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Abstract. Local search is known to be a highly effective metaheuristic
framework for solving a number of classical combinatorial optimization
problems, which strongly depends on the characteristics of neighborhood
structure. In this paper, we integrate different neighborhood combina-
tion strategies into the hypervolume-based multi-objective local search
algorithm, in order to deal with the bi-criteria max-cut problem. The
experimental results indicate that certain combinations are superior to
others and the performance analysis sheds lights on the ways to further
improvements.
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1 Introduction

Local search is a simple and effective metaheuristic framework for solving a
number of classical combinatorial optimization problems, which proceeds from
an initial solution with a sequence of local changes by defining the proper neigh-
borhood structure for the considered problem. In order to study different neigh-
borhood combination strategies during the local search process, we present the
experimental analysis of different neighborhoods to solve the bi-criteria max-cut
problem.

Given an undirected graph G = (V,E) with the vertex set V = {1, . . . , n}
and the edge set E ⊂ V × V . Each edge (i, j) ∈ E is associated with a weight
wij . The max-cut problem is to seek a partition of the vertex set V into two
disjoint subsets V1 and V2, which is mathematically formulated as follows [1]:

fk(V1, V2) = max
∑

i∈V1,j∈V2

wk
ij (1)
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where wk
ij is the weight of the kth (k ∈ {1, 2}) graph. As one of Karps 21

NP-complete problems with numerous practical applications [4], a large number
of metaheuristics have been proposed to tackle this problem, including scatter
search [6], global equilibrium search [7], tabu search [8], etc.

In this paper, we integrate different neighborhood combination strategies into
the hypervolume-based multi-objective local search algorithm, in order to study
the search capability of different neighborhood combinations on the bi-criteria
max-cut problem. The experimental results indicate that certain combinations
are superior to others. The performance analysis explains the behavior of the
algorithms and sheds lights on the ways to further enhance the search.

The remaining part of this paper is organized as follows. In the next section,
we briefly introduce the basic notations and definitions of bi-objective optimiza-
tion. In Sect. 3, we present the hypervolume-based multi-objective local search
algorithm with different neighborhood combination strategies for solving bi-
criteria max-cut problem. Section 4 indicates that the experimental results on
the benchmark instances of max-cut problem. The conclusions are provided in
the last section.

2 Bi-objective Optimization

In this section, we briefly introduce the basic notations and definitions of bi-
objective optimization. Without loss of generality, we assume that X denotes
the search space of the optimization problem under consideration and Z = �2

denotes the corresponding objective space with a maximizing vector function
Z = f(X), which defines the evaluation of a solution x ∈ X [5]. Specifically, the
dominance relations between two solutions x1 and x2 are presented below [9]:

Definition 1 (Pareto Dominance). A decision vector x1 is said to dominate
another decision vector x2 (written as x1 � x2), if fi(x1) ≥ fi(x2) for all i ∈
{1, 2} and fj(x1) > fj(x2) for at least one j ∈ {1, 2}.
Definition 2 (Pareto Optimal Solution). x ∈ X is said to be Pareto optimal if
and only if there does not exist another solution x′ ∈ X such that x′ � x.

Definition 3 (Non-Dominated Solution). x ∈ S (S ⊂ X) is said to be non-
dominated if and only if there does not exist another solution x′ ∈ S such that
x′ � x.

Definition 4 (Pareto Optimal Set). S is said to be a Pareto optimal set if and
only if S is composed of all the Pareto optimal solutions.

Definition 5 (Non-dominated Set). S is said to be a non-dominated set if and
only if any two solutions x1 ∈ S and x2 ∈ S such that x1 � x2 and x2 � x1.

Actually, we are interested in finding the Pareto optimal set, which keeps
the best compromise among all the objectives. However, it is very difficult or
even impossible to generate the Pareto optimal set in a reasonable time for the
NP-hard problems. Therefore, we aim to obtain a non-dominated set which is
as close to the Pareto optimal set as possible. That’s to say, the whole goal is to
identify a Pareto approximation set with high quality.
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3 Neighborhood Combination Strategies

In this work, we integrate different neighborhood combination strategies into
the hypervolume-based multi-objective local search algorithm, in order to solve
bi-criteria max-cut problem. The general scheme of Hypervolume-Based Multi-
Objective Local Search (HBMOLS) algorithm [3] is presented in Algorithm 1,
and the main components of this algorithm are described in detail in the following
subsections.

Algorithm 1. Hypervolume-Based Multi-Objective Local Search Algorithm
Input: N (Population size)
Output: A: (Pareto approximation set)
Step 1 - Initialization: P ← N randomly generated solutions
Step 2: A ← Φ
Step 3 - Fitness Assignment: Assign a fitness value to each solution x ∈ P
Step 4:
while Running time is not reached do

repeat
Hypervolume-Based Local Search: x ∈ P

until all neighbors of x ∈ P are explored
A ← Non-dominated solutions of A

⋃
P

end while
Step 5: Return A

In HBMOLS, each individual in an initial population is generated by ran-
domly assigning the vertices of the graph to the two vertex subsets V1 and V2.
Then, we employ a Hypervolume Contribution (HC) indicator proposed in [3]
to achieve the fitness assignment for each individual. Based on the dominance
relation and two objective function values, the HC indicator calculate the hyper-
volume contribution of each individual in the objective space.

For the hypervolume-based local search procedure, we implement the f -flip
(f ∈ {1, 2}) move based neighborhood strategy with the combinations. After-
wards, each solution is optimized by the hypervolume-based local search proce-
dure, which will repeat until the termination criterion is satisfied, so as to obtain
a high-quality Pareto approximation set.

3.1 One-Flip Move

In order to deal with the max-cut problem, one-flip move is realized by moving
a randomly selected vertex to the opposite set, which is calculated as follows:

Δi =
∑

x∈V1,x �=v1

wvix −
∑

y∈V2

wviy, vi ∈ V1 (2)

Δi =
∑

x∈V2,y �=v1

wviy −
∑

y∈V1

wvix, vi ∈ V2 (3)
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Let Δi be the move gain of representing the change in the fitness function,
and Δi can be calculated in linear time by the formula above, more details about
this formula can be found in [8]. Then, we can calculate the objective function
values high efficiently with the streamlined incremental technique.

3.2 Two-Flip Move

In the case of two-flip move, we can obtain a new neighbor solution by randomly
moving two different vertices vi and vj from the set V1 to another set V2. In
fact, two-flip move can be seen as a combination of two single one-flip moves.
We denote the move value by δij , which is derived from two one-flip moves Δi

and Δj (i �= j) as follows:
δij = Δi + Δj (4)

Especially, the search space generated by two-flip move is much bigger than the
one generated by one-flip move. In the following, we denote the neighborhoods
with one-flip move and two-flip move as N1 and N2 respectively.

4 Experiments

In this section, we present the experimental results of 3 different neighborhood
combination strategies on 9 groups of benchmark instances of max-cut problem.
All the algorithms are programmed in C++ and compiled using Dev-C++ 5.0
compiler on a PC running Windows 7 with Core 2.50 GHz CPU and 4 GB RAM.

4.1 Parameters Settings

In order to conduct the experiments on the bi-objective max-cut problem, we
use two single-objective benchmark instances of max-cut problem with the
same dimension provided in [4]1 to generate one bi-objective max-cut problem
instance. All the instances used for experiments are presented in Table 1 below.

In addition, the algorithms need to set a few parameters, we only discuss two
important ones: the running time and the population size, more details about
the parameter settings for multi-objective optimization algorithms can be found
in [2,8]. The exact information about the parameter settings in our work is
presented in the following Table 2.

4.2 Performance Assessment Protocol

In this paper, we evaluate the efficacy of 3 different neighborhood combination
strategies with the performance assessment package provided by Zitzler et al.2.
1 More information about the benchmark instances of max-cut problem can be found

on this website: http://www.stanford.edu/∼yyye/yyye/Gset/.
2 More information about the performance assessment package can be found on this

website: http://www.tik.ee.ethz.ch/pisa/assessment.html.

http://www.stanford.edu/~yyye/yyye/Gset/
http://www.tik.ee.ethz.ch/pisa/assessment.html


512 L.-Y. Xue et al.

Table 1. Single-objective benchmark instances of max-cut problem used for generating
bi-objective max-cut problem instances.

Dimension Instance 1 Instance 2

bo mcp 800 01 800 g1.rud g2.rud

bo mcp 800 02 800 g11.rud g12.rud

bo mcp 800 03 800 g15.rud g19.rud

bo mcp 800 04 800 g17.rud g21.rud

bo mcp 2000 01 2000 g22.rud g23.rud

bo mcp 2000 02 2000 g32.rud g33.rud

bo mcp 2000 03 2000 g35.rud g39.rud

bo mcp 1000 01 1000 g43.rud g44.rud

bo mcp 3000 01 3000 g49.rud g50.rud

Table 2. Parameter settings used for bi-objective max-cut problem instances: instance
dimension (D), vertices (V ), edges(E), population size (P ) and running time (T ).

Dimension (D) Vertices (V ) Edges (E) Population (P ) Time (T )

bo mcp 800 01 800 800 19176 20 40′′

bo mcp 800 02 800 800 1600 20 40′′

bo mcp 800 03 800 800 4661 20 40′′

bo mcp 800 04 800 800 4667 20 40′′

bo mcp 2000 01 2000 2000 19990 50 100′′

bo mcp 2000 02 2000 2000 4000 50 100′′

bo mcp 2000 03 2000 2000 11778 50 100′′

bo mcp 1000 01 1000 1000 9990 25 50′′

bo mcp 3000 01 3000 3000 6000 75 150′′

The quality assessment protocol works as follows: First, we create a set of 20 runs
with different initial populations for each strategy and each benchmark instance
of max-cut problem. Then, we generate the reference set RS∗ based on the 60
different sets A0, . . . , A59 of non-dominated solutions.

According to two objective function values, we define a reference point z =
[r1, r2], where r1 and r2 represent the worst values for each objective function
in the reference set RS∗. Afterwards, we assign a fitness value to each non-
dominated set Ai by calculating the hypervolume difference between Ai and
RS∗. Actually, this hypervolume difference between these two sets should be as
close to zero as possible [10].
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4.3 Computational Results

In this subsection, we present the computational results on 9 groups of bi-
objective max-cut problem instances, which are obtained by three different
neighborhood combination strategies. The information about these algorithms
are described in the following table:

Table 3. The algorithms with different neighborhood combination strategies.

Algorithm description

HBMOLS N1 One-flip move based local search

HBMOLS N2 Two-flip move based local search

HBMOLS (N1

⋃
N2) f -flip move based local search (f ∈ {1, 2})

In Table 3, the algorithms HBMOLS (N1

⋃
N2) selects one of the two neigh-

borhoods to be implemented at each iteration during the local search process,
choosing the neighborhood N1 with a predefined probability p and choosing N2

with the probability 1 − p. In our experiments, we set the probability p = 0.5.
The computational results are summarized in Table 4. In this table, there is

a value both in bold and in grey box at each line, which is the best result
obtained on the considered instance. The values both in italic and bold at
each line refer to the corresponding algorithms which are not statistically out-
performed by the algorithm obtaining the best result (with a confidence level
greater than 95%).

Table 4. The computational results on bi-criteria max-cut problem obtained by the
algorithms with 4 different neighborhood combination strategies.
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From Table 4, we can observe that all the best results are obtained by N1,
which statistically outperforms the other two algorithms on all the instances.
Moreover, the results obtain by N1

⋃
N2 is close to the results obtained

by N1. Especially, the most significant result is achieved on the instance
bo mcp 2000 01, where the average hypervolume difference value obtained by
N1 is much smaller than the values obtained by the other two algorithms.

Nevertheless, N2 does not perform as well as N1, although the search space
of them is much bigger than N1. We suppose that there exists some key ver-
tices in the representation of the individuals, which means these vertices should
be assigned in some set in order to search the local optima effectively. Two-
flip moves change the positions of the key vertices much more frequently than
the one-flip move, then the efficiency of local search is obviously affected by
this neighborhood strategy. Actually, N1

⋃
N2 provides a possibility to keep the

positions of the key vertices unchanged and broaden the search space. Thus, the
combination of one-flip move and two-flip move is very potential to obtain better
results.

5 Conclusion

In this paper, we have presented different neighborhood combination strategies
to deal with the bi-criteria max-cut problem, which are based on one-flip, two-flip
and the combination. For this purpose, we have carried out the experiments on
9 groups of benchmark instances of max-cut problem. The experimental results
indicate that the better outcomes are achieved with the simple one-flip move
based neighborhood and the neighborhood combination with two-flip is very
potential to escape the local optima for further improvements.
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8. Wu, Q., Wang, Y., Lü, Z.: A tabu search based hybrid evolutionary algorithm for
the max-cut problem. Appl. Soft Comput. 34, 827–837 (2015)

9. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
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