
Card-Based Protocols Using Regular Polygon
Cards

著者 SHINAGAWA Kazumasa, MIZUKI Takaaki, SCHULDT
Jacob C.N., NUIDA Koji, KANAYAMA Naoki,
NISHIDE Takashi, HANAOKA Goichiro, OKAMOTO
Eiji

journal or
publication title

IEICE Transactions on Fundamentals of
Electronics, Communications and Computer
Sciences

volume E100.A
number 9
page range 1900-1909
year 2017-09
権利 (C) 2017 The Institute of Electronics,

Information and Communication Engineers
URL http://hdl.handle.net/2241/00150564

doi: 10.1587/transfun.E100.A.1900

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tsukuba Repository

https://core.ac.uk/display/148741235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1900
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.9 SEPTEMBER 2017

PAPER Special Section on Discrete Mathematics and Its Applications

Card-Based Protocols Using Regular Polygon Cards∗

Kazumasa SHINAGAWA†,††a), Nonmember, Takaaki MIZUKI†††, Member, Jacob C.N. SCHULDT††,
Koji NUIDA††, Nonmembers, Naoki KANAYAMA†, Takashi NISHIDE†, Goichiro HANAOKA††, Members,

and Eiji OKAMOTO†, Fellow

SUMMARY Cryptographic protocols enable participating parties to
compute any function of their inputs without leaking any information be-
yond the output. A card-based protocol is a cryptographic protocol imple-
mented by physical cards. In this paper, for constructing protocols with
small numbers of shuffles, we introduce a new type of cards, regular poly-
gon cards, and a new protocol, oblivious conversion. Using our cards, we
construct an addition protocol on non-binary inputs with only one shuffle
and two cards. Furthermore, using our oblivious conversion protocol, we
construct the first protocol for general functions in which the number of
shuffles is linear in the number of inputs.
key words: card-based protocol, regular polygon cards

1. Introduction

1.1 Background

In 1989, den Boer [2] proposed a protocol called the Five-
Card Trick, which can securely compute the AND function,
using five cards that have two types of front sides (♣ , ♡)
and identical back sides (?). The feasibility of basing
cryptographic protocols on this, i.e., what functions can be
securely computed by these cards, was solved by the sub-
sequent works [1], [9]. On the other hand, the efficiency,
i.e., how many cards and shuffles are sufficient to compute a
function, is still an important question.

In terms of the number of cards, Nishida et al. [11]
showed that for any Boolean function f : {0, 1}n → {0, 1},
it is possible to construct a (2n + 6)-card protocol, using
the elementary protocols proposed by Mizuki and Sone [9].
Since n-bit input uses 2n cards, their result showed that only
six additional cards are sufficient to compute any function.
However, it has remained an open problem to provide upper
bounds on the number of shuffles required to compute any
function.

1.2 Our Contribution

In this paper, we propose new techniques for constructing a

Manuscript received September 26, 2016.
Manuscript revised January 31, 2017.
†The authors are with University of Tsukuba, Tsukuba-shi,

305-8577 Japan.
††The authors are with National Institute of Advanced Industrial

Science and Technology, Tokyo, 135-0064 Japan.
†††The author is with Tohoku University, Sendai-shi, 980-8578

Japan.
∗A preliminary conference version appeared at [16].

a) E-mail: shinagawa@cipher.risk.tsukuba.ac.jp
DOI: 10.1587/transfun.E100.A.1900

Table 1 Comparison between our protocols and previous protocols.

Card # of shuffles # of cards
◦ Addition and Subtraction over Z/mZ
[4], [9] based standard O(log m) O(log m)

Ours m-sided 1 2
◦ Multiplication by c ∈ Z/mZ
[4], [9] based standard O(log c · log m) O(log c · log m)

Ours m-sided ⌈log2 c⌉ + 1 ⌈log2 c⌉ + 2
◦ Protocol for an arbitrary f : (Z/mZ)n → Z/mZ

[11] based standard O(mn · log m) 2((n + 1)⌈log2 m⌉ + 2)
Ours m-sided n m + n + mn

◦ Protocol for an arbitrary f : (Z/2Z)n → Z/2Z
[11] standard O(2n) 2(n + 3)
Ours standard n 2(n + 2n)

card-based protocol with small number of shuffles. The first
technique is to introduce a new type of cards, a regular poly-
gon card. In contrast to all the previous works, our card can
deal with multiple values naturally. This leads to a new type
of protocols using only a small number of shuffles, which
cannot be achieved using the previous cards. The second
technique is an oblivious conversion, which is a new proto-
col. It is used to construct a protocol for general functions
using only a small number of shuffles. The details of our
contribution are follows.

The regular m-sided polygon cards have (360/m)◦ rota-
tional symmetry. Using the cards introduced by den Boer [2]
(hereafter the standard cards), the previous addition proto-
cols over Z/mZ require that the numbers of shuffles and
cards are proportional to log m. On the other hand, using
the regular m-sided polygon cards, we construct an addition
protocol over Z/mZ that requires one shuffle and two cards
(Table 1). We also construct a multiplication protocol with
⌈log2 c⌉ + 1 shuffles, where c is the multiplication factor,
while the previous binary protocol requires O(log c · log m)
shuffles (Table 1).

Our oblivious conversion∗ is a protocol that takes an
encoding of a ∈ Z/mZ and a function f as inputs, and out-
puts an encoding of f (a). Using it iteratively, we construct
a protocol for any function f (x1, · · · , xn) with only 2n shuf-
fles while it requires O(2n) number of cards (Table 1). We
note that such a protocol can be implemented by both our
polygon cards and the standard cards. This result is com-
plementary to that of Nishida et al. [11]: they constructed
a protocol for any function with only 2n + 6 standard cards

∗Oblivious conversion is named after the oblivious transfer.

Copyright c⃝ 2017 The Institute of Electronics, Information and Communication Engineers

SHINAGAWA et al.: CARD-BASED PROTOCOLS USING REGULAR POLYGON CARDS
1901

Table 2 Comparison of voting protocols for n voters.

[4] (standard) Ours (polygon)
of candidates 2 ℓ

of shuffles O(n log n) n + 1
of cards 2⌈log2 n⌉ + 6 (n + 2)ℓ

and O(2n) number of shuffles.
By designing a specific protocol in a careful way, we

can achieve a protocol with both a small number of shuffles
and cards. As an example, we construct a voting protocol.
For n voters and ℓ candidates, our protocol uses n+1 shuffles
and (n + 2)ℓ cards (Table 2).

1.3 Related Works

In 1993, Crépeau and Kilian [1] achieved protocols imple-
menting any function by constructing composable elemen-
tary protocols (COPY/XOR/AND). In 2009, Mizuki and
Sone [9] constructed composable elementary protocols us-
ing fewer cards, by applying a new shuffle called a random
bisection cut. Using these protocols, the number of shuf-
fles needed to evaluate a function f is exactly the number of
gates of f . Our construction (Sect. 4) improves the number
of shuffles by the number of inputs, which is strictly smaller
than the number of gates.

We note that almost all previous works [1]–[13], [17],
[18] only consider binary inputs. Our polygon cards enable
us to construct the first non-binary protocols.

2. Basic Notation

In this section, we introduce a regular polygon card and ba-
sic notations for describing card-based protocols.

2.1 Regular Polygon Cards

Let m ≥ 3 be an integer. A regular m-sided polygon card
is a card having a back side with (360/m)◦ rotational sym-
metry and a front side with no rotational symmetry. For the
sake of easy description, hereafter we use a concrete regular
polygon card, a regular four-sided polygon card: its front
side is ↑ and its back side is ■ . The elements of Z/4Z
(hereafter Z4) naturally correspond to rotations of a card as
shown below.

↑ = 0, ↑

= 1, ↑ = 2, ↑ = 3.

For x ∈ Z4, we use [[x]] to denote the back side of a card
that corresponds to x. We also use x to denote not only
an element in Z4 but also the front side card, as long as it
is clear from the context. The important property is that
[[0]], [[1]], [[2]] and [[3]] have the identical face ■ .

Although a “two-sided polygon” makes little geomet-
ric sense, the card whose back side has a 180◦ rotationally
symmetric pattern [8] can be regarded as a regular two-
sided polygon card. Its front side is ↑ and its back side is

. (Note that its shape is a rectangle instead of a square.)

Clearly, the back side has 180◦ rotational symmetry.
We note that all of our protocols can be applied to m-

sided polygon cards for any m ≥ 2 while our descriptions
use four-sided polygon cards.

2.2 Basic Definitions

We define basic definitions: stack, sequence, top function,
rotation function, and flip function.

(1) Stack and Sequence

We first define a stack and a stacking operation “·”, recur-
sively as follows.

• A card c is a stack.
• If d1 and d2 are stacks, then d1 · d2 is a stack.

For example, for k cards c1, c2, · · · , ck, d = c1 · c2 · · · · · ck is
a stack of k cards.

We next define a sequence, which is a line of stacks,
recursively as follows.

• If d is a stack, (d) is a sequence.
• If s = (d1, · · · , dk) is a sequence and d is a stack, then

(d1, · · · , dk, d) is a sequence.

(2) Top Function

Following the formalization [7], we define a top function
top, which returns the visible face of a card, as follows.
For a card with upward facing front side x ∈ {0, 1, 2, 3},
top(x) = x whereas top([[x]]) = ⊥ (here, ⊥ is a symbol
meaning “back side”). For a stack d = c1 · · · ck, top(d) =
(top(c1))k, where superscript denotes the number of cards
rather than exponentiation. This means that the visible face
of the stack is the same as the visible face of the top card ex-
cept the number of cards. For a sequence s = (d1, · · · , dk),
top(s) = (top(d1), · · · , top(dk)).

Example 1: The following stacks s1 and s2 satisfy
top(s1) = ⊥2 and top(s2) = ⊥3. The following sequence
S 3 satisfies top(S 3) = (⊥, 2,⊥2).

s1 = [[0]] · [[1]] = ■︸︷︷︸
[[0]]·[[1]]

. s2 = [[0]] · 1 · [[2]] = ■︸︷︷︸
[[0]]·1·[[2]]

.

S 3 = ([[0]], 2, [[2]] · 3) =
(
■︸︷︷︸
[[0]]

, ↑ , ■︸︷︷︸
[[2]]·3

)
.

(3) Rotation Function

We define a rotation function rot, which returns a card ro-
tated by a clockwise 90◦ rotation, as follows. For a card with
upward facing front side x ∈ {0, 1, 2, 3}, rot(x) = x+1 mod 4
whereas rot([[x]]) = [[x−1 mod 4]]. For a stack d = c1 · · · ck,
rot(d) = rot(c1) · · · rot(ck). For a sequence s = (d1, · · · , dk),
rot(s) = (rot(d1), · · · , rot(dk)).

Example 2:

rot(0) = rot
(
↑
)
=

↑

= 1.

1902
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.9 SEPTEMBER 2017

rot([[0]]) = rot
(
■︸︷︷︸
[[0]]

)
= ■︸︷︷︸

[[3]]

= [[3]].

rot([[0]] · 0) = rot
(
■︸︷︷︸

[[0]]·0

)
= ■︸︷︷︸

[[3]]·1

= [[3]] · 1.

(4) Flip Function

We define a flip function flip, which returns the flipped
cards, as follows. For a card with upward facing front
side x ∈ {0, 1, 2, 3}, flip(x) = [[x]] whereas flip([[x]]) = x.
For a stack d = c1 · c2 · · · ck−1 · ck, flip(d) = flip(ck) ·
flip(ck−1) · · · flip(c2)·flip(c1). For a sequence s = (d1, · · · , dk),
flip(s) = (flip(d1), · · · , flip(dk)).

Example 3:

flip(0) = flip
(
↑
)
= ■︸︷︷︸

[[0]]

= [[0]].

flip([[0]] · [[1]]) = flip
(
■︸︷︷︸

[[0]]·[[1]]

)
=

↑︸︷︷︸
1·0

= 1 · 0.

2.3 Operations

(1) Basic Operations on a Sequence

Let s = (d1, · · · , dk) be a sequence. We define the following
operations for s.

Transposition: For any 1 ≤ i < j ≤ k, a transposition
operation (i, j) for s returns the following sequence

(d1, · · · , di−1, d j, di+1, · · · , d j−1, di, d j+1, · · · , dk).

Since every permutation can be represented by trans-
positions, we can rearrange a sequence arbitrarily.

Rotation: For any 1 ≤ i ≤ k, a rotation operation of the
i-th stack for s returns the following sequence

(d1, · · · , di−1, rot(di), di+1, · · · , dk).

Flip: For any 1 ≤ i ≤ k, a flip operation of the i-th stack for
s returns the following sequence

(d1, · · · , di−1, flip(d), di+1, · · · , dk).

We call a flip operation open when the stack is a stack-
ing of face-down cards.

Composition/Decomposition: For any 1 ≤ i < j ≤ k,
a composition operation of the i-th stack and the j-th
stack for s returns the following sequence

(d1, · · · , di−1, di · d j, di+1, · · · , d j−1, d j+1, · · · , dk).

If the i-th stack is di = d · c, where d is a stack and c is
a card, a decomposition operation of the i-th stack for
s returns the following sequence

(d1, · · · , di−1, d, c, di+1, · · · , dk).

Composition/Decomposition with Flip: For any 1 ≤ i <
j ≤ k, a composition operation with flip of the i-th stack

and the j-th stack for s returns the following sequence

(d1, · · · , di−1, di ·flip(d j), di+1, · · · , d j−1, d j+1, · · · , dk).

We note that this operation can be done without reveal-
ing face(flip(d j)) by utilizing a non-transparent cover to
mask face(flip(d j)). If the i-th stack is di = c · d, where
c is a card and d is a stack, a decomposition operation
with flip of the i-th stack for s returns the following se-
quence

(d1, · · · , di−1, c, flip(d), di+1, · · · , dk).

Similarly, this can be done without revealing face(d).
Insert/Delete An insert operation for s returns the follow-

ing sequence

(d1, · · · , dk−1, dk, 0).

A delete operation for s returns the following sequence

(d1, · · · , dk−1).

(2) Cyclic Shuffle

A cyclic shuffle (which is denoted by ⟨·⟩)⟨
■ ■ ■ ■

⟩1 2 3 4

results in one of the the following sequences

■ ■ ■ ■
1 2 3 4

, ■ ■ ■ ■
2 3 4 1

, ■ ■ ■ ■
3 4 1 2

, ■ ■ ■ ■
4 1 2 3

each occurring with probability 1/4. In general, a cyclic
shuffle takes a sequence (s1, s2, · · · , sk) such that top(si) =
⊥ℓi for some integer ℓi, and outputs one of the following
sequences

(s1, s2, s3, · · · , sk−1, sk)
(s2, s3, s4, · · · , , sk, s1)

...

(sk, s1, s2, · · · , sk−2, sk−1)

each occurring with probability 1/k.
We say that a cyclic shuffle is an equal shuffle if

top(s1) = top(s2) = · · · = top(sk). In this paper, we use
only equal shuffles and rotation shuffles defined later. Re-
cently, Nishimura et al. [13] showed that an unequal shuffle,
which is not an equal shuffle, can be securely implemented
by using a special type of boxes.

(3) Rotation Shuffle

For a stack d, a rotation shuffle (which is denoted by (·))(
■︸︷︷︸
d

)
results in one of the four stacks

SHINAGAWA et al.: CARD-BASED PROTOCOLS USING REGULAR POLYGON CARDS
1903

■︸︷︷︸
rot0(d)

■︸︷︷︸
rot1(d)

■︸︷︷︸
rot2(d)

■︸︷︷︸
rot3(d)

each occurring with probability 1/4. For example, for d =
[[a]] · [[b]], a rotation shuffle results in one of the followings.

[[a]] · [[b]]
[[a − 1]] · [[b − 1]]
[[a − 2]] · [[b − 2]]
[[a − 3]] · [[b − 3]]

On the other hand, for d = [[a]] · b, a rotation shuffle results
in one of the followings.

[[a]] · b
[[a − 1]] · (b + 1)
[[a − 2]] · (b + 2)
[[a − 3]] · (b + 3)

It plays an important role in designing our addition protocol
(Sect. 3.1).

2.4 Security

Let Π be a protocol. Let (Γ0,Γ1, · · · ,Γt) be a history of
sequences in a protocol run, i.e., Γ0 is an initial sequence
determined by inputs, Γi+1 arises from Γi by a physical op-
eration (e.g. shuffle, rearrangement, open†), and Γt is a fi-
nal sequence. Now we define a visible sequence trace by
(top(Γ0), top(Γ1), · · · , top(Γt)). We say that Π is secure if a
random variable of the visible sequence trace and a random
variable of inputs are independent.

Definition 1 (Security): Let Π be a protocol. Let V be a
random variable of the visible sequence of Π and let U be
the set of inputs ofΠ. We say thatΠ is secure if for any input
distribution X on U, X and V are independet.

Example 4: See the following (meaningless) protocol Πex.

1. Place the two cards according to a, b ∈ {0, 1, 2, 3}:

■︸︷︷︸
[[a]]

■︸︷︷︸
[[b]]

.

2. Apply a cyclic shuffle:⟨
■︸︷︷︸
[[a]]

■︸︷︷︸
[[b]]

⟩
→ ■ ■ .

3. Open the left-side card:

︸︷︷︸
ϵ

■ .

4. Output the right-side card.
†We call by open an operation which turns over a back side

card.

The history of sequences in a protocol run, when the cyclic
shuffle exchanges the two cards, is the following.

(Γ0,Γ1,Γ2,Γ3) = (([[a]], [[b]]), ([[b]], [[a]]), (b, [[a]]), [[a]]).

The random variable of the visible sequence of Πex is

V = ((⊥,⊥), (⊥,⊥), (ϵ,⊥),⊥).

where ϵ is a random variable on {a, b}. The set of inputs U
of the above protocol is as below.

U =
{
(a, b) | 0 ≤ a, b ≤ 3

}
.

Πex is not secure since ϵ depends on the inputs (a, b).

3. Addition Protocol

In this section, we construct an addition, a subtraction and a
copy protocols, which use only a rotation shuffle. We also
construct a c-multiplication protocol for any c ∈ Zm, which
takes [[a]] and outputs [[ca]]. It uses (⌈log2 c⌉ + 1) shuffles
and (⌈log2 c⌉ + 2) cards.

3.1 Addition Protocol

Our addition protocol takes [[a]] and [[b]] as inputs, and
outputs [[a + b mod 4]]. One can see the demonstration
movie [15].

Protocol 1 (Addition Protocol):

• Input: ([[a]], [[b]]).
• Output: [[a + b mod 4]].

1. Apply a composition with flip:

■︸︷︷︸
[[a]]

■︸︷︷︸
[[b]]

→ ■︸︷︷︸
[[a]]·b

.

2. Apply a rotation shuffle:(
■︸︷︷︸

[[a]]·b

)
→ ■︸︷︷︸

[[a−r]]·(b+r)

,

where r is a random integer with 0 ≤ r ≤ 3.
3. Apply a decomposition with flip to the stack:

■︸︷︷︸
[[a−r]]·(b+r)

→ ■︸︷︷︸
[[a−r]]

■︸︷︷︸
[[b+r]]

.

4. Open the left-side card [[a − r]]:

︸︷︷︸
a−r

■︸︷︷︸
[[b+r]]

.

5. Rotate the second card −(a − r) times and output it:

rot−(a−r)
(
■︸︷︷︸

[[b+r]]

)
= ■︸︷︷︸

[[a+b]]

.

1904
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.9 SEPTEMBER 2017

Theorem 1: The above protocol is secure. It uses one shuf-
fle and two cards.

Proof. We prove the security of the above protocol, which
uses one shuffle and two cards. Let A (or B) be a random
variable of the first input (second input, respectively). Let
X = (A, B) be a random variable of the inputs. Let R be
a random variable of the randomness used in the rotation
shuffle. The random variable of the visible sequence V is

V = ((⊥,⊥), (⊥2), (⊥2), (⊥,⊥), (E,⊥), (⊥))

where E = A − R mod 4. E and A are independent since
Pr[E = ϵ | A = a] = 1/4 and Pr[E = ϵ] = 1/4 for any
a, ϵ ∈ {0, 1, 2, 3}. Therefore, V and X are independent since
E and X are also independent and V is just derived from E.
Thus, the above protocol is secure. □

Corollary 1: There is a secure protocol that takes as inputs
[[a]] and ([[b1]], · · · , [[bk]]), and outputs ([[a + b1]], · · · , [[a +
bk]]) with one shuffle and k + 1 cards. Especially, there is
a secure protocol that takes as inputs [[a]], and outputs k
copies of [[a]] with one shuffle and k+ 1 cards for any k ∈ N.

Proof. By replacing the stack [[a]] ·b with a stack [[a]] ·b1 ·b2 ·
· · · · bk, we have a multiple addition protocol. This protocol
uses one shuffle and k + 1 cards, and its security is proven
in the same way as above. Applying the multiple addition
protocol to the inputs b1 = b2 = · · · = bk = 0, we have a
copy protocol that outputs k copies of [[a]]. □

Subtraction is also possible using the same idea of the
addition protocol. The differences are: use a stack [[a]] · [[b]]
instead of [[a]] · b and rotate with inverse direction in the last
step. We omit the security proof since it is almost identical
to the proof for the addition protocol.

Corollary 2: There is a secure protocol that takes as inputs
[[a]] and [[b]], and outputs [[b − a]] with one shuffle and two
cards.

3.2 Multiplication Protocol

In this section, we construct a c-multiplication protocol for
any public value c ∈ Zm, that takes [[a]] and outputs [[ca]].
Trivially, such a computation can be done by using our ad-
dition protocol c times. On the other hand, it is well known
that the number of additions can be reduced to O(log2 c) (bi-
nary method). In this section, we design a multiplication
protocol in a careful way and show that (⌈log2 c⌉ + 1) shuf-
fles are sufficient to compute the multiplication [[ca]] from
[[a]].

Protocol 2 (c-Multiplication Protocol):

• Input: [[a]].
• Output: [[ca]].

Let ℓ = ⌈log2 c⌉ and c − 1 =
∑ℓ−1

j=0 2 j · b j where b j ∈ {0, 1}.
1. Invoke our (ℓ + 1)-copy protocol to [[a]]:

■︸︷︷︸
[[a]]

→

ℓ+1︷ ︸︸ ︷
■︸︷︷︸
[[a]]

■︸︷︷︸
[[a]]

· · · ■︸︷︷︸
[[a]]

.

2. Let W ← ([[a]], · · · , [[a]]︸ ︷︷ ︸
ℓ+1

). For i = 0, 1, · · · , ℓ−1, repeat

the following.

a. Let W = (

ℓ−i︷ ︸︸ ︷
[[w]], · · · , [[w]], [[z]]). (Note that w = 2ia

and z = (
∑i−1

j=0 2 jb j + 1)a.)
b. If bi = 0, apply a multiple addition protocol to W

except for [[z]]:

ℓ−i︷ ︸︸ ︷
■︸︷︷︸
[[w]]

■︸︷︷︸
[[w]]

· · · ■︸︷︷︸
[[w]]

■︸︷︷︸
[[z]]

→

ℓ−i−1︷ ︸︸ ︷
■︸︷︷︸

[[2w]]

· · · ■︸︷︷︸
[[2w]]

■︸︷︷︸
[[z]]

c. If bi = 1, apply a multiple addition protocol to W:

ℓ−i︷ ︸︸ ︷
■︸︷︷︸
[[w]]

■︸︷︷︸
[[w]]

· · · ■︸︷︷︸
[[w]]

■︸︷︷︸
[[z]]

→

ℓ−i−1︷ ︸︸ ︷
■︸︷︷︸

[[2w]]

· · · ■︸︷︷︸
[[2w]]

■︸︷︷︸
[[z+w]]

d. Update W to the current sequence. Note that the
length of W has now decreased by one.

3. W is now just the rightmost card [[z]], where z =
(
∑ℓ−1

j=0 2 jb j + 1)a = ca. Output the card [[z]].

Theorem 2: The above protocol is secure. It uses ⌈log2 c⌉+
1 shuffles and ⌈log2 c⌉ + 2 cards.

Proof. Let ℓ = ⌈log2 c⌉. Let A be a random variable of
the input, and let V be a random variable of the visible se-
quence. Let E be a random variable of the opened value in
copy protocol invoked in Step 1, and let Ei (i ∈ {1, · · · , ℓ})
be a random variable of the opened value in addition proto-
col invoked in the (i−1)-th iteration of Step 2. As mentioned
in the proof of Theorem 1, A and Ei are independent. More-
over, A and (E0, E1, · · · , Eℓ) are also independent since each
Ei is derived from each shuffle. Thus, A and V are indepen-
dent since V essentially consists of E0, E1, · · · , Eℓ. There-
fore, it is secure. □

Example 5: Let c = 6. Here, ℓ = ⌈log2 c⌉ = 3 and 5 =∑2
i=0 2ibi = 20 · 1 + 21 · 0 + 22 · 1. The execution process of

c-multiplication protocol is as follows.

1. [[a]]
Copy 4
−−−−−→ ([[a]], [[a]], [[a]], [[a]]).

2. ([[a]], [[a]], [[a]], [[a]])
Add−−−→ ([[2a]], [[2a]], [[2a]]).

3. ([[2a]], [[2a]], [[2a]])
Add−−−→ ([[4a]], [[2a]]).

4. ([[4a]], [[2a]])
Add−−−→ [[6a]].

4. Oblivious Conversion

In this section, we introduce a new protocol, oblivious con-
version, that enables secure computation for general func-
tions with a small number of shuffles.

SHINAGAWA et al.: CARD-BASED PROTOCOLS USING REGULAR POLYGON CARDS
1905

4.1 Oblivious Conversion

The oblivious conversion protocol takes as input a value
[[a]], a ∈ Zm, and an encoding of a function f using a se-
quence of stacks (f1, · · · , fm−1) where top(fi) = ⊥k for some
integer k. Each stack fi is regarded as an encoding of f (i).
The output of the protocol will be fa, which corresponds to
an encoding of f (a). For simplicity, we will set m = 4 in
the following description. One can see the demonstration
movie [14].

Protocol 3 (Oblivious Conversion):

• Input: [[a]] and (f0, f1, f2, f3).
• Output: fa.

1. Using a copy protocol and rotation operations, generate
A = ([[a]], [[a − 1]], [[a − 2]], [[a − 3]]) from [[a]]. Let W
be the following sequence:

W = ■︸︷︷︸
[[a]]· f0

■︸︷︷︸
[[a−1]]· f1

■︸︷︷︸
[[a−2]]· f2

■︸︷︷︸
[[a−3]]· f3

.

2. Apply a cyclic shuffle to W and obtain the following
sequence:

■︸︷︷︸
[[a−r]]· fr

■︸︷︷︸
[[a−(r+1)]]· fr+1

■︸︷︷︸
[[a−(r+2)]]· fr+2

■︸︷︷︸
[[a−(r+3)]]· fr+3

where r is the randomness used in the shuffle.
3. Decompose the stack as shown below:

[[a−r]]︷︸︸︷
■

[[a−(r+1)]]︷︸︸︷
■

[[a−(r+2)]]︷︸︸︷
■

[[a−(r+3)]]︷︸︸︷
■

■︸︷︷︸
fr

■︸︷︷︸
fr+1

■︸︷︷︸
fr+2

■︸︷︷︸
fr+3

4. Open the cards in the top line:
a−r︷︸︸︷ a−(r+1)︷︸︸︷ a−(r+2)︷︸︸︷ a−(r+3)︷︸︸︷
■︸︷︷︸
fr

■︸︷︷︸
fr+1

■︸︷︷︸
fr+2

■︸︷︷︸
fr+3

5. Output the stack under the card 0.

Theorem 3: The above oblivious conversion protocol us-
ing m-sided polygon cards is secure. (It takes as inputs [[a]]
and f0, f1, · · · , fm−1, and outputs fa.) It uses two shuffles and
m(k+1)+1 cards, where k is the number of cards contained
in the stack fi.

Proof. Let A be a random variable of the input, and let V
be a random variable of the visible sequence. Let E be a
random variable of the opened value in the copy protocol
of Step 1. Let R be a random variable of the randomness
used in the cyclic shuffle used in Step 2. Let E′ = A −
R mod 4. As mentioned in the proof of Theorem 1, A and E
are independent. Similarly, A and E′ are independent. (The

only difference is that the latter uses a cyclic shuffle but it
does not affect this claim.) Moreover, A and (E, E′) are also
independent since E and E′ are derived from independent
and different shuffles. Thus, A and V are independent since
V essentially consists of E, E′. Therefore, it is secure. □

4.2 General Protocol

Using our oblivious conversion, Alice and Bob can securely
compute an arbitrary function f (x1, x2) whose input-domain
and output-range are Zm.

Protocol 4 (Two-Party Protocol):

• Input: Alice has a ∈ Z4 and Bob has b ∈ Z4.
• Output: [[f (a, b)]].

1. Alice and Bob generate [[a]] and [[b]], respectively.
2. Alice and Bob place the following sequences

F0, F1, F2, F3:

F0 = ■︸︷︷︸
[[f (0,0)]]

■︸︷︷︸
[[f (0,1)]]

■︸︷︷︸
[[f (0,2)]]

■︸︷︷︸
[[f (0,3)]]

F1 = ■︸︷︷︸
[[f (1,0)]]

■︸︷︷︸
[[f (1,1)]]

■︸︷︷︸
[[f (1,2)]]

■︸︷︷︸
[[f (1,3)]]

F2 = ■︸︷︷︸
[[f (2,0)]]

■︸︷︷︸
[[f (2,1)]]

■︸︷︷︸
[[f (2,2)]]

■︸︷︷︸
[[f (2,3)]]

F3 = ■︸︷︷︸
[[f (3,0)]]

■︸︷︷︸
[[f (3,1)]]

■︸︷︷︸
[[f (3,2)]]

■︸︷︷︸
[[f (3,3)]]

.

3. Let F′i be a stack that is stacking of Fi. Using an obliv-
ious conversion with inputs [[a]] and (F′0, F

′
1, F

′
2, F

′
3),

they compute F′a.
4. Let Fa be a sequence that is decomposing of F′a. Using

an oblivious conversion with inputs [[b]] and Fa, they
compute [[f (a, b)]]. This is the output of this protocol.

Theorem 4: Let f : (Zm)n → Zm be an arbitrary n-ary
function. There is a secure protocol that takes as inputs
([[a1]], · · · , [[an]]) and [[f (x1, · · · , xn)]] for all x1, · · · , xn ∈
Zm, and outputs [[f (a1, · · · , an)]]. It uses 2n shuffles and
m + n + mn cards.

Proof. Extending the above protocol in a canonical way, it
is possible to construct an n-party protocol. We first show
that the protocol uses m + n + mn cards. The number of
input cards is n + mn. To copy [[a1]], we needs m addi-
tional cards. On the other hand, we does not need additional
cards to copy [[a2]], · · · , [[an]] since the opened cards can be
reused. Thus, the number of cards is m + n + mn. Next
we show the security of the protocol. Let A be a random
variable of the input, and let V be a random variable of the
visible sequence. For the i-th (i = 1, 2, · · · , n) oblivious con-
version, let E2i−1 be a random variable of the opened value
in the copy protocol, and let E2i be a random variable of the
opened value in the last step. As mentioned in the proof of
Theorem 3, A and (E2i−1, E2i) are independent. Since each

1906
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.9 SEPTEMBER 2017

random variable is independently derived from each shuffle,
A and (E1, E2, · · · , E2n) are also independent. Thus, A and
V are independent. Therefore, it is secure. □

4.3 Oblivious Conversion Using the Standard Cards

The oblivious conversion can also be applied to the standard
cards (♣ , ♡). We use the following standard encoding
♣ ♡ = 0 and ♡ ♣ = 1, and denote the face down en-

coding of a by Com(a). We also use a random bisection cut
(which is denoted by [·||·]) as below:[

? ?
∥∥∥∥ ? ?

]1 2 3 4
→ ? ? ? ?

1 2 3 4
or ? ? ? ?

3 4 1 2
.

We note that it is derived from the cyclic shuffle by making
stacks 1 · 2 and 3 · 4.

Protocol 5 (Oblivious Conversion Using Standard Cards):

• Input: Com(a) and two cards (or stacks) f (0) and f (1).
• Output: The card (or stack) f (a).

1. Place the cards as below.

? ?︸ ︷︷ ︸
Com(a)

?︸︷︷︸
f (0)

?︸︷︷︸
f (1)

2. Rearrange the cards as below.

? ? ? ?

@@R��	
? ? ? ? .

3. Apply a random bisection cut.[
? ?

∥∥∥∥ ? ?
]
→ ? ? ? ?

4. Rearrange the cards as below.

? ? ? ?

@@R��	
? ? ? ? .

5. Open the first and second cards, then the output card
f (a) is obtained as follows.

♣ ♡ ?︸︷︷︸
f (a)

? or ♡ ♣ ? ?︸︷︷︸
f (a)

Theorem 5: The above oblivious conversion is secure. It
uses one shuffle and 2k + 2 cards, where k is the number of
cards contained in f (0).

Proof. The opened value is independent of the inputs since
the randomness used in the shuffle is chosen uniformly at
random and independent of the inputs. Thus, it is secure. □

5. Voting Protocol for Multiple Candidates

In this section, we construct a voting protocol. Assume that

there are n voters A1, · · · , An and ℓ candidates C1, · · · ,Cℓ.
Each voter Ai has an input ai ∈ {1, · · · , ℓ}. They wish to
securely compute ci =

∑n
j=1 χi(a j), where χi(x) = 1 if x = i,

otherwise χi(x) = 0.
We will explicitly describe a voting protocol with two

voters A, B and three candidates. The protocol takes as in-
puts A’s input a ∈ {1, 2, 3} and B’s input b ∈ {1, 2, 3}, and
outputs ([[χ1(a) + χ1(b)]], [[χ2(a) + χ2(b)]], [[χ3(a) + χ3(b)]]).

In the following, we will consider a simplified voting
protocol which illustrates the idea behind and the correct-
ness of the full protocol (Protocol 6). However, the sim-
plified protocol does not hide which candidate each of the
voters A and B vote for, and is hence not secure.

1. Place the cards as below:

■︸︷︷︸
[[χ1(a)]]

■︸︷︷︸
[[χ2(a)]]

■︸︷︷︸
[[χ3(a)]]

■︸︷︷︸
[[χ1(b)]]

■︸︷︷︸
[[χ2(b)]]

■︸︷︷︸
[[χ3(b)]]

■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

2. Open the first row. Then, add one to the bottom-most
card whose top card was [[1]]. For example, if the open-
ing of the top row is as shown, then add one to the
bottom-most card of the leftmost column:

↑ ↑ ↑

■ ■ ■
■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

→

↑ ↑ ↑

■ ■ ■
■︸︷︷︸
[[1]]

■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

3. Open the second row. Then, add one to the bottom-
most card whose top card was [[1]]. For example, if the
opening of the top row is as shown, then add one to the
bottom-most card of the center column:

↑ ↑ ↑

↑ ↑ ↑

■︸︷︷︸
[[1]]

■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

→

↑ ↑ ↑

↑ ↑ ↑

■︸︷︷︸
[[1]]

■︸︷︷︸
[[1]]

■︸︷︷︸
[[0]]

4. Output the bottom row.

From the above description, it should be clear the sim-
plified protocol correctly computes the voting result. How-
ever, as highlighted above, the protocol reveal which candi-
date each voter voted for.

In order to obtain the security, we use a cyclic shuffle.
More concretely, we apply a cyclic shuffle to the sequence
(d1, d2, d3), where di is a stacking of the i-th column, and
open the top row. Now the input is completely hidden due
to the randomness of the cyclic shuffle. To keep track of the
order of candidates when applying the cyclic shuffles, we

SHINAGAWA et al.: CARD-BASED PROTOCOLS USING REGULAR POLYGON CARDS
1907

append a sequence ([[1]], [[0]], [[0]]) which will be opened at
the end of the protocol. The protocol proceeds as follows.

Protocol 6 (Voting Protocol):

• Input: a, b ∈ {1, 2, 3}.
• Output: ([[y1]], [[y2]], [[y3]]) where yi = χi(a) + χi(b).

1. Place the cards as below:

■︸︷︷︸
[[χ1(a)]]

■︸︷︷︸
[[χ2(a)]]

■︸︷︷︸
[[χ3(a)]]

■︸︷︷︸
[[χ1(b)]]

■︸︷︷︸
[[χ2(b)]]

■︸︷︷︸
[[χ3(b)]]

■︸︷︷︸
[[1]]

■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

We use terms a column and a row in the usual sense. In
this case, we have three columns and four rows.

2. Make three stacks c1 = [[χ1(a)]] · [[χ1(b)]] · [[1]] · [[0]],
c2 = [[χ2(a)]] · [[χ2(b)]] · [[0]] · [[0]] and c3 = [[χ3(a)]] ·
[[χ3(b)]] · [[0]] · [[0]]. Apply a cyclic shuffle:⟨

■︸︷︷︸
c1

■︸︷︷︸
c2

■︸︷︷︸
c3

⟩
→ ■ ■ ■ .

3. Open the top row and remove the top row. Then, add
one to the bottom-most card whose top card was [[1]].
For example, if the opening of the top row is as shown,
then add one to the bottom-most card of the rightmost
column:

↑ ↑ ↑

■ ■ ■
■ ■ ■
■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

→
■ ■ ■
■ ■ ■
■︸︷︷︸
[[0]]

■︸︷︷︸
[[0]]

■︸︷︷︸
[[1]]

4. Let c′1, c
′
2 and c′3 be the current columns. Apply a cyclic

shuffle to (c′1, c
′
2, c
′
3):⟨

■︸︷︷︸
c′1

■︸︷︷︸
c′2

■︸︷︷︸
c′3

⟩
→ ■ ■ ■ .

5. Open the top row and remove the top row. Then, add
one to the bottom-most card whose top card was [[1]].
For example, if the opening of the top row is as shown,
then add one to the bottom-most card of the center col-
umn:

↑ ↑ ↑

■ ■ ■
■︸︷︷︸
[[x]]

■︸︷︷︸
[[x′]]

■︸︷︷︸
[[x′′]]

→ ■ ■ ■
■︸︷︷︸

[[x+1]]

■︸︷︷︸
[[x′]]

■︸︷︷︸
[[x′′]]

6. Let c′′1 , c
′′
2 and c′′3 be the current columns. Apply a

cyclic shuffle to (c′′1 , c
′′
2 , c

′′
3):⟨

■︸︷︷︸
c′′1

■︸︷︷︸
c′′2

■︸︷︷︸
c′′3

⟩
→ ■ ■ ■ .

7. Open the top row. Rearrange the current sequence
cyclically such that the column which has one in the
top is the leftmost column. For example, if the opening
of the top row is as shown, then rearrange as below:

↑ ↑ ↑

■︸︷︷︸
[[y]]

■︸︷︷︸
[[y′]]

■︸︷︷︸
[[y′′]]

→

↑ ↑ ↑

■︸︷︷︸
[[y′]]

■︸︷︷︸
[[y′′]]

■︸︷︷︸
[[y]]

8. Output the bottom row. The leftmost, center and right-
most cards correspond to the result values for the first,
second and third candidates.

It is relatively straightforward to confirm that the
changes done to the simplified protocol to obtain Protocol
6 will not change the output i.e. Protocol 6 will correctly
compute the voting result. The following theorem will es-
tablish the security of Protocol 6.

Theorem 6: Let n, ℓ ≥ 1. For n voters and ℓ candidates,
the above voting protocol is secure. It uses n+1 shuffles and
(n + 2)ℓ cards.

Proof. The opened values (in the above case, step 3, 5,
and 7) are independent of the inputs since the randomnesses
used in the shuffles are chosen uniformly at random and in-
dependent of the inputs. Thus, it is secure. □

Acknowledgment

The authors would like to thank members of the study
group “Shin-Akarui-Angou-Benkyou-Kai” for the valuable
discussions and helpful comments. We also thank the edi-
tor and the anonymous reviewers, whose comments helped
us to improve the presentation of this paper. This work
was partially supported by JSPS KAKENHI Grant Numbers
26330001 and 26330151.

References

[1] C. Crépeau and J. Kilian, “Discreet solitary games,” Advances in
Cryptology - CRYPTO’93, vol.773 of Lecture Notes in Computer
Science, pp.319–330, Springer, 1994.

[2] B. den Boer, “More efficient match-making and satisfiability:
The five card trick,” Advances in Cryptology - EUROCRYPT’89,
vol.434 of Lecture Notes in Computer Science, pp.208–217,
Springer, 1990.

[3] A. Koch, S. Walzer, and K. Härtel, “Card-based cryptographic pro-
tocols using a minimal number of cards,” Advances in Cryptology
- ASIACRYPT 2015, vol.9452 of Lecture Notes in Computer Sci-
ence, pp.783–807, Springer, 2015.

[4] T. Mizuki, I.K. Asiedu, and H. Sone, “Voting with a logarithmic
number of cards,” Unconventional Computation and Natural Com-
putation 2013, vol.7956 of Lecture Notes in Computer Science,

http://dx.doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/978-3-662-48797-6_32
http://dx.doi.org/10.1007/978-3-662-48797-6_32
http://dx.doi.org/10.1007/978-3-662-48797-6_32
http://dx.doi.org/10.1007/978-3-662-48797-6_32
http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-39074-6_16

1908
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.9 SEPTEMBER 2017

pp.162–173, Springer, 2013.
[5] T. Mizuki, U. Fumishige, and H. Sone, “Securely computing XOR

with 10 cards,” Australasian Journal of Combinatorics, 2006.
[6] T. Mizuki, M. Kumamoto, and H. Sone, “The five-card trick

can be done with four cards,” Advances in Cryptology - ASI-
ACRYPT, vol.7658 of Lecture Notes in Computer Science, pp.598–
606, Springer, 2012.

[7] T. Mizuki and H. Shizuya, “A formalization of card-based crypto-
graphic protocols via abstract machine,” Int. J. Inf. Sec., vol.13, no.1,
pp.15–23, 2014.

[8] T. Mizuki and H. Shizuya, “Practical card-based cryptography,”
FUN 2014 Seventh International Conference on FUN WITH AL-
GORITHMS, vol.8496 of Lecture Notes in Computer Science,
pp.313–324, Springer, 2014.

[9] T. Mizuki and H. Sone, “Six-card secure AND and four-card se-
cure XOR,” Third International Workshop on Frontiers in Algorith-
mics, vol.5598 of Lecture Notes in Computer Science, pp.358–369,
Springer, 2009.

[10] V. Niemi and A. Renvall, “Secure multiparty computations with-
out computers,” Theor. Comput. Sci., vol.191, no.1-2, pp.173–183,
1998.

[11] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, “Card-based proto-
cols for any Boolean function,” Theory and Applications of Models
of Computation, TAMC 2015, vol.9076 of Lecture Notes in Com-
puter Science, pp.110–121, Springer, 2015.

[12] T. Nishida, T. Mizuki, and H. Sone, “Securely computing the three-
input majority function with eight cards,” 2nd International Con-
ference on the Theory and Practice of Natural Computing, TPNC
2013, vol.8273 of Lecture Notes in Computer Science, pp.193–204,
Springer, 2013.

[13] A. Nishimura, Y. Hayashi, T. Mizuki, and H. Sone, “An implemen-
tation of non-uniform shuffle for secure multi-party computation,”
Proc. 3rd ACM International Workshop on ASIA Public-Key Cryp-
tography, AsiaPKC@AsiaCCS, pp.49–55, 2016.

[14] K. Shinagawa, “Oblivious conversion using 4-sided cards,”
YouTube, 2015. https://youtu.be/hlAetm66iRU

[15] K. Shinagawa, “Secure addition protocol using 4-sided cards,”
YouTube, 2015. https://youtu.be/9Tid6X-9r-c

[16] K. Shinagawa, T. Mizuki, J. Schuldt, K. Nuida, N. Kanayama,
T. Nishide, G. Hanaoka, and E. Okamoto, “Multi-party computation
with small shuffle complexity using regular polygon cards,” The 9th
International Conference on Provable Security, ProvSec, pp.127–
146, 2015.

[17] K. Shinagawa, T. Mizuki, J. Schuldt, K. Nuida, N. Kanayama,
T. Nishide, G. Hanaoka, and E. Okamoto, “Secure multi-party com-
putation using polarizing cards,” The 10th International Workshop
on Security, IWSEC, pp.281–297, 2015.

[18] A. Stiglic, “Computations with a deck of cards,” Theor. Comput.
Sci., vol.259, no.1-2, pp.671–678, 2001.

Kazumasa Shinagawa received his B.E.
degree from University of Tsukuba in 2015.
He is a master course student of University of
Tsukuba. He received SCIS Best Paper Award
from IEICE in 2015 and CSS Best Student Pa-
per Award from IPSJ in 2015.

Takaaki Mizuki received his B.E. degree in
information engineering and his M.S. and Ph.D.
degrees in information sciences from Tohoku
University, Japan, in 1995, 1997 and 2000, re-
spectively. He is currently an associate profes-
sor of the Cyberscience Center, Tohoku Univer-
sity. His research interests include cryptology
and information security. He is a member of
IEICE, IEEE, and IPSJ.

Jacob C.N. Schuldt obtained a B.Sc. de-
gree and a M.Sc. degree (cand.scient) from The
University of Copenhagen, and a Ph.D. degree
from The University of Tokyo. He is cur-
rently a research scientist in the Advanced Cryp-
tosystems Research Group, National Institute
of Advanced Industrial Science and Technol-
ogy (AIST), Japan. Before joining AIST, he
held postdoctoral research positions at AIST and
Royal Holloway, University of London.

Koji Nuida received the Ph.D. degree in
Mathematical Science from The University of
Tokyo, Japan, in 2006. From 2006, he had
been working as a postdoctoral researcher, a re-
searcher and currently a senior researcher at Na-
tional Institute of Advanced Industrial Science
and Technology (AIST), Japan. He is currently
also receiving support as a Japan Science and
Technology Agency (JST) PRESTO Researcher.
His research interest is mainly in mathematics
and mathematical cryptography.

Naoki Kanayama received his B.E., B.S.,
M.S. and D.S. degrees from Waseda University,
Tokyo, Japan, in 1994, 1996, 1998 and 2003,
respectively. In 2003–2006, he was a post-
doctoral fellow of the Japan Society for the Pro-
motion of Science. In 2006–2013, he was a re-
search fellow at University of Tsukuba. He is
an assistant professor at University of Tsukuba.
Dr. Kanayama is a member of the Japan Society
for Industrial and Applied Mathematics and of
the Information Processing Society of Japan.

Takashi Nishide received B.S. degree from
the University of Tokyo in 1997, M.S. degree
from the University of Southern California in
2003, and Dr.E. degree from the University of
Electro-Communications in 2008. From 1997
to 2009, he had worked at Hitachi Software En-
gineering Co., Ltd. developing security prod-
ucts. From 2009 to 2013, he had been an as-
sistant professor at Kyushu University and from
2013 he is an associate professor at University
of Tsukuba. His research is in the areas of cryp-

tography and information security.

http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1016/s0304-3975(97)00107-2
http://dx.doi.org/10.1016/s0304-3975(97)00107-2
http://dx.doi.org/10.1016/s0304-3975(97)00107-2
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-642-45008-2_16
http://dx.doi.org/10.1007/978-3-642-45008-2_16
http://dx.doi.org/10.1007/978-3-642-45008-2_16
http://dx.doi.org/10.1007/978-3-642-45008-2_16
http://dx.doi.org/10.1007/978-3-642-45008-2_16
http://dx.doi.org/10.1145/2898420.2898425
http://dx.doi.org/10.1145/2898420.2898425
http://dx.doi.org/10.1145/2898420.2898425
http://dx.doi.org/10.1145/2898420.2898425
https://youtu.be/hlAetm66iRU
https://youtu.be/hlAetm66iRU
https://youtu.be/9Tid6X-9r-c
https://youtu.be/9Tid6X-9r-c
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1016/s0304-3975(00)00409-6
http://dx.doi.org/10.1016/s0304-3975(00)00409-6

SHINAGAWA et al.: CARD-BASED PROTOCOLS USING REGULAR POLYGON CARDS
1909

Goichiro Hanaoka graduated from the De-
partment of Engineering, The University of To-
kyo in 1997. Received Ph.D. degree from The
University of Tokyo in 2002. Joined AIST in
2005. Currently, Leader, Advanced Cryptosys-
tems Research Group, Information Technology
Research Institute, AIST. Engages in the R&Ds
for encryption and information security tech-
nologies including the efficient design and secu-
rity evaluation of public key cryptosystem. Re-
ceived the Wilkes Award (2007), British Com-

puter Society; Best Paper Award (2008), The Institute of Electronics, In-
formation and Communication Engineers; Innovative Paper Award (2012,
2014), Symposium on Cryptography and Information Security (SCIS);
Award of Telecommunication Advancement Foundation (2005); 20th An-
niversary Award (2005), SCIS; Best Paper Award (2006), SCIS; Encour-
agement Award (2000), Symposium on Information Theory and its Appli-
cations (SITA); and others.

Eiji Okamoto received his B.S., M.S. and
Ph.D. degrees in electronics engineering from
the Tokyo Institute of Technology in 1973, 1975
and 1978, respectively. He worked and stud-
ied communication theory and cryptography for
NEC central research laboratories since 1978. In
1991 he became a professor at Japan Advanced
Institute of Science and Technology, then at
Toho University. Now he is a professor at Fac-
ulty of Engineering, Information and Systems,
University of Tsukuba. His research interests

are cryptography and information security. He is members of IEEE and
ACM.

