archives-ouvertes

Assessing the Quality of Architectural Design Quality

Metrics
Nicolas Anquetil, Andre Hora

» To cite this version:

Nicolas Anquetil, Andre Hora. Assessing the Quality of Architectural Design Quality Metrics. [Re-
search Report] Inria Lille Nord Europe - Laboratoire CRIStAL - Université de Lille. 2013. hal-
01664311

HAL Id: hal-01664311
https://hal.inria.fr /hal-01664311
Submitted on 25 Jan 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.inria.fr/hal-01664311
https://hal.archives-ouvertes.fr

Assessing the Quality of Architectural Design
Quality Metrics

Nicolas Anquetil*’, André Hora!
*CRIStAL, University of Lille-1, France
"Inria Lille—Nord Europe, France

nicolas.anquetil@inria.fr

May. 12, 2013

Abstract

As software ages, its quality degrades, leading to pathologies such
as architectural decay, a problem that is hard to fight against. First,
it is a slow drifting process that results from the natural evolution
of software. Second, correcting it is a costly and dangerous opera-
tion that has the potential to affect the entire code base. A daring
prospect on systems of multi-million lines of code. This spawned a lot
of research, for example to measure the quality of a software archi-
tectures. Yet a fundamental issue remains, we have very little means
of measuring the quality of a given architecture. One of the reasons
for this seems to be that building a formal experiment to test these
issues is difficult due to the fuzzy nature of what is a good architec-
ture, and to the need to use large and real systems. In this paper we
setup an experimental design with well know systems such as Eclipse
or JHotDraw that would allow to test the relevance of architectural
design metrics. We illustrate it on some well known metrics.

Keywords: Software Quality; Software Architecture Quality; Design Qual-
ity Metrics; Empirical experiment



1 Introduction

“As a software system evolves, its structure worsen, unless work is explic-
itly done to improve it” [1]. This law of software evolution spawned lot of
work in automatic software restructuring with the idea of proposing a better
architectural design for legacy systems.

Because we don’t really know how to evaluate the quality of an architec-
tural design, and because these approaches are based on their own measure
of quality (the objective function), evaluation of the results have typically
been difficult, sometimes relying on metrics similar to the one used to get
the results (denounced in [7]); sometimes comparing against architectures of
unknown value (e.g., the actual structure of the systems used as test bed);
and sometimes asking experts to rate these results. Evaluating objectively
a software architecture is difficult because it embodies some of the most dif-
ficult aspects of software engineering: software systems are unique pieces of
craftsmanship that need to answer to unique constraints, making it difficult
to compare them one to another or generalize the results; a good architectural
design is a fuzzy concept that accept several solutions to one given problem!;
controlled experiments in laboratory are difficult to set up, if at all possible,
because the real issues only appear on large, real world systems, with real
world constraints; for the same reasons, manual evaluation is subjective and
costly.

A fundamental issue seems to be able to build empirical evidence that
any architectural design quality principle is relevant to the practice. This
empirical evidence, however, is not easy to establish [7, 8] for the reasons
listed above. For a given software system, there might be many different and
equally valid possible architectural solutions. Architectural quality is a fuzzy
problem that we do not fully understand.

In this paper, (i) we propose a formal experimental setup to assess the
relevance of architectural design quality metrics; (ii) we implement it with
a testbed of real world systems (among them Eclipse and JHotDraw); and
(iii) we illustrate its application on some existing architectural quality met-
rics (cohesion/coupling metrics). The idea of the formal experiment is to
consider real restructuring actions that were performed on subject systems
and look at the values of the architectural quality metrics before and after

!'Nice answers to the question “what is a good software architecture?” may be found
on http://discuss.joelonsoftware.com/default.asp?design.4.398731.10 (e.g., “It’s a bit like
asking What is beautiful?”). Last consulted on 12/10/2012.



this restructuring. Adequate architectural quality metrics should be able to
measure the increase in quality after the restructuring.

This paper is organized as follows: In Section 2, we first review existing
architectural quality metrics, mainly focusing on cohesion/coupling measure-
ment and also illustrating the difficulties of assessing the architectural design
of real world systems. We follow, in Section 3, with the presentation of our
formal experiment to validate the relevance of these metrics. The next sec-
tion (§4) details the choice of real systems as subjects of our experiments. We
present and discuss the results of testing some known cohesion or coupling
metrics on these systems in Section 5.

2 Architectural Quality Assessment

Although every software engineer will agree that defining a good software
architecture for a software system is key, there is little agreement on what is
a good software architecture? and general belief sees it as a subjective topic.

On the other hand, it is clear that having a reliable answer to this question
would be of utmost utility to help people design their systems, redesign
(restructure) them, or monitor their quality. One key precept on architectural
design quality is that modules should be highly cohesive and loosely coupled.
This was stated by Stevens et al. [2] in the context of structured development
techniques. His objectives was to foster reusability by making it as easy as
possible to extract a module from a system and plug it into another one.

Since then the ideas have been transposed to OO programming and con-
tinue to hold, be it at the level of classes (e.g., [9]) or at the level of packages.
In the OO paradigm, it spawned lot of research, particularly for quantifying
the cohesiveness and coupling of classes as witnessed by Briand et al. [9].

In the following, we review existing cohesion/coupling metrics for pack-
ages. And discuss their relevance in practice.

2.1 Cohesion/Coupling metrics for packages

Many cohesion or coupling metrics may been found in the literature. They
may apply to packages or classes. Because we consider system architecture,
we are interested in the design quality of packages or groups of classes. But
measuring cohesion and coupling of classes or packages are two well separated

2Again, see http://discuss.joelonsoftware.com /default.asp?design.4.398731.10



issues. Class metrics don’t apply to architecture quality assessment, because
a package containing highly cohesive classes could be non-cohesive if each
classes deal with a specific topic, and a package containing highly coupled
classes could be lowly coupled if its classes were all coupled together and not
with other packages.

A review of different cohesion or coupling metrics for packages may be
found in [10]. We chose five well known cohesion and coupling metrics, for
demonstration purposes:

e Bunch, presented in [11], is a tool that remodularizes automatically
software, based on the metrics of module cohesion and coupling defined
by the approach. Cohesion and coupling are defined as a normalized
ratio between the existing dependencies of a package’s classes and the
maximum number of such dependencies.

The maximum number of dependencies within a package (cohesion) is
the square of the number of classes within that package. The maxi-
mum number of dependencies between a package and the outside (i.e.,
its client and provider packages) is the number of classes within the
package multiplied by the number of classes outside the package.

e With Relational Cohesion in [12], Martin defines the cohesion of pack-
ages as the average number of internal relationships per class. Thus,
it depends on the number of dependencies, as well as the number of
classes within the package.

e Efferent coupling (Ce)?, also proposed by Martin, looks at the number
of classes outside the package on which classes inside it depend. Af-
ferent coupling (Ca) is the number of classes external to the package
which depend upon classes in the package. Both metrics are computed
regardless of the number of dependencies between the classes.

2.2 Relevance of architectural quality metrics

Current evaluation of a software architecture’s quality is limited to the high-
cohesion/low-coupling dogma. Yet, some started to notice that we have
little understanding of “how software engineers view and rate cohesion on

3Martin’s Ce and Ca are not describe in Ebad’s paper, but they make a useful match
to Martin’s cohesion metric.



an empirical basis” [8] (this was for classes); or that “it has been difficult to
measure coupling and thus understand it empirically” [13]. The same holds
at the level of packages [14].

Even worse, other critics were formulated, for example Brito de Abreu and
Goulao state that “coupling and cohesion do not seem to be the dominant
driving forces when it comes to modularization” [3]. A statement with which
Bhatia and Singh agree [4].

Other researchers considered a more theoretical point of view: “we con-
clude that high coupling is not avoidable—and that this is in fact quite
reasonable” [6]; or “we believe that additional investigations are required for
assessing package modularity aspects” [15].

Yet, the critics are sometimes unclear, for example, Counsell et al. in
the same publication [8] also states that the “concept of software coupling is
relatively easy to both quantify and assess”; and Brito de Abreu and Goulao
[3] or Bhatia and Singh [4] proposed their own cohesion/coupling metrics in
response to their critics.

As explained in the introduction, it is difficult to formally assess the
quality of a given architecture:

e The only known metrics are cohesion and coupling and we are arguing
that none was ever validated;

e Asking the opinion of experts would be costly on a realistic scale be-
cause architecture should be evaluated on large systems, one must also
note that, in industry, young programmers are not asked to design the
architecture of complex systems and similarly, evaluating an architec-
tural design would require experienced designers making it even harder
and costlier to find some ;

e Comparing to some golden standard raises the issue of subjectivity of
the solution: for one system, there are several possible, equally valid,
architectures and the validation of any quality metric should take this
into account.

To be of interest, evaluation of architectural design must be done on large,
real, systems because architectural design presumably depends on many fac-
tors, other than cohesion and coupling [3], and the evaluation must consider
these additional factors to bear any relevance. Evaluating a few packages out
of context could cause an evaluator to base his opinion on too few parameters,
thus leading to a possibly unrealistic evaluation.



3 Experimental Assessment of Architectural
Quality Metrics

We wish to evaluate whether the existing architectural quality metrics hold
to their promises in practice, that is to say whether the results they give cor-
respond to the perception of architecture quality of actual software engineers
on real world systems and in real conditions.

3.1 Experiment intuition

We present here the rational for the experiment setup we chose and start to
discuss it’s validity. The experimental setup itself is described in the following
sections, and the present discussion is summarized in the threats to validity
(Section 3.6).

What is a good system architecture and how to measure it? Cohe-
sion/coupling mainly foster reusability, but this is not the sole goal of a
good architecture. For example a Rational Software white paper lists as de-
sired properties: “[to be] resilient [...], flexible, accommodate change, [be]
intuitively understandable, and promote more effective software reuse” [16].
It is difficult therefore to decide how to measure a good architecture. We
propose a practical approach, saying that a good architecture is one that is
accepted as such by some expert software engineers (experts in the systems
considered and in software architecture). Yet, as discussed in the previous
section, we rule out the manual evaluation of results by experts because of
the difficulties and costs involved in evaluating real system architectures in
real contexts. We also explained that there are no other metrics to compare
to. Our last solution is therefore to compare against actual architectures (de-
signed by experts) of known quality and check whether the metrics accurately
reflect this quality.

Ideally, one would like to set up a controlled experiment with architec-
tures of known quality and apply the metrics to them to compare the results
so that all confounding factors can be eliminated. However, we already ex-
plained that this is not possible because there are no scientifically proved,
known quality of architecture. It is also important to remember that modu-
larization is a subjective issue and that for a given problem, several equally
valid architectures could be designed.

Cinnéide et al. [17] proposed a controlled experiment where they in-



troduce random modification in the code and measure the impact on the
metrics. With this experiment, they were able to show that the metrics do
not agree one with the other, and therefore some of these metrics are sure
to be inadequate. However, they cannot tell us which metrics are relevant as
they cannot automatically assess whether the random modification improved
or hurted the architecture.

Because of the nature of software architecture, it seems difficult to set up
a realistic controlled experiment. First the system must be of a reasonable
size so that there is meaning in defining various packages and there can
be enough interactions between them. Also, the difficulties of architectural
design are linked to the many conflicting aspects that influence it. A realistic
testbed should again be large enough so that these aspects may come into
play. The same thing happens for restructuring. The conditions in real life
(mainly the costs, but also the risks) make it difficult to restructure a system.
Such attempts are only made with a well defined goal in mind, a goal that
can only deeply influence the resulting architecture. It can be tricky to set
a realistic goal for a laboratory restructuring effort of a large enough system
that would not be biased by the experiments we are planning here.

We must thus perform a natural experiment (or quasi-experiment) and
work with real architectures. The drawbacks of natural experiments are
known as they include possibilities of the results being caused by undetected
sources (confounding factor). On the other hand, software engineering is
inherently an applied research field. It works with real data (e.g., legacy
systems of millions of lines of code in several programming language) and
aims at impacting the practice of software development and evolution. From
this point of view, controlled experiments have been criticized for being too
artificial thus lacking relevance. Working with real architectures allows us to
test the architectural quality metrics in the setting and conditions they are
supposed to be designed for.

The main difficulty of the experiment is to find real architectures of known
values (whether good or bad) for which we could check the results of the
metrics. Absolute quality values are ruled out for lack of existing proven
metrics, and because of the fuzziness of the domain. So we must turn to
relative quality values with architectures whose quality is known relatively
to other architectures. This implies working with systems with two different
architectures and a known increaser or decrease of quality between them.
The idea of systems having been remodularized springs to mind.

We hypothesize that the modular quality of a software system should

7



improve after an explicit remodularization effort. A similar hypothesis was
informally used by Sarkar et al. in [18]. One of the validation of their metrics
for measuring the quality of non-Object-Oriented software modularization
was to apply them to “a pre- and post-modularized version of a large business
application”.

In the context of this experiment, this hypothesis needs to be considered
carefully. First, how to identify the remodularization? We consider explicit
remodularization effort, that is to say efforts clearly tagged as aiming to
improve the architecture or modular structure of the system. Such explicit
identification of the remodularization effort may appear in the documentation
(News and Noteworthy), in official web sites, etc. Because we consider real
restructuring efforts, one must expect that other changes will also occur
between the two versions considered, typically bug fixes and feature addition.
This is the kind of confounding factor that must be accepted in natural
experiment. Bug fixes are typically localized and can therefore be ignored
at the architectural level. New features may impact the architecture, but
those would happen within the context of the remodularization effort and we
expect that they be taken into account in the new architecture. We assume
that possible new features do not adversely impact the new architecture but
are rather part of it. If one bug fix should be so important as to impact the
architecture, it should similarly be a planed fix already considered in the new
architecture.

Second, did the architecture really improve? Considering the time and
effort one must invest in a remodularization, typically without visible impact
for the user, such task cannot be started lightly. As such we consider that an
explicit remodularization will have a planned target architecture that must
be the result of experienced software engineers’ best efforts. It is hard to
imagine that the new architecture would not be at least as good as the ex-
isting one. Additionally, we propose to focus on past remodularizations of
systems that stood the proof of time. An unsuccessful explicit remodulariza-
tion effort would be identified as such after some time and would similarly
be documented in some way. Even an architecture not entirely successful
(whatever the goal it was assigned), would allow us to get a glimpse on what
the software engineers thing a good architecture is.

What if the two modularizations were different but equally valid? Again,
we will rely on the best effort of the software engineers. Given the costs
involved, one restructures a system to improve the situation. Two cases
may occur, either the new architecture is very different from the previous

8



one (termed global restructuring in this paper), or they have some parts in
common (termed local restructuring in this paper). In a global restructur-
ing, we expect that the architectural quality, at least does not degrade, and
possibly improves. In a local restructuring, we expect that the restructured
parts improved their architectural quality. Additionally, if there are also new
parts, we expect that they do not degrade the architectural quality of the
old architecture, and possibly improves it. Finally for the possible dropped
parts of the old architecture, we ignore them.

We will now formalize the experiment according to the experimental setup
suggested in [19].

3.2 Experiment planning

Analyze architectural quality metrics
with the purpose of comparing

with respect to their results

from the point of view of researchers

in the context of real world, restructured, OO packages.

Note that the limitation to OO systems is not a strong one but the result
of practical constrains. It should be trivial to use the same experiment setup
for non OO systems.

3.3 Context and subjects selection

The context of the experiment will be packages from real OO systems, which
have been explicitly restructured.

The ideal situation for us is that of a global system restructuring with
the following restrictions:

e [t must be an explicit and “pure” restructuring effort (as little bug fix or
feature addition as possible) of limited duration. This will ensure that
we can pinpoint versions just before and just after the restructuring
effort and that the restructuring effects will not be diluted in other
modifications such as enhancements. This is actually very difficult if
at all possible to find in real life. Systems need to evolve, errors need
to be corrected. This is a threat to validity that we must accept if we
are to work with real systems and real restructurings.

9



e [t is better if the restructuring is old enough to have sustained the
“proof of time” that we assume is a guarantee of its success;

e The source code of the systems, before and after the restructuring, must
be freely accessible, and in a programming language that we can easily
parse (Java and Smalltalk for now), to allow computing the metrics.

Such systems are actually difficult to encounter. A search on Google
CodeSearch? for keywords “restructure”, “refactoring”, and “remodularize”
in files “readme”, “news”, “changelog”, or “changes.html”® did not point to
systems that fit our requirements.

We found two systems by indication: Eclipse when it migrated from an
IDE to the Rich Client Platform (version 2.1 to 3.0), and Seaside between
version 2.8 and 3.0. We also include another restructuring of Eclipse, from
version 2.0.3 to 2.1, as a preparation of the RCP restructuring.

To increase the size of our test bed, we will also consider local restructur-
ings, with the same restrictions as above. We therefore add the JHotDraw
system at different moments of its history and the Vivo system between
versions 1.4.1 and 1.5.

All the systems and their restructurings are described below in Section 4.

The subjects of the experiment are the packages of the chosen systems
that were part of the restructuring(s).

3.4 Variable selection and Hypothesis formulation

The independent variable is the version of the system considered. Basically
we are not interested in the specific version number or the release date, but
whether the version is before (base version) or after (restructured version)
the explicit restructuring effort. In some cases, two restructurings may have
been performed consecutively. When it happens, a given version may be a
restructured version (compared to its predecessor) and a base one (compared
to its successor).

The dependent variable is the metric (cohesion or coupling) of the pack-
ages for a given version.

Considering that cohesion improves when it augments, we formalize the
null and alternative hypotheses for cohesion metrics as follows:

“http://www.google.com /codesearch
®The exact searches were: restructure file: (readme|news|changelog|changes.html),
where “restructure” was also substituted by “remodularize” and “refactoring”

10



Hg": The cohesion of restructured packages in a restructured version is less
than the cohesion of packages in the corresponding base version.

H®": The cohesion of restructured packages in a restructured version is
greater or equal to the cohesion of packages in the corresponding base version.

Opposite hypotheses may be formulated for coupling that decreases as it
improves:

H™: The coupling of restructured packages in a restructured version is
greater than the coupling of packages in the corresponding base version.

HvP: The coupling of restructured packages in a restructured version is less
or equal to the coupling of packages in the corresponding base version.

3.5 Experiment design and instrumentation

The test will compare one variable (a cohesion or a coupling metric) on two
treatments (base and restructured versions).
On any given restructuring two experimental designs may be considered:

Paired: (within subjects) For packages present in both base and restruc-
tured versions, one measures their cohesion (or coupling) and compares
the values. Paired design is usually considered best as it allows to derive
conclusive results with fewer subjects.

Unpaired: (between subjects) Packages that are created in the restructured
version don’t exist in the base one, those removed in the restructured
version, only exist in the base one. In this case one compares the av-
erage cohesion (or coupling) of the packages in each versions, packages
existing in both base and restructured versions are considered different.
Unpaired design still allows to draw conclusions but requires more data
to get convincing results.

We perform two tests: Unpaired design for global restructurings and
paired design for local and global restructurings.

Global restructurings are those affecting the entire system, or most of
it. In this case we use an unpaired setting to consider all the packages of
both versions. The idea is that a global restructuring should improve the
quality of the system as a whole, which is measured by taking into account
all the packages. The unpaired setting is not a problem because we have

11



enough packages to draw conclusions. There are two global restructurings in
our testbed: Eclipse restructuring from version 2.1.3 to 3.0 and Seaside from
version 2.8 to 3.0.

For the local restructurings, we cannot use the same setting because al-
though the quality of the restructured packages should improve, the quality
of the system as a whole may decrease (due to other modifications to the sys-
tem). We therefore choose a paired setting where we compare only packages
that exist in both versions and were restructured. There are less of these
packages, but the higher sensitivity of the paired setting allows to draw con-
clusion. There are four purely local restructurings: Eclipse from v.2.0.2 to v.
2.1, JHotDraw from v. 7.3.1tov. 7.4.1,v. 7.4.1 to 7.5.1, and v. 7.5.1 to 7.6,
and Vivo from v.1.4.1 to v.1.5. We will also consider the packages present in
both base and restructured version of the global restructurings.

Metrics will be computed with the Moose data analysis environment. It
must be noted that one of the systems studied, namely Seaside, is written in
Smalltalk, a language not statically typed. This implies that one can rarely
infer the type of variables statically, and as a consequence that dependencies
between classes cannot always be computed as accurately as with statically
typed languages. We don’t see this as an important issue: First, we also have
Java systems to study so that the Smalltalk one is an additional contribution
to the experiment; second, not all metrics are impacted by this fact; third,
the problem is often mitigated by other factors, for example when the name
of a method is unique in a system (not rare), one always knows to what class
this method belongs; and fourth, any architecture quality metrics would also
need to be computed for these languages, and therefore present the same
difficulties.

3.6 Validity evaluation

We did not identify any conclusion validity threat. Validity of the results is
tested using the appropriate statistical test at the 5% significance level which
is customary. In software Engineering, data typically do not follow a Normal
distribution (e.g., [20, 21]), we test our hypotheses using a one-tail Wilcoxon
test.

The fact that the cohesion/coupling metrics used might not actually mea-
sure what people mean by package cohesion and coupling is not a construct
validity threat because we set to assess the validity of the metrics, not the
validity of the cohesion/coupling principle.

12



One might consider that measuring accurately some of the metrics on the
Smalltalk system is a construct validity threat. Because Smalltalk is a dynam-
ically typed language, it is sometimes more difficult with statistic analysis to
ascertain what method is invoked in the code. But even in this case, we are
still measuring the validity of the metrics, as they can be measured, for this
language.

We identified an internal validity threat to the experiment: Even for
explicit restructuring efforts, in real situation, it must be expected that other
modifications will be included such as bug correction or some enhancement.
This was already discussed in Section 3.1. We monitor this threat by looking
at the detailed description of all work done in the restructured versions.

We identified the following external validity threats: We had to rely on
convenience selection of subjects systems and could not find many of them.
This is a threat, but we have systems in different application domains, and
in two programming languages which can only contribute to strengthen our
conclusions. The experiments would need to be replicated with other systems
that matches the requirements.

Another possible external validity threat is that the restructuring efforts
might not have been as successful as we hope, and the resulting architecture
quality have effectively decreased. To try to detect such cases, we looked at
one more version after the restructuring to detect whether more work had
been done on the architecture.

4 Subject Systems

As test bed for our experiments, we use four systems that underwent restruc-
turing operations: Eclipse, JHotDraw, Vivo, and Seaside. In this section, we
describe each system both qualitatively and quantitatively. Before that, we
list some generic guidelines we use to define the testbed.

4.1 Guidelines to select source code

In these systems, it is not always clear what source code (packages) to include
in the testbed. Eclipse for example is a very large project that went from 379
packages in version 2.0 to 751 in version 3.1. Not all of it is directly impacted
by the restructurings that occurred whereas we want to consider as little
packages as possible to avoid diluting the results in too much source code

13



not restructured. For JHotDraw, another difficulty is that the restructurings
are sparingly documented (e.g. “Some changes in the package structure and
renamings of classes have been made in order to improve the clarity of the
frameworks”) and we need to decide for ourselves what was impacted by the
restructuring.

To select an apropriate body of code, we set some generic requirements,
including those already stated in Section 3.3:

Explicit: Explicit restructuring effort to ensure as much as possible the
quality of the new architecture;

Pure: “Pure” restructuring with as little extra changes as possible also to
ensure the quality of the result.

Small: Just enough source code to cover the restructured part. The code
need to be small not to dilute the result of the restructured code into
other untouched parts.

Functional: Ideally we would like a body of code that can be successfully
compiled so as to be meaningful. This is intended to ensure that the
examples are realistic.

Consistent The source code should cover the same set of functionalities
over all versions studied. It would be easier if the comparison could be
on a somehow fixed set of classes and/or methods. This is, however,
difficult because restructurings often include removing some class and
introducing new ones. The same goes with functionalities which are
harder to monitor.

To select which packages can be considered as restructured (well designed)
or not, we defined simple rules:

Documented: the documentation may not always be as elusive as the ex-
ample given above. When some package is explicitly mentioned, we, of
course, consider it restructured.

New: If a package is introduced in a restructured version, we consider it
is well designed just as we assume that new feature added during the
restructuring would not damage the new architecture but be part of it
(Section 3.1).

14



Note, on the other hand, that we cannot make a similar assumption
for normal (not restructuring) versions. A new concept might be split
up between already existing code, in various old packages, and new
code, in the new package. In this case the new package could not be
considered well designed.

Class transfer: If a class is transferred from one package to another be-
tween a normal version and a restructured one, we consider that both
packages improved their design quality. The idea is that restructur-
ing may be done by moving classes around. When this happens, we
must hypothesize that it was not well placed, therefore the quality of
the package loosing it improved. Similarly we must also hypothesize
that the class is placed in the proper package after the restructuring,
so the quality of this one also improved. Note that we only need to
hypothesize that the packages’ quality improved, we don’t require for
our experiments that they be the best possible packages.

We actually apply this rule only when two or more classes are transfered
(possibly from/to two different packages) in fear, for example, that
moving only one class out of 10 or 20 would not be meaningful enough.

For Smalltalk, class transfers are easy to find because class names are
unique in the environment, for Java, when there are several classes with
the same name (in different packages), we manually look at their code
to identify which one was transfered.

4.2 Qualitative Description

We describe here the four subject systems we use and discuss the packages
that were or not part of the restructurings.

4.2.1 Eclipse

Eclipse is the well known, open source, IDE. It is developed in Java. In
2004, Eclipse had two successive restructurings. The main one, from version
2.1.3 to 3.0 evolved Eclipse from the concept of an extensible IDE toward
the Rich Client Platform (Eclipse RCP). The other one, from version 2.0.2
to 2.1, consisted in a preliminary restructuring in preparation for the former.

15



One interest of this restructuring is that it is well documented®. A graphical
representation of the old and new structure of Eclipse” can be found in Figure
1.

One can see that this restructuring was mixed with enhancement, such
as the introduction of OSGI in the Runtime layer. As discussed in 3.1, we
do not see this as problem because the new architecture must have been
designed with such new feature in mind, therefore the new Runtime layer
should have been redesigned as best as the architects could make it.

Eclipse Platform 2.1 (pre-RCP) Eclipse Platform 3.0 (post-RCP)

Team/
Help | Update | Compare Debug Search cvs T

ul

IDE Views
Workbench ation | (Generic Workbench)
(with IDE personality)

Resources
Runtime Runtime (OSGl)

Figure 1: An illustration of the architecture of the Eclipse platform before
RCP (v. 2.1) and after RCP (v. 3.0). From a presentation at EclipseCon
2004.

We looked at the base and restructured versions of the two restructurings
(2.0.2, 2.1, 2.1.2 and 3.0) as well as all minor versions between 2.0 and 3.1 (2.0,
2.0.1, 2.0.2, 2.1.1, 2.1.2, 2.1.3, 3.0.1, and 3.0.2). The source code for these
versions was downloaded from http://archive.eclipse.org/eclipse/downloads/, and
we chose the archives “Source Build (Source in .zip)”, files named “eclipse-
sourceBuild-srcIncluded-version.zip”.

Eclipse is a very large project, in accordance with the Small requirement,
we consider only part of it. The platform is organized in plugins, a larger
modularization structure than packages (a plugin typically contains several
packages) that is actually perpendicular to the package decomposition (a

For example see the “Original Design Documents” section of http://wiki.eclipse.org/
index.php/Rich_Client_Platform, last consulted on 09/10/12

"From a presentation at EclipseCon 2004, http://www.eclipsecon.org/2004/
EclipseCon_2004_Technical TrackPresentations/11_Edgar.pdf, last consulted on
09/10/12

16



package can be split over several plugins). We refined the requirement of
section 4.1 into the following rules:

Following the Small and Functional requirement, for the first version
(2.0) we excluded plugins related to JDT (Java programming), PDE
(Eclipse plugins development), and team (version control management)
so as to keep only the core functionalities.

SWT, the GUI framework of Eclipse, exists in various configurations
(MacOS, Linux, Windows, ...). We choose the plugins related to
Linux/GTK to avoid considering various possible implementations of
the same classes (Functional requirement).

If a plugin, included in the experiment, requires another plugin, then
that other one is included too (Functional requirement), eventually
recursively.

If a plugin is included in one version, then include it for all preceding
and following versions (i.e. all versions studied) where it can be found
(Consistent requirement).

If a plugin included in one version has packages that we could find in
another plugin in another version (preceding or following), then include
that other plugin (Consistent requirement).

As a result, we included 15 plugins in the first version (2.0) and 33 in the
last (3.1). They are listed in Table 1.

4.2.2 JHotDraw

JHotDraw® is a framework for structured, two-dimensional, drawing editors.
It is developed in Java. From its first version, HotDraw (the Smalltalk ver-
sion) was developed as a “design exercise”. For example, it relies heavily on
well-known design patterns. Recently, several notes in the documentation®
made explicit reference to restructurings of parts of the framework:

v. 7.4 (2010-01-16) “The package org.jhotdraw.draw has been split up
into sub-packages”;

8http://www.jhotdraw.org/
http://www.randelshofer.ch/oop/jhotdraw/Documentation/changes.html

17



Table 1: Plugins of Eclipse included in the experiment for the main versions
considered

Packages 20 2.1 3.0 3.1
org.eclipse.ant.core X X X X
org.eclipse.compare X X X
org.eclipse.core.commands
org.eclipse.core.boot X X
org.eclipse.core.expressions
org.eclipse.core.filebuffers
org.eclipse.core.resources X X
org.eclipse.core.runtime X X
org.eclipse.core.runtime.compatibility
org.eclipse.core.variables
org.eclipse.help X X
org.eclipse.help.appserver X
org.eclipse.help.base
org.eclipse.help.ide
org.eclipse.help.ui X X
org.eclipse.jface
org.eclipse.jface.text
org.eclipse.osgi
org.eclipse.platform X
org.eclipse.search X
org.eclipse.swt X
org.eclipse.text
org.eclipse.tomcat X
org.eclipse.ui X
org.eclipse.ui.cheatsheets
org.eclipse.ui.console
org.eclipse.ui.editors
org.eclipse.ui.forms
org.eclipse.ui.ide
org.eclipse.ui.views
org.eclipse.ui.workbench
org.eclipse.ui.workbench.compatibility
org.eclipse.ui.workbench.texteditor
org.eclipse.update.core X
org.eclipse.update.ui

org.eclipse.update.ui.forms X
I8

X X

X X X X X X X X X

X X

X X X X X X

X
X XXX X X X XX XXX XXX XXX XXX XXXXX X X X X X

X X X X X X X XX XX XXX XXX XX XX

X
X X X X X X X




e v. 7.5 (2010-07-28) “Some changes in the package structure and re-
namings of classes have been made in order to improve the clarity of
the frameworks.”

e v. 7.6 (2011-01-06) “Drawing Framework — User interface classes which
depend on the drawing framework have been moved from the org.jhot-
draw.gui package into the new org.jhotdraw.draw.gui package.”

For the first two, very shortly after the restructured version there is a
minor version correcting some bugs. We consider these minor versions rather
than the first restructured one (7.4.1, 7.5.1 and 7.6). We also add the last
version before the first restructuring (7.3.1).

One can see that, contrary to Eclipse and Seaside (§4.2.4), these are
localized restructurings. We follow the rules defined in Section 4.1 to identify
which packages are restructured or not.

4.2.3 Vivo

Vivo!® aims at enabling collaboration and facilitating discovery of researchers
and collaborators across all disciplines. Vivo is an open source Java web
application.

The system was restructured in version 1.5': “The VIVO 1.5 develop-
ment cycle has also included extensive design work on features anticipated for
implementation beginning with version 1.6, including increased modularity,
the introduction of a separate ontology for display and editing controls, and
the addition of a graphical ontology class expression editor.” (our emphasis).

The documentation makes clear references to enhancements to the sys-
tem. We discussed this possibility in Section 3.1.

We looked at versions 1.4, 1.4.1 and 1.5.

4.2.4 Seaside

Seaside!? is an open source framework for developing dynamic web applica-
tions. It is developed in Smalltalk. Between version 2.8 and 3.0, Seaside
underwent a huge restructuring effort: “The monolithic Seaside package has
been split into several independent modules”!3. The architecture went from

Ohttp:/ /vivoweb.org/

Yhttp://vivoweb.org/blog/2012/07 /vivo-release-1-v15-announcement
2http: //www.seaside.st

13http: //www.seaside.st/community /development /seaside30

19



27 to 52 packages, with only 4 packages in common.
We consider the restructured version (3.0) as well as the one before (2.8)
and the most recent one after (3.0.7).

4.3 Descriptive Statistics

We use different size metrics to give a synthetic view of the systems considered
and a first impression on what happened between their successive versions
(see Table 2). The metrics are: number of packages, average number of
classes per package, average number of methods per class, average number
of lines of code per class, and average cyclomatic complexity per method.
Restructured versions (global or local) are marked with a (r).

Table 2: Descriptive statistics of the three subject systems. Versions where
some restructuring occurred are marked with (r. For Eclipse, we do not detail
all the minor revisions (2.0.1, 2.0.2, ...)

# classes # methods LOC Cyclo.C.

vers.  # packages

/pckg /class /class  /meth.
Eclipse (Java)

2.0 123 19.0 10.6 145.4 1.99
(r)2.1 133 19.7 109 1520  2.05
(r)3.0 264 15.4 10.6 140.7 1.99

3.1 322 14.6 10.8 142.6 2.01

JHotDraw (Java)

7.3.1 20 21.2 10.7 117.3 1.71
(r)7.4.1 38 11.3 10.8 118.6 1.70
(r)7.5.1 41 11.1 10.8 125.3 1.72
(r)7.6 41 11.2 11.0 126.6 1.71

Vivo (Java)

1.4.7

1.4.1 141 7.5 9.3 107.9 1.87
(r)1.5 157 7.3 9.4 106.8 1.81

Seaside (Smalltalk)

2.8 23 11.0 10.1 41.3 1.30
(r)3.0 62 7.6 8.9 39.7 1.33

3.0.7 62 8.2 8.9 39.9 1.34

20



Almost all new versions imply in more packages. This is a known be-
haviour of software systems. This increase can be very large for some re-
structuring, for example Seaside 3.0 has three times more packages than its
base version Seaside 2.8 (27 packages). In this case, we are facing a global
restructuring with a common stating that: “The monolithic Seaside package
has been split into several independent modules”.

Restructurings seem to result in a diminution in the average size (number
of classes) of the packages (although the total number of classes, not shown in
the table, usually increases). The idea that a good design imposes restrictions
on the size of packages is not new and was already noted in [3] or [4]. This is
the only consistent phenomenon we can perceive in this preliminary analysis.
This is something that we can test in our experiments.

We also give some descriptive statistics for the restructurings themselves
(Table 3). We focus on the number of packages: how many before and
after the restructuring, how many added, removed or restructured during
the restructuring. The rules to define what packages were restructured are
described in Section 4.1, in a nutshell a restructured package is one that
exists in both versions and looses or gains more than two classes. “Impacted
packages in base version” is the proportion of packages in the base version
that were either removed or restructured. “Impacted packages in restructured
version” is the proportion of packages in the restructured versions that were
either added or restructured.

Table 3: Descriptive statistics of the restructurings considered. The two
global restructurings are in bold face

Eclipse JHotDraw Vivo Seaside

2.0.2 213 731 74.1 7.5.1 1.4.1 2.8

21 3.0 7.4.1 751 7.6 1.5 3.0
# packages in base version 124 134 20 38 41 141 23
# packages removed 5 11 0 0 1 ) 18
# packages restructured 6 14 2 2 1 3 3
# packages added 14 141 18 3 1 21 57
# packages in revision 133 264 38 41 41 157 62
Impacted in base version 9% 19% 10% 5% 5% 6%  91%

Impacted in restruct. version 15% 59% 53% 12% 5% 15%  97%

21



The two global restructurings are highlighted in bold in the table. One
can notice that these two restructurings impact a large number of packages,
95% of the packages in Seaside v. 3.0 were added or restructured from its
base version 2.8; and 59% of the packages in Eclipse v. 3.0 were added
or restructured from its base version 2.1.3. This is expected and justify
calling these global restructurings. One local restructuring seems to come
close to these with many new packages: JHotDraw 7.3.1/7.4.1 (53% of new
or restructured packages). The decision whether we face a global or local
restructuring is mainly rooted in the documentation of the systems, and
may be we could consider JHotDraw 7.3.1/7.4.1 as a global restructuring.
Note however, that this local restructuring differs from the global ones in
that it removes or restructures few packages (10% of impacted packages in
base version). We will look more closely at this local restructuring in our
unpaired experiment.

In Table 3 on the third line, we indicate the number of individual packages
that we identify as restructured from a base version to a restructured one.
There are actually not many of these and it could harm the paired statistical
test. Eclipse provides most (14 out of 36=39%) of all restructured packages.
More restructurings would be needed to improve this aspect of the testbed.
Since they don’t need to be global restructurings, it should be possible to
make progresses on this issue.

5 Experimental Results

We now present some experimental results on applying different metrics on
our test bed. We test the size/complexity metrics used in Section 4.3, and
five well known cohesion or coupling metrics (Section 2.1).

5.1 Global restructurings, unpaired setting

The results for the global restructurings (in bold) are given in Table 4. As
discussed in the previous section, we also include results for one larger local
restructuring (JHotDraw 7.3.1/7.4.1).

The size/complexity metrics decrease (negative variation from base to
restructured versions) in the three cases. On average, there are less classes
per packages, less methods and LOCs per class and the method have a smaller
cyclomatic complexity. This agrees with intuition (see discussion in Section

22



Table 4: Difference in metric value (restructured version - base version) for
three restructuring revisions. The two global restructurings are in bold face.
Results significant at the 5% level are marked with (**), at the 10% level
marked with (*). Wilcoxon test, unpaired setting.
Eclipse JHotDraw  Seaside
2.1.3/3.0 7.3.1/74.1 2.8/3.0

# class/package -2.0 ** -2.0 -4.0 **
# method/class -0.9 * -1.7 -2.8 **
LOC/class -17.6 ** 211 -6.7
Cyclo.C./method -4.2 ** -4.2 -3.2
Marting Cohesion ~ -0.101 -0.039 -0.737 **
Bunch Cohesion -0.001 0.035 * 0.046
Afferent coup. (Ca) -2.0 ** -1.0 -37.0 **
Efferent coup. (Ce) -8.0 **  -11.0 -33.3 *
Bunch coupling 0.000 ** 0.001 -0.043 **

4.3 and [3] or [4]). But these results are statistically significant (when they
are) only for the two global restructurings.

We conclude that in the two global there is a significant decrease in size
and complexity of the packages.

For the cohesion metrics, The results are not what one could expect. Mar-
tin cohesion exhibits only negative differences, it decreased, being statistically
significant at the 5% level for Seaside. Bunch cohesion has slightly better
results we a positive difference for Seaside, but this result is not significant.
It also increased for the JHotDraw local restructuring with a significance at
the 10% level, however, the unpaired setting is probably not relevant for this
structuring since it is not a global restructuring, suggesting the change in
metric could be the result of some other activity not directly related to the
restructuring.

Overall, these cohesion metrics do not seem able to reliably measure the
increase in quality resulting from the global restructurings of our testbed.
Cinnéide et al. [17] already shed some doubts on the relevance of these
metrics.

For coupling the results appear better. Differences are mostly negative
(particularly Martin’s two coupling metrics) which indicates a lower cou-

23



pling after restructuring. This is the expected behavior. Bunch coupling
is decreased for seaside and is stationary for the two other. Moreover, the
results are statistically significant for the global restructurings (for Ce on
Seaside 2.8/3.0, significance can only be found at the 10% level). Results are
less clear for the local restructuring, but this is compatible with the idea that
the overall design of the system could worsen while locally some packages are
improved (Section 3.5).

These opposite results between cohesion and coupling are disturbing. For
Bunch cohesion and coupling, the difference between the two formulas resides
in considering dependencies within a package (cohesion) or dependencies be-
tween a package and the outside (coupling). For a constant set of depen-
dencies, improving cohesion implies more dependencies within the packages,
therefore, less dependencies crossing the boundaries of the packages, and
therefore, an improved coupling too.

For Martin’s metric things are more complex since cohesion is based on
dependencies internal to a package (similar to Bunch cohesion), whereas the
coupling metrics are based on external entities but not dependencies.

We already noted that, in our experiments, the number of packages and
classes increased, sometime very much. We did not monitor the number of
dependencies because it falls outside of the scope of this paper. But the
relative variation in number of packages, classes and dependencies should
have an impact on the metrics’ values, independently of the quality of the
modularization. More experiments will be needed to clarify this point.

5.2 Normal versions, unpaired setting

As a comparison base with the previous experiment, we applied the same tests
to several “normal versions”, i.e. versions that were not restructuring ones.
We tried not to over represent any of the system in this experiment. These
versions are, for Eclipse: 2.0/2.0.1 and 3.1/3.1.1; for JHotDraw: 7.2/7.3, and
7.3/7.3.1; for Vivo: 1.4/1.4.1; and for Seaside: 2.7/2.8, and 3.0/3.0.7. We do
not give all the results here to save space, but we will comment them and
highlight the most important ones.

In none of these minor, normal revisions, could we detect a statistically
significant change in the value of any of the metrics. Moreover, many of
the results are null (no variation). This seems natural as they can be small
modifications (bug fix).

These results seem to indicate that there are real differences between

24



Table 5: Difference in metric value (minor revision - base version) for some
“routine” revisions in the subject systems. None of the results is significant
at the 10% level. Wilcoxon test, unpaired setting

Eclipse JHotDraw  Vivo Seaside
2.0 3.1 7.2 7.3 1.4 2.7 3.0
2.01 3.1.1 7.3 731 141 2.8 3.0.7

# class/package 0.0 0.0 1.000 0.0 0.0 1.000 0.000
# method/class 0.0 0.0 0.488 0.0 0.0 -0.675 0.000
LOC/class 0.0 0.0 3.980 0.0 0.0 -7.334 -0.187
Cyclo.C./method 0.0 0.0 1.118 0.0 0.0 1.068 0.500
Marting Cohesion 0.0 0.0 0.000 0.0 0.0 0.357 0.000
Bunch Cohesion 0.0 0.0 -0.017 0.0 0.0 -0.016  0.000
Afferent coup. (Ca) 0.0 0.0 0.524 0.0 0.0  -11.000 -3.000
Efferent coup. (Ce) 0.0 0.0 4.000 0.0 0.0 -3.000 -4.000
Bunch coupling 0.0 0.0 0.000 0.0 0.0 -0.017 -0.005

normal versions and restructuration versions where the difference in metrics
values very often statistically significant. The test with the local restructur-
ing JHotDraw 7.3.1/7.4.1 (Table 4), already hinted at this.

5.3 Local restructurings (paired setting)

Finally, we also tested all restructurings in a paired setting, that is to say we
compare the quality of individual packages before and after a restructuring.
In this experiment, all the restructured packages from the three systems and
all restructurings are mixed together (31 packages, see Table 3). This is not
a problem since each package is only compared to itself.

As for the global restructurings experiment, the number of class per pack-
age and cyclomatic complexity metrics decrease after restructuring, and the
results are statistically significant (at the 10% level for number of classes).
This fits expectations.

Contrary to the global restructuring, the number of method per class
and LOC per class increase. However, these results are not statistically
significant, so we cannot deduce much from this. More data points (packages
in other systems) could be necessary to obtain more significant results.

The cohesion metrics also give results similar to the previous experiment

25



Table 6: Difference in metric value (restructured version - base version) for all
restructured packages (local + global restructurings) in the subject systems.
Results significant at the 5% level are marked with (**), at the 10% level
marked with (*). Wilcoxon test, paired setting

# class/package -3.0
# method/class -0.2
LOC/class -1.7
Cyclo.C./method 7.3
Marting Cohesion -0.177 **
Bunch Cohesion 0.000

Afferent coupling (Ca) 0.0
Efferent coupling (Ce) -4.0
Bunch coupling 0.000 *

with decreasing value for Martin’s cohesion (statistically significant) and close
to stationary value for Bunch cohesion (not significant). Again, this is con-
trary to expectations. One could argue that these results are biased by the
over representation of Eclipse in the restructured packages (see Section 4.3).
However, Eclipse is precisely a system for which Martin cohesion did not
give statistically significant results in the global experiment. Similarly, the
variation in this experiment is slightly positive (increase) for Bunch cohesion
whereas it was slightly negative in the global restructuring experiment.

If the results of this experiments are coherent with the global restructur-
ing experiment, this is less the case for coupling metrics. Afferent coupling
(Ca) increased (not significant) whereas it decreased in the Section 5.1; Ef-
ferent coupling (Ce) decreases here as in the previous experiment, but the
result is not statistically significant here; Bunch coupling continues station-
ary (statistically significant).

The lack of statistical significance of many results in this experiment could
be due to the relative small number of subjects (31), or be a fundamental
property of restructuring. More subject systems would be needed to clarify
this point now that the experimental setup is defined.

26



6 Related work

6.1 Cohesion of Classes

We found, in the literature, various tentative evaluation of the practical per-
tinence of cohesion metrics for classes. Although class cohesion is an entirely
different problem (see discussion in Section 2.1) they illustrate the different
approaches used to validate such metrics.

In [9], Briand proposes some theoretical validation that a cohesion metric
should respect, one called monotonicity, states that adding relationship to a
class cannot decrease its cohesion; another states than merging two unrelated
classes cannot increase its cohesion. Such requirements are strongly based on
the high-cohesion/low-coupling principle, and not on the state of practice.
Our experiments and previous research (see Section 2.2) suggest that this
principle may not be as pertinent as usually believed.

Counsell et al., in [8], assess whether some metrics correlate with the
perception of developers on class cohesion. They asked 24 programmers to
manually evaluated the cohesion of 10 C++ classes (randomly taken from
real world application) and compared their answers to some metrics like class
size, or two coupling metrics. The results suggest that class size does not
impact the perception of cohesiveness, and that the two coupling metrics
behave differently.

In [22], Alshayeb evaluates the effect of refactorings on five class cohesion
metrics (LCOM1 to LCOM5). At the class level his approach is the same
as our: take a real refactoring case and evaluate how well cohesion metrics
report the expected increase in quality. The conclusion is that overall the
cohesion metrics improved and are therefore validated by this very small
experiment (eight classes involved).

Cinnéide et al. recently published the results of an effort to assess the
validity of class cohesion metrics [17]. The experiment this time is on real
world systems with a large number of classes. They setup a laboratory ex-
periment where they apply randomly different refactorings and evaluate the
impact they have on different class cohesion metrics. One conclusion is that
the metrics do not agree among them, thus pointing to the probable lack of
relevance of at least some of them (see also Section 3.1). This experiment
however does not tell what metrics are more relevant in practice because the
value of the refactored versions, generated randomly, is completely unknown.

Dallal and Briand [23] compare one new cohesion metric to eleven other

27



to show that it is not completely correlated and thus bring some new point
of view on the problem. It does not tell whether one metric correlates better
with the perceived cohesiveness of classes. They also correlate their new
metric to fault proneness of classes. This is a practical validation, but it
does not relate to the main purpose of the cohesion metric.

6.2 Cohesion of Packages

We could not find any evaluation of architectural design quality metrics. As
already stated, working at the level of packages is much more difficult because
the source code can be some order of magnitude larger.

In [7] the first author already alluded to the difficulty of evaluating the
results of automatic remodularization techniques without any know proven
instrument.

Other researchers perceived that problem [3, 4, 15] without proposing any
solution to it.

7 Conclusion

Although the advantages of a good architecture are well heralded, there is
no formal definition of how to measure this property. Existing architectural
quality metrics mostly rely on the idea that packages should be highly cohe-
sive and weakly coupled. But even this principle, and the metrics based on
it, is untested and unproven.

A possible explanation for this lack of formal evidence may lie in the
practical difficulty to test such metrics. Manual validation is virtually im-
possible due to the costs involved in validating the results of the metrics on
large real systems. Validation against a golden solution is not acceptable ei-
ther because several equally valid architectures may be proposed for a given
system.

In this paper, we propose an experimental setup that allows to test ar-
chitectural quality metrics. The basic idea is to use real cases of system
restructurings and see whether a given metric is able to register the expected
improve in quality between the previous version and the restructured version
of the system.

We formally define our experimental setup and the constraints that sub-
ject systems (and their restructured versions) should respect. We then ex-

28



emplified the test-bed with four real systems (Eclipse, JHotDraw, Vivo, Sea-
side) in two languages (Java, Smalltalk). We finally applied the experiment
on several metrics: size metrics and some well-known cohesion or coupling
metrics.

From this example we could draw some initial conclusion on a “typical”
restructuring:

e Decrease in the number of class per package;
e Decrease in the cyclomatic complexity of methods;

e possible decrease in the number of method per class and number of
LOC per class (both results to be confirmed with more experiments);

e general lack of relevance of the five cohesion or coupling metrics tested,
either because they did not give the expected results or because the
results were not statistically significant. Martin’s afferent and efferent
coupling were the closest to be validated with significant and expected
results on the global experiment (unpaired setting).

More experiments are required, first to try to validated existing cohe-
sion/coupling metrics, second to obtain more definitive results. This second
point would require more subject systems.

References

[1] M. Lehman, Laws of software evolution revisited, in: European Work-
shop on Software Process Technology, Springer, Berlin, 1996, pp. 108—
124.

[2] W. P. Stevens, G. J. Myers, L. L. Constantine, Structured design, IBM
Systems Journal 13 (2) (1974) 115-139.

[3] F. B. Abreu, M. Goulao, Coupling and cohesion as modularization
drivers: Are we being over-persuaded?, in: CSMR ’01: Proceedings of
the Fifth European Conference on Software Maintenance and Reengi-
neering, IEEE Computer Society, Washington, DC, USA, 2001, pp. 47—
5T7.

29



[4]

[12]

P. Bhatia, Y. Singh, Quantification criteria for optimization of modules
in oo design, in: Proceedings of the International Conference on Soft-
ware Engineering Research and Practice & Conference on Programming
Languages and Compilers, SERP 2006, Vol. 2, CSREA Press, 2006, pp.
972-979.

V. B. Misi¢, Cohesion is structural, coherence is functional: Different
views, different measures, in: Proceedings of the Seventh International
Software Metrics Symposium (METRICS-01), IEEE, 2001.

C. Taube-Schock, R. J. Walker, I. H. Witten, Can we avoid high cou-
pling?, in: Proceedings of ECOOP 2011, 2011.

N. Anquetil, T. Lethbridge, Comparative study of clustering algo-
rithms and abstract representations for software remodularization,
IEE Proceedings - Software 150 (3) (2003) 185-201. doi:10.1049/ip-
sen:20030581.

URL http://rmod.lille.inria.fr/archives/papers/
Anqu03a-IEESoft-ComparativeStudy.pdf

S. Counsell, S. Swift, A. Tucker, Object-oriented cohesion as a surro-
gate of software comprehension: an empirical study, in: Proceedings of
the Fifth IEEE International Workshop on Source Code Analysis and
Manipulation, 2005, pp. 161-172.

L. C. Briand, J. W. Daly, J. K. Wiist, A Unified Framework for Co-
hesion Measurement in Object-Oriented Systems, Empirical Software
Engineering: An International Journal 3 (1) (1998) 65-117.

S. A. Ebad, M. Ahmed, An evaluation framework for package-level co-
hesion metrics, International Proceedings of Computer Science and In-
formation Technology 13 (2011) 239-43.

S. Mancoridis, B. S. Mitchell, Y. Chen, E. R. Gansner, Bunch: A Clus-
tering Tool for the Recovery and Maintenance of Software System Struc-
tures, in: Proceedings of ICSM ’99 (International Conference on Soft-

ware Maintenance), IEEE Computer Society Press, Oxford, England,
1999.

R. C. Martin, Agile Software Development. Principles, Patterns, and
Practices, Prentice-Hall, 2002.

30



[13]

[14]

[17]

[18]

[19]

[20]

G. A. Hall, W. Tao, J. C. Munson, Measurement and validation of mod-
ule coupling attributes, Software Quality Control 13 (3) (2005) 281-296.
d0i:10.1007/s11219-005-1753-8.

N. Anquetil, J. Laval, Legacy software restructuring: Analyzing a con-
crete case, in: Proceedings of the 15th European Conference on Soft-
ware Maintenance and Reengineering (CSMR’11), Oldenburg, Germany,
2011, pp. 279-286.

URL http://rmod.lille.inria.fr/archives/papers/Anqulla-CSMR2011-Coupling.
pdf

H. Abdeen, S. Ducasse, H. A. Sahraoui, Modularization metrics:
Assessing package organization in legacy large object-oriented software,
in: Proceedings of the 18th IEEE International Working Conference
on Reverse Engineering (WCRE’11), IEEE Computer Society Press,
Washington, DC, USA, 2011.

URL http://hal.inria.fr/docs/00/61/45/83/PDF/
ModularizationMetrics-INRIA. pdf

n.n., Rational unified process: Best practices for software development
teams (2000). doi:10.1.1.27.4399.

URL  http://www.ibm.com/developerworks/rational /library /content/03July/
1000/1251/1251 bestpractices_TP026B.pdf

M. Cinnéide, L. Tratt, M. Harman, S. Counsell, I. Moghadam, Experi-
mental assessment of software metrics using automated refactoring, in:
Proc. Empirical Software Engineering and Management (ESEM), 2012,
to appear.

S. Sarkar, G. M. Rama, A. C. Kak, Api-based and information-theoretic
metrics for measuring the quality of software modularization, IEEE
Trans. Softw. Eng. 33 (1) (2007) 14-32. doi:10.1109/TSE.2007 4.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering: an introduction, Kluwer Aca-

demic Publishers, Norwell, MA, USA, 2000.

I. Turnu, G. Concas, M. Marchesi, S. Pinna, R. Tonelli, A modified Yule
process to model the evolution of some object-oriented system proper-
ties, Inf. Sci. 181 (2011) 883-902.

31



[21]

[22]

[23]

K. Mordal, J. Laval, S. Ducasse, Evolution et Rénovation des Systemes
Logiciels, Hermes, 2012, Ch. Modeles de mesure de la qualité des logi-
ciels, a paraitre.

M. Alshayeb, Refactoring effect on cohesion metrics, in: Proceedings
of the 2009 International Conference on Computing, Engineering and
Information, ICC’09, IEEE Computer Society, Washington, DC, USA,
2009, pp. 3-7. doi:10.1109/1CC.2009.12.
URL http://dx.doi.org/10.1109/1CC.2009.12

J. Al-Dallal, L. C. Briand, A precise method-method interaction-based
cohesion metric for object-oriented classes, ACM Trans. Softw. Eng.
Methodol. 21 (2) (2012) 8. doi:10.1145/2089116.2089118.

32



