 3

4
k2 − (2nc− λ)(2n− 2p− 2)

p− 1
= 0.

Since b is continuous and p is positive integer, we see that b is constant.
So (3.22) implies that f is also constant on N ′′.

We put AU = bU + h1ξ and AZ = fZ. By the equation of
Codazzi, computing g((∇ZA)U − (∇UA)Z, ϕZ), we have

(b− f)g(∇ZU, ϕZ) + fh1 = 0

on N ′′. Similarly, computing g((∇ZA)ϕU − (∇ϕUA)Z,Z),

(b̄− f)g(∇ZϕU,Z) = 0.

If b̄ = f , then (3.21) and (3.22) imply that b = b̄ = −k/2. This case
cannot be occured. So we have g(∇ZϕU,Z) = 0. On the other hand,
we obtain

g(∇ZU, ϕZ) = −g(U, (∇Zϕ)Z)− g(U, ϕ∇ZZ)

= g(ϕU,∇ZZ) = −g(∇ZϕU,Z) = 0.

From these we have fh1 = 0. This contradicts to f ̸= 0.
Finally, we consider the case trA − α = b + b̄ = 0 on N ′′. Then

(3.20) implies that qf = 0. If f = 0, then (3.15) gives 2nc − λ = 0
and hence, by (3.13), we see

bb̄ = −k2

4
= 0,
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which contradicts to k ̸= 0. So we have q = 0 on N ′′.
From (3.13), (3.19) and (3.20),

b = −b̄ =
k

2
, bb̄ = −nc+

λ

2
.

We can choose an orthonormal frame {e1, e2, · · · , en−1, en, · · · , e2n−2, ξ}
on M which satisfies Ae1 = be1 + h1ξ, Aey = bey for y = 2, · · · , n− 1
and Aϕey = b̄ϕey for y = 1, · · · , n − 1. Then, in N ′′, the shape
operator A is represented by the following

A =



b h1

. . . 0
b

b̄
...

. . .

b̄ 0
h1 0 · · · 0 α


.

Using Lemma 3.1, we have

Lemma 3.4. Let ϕey ∈ H2 be perpendicular to ϕe1. Then,

∇e1e1 =
h1

2
ϕe1, (3.23)

∇ϕeye1 =
2c+ 2nc− λ

h1

ey. (3.24)

Proof. Using (3.5), we have g(∇e1ϕey, e1) = −g(∇e1e1, ϕey) =
0. On the other hand, putting ei = ϕe1 in (3.5),

h1(2b̄+ b)g(ϕ2e1, e1) + (b− b̄)g(∇e1ϕe1, e1) = 0,

from which we obtain

g(∇e1e1, ϕe1) =
h1

2
.

By (3.6), we see that g(∇e1e1, ey) = 0 for any ey ∈ H1. Since
g(∇e1e1, ξ) = −g(e1, ϕAe1) = 0, we have (3.23).
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Next, putting ei = ϕey and ej = ϕez in (3.1), we have g(∇ϕeye1, ϕez) =
0 for any ϕey, ϕez ∈ H2, y ̸= z. Moreover, we have g(∇ϕeye1, ϕey) = 0
by (3.4). On the other hand, using (3.2), we see that

g(∇ezϕey, e1) = 0 (3.25)

for any ez ∈ H1. Thus, putting ei = ez and ej = ϕey in (3.3), direct
calculation shows that

g(∇ϕeye1, ez) =
2c+ 2nc− λ

h1

g(ϕez, ϕey).

Since g(∇ϕeye1, ξ) = 0 and g(∇ϕeye1, e1) = 0, we have (3.24).
□

Using this lemma, we compute the sectional curvature spanned
by e1 and ϕey ⊥ ϕe1. From (3.23), we have

g(∇ϕey∇e1e1, ϕey) = −h1

2
g(ϕe1,∇ϕeyϕey).

Since g(ϕe1, ϕey) = 0, we have

g(ϕe1,∇ϕeyϕey) = −g(∇ϕeyϕe1, ϕey) = −g(ϕ∇ϕeye1, ϕey)

= −g(∇ϕeye1, ey) =
−2c− 2nc+ λ

h1

.

Thus we obtain

g(∇ϕey∇e1e1, ϕey) = c+ nc− λ

2
.

On the other hand, by (3.24),

g(∇e1∇ϕeye1, ϕey) = ∇e1g(∇ϕeye1, ϕey)− g(∇ϕeye1,∇e1ϕey)

=
−2c− 2nc+ λ

h1

g(ey,∇e1ϕey).

Putting ei = ϕey and ej = ey in (3.1), we have g(∇e1ϕey, ey) = −h1/2.
From these equations, we obtain

g(∇e1∇ϕeye1, ϕey) = c+ nc− λ

2
.
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Next, we see that

g(∇[ϕey ,e1]e1, ϕey)

= g(∇ξe1, ϕey)g(ξ, [ϕey, e1]) + g(∇e1e1, ϕey)g(e1, [ϕey, e1])

+
∑
z≥2

g(∇eze1, ϕey)g(ez, [ϕey, e1]) +
∑
z≥1

g(∇ϕeze1, ϕey)g(ϕez, [ϕey, e1])

= 0.

Here we note that we have g(∇ϕezϕey, e1) = 0 for z ̸= y from (3.1)
and g(∇ϕeyϕey, e1) = 0 from (3.4).

From these equations, we see that

g(R(ϕey, e1)e1, ϕey)

= g(∇ϕey∇e1e1, ϕey)− g(∇e1∇ϕeye1, ϕey)− g(∇[ϕey ,e1]e1, ϕey)

= 0.

On the other hand, the equation of Gauss implies that

g(R(ϕey, e1)e1, ϕey) = c+ bb̄ = c− nc+
λ

2
.

So we have nc − λ/2 = c. Since bb̄ = −c and b = −b̄ = k/2, we see
that c > 0, b2 = c and k2 = 4c. This contradicts to our assumption
k2 ̸= 4c.

From these considerations we see that M has no point x where
Aξ ̸= αξ, and hence M is a Hopf hypersurface. This proves our
theorem. □

Using Theorem 3.2 and Theorem B-C, we have our main result.

Theorem 3.5. Let M be a real hypersurface in a complex space
form Mn(c), n ≥ 3, c ̸= 0. We suppose that the Ricci tensor Ŝ of

the generalized Tanaka-Webster connection ∇̂(k) satisfies Ŝ(X,ϕY ) =
λg(X,ϕY ) for any vector fields X and Y , λ being a function.
(1) If M is a real hypersurface in CP n and k2 ̸= 4, then M is locally
congruent to one of the following:

(a) a geodesic hypersphere with k2 ≥ (2n− 2)(2n− λ),

(b) a tube over a totally geodesic CP l (1 ≤ l ≤ n− 2) with λ = 2n.



Ricci tensor and the generalized Tanaka-Webster connection 19

(2) If M is a real hypersurface in CHn, then M is locally congruent
to one of the following:

(a) a geodesic hypersphere with k2 ≥ (−2n− 2)(2n− λ),

(b) a tube over a complex hyperbolic hyperplane with k2 ≥ (−2n −
2)(2n− λ),

(c) a horosphere with λ = 2k − 2,

(d) a tube over a totally geodesic CH l (1 ≤ l ≤ n−2) with λ = −2n.

Proof. From Theorem 3.2, M is a Hopf hypersurface of Mn(c).
Then Proposition A shows

(2β − α)AϕX = (βα + 2c)ϕX,

where AX = βX, g(X, ξ) = 0 and α = g(Aξ, ξ). We notice that α is
constant. If 2β−α = 0, then βα+2c = 0, and hence α2+4c = 0. Thus
we have c < 0 and M has two distinct constant principal curvatures
α and b with multiplicities 1 and 2n − 2 respectively. Moreover b is
constant and M is a horosphere of principal curvatures 2 and 1 with
multiplicities 1 and 2n−2, respectively (see Berndt [1]). By (3.9) and
c = −1, we have λ = 2k − 2.

In the following, we assume that 2β − α ̸= 0. Then

AϕX =
βα + 2c

2β − α
ϕX.

We put β̄ = (βα + 2c)/(2β − α). Then, by the assumption on Ŝ, we
obtain

λ = 2nc+ (trA− α+ k)β − β2 + ββ̄ + kβ̄,

λ = 2nc+ (trA− α+ k)β̄ − β̄2 + β̄β + kβ.
(3.26)

These imply
0 = (β − β̄)(trA− α− β − β̄).

Suppose β ̸= β̄. Then trA−α−β−β̄ = 0. Substituting β̄ = trA−α−β
into the equation above, we obtain

2β2 − 2(trA− α)β − k(trA− α)− 2nc+ λ = 0. (3.27)
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Therefore, β satisfies the quadratic equation

2t2 − 2(trA− α)t− k(trA− α)− 2nc+ λ = 0.

From this we see that at most two distinct β satisfies the above equa-
tion. But β̄ also satisfies the above quadratic equation, andM has two
principal curvatures b and b̄ with multiplicities p and p, 0 ≤ p ≤ n−1,
that satisfies b ̸= b̄.

We next suppose that β = β̄. Then β2 − αβ − c = 0. Therefore,
M has at most two non-zero distinct constant principal curvatures d
and f such that d = d̄, f = f̄ with multiplicities q and r, respectively,
where 2p+ q + r = 2n− 2. On the other hand, from (3.26), we have

2nc− λ+ (trA− α + 2k)d = 0,

2nc− λ+ (trA− α + 2k)f = 0.
(3.28)

If M has 5 distinct principal curvatures b ̸= b̄, d, f and α, then
the above equations show that trA−α+2k = 0 and 2nc−λ = 0 since
d ̸= f . Moreover, from (3.27), we have 2b2+4kb+2k2 = 2(b+k)2 = 0
and (b̄ + k)2 = 0. Hence we obtain b = b̄ = −k. This contradicts to
the assumption b ̸= b̄.

We now suppose that M has 4 distinct principal curvatures b ̸=
b̄, d, α. Then we have

trA− α = b+ b̄ = p(b+ b̄) + qd.

From this and 2p+ q = 2n− 2,

(p− 1)(b+ b̄) + (2n− 2p− 2)d = 0.

We notice that b and b̄ is continuous. Since p is positive integer and
d is non-zero constant, we see that p ̸= 1 and b + b̄ is constant.
Moreover, trA − α is constant. So (3.28) shows that λ is constant.
Hence, from (3.27), b and b̄ are also constant. But there is no Hopf
hypersurface with constant four principal curvatures.

If M has two constant principal curvatures d and α, then trA −
α = (2n− 2)d. From (3.26),

(2n− 2)d2 + 2kd+ 2nc− λ = 0.
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This gives a root when

k2 − (2n− 2)(2nc− λ) ≥ 0.

Next, if M has three distinct principal curvatures b, b̄ and α, then

trA− α = b+ b̄ = (n− 1)(b+ b̄).

Hence we have b + b̄ = trA − α = 0. On the other hand, b and b̄
satisfy

b+ b̄ =
2b2 + 2c

2b− α
= 0.

Thus we have c < 0. But the condition c < 0 implies that the
principal curvatures b and b̄ are positive. This contradicts to b+b̄ = 0.

Finally we consider the case that M has three constant principal
curvatures d, f, α, where d = d̄, f = f̄ . Since d ̸= f , we have

trA− α = −2k, 2nc− λ = 0.

From these considerations and Thereoms B, C we have our assertion.
□
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