archives-ouvertes.f

Hybridizable Discontinuous Galerkin Methods for modelling 3D seismic wave propagation in harmonic domain

Marie Bonnasse-Gahot, Henri Calandra, Julien Diaz, Stephane Lanteri

To cite this version:

Marie Bonnasse-Gahot, Henri Calandra, Julien Diaz, Stephane Lanteri. Hybridizable Discontinuous Galerkin Methods for modelling 3D seismic wave propagation in harmonic domain. WAVES 2017 13th International Conference on Mathematical and Numerical Aspects of Wave Propagation, May 2017, Minneapolis, United States. hal-01693189

HAL Id: hal-01693189
https://hal.inria.fr/hal-01693189
Submitted on 25 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hybridizable Discontinuous Galerkin Methods for modelling 3D seismic wave propagation in harmonic domain

M. Bonnasse-Gahot ${ }^{1,2}$, H. Calandra ${ }^{3}$, J. Diaz ${ }^{1}$ and S. Lanteri ${ }^{2}$

1 INRIA Bordeaux-Sud-Ouest, team-project Magique 3D
${ }^{2}$ INRIA Sophia-Antipolis-Méditerranée, team-project Nachos
${ }^{3}$ TOTAL Exploration-Production

Motivations

Principles of seismic imaging

M. Bonnasse-Gahot - HDG method for 3D Helmholtz wave equations

Motivations

Examples of seismic imaging campaigns

M. Bonnasse-Gahot - HDG method for 3D Helmholtz wave equations

May 15, 2017-2/31

Motivations

Imaging methods

- Full Wave Inversion (FWI) : inversion process requiring to solve many forward problems

Motivations

Imaging methods

- Full Wave Inversion (FWI) : inversion process requiring to solve many forward problems

Seismic imaging : time-domain or harmonic-domain?

- Time-domain : imaging condition complicated but quite low computational cost
- Harmonic-domain : imaging condition simple but huge computational cost

Motivations

Imaging methods

- Full Wave Inversion (FWI) : inversion process requiring to solve many forward problems

Seismic imaging : time-domain or harmonic-domain?

- Time-domain : imaging condition complicated but quite low computational cost
- Harmonic-domain : imaging condition simple but huge computational cost

M. Bonnasse-Gahot - HDG method for 3D Helmholtz wave equations

Motivations

Resolution of the forward problem of the inversion process

- Elastic wave propagation in the frequency domain : Helmholtz equation

Motivations

Resolution of the forward problem of the inversion process

- Elastic wave propagation in the frequency domain : Helmholtz equation

First order formulation of Helmholtz wave equations
$\mathbf{x}=(x, y, z) \in \Omega \subset \mathbb{R}^{3}$,

$$
\left\{\begin{array}{l}
i \omega \rho(\mathbf{x}) \mathbf{v}(\mathbf{x})=\nabla \cdot \underline{\underline{\sigma}}(\mathbf{x}) \\
i \omega \underline{\underline{\sigma}}(\mathbf{x})=\underline{\underline{C}}(\mathbf{x}) \underline{\underline{\varepsilon}}(\mathbf{v}(\mathbf{x}))+f_{s}(\mathbf{x})
\end{array}\right.
$$

- v: velocity vector
- $\underline{\underline{\sigma}}$: stress tensor
- $\underline{\underline{\varepsilon}}$: strain tensor

Approximation methods

Discontinuous Galerkin Methods
\checkmark unstructured tetrahedral meshes
\checkmark combination between FEM and finite volume method (FVM)
$\checkmark h p$-adaptivity
\checkmark easily parallelizable method

Approximation methods

Discontinuous Galerkin Methods
\checkmark unstructured tetrahedral meshes
\checkmark combination between FEM and finite volume method (FVM)
$\checkmark h p$-adaptivity
\checkmark easily parallelizable method
$x x$ large number of DOF as compared to classical FEM

Approximation methods

Discontinuous Galerkin Methods
\checkmark unstructured tetrahedral meshes
\checkmark combination between FEM and finite volume method (FVM)
$\checkmark h p$-adaptivity
\checkmark easily parallelizable method
$x x$ large number of DOF as compared to classical FEM

Approximation methods

Hybridizable Discontinuous Galerkin Methods

\checkmark same advantages as DG methods : unstructured tetrahedral meshes, $h p$-adaptivity, easily parallelizable method, discontinuous basis functions
\checkmark introduction of a new variable defined only on the interfaces
\checkmark lower number of coupled DOF than classical DG methods

Approximation methods

Hybridizable Discontinuous Galerkin Methods
\checkmark same advantages as DG methods : unstructured tetrahedral meshes, $h p$-adaptivity, easily parallelizable method, discontinuous basis functions
\checkmark introduction of a new variable defined only on the interfaces
\checkmark lower number of coupled DOF than classical DG methods

M. Bonnasse-Gahot - HDG method for 3D Helmholtz wave equations

Approximation methods

Hybridizable Discontinuous Galerkin Methods

R B. Cockburn, J. Gopalakrishnan and R. Lazarov. Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis, Vol. 47 :1319-1365, 2009.
S. Lanteri, L. Li and R. Perrussel. Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell's equations. COMPEL, 32(3)1112-1138, 2013.

围 N.C. Nguyen, J. Peraire and B. Cockburn. High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. Journal of Computational Physics, 230 :7151-7175, 2011
N.C. Nguyen and B. Cockburn. Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. Journal of Computational Physics 231 :5955-5988, 2012

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ
M. Bonnasse-Gahot - HDG method for 3D Helmholtz wave equations

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ

- Weak formulation of waves equations

$$
\left\{\begin{array}{l}
\int_{K} i \omega \rho^{K} \mathbf{v}^{K} \cdot \mathbf{w}+\int_{K} \underline{\underline{\sigma}}^{K}: \nabla \mathbf{w}-\int_{\partial K} \underline{\underline{\sigma}} \cdot \mathbf{n} \cdot \mathbf{w}=0 \\
\int_{K} i \omega \underline{\underline{\sigma}}^{K}: \underline{\underline{\xi}}+\int_{K} \mathbf{v}^{K} \cdot \nabla \cdot\left(\underline{\underline{C}}^{K} \underline{\underline{\xi}}\right)-\int_{\partial K} \mathbf{v} \cdot \underline{\underline{C}}^{K} \underline{\underline{\xi}} \cdot \mathbf{n}=\int_{K} f_{S}^{K} \cdot \underline{\underline{\xi}}
\end{array}\right.
$$

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ

- Weak formulation of waves equations

$$
\left\{\begin{array}{l}
\int_{K} i \omega \rho^{K} \mathbf{v}^{K} \cdot \mathbf{w}+\int_{K} \underline{\underline{\sigma}}^{K}: \nabla \mathbf{w}-\int_{\partial K} \widehat{\underline{\underline{\sigma}}}^{\partial K} \cdot \mathbf{n} \cdot \mathbf{w}=0 \\
\int_{K} i \omega \underline{\underline{\sigma}}^{K}: \underline{\underline{\xi}}+\int_{K} \mathbf{v}^{K} \cdot \nabla \cdot\left(\underline{\underline{C}}^{K} \underline{\underline{\xi}}\right)-\int_{\partial K} \widehat{\mathbf{v}}^{\partial K} \cdot \underline{\underline{C}}^{K} \underline{\underline{\xi}} \cdot \mathbf{n}=\int_{K} f_{S}^{K} \cdot \underline{\underline{\xi}}
\end{array}\right.
$$

$\frac{\widehat{\sigma}^{K}}{\partial \overline{\partial K}}$ and $\widehat{\mathbf{v}}^{K}$ are numerical traces of $\underline{\underline{\sigma}}^{K}$ and \mathbf{v}^{K} respectively on

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ

- Weak formulation of waves equations

$$
\left\{\begin{array}{c}
\int_{K} i \omega \rho^{K} \mathbf{v}^{K} \cdot \mathbf{w}+\int_{K} \underline{\underline{\sigma}}^{K}: \nabla \mathbf{w}-\int_{\partial K} \widehat{\underline{\underline{\sigma}}}^{\partial K} \cdot \mathbf{n} \cdot \mathbf{w}=0 \\
\int_{K} i \omega{\underline{\underline{\sigma^{K}}}}^{K}: \underline{\underline{\xi}}+\int_{K} \mathbf{v}^{K} \cdot \nabla \cdot\left(\underline{\underline{C}}^{K} \underline{\underline{\xi}}\right)-\int_{\partial K} \widehat{\mathbf{v}}^{\partial K} \cdot \underline{\underline{C}}^{K} \underline{\underline{\xi}} \cdot \mathbf{n}=\int_{K} f_{S}^{K} \cdot \underline{\underline{\xi}} \\
\widehat{\mathbf{v}}^{\partial K}=\lambda^{F}, \quad \forall F \in \mathcal{F}_{h}
\end{array}\right.
$$

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ

- Weak formulation of waves equations

$$
\left\{\begin{array}{l}
\int_{K} i \omega \rho^{K} \mathbf{v}^{K} \cdot \mathbf{w}+\int_{K} \underline{\underline{\sigma}}^{K}: \nabla \mathbf{w}-\int_{\partial K}{\widehat{\underline{\sigma^{\sigma}}}}^{\partial K} \cdot \mathbf{n} \cdot \mathbf{w}=0 \\
\int_{K} i \omega \underline{\underline{\sigma}}^{K}: \underline{\underline{\xi}}+\int_{K} \mathbf{v}^{K} \cdot \nabla \cdot\left(\underline{\underline{C}}^{K} \underline{\underline{\xi}}\right)-\int_{\partial K} \widehat{\mathbf{v}}^{\partial K} \cdot \underline{\underline{C}}^{K} \underline{\underline{\xi}} \cdot \mathbf{n}=\int_{K} f_{S}^{K} \cdot \underline{\underline{\xi}} \\
-\quad \begin{array}{l}
\widehat{\mathbf{v}}^{\partial K} \\
=\lambda^{F}, \\
\underline{\underline{\widehat{\sigma}^{K}}} \cdot \mathbf{n} \\
=\underline{\underline{\sigma}}^{K} \cdot \mathbf{n}-\tau \mathbf{l}\left(\mathbf{v}^{K}-\lambda^{F}\right), \quad \text { on } \partial K
\end{array}
\end{array}\right.
$$

where τ is the stabilization parameter $(\tau>0)$

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ

- Weak formulation of waves equations

$$
\begin{array}{lll}
\widehat{v}^{\partial K} & =\lambda^{F}, & \forall F \in \mathcal{F}_{h}, \\
\underline{\underline{\sigma}}^{\partial K} \cdot \mathbf{n} & =\underline{\sigma}^{K} \cdot \mathbf{n}-\tau \mathbf{l}\left(\mathbf{v}^{K}-\lambda^{F}\right), & \text { on } \partial K
\end{array}
$$

- Local HDG formulation

$$
\left\{\begin{array}{l}
\int_{K} i \omega \rho^{K} \mathbf{v}^{K} \cdot \mathbf{w}-\int_{K}\left(\nabla \cdot \underline{\underline{\sigma}}^{K}\right) \cdot \mathbf{w}+\int_{\partial K} \tau \mathbf{l}\left(\mathbf{v}^{K}-\lambda^{F}\right) \cdot \mathbf{w}=0 \\
\int_{K} i \omega \underline{\underline{\sigma}}^{K}: \underline{\underline{\xi}}+\int_{K} \mathbf{v}^{K} \cdot \nabla \cdot\left(\underline{\underline{C}}^{K} \underline{\underline{\xi}}\right)-\int_{\partial K} \lambda^{F} \cdot \underline{\underline{C}}^{K} \underline{\underline{\xi}} \cdot \mathbf{n}=0
\end{array}\right.
$$

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ

- Weak formulation of waves equations

$$
\begin{array}{lll}
\widehat{\mathbf{v}}^{\partial K} & =\lambda^{F}, & \forall F \in \mathcal{F}_{h}, \\
\widehat{\underline{\sigma}}^{\partial K} \cdot \mathbf{n} & =\underline{\sigma}^{K} \cdot \mathbf{n}-\tau \mathbf{I}\left(\mathbf{v}^{K}-\lambda^{F}\right), & \text { on } \partial K
\end{array}
$$

- Local HDG formulation

$$
\begin{gathered}
\mathbb{A}^{K} \mathbf{W}^{K}+\mathbb{C}^{K} \lambda=\mathbf{S}^{K} \\
\text { with } \mathbf{W}^{K}=\left(\mathbf{v}^{K}, \underline{\underline{\sigma}}^{K}\right)^{T} \text { and } \lambda=\left(\lambda^{F_{1}}, \lambda^{F_{2}}, \ldots, \lambda^{F_{n_{f}}}\right)^{T} \text {, where } \\
n_{f}=\operatorname{card}\left(\mathcal{F}_{h}\right)
\end{gathered}
$$

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ
2. Expressing the initial unknowns \mathbf{W}^{K} as a function of λ

$$
\mathbb{A}^{K} \mathbf{W}^{K}+\mathbb{C}^{K} \lambda=\mathbf{S}^{K} \longrightarrow \mathbf{W}^{K}=\left(\mathbb{A}^{K}\right)^{-1} \mathbf{S}^{K}-\left(\mathbb{A}^{K}\right)^{-1} \mathbb{C}^{K} \lambda
$$

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ
2. Expressing the initial unknowns \mathbf{W}^{K} as a function of λ

$$
\mathbb{A}^{K} \mathbf{W}^{K}+\mathbb{C}^{K} \lambda=\mathbf{S}^{K} \longrightarrow \mathbf{W}^{K}=\left(\mathbb{A}^{K}\right)^{-1} \mathbf{S}^{K}-\left(\mathbb{A}^{K}\right)^{-1} \mathbb{C}^{K} \lambda
$$

3. Transmission condition : $\int_{F} \llbracket \underline{\underline{\sigma}}^{\frac{\sigma}{2}} \cdot \mathbf{n} \rrbracket \cdot \eta=0$

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ
2. Expressing the initial unknowns \mathbf{W}^{K} as a function of λ

$$
\mathbb{A}^{K} \mathbf{W}^{K}+\mathbb{C}^{K} \lambda=\mathbf{S}^{K} \longrightarrow \mathbf{W}^{K}=\left(\mathbb{A}^{K}\right)^{-1} \mathbf{S}^{K}-\left(\mathbb{A}^{K}\right)^{-1} \mathbb{C}^{K} \lambda
$$

3. Transmission condition :

$$
\sum_{K} \mathbb{B}^{K} \mathbf{W}^{K}+\mathbb{L}^{K} \lambda=0
$$

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ
2. Expressing the initial unknowns \mathbf{W}^{K} as a function of λ

$$
\mathbb{A}^{K} \mathbf{W}^{K}+\mathbb{C}^{K} \lambda=\mathbf{S}^{K} \longrightarrow \mathbf{W}^{K}=\left(\mathbb{A}^{K}\right)^{-1} \mathbf{S}^{K}-\left(\mathbb{A}^{K}\right)^{-1} \mathbb{C}^{K} \lambda
$$

3. Transmission condition :

$$
\sum_{K} \mathbb{B}^{K} \mathbf{W}^{K}+\mathbb{L}^{K} \lambda=0
$$

4. $\mathbb{M} \lambda=\mathbf{S}$

Principles of the HDG method

1. Introduction of a Lagrange multiplier λ
2. Expressing the initial unknowns \mathbf{W}^{K} as a function of λ

$$
\mathbb{A}^{K} \mathbf{W}^{K}+\mathbb{C}^{K} \lambda=\mathbf{S}^{K} \longrightarrow \mathbf{W}^{K}=\left(\mathbb{A}^{K}\right)^{-1} \mathbf{S}^{K}-\left(\mathbb{A}^{K}\right)^{-1} \mathbb{C}^{K} \lambda
$$

3. Transmission condition :

$$
\sum_{K} \mathbb{B}^{K} \mathbf{W}^{K}+\mathbb{L}^{K} \lambda=0
$$

4. $\mathbb{M} \lambda=\mathbf{S}$
5. Computation of the solutions of the initial problem \mathbf{W}^{K}, element by element

Contents

2D Numerical results : performances comparison of the HDG method

Anisotropic test case
Marmousi test-case

3D numerical results

Main steps of the algorithms

HDG algorithm		
IPDG \& FE algorithm		
1.Construction of the linear system in λ	1.	Construction of the linear system in \mathbf{u}
2.Resolution of the linear system	2.Resolution of the linear system	
3.Reconstruction of the initial solution \mathbf{W}		

Main steps of the algorithms

HDG algorithm	IPDG \& FE algorithm		
1.Construction of the linear system in λ	1.Construction of the linear system in u		
2. Resolution of the linear	2.Resolution of the linear system system	Reconstruction of the initial solution \mathbf{W}	
embarrassingly parallel			

Anisotropic test case

- Three meshes :
- 600 elements
- 3000 elements
- 28000 elements

Anisotropic case : Memory consumption

\mathbb{P}_{3} interpolation order

Anisotropic case : CPU time (s)

\mathbb{P}_{3} interpolation order

IPDG $_{\text {CPUtime }} \simeq 9 \times$ HDG $_{\text {CPUUtime }}$
M. Bonnasse-Gahot - HDG method for 3D Helmholtz wave equations

Marmousi test-case

Computational domain Ω composed of 235000 triangles

Cluster configuration

- Hardware specification: 16 nodes, 12 cores by nodes
- Caracteristics of computing nodes :
- 2 Hexa-core Westmere Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR}$ X5670
- Frequency : $2,93 \mathrm{GHz}$
- Cache L3 : 12 Mo
- RAM : 96 Go
- Infiniband DDR: 20Gb/s
- Ethernet: 1Gb/s

Efficiency of the parallelism of the construction of the global matrix

$$
\text { Efficiency }=\frac{\mathrm{t} \text { _ref }}{\mathrm{nb} _c o r e s \times \mathrm{t} \text { _one core }}
$$

where :
$\mathrm{t}_{\text {_ref }}=\mathrm{t}_{\text {_seq }}=$ sequential computational time
$t_{\text {_one core }}=$ computational time with one core

Efficiency of the parallelism of the construction of the global matrix

Efficiency of the parallelism of the whole algorithm

Speed up for the global matrix construction

M. Bonnasse-Gahot - HDG method for 3D Helmholtz wave equations

Memory required (GB) for the simulation

Comparison with Finite Elements method

Comparison with Finite Elements method

Contents

2D Numerical results : performances comparison of the HDG
method

3D numerical results
Performances analysis of the HDG method Impact of the linear solver

Epati test-case

V_{p}-velocity model (m. s^{-1}), vertical section at $y=700 \mathrm{~m}$ Mesh composed of 25000 tetrahedrons

Epati test-case: Scalability, efficiency of the HDG global system construction

Efficiency of the parallelism of the whole algorithm (construction and resolution)

M. Bonnasse-Gahot - HDG method for 3D Helmholtz wave equations

Resolution of the linear system $\mathbb{M} \lambda=\mathbf{S}$

- Direct solvers
- Iterative solvers
- Hybrid solvers, combination between direct and iterative solvers
- Direct solvers combined with H -matrices
M. Bonnasse-Gahot - HDG method for 3D Helmholtz wave equations

Resolution of the linear system $\mathbb{M} \lambda=\mathbf{S}$

- Direct solvers
- Iterative solvers
- Hybrid solvers, combination between direct and iterative solvers
- Direct solvers combined with H -matrices

Resolution of the linear system $\mathbb{M} \lambda=\mathbf{S}$

- direct solver : MUMPS (MUltifrontal Massively Parallel sparse direct Solver) :
- Direct factorization $A=L U$ or $A=L D L^{T}$
- Multiple RHSP.R. Amestoy, I.S. Duff and J.-Y. L'Excellent. Multifrontal parallel distributed symmetric and unsymmetric solvers. Computational Methods in Applied Mechanics and Engineering, Vol. 184 :501-520, 2000.
- hybrid solver : MaPhys (Massively Parallel Hybrid Solver) :
- combination of direct and iterative methods
- non-overlapping algebraic domain decomposition method (Schur complement method)
- resolution of each local problem thanks to direct solver such as MUMPS

Epati test-case : Memory consumption

Average memory for one node (8 MPI by node and 3 threads by MPI)

Epati test-case : Execution time

Execution time for the resolution of the HDG- \mathbb{P}_{3} system

Epati test-case : Cumulative time of the two solvers using 96 cores

Conclusion-Perspectives

Conclusions

- HDG method more efficient than classical DG methods for a same accuracy (memory and CPU time)
- In 2D, HDG method has equivalent computational performances than FE methods
- Maphys good alternative to MUMPS for the resolution of the HDG system with one RHS
X Multiple RHS not yet implemented in Maphys

Conclusion-Perspectives

Perspectives

- more detailed analysis of the comparison between solvers
- larger meshes
- more powerful clusters
- extension to H -matrices
- 3D comparison between FE and HDG methods
- extension to elasto-acoustic case
- application to inverse problems

Thank you!

