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Abstract

Background: Protective antibody immunity against the influenza A virus wanes in 2–7 years due to antigenic drift of
the virus’ surface proteins. The duration of immune protection is highly variable because antigenic evolution of the
virus is irregular. Currently, the variable nature of the duration of immunity has had little attention in analyses of the
impact of vaccination, including cost-effectiveness studies.

Methods: We developed a range of mathematical transmission models to investigate the effect of variable duration
of immunity on the size of seasonal epidemics. The models range from simple conceptual to more realistic, by
distinguishing between infection- versus vaccination-induced immunity, by inclusion of primary vaccine failure, by
assuming a leaky vaccine, and by the inclusion of age-dependent contact patterns.

Results: We show that annual variation in the duration of immunity causes large variation in the size of epidemics,
and affects the effectiveness of vaccination. Accumulation of susceptible individuals in one or more mild seasons
results in a disproportionately large outbreak in a subsequent season. Importantly, variation in the duration of
immunity increases the average infection attack rate when the vaccination coverage is around the outbreak threshold.
Specifically, in a tailored age-stratified model with a realistic reproduction number (R0 = 1.4) and vaccination coverage
of 25%, we find that the attack rate in unvaccinated children (<10 years old) is negligible if the duration of immunity is
constant, while on average 2.8% (2.5–97.5% percentiles: 1.8–4.1%) of the children are infected if the duration of
immunity is variable. These findings stem from the buildup of susceptibility over multiple seasons by waning of
immunity, and the nonlinear relation between susceptibility and infection attack rates.

Conclusions: The models illustrate that variation in the duration of immunity impacts the long-term effectiveness of
vaccination, and that vaccine effectiveness cannot be judged for each year in isolation. Our findings have implications
for vaccination strategies that aim to maximize the vaccination coverage while extending the age range of persons
eligible for vaccination.

Background
The influenza virus is responsible for a substantial health
burden with annual infection attack rates of 5–10% in
adults and 20–30% in children [1]. Annual vaccination can
protect against influenza infection and therefore vacci-
nation is recommended for elderly and other individuals
at high-risk of developing serious disease [2–4]. Despite
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efforts to improve vaccines against influenza, vaccina-
tion still provides only partial protection, and antibodies
generated after infection or vaccination protect a per-
son only for a limited number of years. This is because
the evolution of influenza’s surface proteins prevents neu-
tralization of evolved viruses by preexisting antibodies.
This so-called antigenic drift is irregular [5], with rela-
tive conserved periods that last 2–7 years [6–8], and is
only modestly predictable [9, 10]. The variable duration of
immunity is a cause of substantial year-to-year differences
of estimates of vaccine efficacy and vaccine effectiveness
[11–16], illustrating the need for robust models to assess
vaccination policies.
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Most epidemiological and cost-effectiveness analyses
of influenza vaccination assume that the rate at which
immunity is lost does not vary between years [17–33].
In this were the case, each influenza season could be
analyzed in isolation. In the more realistic scenario of
a variable rate at which immunity is lost due to anti-
genic drift, the fraction of the population that is sus-
ceptible (henceforth susceptibility of the population) will
vary between years. In this case, it is necessary to track
the number of infections that happened in previous sea-
sons, and that still give protection against the currently
circulating virus. The importance of linking the infec-
tion history of successive seasons is recognized [34, 35],
but difficult to implement in prospective studies [36],
since the level of preexisting immunity in the population
as well as the antigenic evolution of the virus are hard
to predict.
Here we study the impact of variation in the duration of

immunity on the infection attack rates and the epidemic
peaks in a disease transmission framework. To focus on
the key elements of acquired immunity, vaccination, and
influenza evolution, we formulate an idealized model in
which the susceptibility in each season depends on the
cumulative effect of all infections and vaccinations in the
past. We show that variation in the duration of immu-
nity results in alternating mild and severe seasons, and
in an increase in the average infection attack rate and
peak prevalence. Especially around the critical vaccination
coverage, we find that variation in the duration of immu-
nity increases the number of infections. We also show
that these findings are not restricted to highly simplified
models, but are also observed in more realistic influenza
transmission models.

Methods
Overview
For each season we calculate population susceptibil-
ity using the accumulation of influenza infections and
influenza vaccinations over previous years [37]. Sus-
ceptibility increases due to waning of immunity and
demographic turnover, and decreases by vaccination and
infection. Throughout, we focus on populations in tem-
perate zones where epidemics generally last for 4–12
weeks, and where there is hardly influenza circulation in
the remainder of the year [38]. In our models, vaccina-
tion takes place just before the epidemic, while loss of
immunity occurs after the epidemic when there is no virus
circulation. Demographic turnover is not separately mod-
eled, as births increase the number of susceptible persons
in a similar fashion as loss of immunity does if popula-
tion size is constant. We map susceptibility at the start of
the season to the attack rate using the reproduction num-
ber, which is defined as the average number of infections
caused by one infected individual in a fully susceptible

population (as described in more detail below). Through-
out, we compare scenarios with constant and variable
duration of immunity. In the variable immunity model,
the fractions of the immune individuals that stays immune
in the next season are drawn from a Beta distribution
that mimics the punctuated antigenic drift of the H3N2
subtype observed using hemagglutination inhibition
tests [6, 7].
Below we formulate a basic model to show that a vari-

able duration of immunity increases the epidemic peaks
and infection attack rates. We then adapt the basic model
so that vaccination provides protection for one season.
Finally, we consider three extensions with (i) a ‘leaky’
vaccine, (ii) an age-structured population model with
age-specific contact patterns, and (iii) realistic latent and
infectious period distributions in an age-structured pop-
ulation with leaky vaccination [35]. The extensions show
that the phenomena observed in the basic model are
robust, and do not depend on specific model assumptions.

Model structure
In our basic model, individuals are either fully susceptible
to infection or fully immune, either due to natural infec-
tion or vaccination. The fraction of susceptible individuals
(susceptibility) is determined by the cumulated immunity
during outbreaks and vaccination in past seasons. Three
processes link the susceptibility st+1 in season t + 1 to the
susceptibility st in the previous season, i) vaccination, ii)
the yearly influenza epidemic, and iii) the loss of immu-
nity during the inter-epidemic period by virus evolution
and demographic turnover. As these processes largely take
place sequentially and on different timescales, we model
these processes sequentially. In the model, vaccination is
applied before the epidemic, and loss of immunity takes
place after the epidemic in the inter-epidemic period.
Schematically, the model looks as follows:

st
vaccination−−−−−−→ s′t

epidemic−−−−−→ s′′t
waning immunity−−−−−−−−−−→ st+1 .

In the first step, a fraction of the population is vacci-
nated, such that the fraction remaining susceptible after
vaccination is given by,

s′t = (1 − vcve) st , (1)

where vc and ve are the vaccination coverage (the pro-
portion of individuals who are vaccinated) and vaccine
efficacy (the proportion of vaccinated individuals that is
protected against infection), respectively. Thus, a fraction
vcve is protected against infection. Throughout, we vary vc
and take ve = 0.5. To keep the model simple and make our
arguments as transparent as possible, we assume that each
year vaccination is given to a random set of individuals.
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Next, part of the population is infected during the epi-
demic, and will be immune afterward:

s′′t = s′t − zt ,

where zt := zt(s) is the attack rate (the fraction infected
in season t). In a fully susceptible population (s = 1)
the attack rate is given by zt = 1 − exp(−ztR0), with R0
representing the basic reproduction number, defined as
the expected number of infections caused by one infected
individual in a completely susceptible population. Esti-
mates of the reproduction number for influenza (R0)
range between 1-2 [38, 39]. Here, we take R0 = 1.4 as
default value.
Due to immunity acquired in previous years, only a

fraction s′ is susceptible, such that

zt = s′(1 − exp(−ztR0)). (2)

In the last step, immunity is lost, so that

st+1 = 1 − γt(1 − s′′t ),

where γt is the fraction of the population that retains its
immunity. Loss of immunity is caused by the reduction
of cross-protection between the current strain and strains
circulating previous seasons. Throughout, we explore the
impact of annual variation in the rate at which immunity is
lost due to antigenic drift of the virus (i.e. the effect of vari-
ability in γt). In the deterministic scenario we use γ = 5

7 ,
and in the stochastic scenario we draw γ from a realistic
Beta(5,2) distribution that has a mean of 5/7. In this man-
ner, the deterministic scenario arises naturally as a special

case of the stochastic scenario when the parameters of
the beta distribution tend to infinity. In both scenarios,
immunity lasts 3.5 years on average in both scenarios.
Combining the above, we obtain the following set of

equations that map the susceptibility st in year t to the
susceptibility st+1 in year t + 1:

zt = (1 − vcve) st (1 − exp (−ztR0)) ,
st+1 = 1 − γt (1 − (1 − vcve) st + zt) .

(3)

These equations can be solved numerically.
The map in Eq. 3 is used to calculate the infection attack

rate, but does not yield the infection prevalence over
time (the epidemic curve). For this, we use the dynamical
system corresponding to the above model. The ordinary
differential equations (ODEs) for the fractions of the pop-
ulation in the susceptible (S), infected and infectious (I),
and recovered (R) compartments during the epidemic are
given by

dS
dt

= −βSI,

dI
dt

= βSI − νI,

dR
dt

= νI.

Throughout, we fix ν and set β = νR0, such that the
infection attack rate is independent of ν. In Fig. 1 we take
ν = 2 (day−1) and S(0) = s′, I(0) = 0.000001, and
R(0) = 1 − S(0) − I(0), where s′ is the susceptibility after

Fig. 1 Variation in the duration of immunity increases the height of epidemic peaks. In the absence of vaccination, a pattern of regular epidemics is
observed if the duration of immunity is constant (blue line), while an irregular pattern with alternating small and large epidemics is observed if the
duration of immunity is variable (red line). After the introduction of vaccination (vertical gray line), the pattern of regular epidemics persists in the
constant immune duration scenario, albeit at a lower level (blue line). If the duration of immunity is variable, the irregular pre-vaccination pattern of
alternating small and large epidemics is exacerbated (red line). The mean of the prevalence peaks is substantially higher in the variable immunity
scenario than in the constant immune duration scenario (dotted lines). The means of the prevalence peaks are calculated over 1,000 seasons using a
burn-in period of 50 years. See Methods for details
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vaccination as given in Eq. 1. The differential equations
are solved with a standard ODE solver using Python.

Short-term protection of vaccination
Natural immunity (i.e. immunity acquired after infection)
is likely to last longer than immunity provided by vacci-
nation. In the basic model presented above (Eq. 3), we
assume that vaccination gives the same duration of pro-
tection as natural infection. Here we present the other
extreme that vaccination protects individuals for one
season only. In this case the the model equations are
given by

zt = (1 − vcve) st (1 − exp (−ztR0)) ,

st+1 = 1 − γt (1 − st + zt) ,

where only the attack rate depends on vaccination.

Leaky vaccine model
It is known that influenza vaccines provide partial protec-
tion against infection and disease [12–14]. We therefore
extend the basic model to include the possibility that the
vaccine gives partial protection while infection still gives
full protection. In this model, protection after infection
and vaccination are assumed to wane at identical rates,
while a vaccinated individual who is subsequently infected
gains full protection.
In an all-or-nothing vaccine model, ve is the proportion

of vaccinated individuals that is protected, while with a
leaky vaccine, we define vr to be the probability that vac-
cinated individuals are protected in a single exposure that
would have led to transmission to an unvaccinated indi-
vidual. Unless stated otherwise, we take ve = 1.0, and
vr = 0.5.
In the leaky vaccinemodel we need to track the fractions

of the population that are susceptible (s) and vaccinated
(p, partially immune). Following the same steps as before,
we obtain

st → s′t =(1−vcve)st → s′′t = s′t−zst → st+1=1 − γt(1 − s′′t ),
pt →p′

t =pt+vcvest →p′′
t =p′

t−zpt →pt+1 = γtp′′
t ,

where zst and zpt are the attack rates of susceptible and vac-
cinated individuals, and zt = zst + zpt is the overall attack
rate. As in the basic model, each year a fraction 1 − γt
of the vaccinated and partially immune individuals lose
immunity.
Combining the above, we obtain the following map

linking st and pt to st+1 and pt+1:

st+1 = 1 − γt
(
1 − (1 − vcve) st + zst

)

pt+1 = γt
(
pt + vcvest − zpt

)
(4)

zst = s′t
(
1 − exp

(−R0
(
zst + zpt

)))

zpt = p′
t
(
1 − exp

(−R0 (1 − vr)
(
zst + zpt

)))
.

As before, the above equations are readily solved
numerically.
In a similar vein as before, we obtain a system of ODEs

for the fractions of the population in the susceptible (S),
partially protected (P), infected and infectious (I), and
protected (R) compartments:

dS
dt

= −βSI

dP
dt

= −β(1 − vr)PI

dI
dt

= β(S + (1 − vr)P)I − νI

dR
dt

= νI ,

with initial conditions S(0) = s′, P(0) = p′, I(0) =
0.000001, and R(0) = 1 − S(0) − P(0) − I(0).

Age-stratified model
We extend the main model (Eq. 3) in another direction
to include age structure. We consider three age classes:
children (≤ 10 years), adults (> 10 and ≤ 60 years),
and elderly (> 60 years). These broad classes are cho-
sen to reflect the fact that young children are the drivers
of transmission, while serious disease occurs mostly in
elderly. Moreover, in many countries healthy elderly are
eligible for vaccination (usually > 60 or > 65 years).
The attack rates, with i ∈ {children, adults, elderly}, are
given by

zt,i = s′t,i

⎛

⎝1 − exp

⎛

⎝−R0
∑

j
gijzt,j

⎞

⎠

⎞

⎠ . (5)

In the above, the next generation matrix G with ele-
ments gij is given by

gij = qfjcij,

where cij = cji is the (symmetric) contact rate between
individuals in age groups i and j, and fj is the proportion
of the population in age group j [40]. The proportional-
ity parameter q is used to scale G such that the dominant
eigenvalue equals 1 and R0 in Eq. 5 corresponds to the
basic reproduction number.
For simplicity, we assume a uniform population demog-

raphy and lifespan of 80 years, such that f =
(1/8, 5/8, 2/8). Contacts between children are intense,
while children and elderly have fewer contacts. In our
analyses we take the following contact matrix

C =
⎛

⎝
9 3 1
3 3 2
1 2 2

⎞

⎠ ,
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which is roughly in agreement with the contact structure
as observed in representative contact survey studies in the
Netherlands [40], and elsewhere [41].
The susceptibilities st+1,i in the next season are given by

st+1,i = 1 − γt
(
1 − (1 − vcve) st,i + zt,i

)
,

with zt,i as in Eq. 5.
To calculate the peak prevalence in the age-stratified

model (Eq. 5), we consider the age-stratified SIR-model
with next-generation matrix G, i.e.

dSi
dt

= −βSi
∑

j
gijIj

dIi
dt

= βSi
∑

j
gijIj − νIi

dRi
dt

= νIi,

where i, j ∈ {children, adults, elderly}.

Tailored influenza transmission model
As a final extension, we consider a tailored transmission
model that incorporates both age-dependent contact pat-
terns and a partially immune compartment. In addition,
we include compartments for latently infected infected
individuals (i.e. those who are infected but not yet infec-
tious), and assume that both the latent and infectious
periods are gamma (Erlang) distributed. Such dynamical
systems form the backbone of many influenza transmis-
sionmodels [35, 42]. Denoting the forces of infection by λi
(λi ∈{children, adults, elderly}), the model dynamics dur-
ing the epidemic are specified by the following system of
ODEs:

dSi
dt

= −λiSi,

dPi
dt

= −(1 − vr)λiPi,

dE(1)
i
dt

= λi(Si + (1 − vr)Pi) − νE(1)
i ,

dE(2)
i
dt

= νE(1)
i − νE(2)

i ,

dI(1)i
dt

= νE(2)
i − μI(1)i ,

dI(2)i
dt

= μI(1)i − μI(2)i ,

dRi
dt

= μI(2)i ,

with forces of infection λi given by,

λi = β
∑

j
gij

(
I(1)j + I(2)j

)
,

and i, j ∈ {children, adults, elderly}. Following [35], we take
ν = 2.5 (day−1) and μ = 1.1 (day−1). Furthermore, we
take β = μR0/2, and other parameters are as specified
earlier.

Results
Variation in the duration of immunity increases the height
of epidemic peaks
To investigate the impact of variation in the duration of
immunity on the epidemic dynamics, we compare sce-
narios with and without variation in the duration of
immunity. For the moment, we consider the case without
vaccination. If the duration of immunity is constant, the
number of individuals who are infected over an epidemic
is balanced exactly by the number of individuals added
to the susceptible pool during the inter-epidemic period
by waning of immunity. As a consequence, we observe
regular annual epidemics in this scenario (Fig. 1).
When we take the more realistic assumption that the

duration of immunity is variable, and vary the fraction of
the population that loses its protection in each year, the
situation is different. In this case, years with no or hardly
any influenza activity are interspersed with years of large
influenza epidemics (Fig. 1). Susceptible individuals who
escape infection in mild seasons (i.e. seasons in which
by chance only a small fraction of the population loses
immunity) continue to be susceptible in the next season,
resulting in an accumulated pool of susceptible individu-
als. Importantly, the mean peak of the prevalence is larger
in the variable case, while on average the same fraction
of the population becomes susceptible by losing protec-
tion against the virus each season. The disproportionally
large outbreaks are the result of indirect effects in the
infection dynamics, namely that each additional infection
increases the exposure and the probability of infection of
susceptible individuals. In other words, a positive feed-
back of infections exists during the epidemics that cause
many infections in short time when the pool of susceptible
individuals is large.

Variation in the duration of immunity reduces the impact
of vaccination
Next, we incorporate vaccination into the model. We con-
sider two types of individuals (susceptible and immune
to infection), and assume a vaccination coverage (i.e. per
person probability of vaccination) of 10% and vaccine effi-
cacy of 0.5 (Methods). Hence, a vaccinated person is fully
immune with probability 0.5 and fully susceptible with
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probability 0.5, i.e. the probability of primary vaccine fail-
ure is 0.5. This assumption is relaxed later by adding
partial protection to the model.
Even in this idealized context, we find large variation in

the size of epidemics in the presence of vaccination, due
to variation in the duration of immunity (Fig. 1). Although
the mean of the epidemic peaks is lower post-vaccination
than pre-vaccination, and large outbreaks occur less fre-
quently, vaccination cannot prevent the irregular pattern
of years with small or no outbreaks interspersed with
occasional large outbreaks. In contrast, if the duration
of protection is constant, vaccination has a substantial
protective effect in the first years after its introduction
(the honeymoon period [43]), and a regular pattern of
(much smaller) yearly epidemics reappears in subsequent
seasons.
Comparing the average attack rates in the scenarios with

constant and variable duration of immunity, we find a sig-
nificant difference in the post-vaccination era (Fig. 2b). No
such difference is observed without vaccination (Fig. 2a).
This is surprising, as on average immunity is lost at iden-
tical rates in both scenarios. Here, individuals who would
have escaped from infection in the scenario with constant
duration of immunity can be infected when the duration
of immunity is short in the scenario with variable duration
of immunity.

Elevated attack rates near the critical vaccination coverage
For influenza, the vaccination coverage varies substan-
tially over time and between countries/regions. Therefore,
we investigate how the probability of an epidemic, the
infection attack rate, and peak prevalence are molded by

a b

Fig. 2 Attack rates are increased in models with variable duration of
immunity. A comparison of the attack rates with a constant (blue) and
a variable (red) duration of immunity without vaccination (a) and with
vaccination (with a coverage of 20%) (b). With vaccination the attack
rates are significantly higher in the scenario with variable duration of
immunity, while in both cases the average duration of immunity is
identical. Shown are median values of 1,000 simulations. Black error
bars denote the 2.5 − 97.5 percentiles. For each scenario, the mean
infection attack rate is calculated over a period of 100 years after a
burn-in period of 50 years

vaccine uptake (Fig. 3). As expected, in the scenario with
constant duration of immunity there is a sharp transi-
tion at a critical vaccination coverage: yearly epidemics
occur when the vaccination coverage is below the out-
break threshold, and no epidemics occur when the vac-
cination coverage is above the threshold. In the latter
case, the increase in the number of immune individu-
als by vaccination is such that it is enough to prevent a
critical accretion of susceptible individuals by waning of
immunity and demographic turnover (Fig. 3a). This does
not hold anymore in the scenario with variable immu-
nity. In this scenario, epidemics may occur even when the
vaccination coverage is high, and the influx of suscep-
tible individuals by waning immunity and demographic
turnover is on average more than counterbalanced by vac-
cination. At low vaccination coverage no outbreaks occur
in some of the years, but the average infection attack rates
are comparable with those obtained in the scenario with
constant immunity. In a similar vein as before (Fig. 1),
we find that the peak prevalence is increased in the case
of variable duration of immunity at any vaccination cov-
erage (Fig. 3b). Here the (absolute) difference is most
pronounced if the vaccination coverage is low.
A further comparison of scenarios with variable and

constant immunity shows that the attack rate is higher
in the scenario with variable immunity, especially when
the vaccination coverage is close to the outbreak thresh-
old (Fig. 3c). Here the accumulated number of susceptible
individuals determines to a large extent whether an out-
break occurs, and the attack rates do not depend solely
on the loss of immunity since the last epidemic. This is
illustrated in Fig. 4, which shows that the attack rate cor-
relates not only positively with the susceptible fraction at
the start of the current season, but also with the suscep-
tible fraction at the start of the previous season (Fig. 4a).
In this regime, i.e. above a vaccination coverage of 15%
(Fig. 4b), epidemics occur if enough susceptible individ-
uals have accumulated over multiple seasons. Notice that
in the absence of vaccination, the correlation between
the infection attack rate and susceptibility in the previ-
ous season is negative (Fig. 4a), because in this case a
high susceptibility at the start of the influenza season is
likely to result in an outbreak in the same season, mak-
ing the occurrence of an outbreak in the next season
less likely.
Thus, the analyses show that a variable duration of

immunity changes the epidemiological dynamics in two
ways. First, epidemics cease to occur every year, while the
size of epidemic peaks becomes highly variable and on
average higher than in the constant immunity scenario.
Second, the accumulation of susceptible individuals over
multiple seasons in the variable immunity scenario is able
to lift susceptibility over the outbreak threshold where this
would not be possible in the corresponding scenario with
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a

b

c

Fig. 3 Infection attack rates and epidemic peaks are increased in models with variable duration of immunity. Shown are (a) the yearly probability
that an epidemic will occur, (b) the peak prevalence in an epidemic, and (c) the infection attack rate, all as a function of the vaccination coverage.
The figures show these quantities with constant (blue lines) and variable duration of immunity (red lines). Notice that if the duration of immunity is
variable, the infection attack rate and the epidemic peak are always higher than if the duration of immunity is constant. Also notice that the
difference between the infection attack rates in both scenarios is most pronounced at a vaccination coverage around the outbreak threshold
(approximately at a vaccination coverage of 21%). The red line and the shaded area indicate the median and the 2.5-97.5 percentiles of 1,000
simulations, respectively. Each simulation lasts 150 years. Mean values are calculated over the last 100 years

fixed duration of immunity. Notice that these phenom-
ena only occur in a multi-season framework, and are a
consequence of the fact that the final size function is con-
vex near the outbreak threshold (Additional file 1: Figure
S1). We argue that these findings hold in general, and do

not depend on specific modeling assumptions (Additional
file 1: Text S1).
The phenomenon of increased attack rates in models

with variable duration of immunity disappears in mod-
els in which vaccination induces protection for at most

a b

Fig. 4 Correlations between the infection attack rate and susceptibility in the current and previous year. (a) The Pearson correlation between the
number of susceptible individuals at the start of one influenza season and the infection attack rate in the next influenza season is negative without
vaccination (ρ̂ = −0.24; p < 0.00001), as a high susceptibility in one year implies a high probability of an epidemic in that year, and a low
probability in the next year. At higher vaccination coverage, however, the accumulation of susceptible persons over multiple years becomes more
important, and the correlation between susceptibility in one year and the infection attack rate in the next year is reversed (ρ̂ = 0.13; p < 0.00001).
The switch in correlation from negative to positive is seen in (b) as a function of vaccination coverage (blue line). The correlation between the
number of susceptible individuals at the start of the influenza season and the infection attack rate in the same year is positive, with correlations
decreasing with increasing vaccination coverage (cyan line). Parameters are as in Fig. 3; in the right panel of (a) a vaccination coverage of 25% is
used. For each vaccination coverage, we analyze time series of 10,000 years
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one season. Such scenarios may not be wholly unre-
alistic [44]. In this case, the mean epidemic infection
attack rates are identical in the models with fixed and
variable duration of immunity over the full range of vacci-
nation coverages (Additional file 1: Figure S3c), the reason
being that such a large fraction of the population is vac-
cinated around the critical vaccination coverage that no
matter how much immunity is lost, an outbreak remains
unlikely.

Tailored epidemic models
More detailed models are commonly used to study
influenza transmission dynamics [18, 20, 23, 33, 35]. We
therefore investigate an epidemic model with additional
layers of complexity to study the robustness of the above
results (Methods). First, we assume Erlang (Gamma) dis-
tributed latent and infectious periods [35]. Second, we
stratify the population into three age classes: children (less
than 10 years old), adults (10–60 years), and elderly (older
than 60 years). This extension captures the essence of
heterogeneity in contact patterns by age [40–42], in par-
ticular the observation that contacts are intense among
children, intermediate among adults and between adults
and children, and low with and among the elderly. To
be able to compare results with the earlier models with-
out age-structure, we assume indiscriminate vaccination,
i.e. vaccination coverage is equal in all age groups. Third,

since influenza vaccines provide partial protection to
infection [12–14], we extend the model to account for
the leakiness of the vaccine. With this assumption, heav-
ily exposed vaccinated individuals are more likely to be
infected than vaccinated individuals who are sporadically
exposed.
In the tailored model, we find that the epidemic peak as

well as the attack rates are still increased when the dura-
tion of immunity is variable (Fig. 5). This is true for all
age groups, and for the unvaccinated as well as vaccinated
subpopulations. In line with the heterogeneity in contact
patterns, and in agreement with incidence data [1], we find
that the attack rates are highest in children, followed by
adults and the elderly. When the vaccination coverage is
such that the population is close to the outbreak thresh-
old in the constant immunity scenario (20–30%), attack
rates are higher with than without a variable duration of
immunity, like we observed in the basic model (Fig. 3).
Specifically, at a vaccination coverage of 25% the attack
rate in unvaccinated children is only 0.5% if the duration of
immunity is constant, while it is 2.8% (95% CI: 1.8%, 4.1%)
if the duration of immunity is variable (Fig. 5). Similarly,
at 25% vaccination coverage only 0.3% of the vaccinated
children are infected in the model with a constant dura-
tion of immunity, while 1.5% (95% CI: 1.0%, 2.2%) of the
vaccinated children are infected if the duration of immu-
nity is variable. Similar results are obtained when the

a

b

c

Fig. 5 Increased attack rates in an age-specific epidemic model. Variation in duration of immunity increases the epidemic peak (a) and the attack
rates in the unvaccinated (b) as well as in the vaccinated (c) subpopulations. In this model we assume a leaky vaccine, use age-specific contact
patterns, and take realistic latent and infectious periods (using two latent compartments and two infectious compartments). The time series shows
periodic behavior with periods of 2 and 3 years (at vaccination coverages 0-13% and 14-15%, respectively) for the scenario with constant duration of
immunity. Shown are the averages of the periodic epidemics, explaining the irregularity of the blue curves. Percentile bands are not drawn in b and c
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basic model is extended with either a leaky vaccine, or an
age-dependent transmission framework (Additional file 1:
Figure S4). Together, the extensions of the basic model
illustrate that the finding of increased attack rates due to a
variable duration of immunity is generic, and is expected
to be found in even more complex models.

Discussion
The effectiveness of humoral immune responses devel-
oped during past influenza infections to current strains
is determined by the antigenic evolution of the virus
[6–8]. Typically, the effective duration of immunity is rel-
atively short but longer than a single influenza season, so
that past influenza epidemics influence the epidemiology
of the present epidemic. It is also known that the period of
immunity varies substantially, and is driven by antigenic
evolution of the virus. Here we have shown that linking
the year-to-year epidemiology and including variation in
the duration of immunity in transmissionmodels together
are expected to have a profound impact on the transmis-
sion dynamics of influenza. Specifically, the total size of
epidemics becomes highly irregular, with increased mean
peak prevalence and reduced impact of vaccination on
infection attack rates.
These phenomena are not only observed in overly sim-

ple influenza models, but also in more realistic ones that
take important aspects of influenza epidemiology into
account. For instance, our findings are preserved in mod-
els that distinguish between infection- and vaccination-
induced immunity, include both all-or-nothing and leaky
immunity, and take age-structure and the essence of
human contact patterns into account. In fact, the results
stem from the non-linear relation between population
susceptibility and infection attack rate (Additional file 1:
Text S1), a hallmark of the transmission dynamics of
infectious diseases. Hence, it is expected that the above
findings will persist in still more complex models. Such
extensions could for instance include an explicit distinc-
tion between influenza A and B subtypes, heterogeneity
in contact rates, or explicit strain dynamics resulting in
buildup and loss of immunity [45].
Several limitations and simplifications deserve scrutiny.

First, in our analyses we assumed that vaccine efficacy (i.e.
primary vaccine failure in our model) is a fixed quantity
that is uncorrelated with other model parameters. This is
unlikely to be true in practice. For instance, it seems plau-
sible that vaccine efficacy is correlated with the rate of
waning immunity, because a highly drifted virus will result
in a poor vaccine match. The implication is that the ten-
dency for overshooting in models with variable immunity
may be increased further. As a consequence, our results
should be conservative, in the sense that they provide a
lower bound for the differences in attack rates in models
with fixed and variable duration of immunity.

Another potential limitation is that we did not include
blunting of antibody immune responses, which has been
reported when using one vaccine strain for multiple sea-
sons ([46] and references therein). This is done partly
because this finding is still somewhat contentious, while
the potential quantitative impact remains uncertain. Nev-
ertheless, it may well be that variation of influenza
epidemics between years may be due in part to this phe-
nomenon. Hence, immune blunting could contribute to
decreasing vaccine effectiveness, not only directly but also
indirectly by increasing variation in infection attack rates.
In fact, we argue that any mechanism that increases vari-
ation in infection attack rates is expected to reduce the
impact of vaccination.
A final simplification worth mentioning is that we

assumed that vaccination, the influenza epidemic, and
demographic turnover and virus evolution take place on
different timescales. Although this seems a reasonable
assumption, timescales are not entirely separated. In par-
ticular, it is known that influenza evolves during the
influenza season, and that the effectiveness of vaccination
may wane during the influenza season [44, 47]. Unfortu-
nately, it is not possible to assess the potential quantitative
impact of this in the current model, which is built around
the assumption that timescales can be separated.
Despite the importance to use a multi-year frame-

work with a variable duration of immunity to describe
the epidemiology of influenza and estimate the impact
of vaccination, epidemiological studies invariably treat
influenza epidemics as if they are independent of one
another (reviewed in [15]). This has potential implications
for evaluations of vaccine effectiveness, if only because
the effectiveness is expected to be lower if by chance the
epidemic in a certain year is larger than average, thereby
increasing differences in the probability of infection in the
unvaccinated and vaccinated subpopulations. Again, this
is caused by the non-linearity in the infection dynamics.
For instance, vaccinated persons who escape infection in
a mild influenza season affecting a small fraction of the
population may well be infected in a severe influenza epi-
demic affecting a larger fraction of the population, even
though their level of immunity and match of the vaccine
with the virus is identical in both cases. Thus, the epi-
demiological history in the population needs to be taken
into account when estimating the vaccine effectiveness,
for example by including the size of past epidemics as
covariate in statistical analyses.
With regard to public health implications it is note-

worthy that some countries have started vaccination
of healthy children to reduce influenza circulation
[2, 3], relying on predictions by models with a fixed
duration of immunity [18, 20, 23, 33, 35]. Especially
in children, however, the long-term effects of vac-
cination are unknown. Moreover, by increasing the
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vaccination coverage, it is conceivable that a situation
will be created in which the pool of susceptible persons
increases gradually over the years until a large epidemic
occurs that affects an unexpectedly large fraction of the
population.

Conclusions
Our models show that variation in the duration of immu-
nity negatively affects the effectiveness of vaccination of
epidemic pathogens. Such variation is well-documented
for influenza A, and is caused by the virus’ irregular evolu-
tion. Hence, we call for a multi-year perspective in analy-
ses of the transmission dynamics and vaccine effectiveness
of influenza.
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models. Figure S5 Variable duration of protection results in increased
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duration of immunity on age-specific infection dynamics. (PDF 185 kb)
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