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Trajectory-Based Shared Control with Integral Haptic Feedback

Firas Abi-Farraj, Riccardo Spica, and Paolo Robuffo Giordano

I. INTRODUCTION
Arguably one of the main advantanges of using robots is

the possiblility to execute tasks that would be impossible for a
human because of the required forces/torques (e.g. heavy load
manipulation), the desired accuracy (e.g. micromanipulation
applications) or the accessibility of the operating environment
(e.g. nuclear facilities, underwater, deep space and so on).

On the other hand, artificial intelligence has not yet reached
the level of semantic understanding and complex reasoning of
a human and many applications still require human interven-
tion for high-level decision making. Even in presence of a
human, however, some level of autonomy is still desirable for
easing the task of the operator.

In order to take the best from both worlds many recent
works have attempted to allow humans and robots to collabo-
rate on a task [1], [2]. One effective strategy in this contex is
telemanipulation [3], [4]. The goal of the RoMaNS project [5],
for example, is to assist a human hoperator in remotely ma-
nipulating radioactive material. The RoMaNS robotic system
(see Fig. 1) consists of two 6-dof serial manipulators. One
of the robots is equipped with a gripper that can be used for
manipulating objects. The other robot has an onboard camera
that can be exploited to maintain a good visibility over the
scene. Given the high number of degrees of freedom and the
complexity of the system constraints (e.g. singularities, joint
limits, field-of-view limitations and so on) partial autonomy
must be introduced to facilitate the task.

In a typical shared control framework, a user specifies some
instantaneous commands for (a subset of) the system degrees
of freedom using an input device. A control algorithm executes
these commands as accurately and efficiently (according to a
proper performance index) as possible while also guaranteeing
the safety of the system. Instantaneous force/torque cues
are then exploited for informing the user about the system
performance. A similar strategy was successfully applied to
the RoMaNS scenario in [6].

The main limitation of this architecture, however, lies in its
local nature: the operator cannot modify the future behavior of
the robot, nor receive informative force cues about the future
consequences of her/his actions. Moreover, if the system has
some redundancy that can be exploited to maximize perfor-
mance, a reactive/greedy optimization strategy can potentially
result in suboptimal solutions.

The main novelty of our approach is that we apply the
shared control architecture at a trajectory planning level: the
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Fig. 1. the experimental setups showing the two 6-dof serial manipulator
arms equipped with a camera and a gripper, respectively, together with the
object to be grasped.

user commands, the system actions and the force feedback are
all defined over extended trajectories instead of instantaneous
quantities (e.g. current system position, velocity and so on).

In the following paragraph we briefly summarize the pro-
posed approach, which extends previous results presented
in [6] and [7]. We then present some experimental results
obtained in a simulation environment.

II. SHARED CONTROL ARCHITECTURE

Let us represent the trajectories of the gripper (G) and the
camera (C) in a parametric form as

ηG(s|θ1,G , . . . ,θl,G) ∈ SE(3)

ηC(s|θ1,C , . . . ,θl,C) ∈ SE(3),

where s ∈ [0, 1] is a scalar line parameter and θi,G ,θi,C ∈
SE(3) are the coefficients of the parametrization defining the
shape of the trajectory. Let us stack these coefficients in
a single vector θ. In our implementation, we exploited the
classical B-splines [8] and the quaternion B-splines [9] to
represent the trajectories, but our approach can also be applied
to other parametrizations.

Figure 2 illustrates the proposed framework.
Given an initial trajectory for the gripper and the camera

(i.e. an initial value of θ), the human operator can express the
desired modification of the trajectory via an input device. The
input device configuration λ is linearly mapped into a desired
velocity for the control points θ̇H = Qλ.

At the same time, an autonomous corrector generates an
additional velocity term θ̇A so as to minimize a potential
function that goes to infinity if any of the system constraints
is violated. In this work, in particular, we considered the
following constraints: joint limits, singularities, and visual
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Fig. 2. An illustration of the proposed shared control framework.

constraints. The latter are designed so as to ensure that the
object and the gripper remain in the field view of the camera
while preventing one from obscuring the other. The potential
can also encode additional performance metrics that should
be optimized depending on the application. Finally note that
the value of this potential is calculated as the integral of a
pointwise cost along the entire trajectories, i.e. for s ∈ [0, 1].

The velocity term θ̇A generated by the autonomous correc-
tor is divided into two terms:
• θ̇A,null which is continuously active and acts in the null

space of the human commands θ̇H

• θ̇A,H which acts in the same space as the human and is
activated only in the proximity of constraints.

This ensures that the autonomous corrector, while continu-
ously commanding the free degrees of freedom of the trajec-
tory to keep the system as far as possible from constraints,
does not interfere with the human preference except when
necessary to ensure the stability of the system and keep it
away from ’dangerous’ configurations.

In this latter case, the system generates force cues pro-
portional to the discrepancy (due to the abovementioned
autonomous factor θ̇A,H ) between the commanded trajectory
modifications and the actual ones. These cues are fed to
the human through a haptic interface informing him about
the performance of the system and guiding him away from
undesired system configurations.

III. EXPERIMENTS AND RESULTS

In the conducted experiment, the operator is commanding
the system to steer the gripper towards a desired grasping
pose. The gripper was constrained to be automatically oriented
towards the object at its final pose (constraining two degrees
of freedom) while the operator was given command over the
remaining four degrees of freedom defining the pose. As the
operator modifies the trajectory, an autonomous corrector is
actively preventing him from hitting the system constraints as
described in section II.

Figure 3 shows the results of the described experiment.
Fig. 3 (b), top, depicts the user commands while Fig. 3
(b), bottom, shows the force cues he received. The operator
commanded a chosen motion direction up until the system
approached a constraint where he received a force feedback

over the direction he was commanding and other directions
along which the trajectory was adapted to keep the system
away from the corresponding constraints. This was repeated
three times for different motion directions with similar results.

Fig. 3 (a), on the other hand, shows the different constraints
which the operator approached during the experiment. The
measure is zero when the system is far from a constraint and
starts to increase as it gets closer from a pre-defined threshold.
The impact of this proximity to the constraints is reflected as
force cues fed to the user. This can be significantly noticed at
t=8, 20 and 35 sec.
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Fig. 3. The figure shows the results of the conducted experiments. (a) shows
the different constraints approached while the operator was manipulating the
trajectory while (b) shows his commands over the 4 different motion directions
he was controlling (top) and the force cues he received over each (bottom).
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