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1
Introduction

1.1 A bit of History

The �rst observations of electric and magnetic phenomena by man date back to 600 B.C., when Thales of
Miletus observed the property of amber to attract light objects, such as fabric, after being rubbed with fur.
In the same period, he also reported the existing attraction between lodestone and iron. Three centuries
later, Euclid threw together the basis of geometrical optics in Optica, describing the laws of re�ection and
postulating that light travels in straight lines. From this point, the studies of electromagnetism and light
followed parallel paths, until the XIXth century. In 1848 and 1850, Hippolyte Fizeau and Léon Foucault
measured the speed of light respectively at 3.14× 108 and 2.98× 108 m.s−1. In 1855, Wilhelm Eduard
Weber and Rudolf Kohlrausch found out through an experimentation that the ratio of the electromagnetic
to the electrostatic unit charge was close to 3.107× 108 m.s−1. Although the values from Fizeau and
Foucault were known at that time, they did not notice the alikeness of the results [Kei98].

It is only in 1861 that James Clerk Maxwell, looking at Weber and Kohlrausch’s results, established the
existing link between light propagation and electromagnetic phenomena. In [Max65], he concludes : "The
agreement of the results seems to show that light and magnetism are a�ections of the same substance, and
that light is an electromagnetic disturbance propagated through the �eld according to electromagnetic
laws". At that stage, Maxwell’s theory of electromagnetism is regrouped in a set of twenty unknowns and
equations, that will then be converted into modern notations by a concurrent work of Olivier Heaviside,
Josiah Willard Gibbs and Heinrich Hertz in 1884. It should be noted that the 1861 formulation of Maxwell
still relies on the existence of the luminiferous aether, a postulated medium necessary to the propagation
of light. For more than forty years, the latter will be a source of con�ict, his properties being very di�cult
to accept in the physical paradigm of that time. In 1905, Einstein’s special theory of relativity �nally
provided a framework that did not require the presence of aether anymore.

1.2 Nano-optics

Maxwell’s equations in their modern form have been studied for many decades, resulting in an extremely
wide range of applications. Many of those are now part of our everyday life, such as wireless communica-
tions of all forms, optical �bers, medical imaging, ... In order to control electromagnetic wave propagation,
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most of these devices rely on tailored geometries and materials. During the last decades, the evolution
of lithography techniques allowed the creation of geometrical structures at the nanometer scale, thus
unveiling a variety of new phenomena arising from light-matter interactions at such levels. These e�ects
usually occur when the device is of comparable size or (much) smaller than the wavelength of the incident
�eld. Periodic mono- or multi-dimensional arrangements of sub-wavelength dielectric patterns, known
as photonic crystals (see �gure 1.1), give rise to allowed and forbidden wavelengths regions in certain
directions [JJ07]. These so-called band gaps can be tuned by slight modi�cations of the periodicity, al-
lowing physicists to create a full range of light-control devices from photonic crystals. Periodic arrays
of dielectric resonators can also be used to achieve non-cartesian re�ection of plane waves, which is a
highly promising step toward on-chip wireless optical communications [ZWS+13].

(a) 1D cristal (b) 2D cristal (c) 3D cristal

Figure 1.1 | Photonic crystal structures in one, two and three dimensions. The blue and gray areas represent the alternance
of high and low permittivity materials.

Metallic nanostructures can also demonstrate stunning e�ects when excited in the optical regime. The
key feature of these e�ects is the coupling of the electromagnetic �eld to the electron gas of the metal,
resulting in an oscillation phenomenon called plasmon. One usually di�erentiates the bulk plasmons, that
take place in the volume, from the surface plasmons (SP), that arise at the interface between the metal
and a dielectric. SPs can be propagative along a metal/dielectric interface, or non-propagative, in which
case they are called localized surface plasmons (LSPs). The proper excitation of LSPs can lead to very
intense resonances (meaning that the �eld is enhanced). Thanks to metallic tips exploiting this strong
localization, optical microscopy beyond the di�raction limit [NH07] is possible. The high sensitivity of
resonant metallic nanostructures also allows to create very accurate biosensors [CLS+11]. In the medical
�eld, attempts have been made to develop cancer therapies based on the localized heating produced with
resonating nano particles [SSD+14]. As for dielectrics, periodic arrays of metallic patterns can lead to
new devices with non-natural behaviors at larger scales. These structures are usually gathered under the
root word metamaterials, which then designates an e�ective medium composed of an arrangement of
nanostructures, and displaying uncommon properties. Negative refractive index materials [DWSL07] or
optical cloaking [CCKS07] are some of the most common examples.

1.3 Computational electromagnetics in time-domain

The large variety of phenomena displayed by nano-optic systems, their dependance upon a large number
of parameters (geometry, materials, sources, ...), as well as the complexity of most fabrication processes
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prevent physicists from relying on experiments only. However, apart from very speci�c cases involving
simple geometries, and for which electromagnetic �elds can be expressed as closed-forms, solutions to
Maxwell’s equations are out of reach of hand calculations. Hence, numerical simulation seems to be the
appropriate complementary tool to physical experiments, and can be exploited in various ways. Indeed,
it can be used to rapidly scan a large number of con�gurations, in order to identify the most e�cient set
of parameters. This scanning can be done "blindly" by hand if a small number of parameters is involved,
or by combining a direct numerical method to an iterative optimization algorithm when the dimension
of the parameters space becomes large [Pav13]. Numerical tools also allow a deeper understanding of the
physical phenomena observed in real devices, since they allow the experimentalist to obtain information
about any quantity out of the simulation, which is not possible in most physical experiments. Addition-
ally, various physical models can be easily assessed and their e�ects compared, in order to verify their
applicability in given con�gurations. Various techniques are available to solve nano-optics problems:
some are specialized algorithms, that were developed for the fast-solving of speci�c con�gurations at
low computational cost (for example the Discrete Dipole Approximation (DDA) [DF94] or the Rigorous
Coupled-Wave Analysis (RCWA) [MG81]). However, these can hardly or not at all handle other applic-
ations. On the other hand, more general methods exist that are well suited to solve a very large set of
problems. In the remaining of this section, we focus on the major time-domain techniques.

The Finite-Di�erence Time-Domain (FDTD) method is certainly the most spread of all. As early as
1928, Courant, Friedrichs and Lewy published an article presenting a �nite-di�erence scheme for the
second order wave equation in 1D and 2D, as well as the well-known CFL stability condition involved
for explicit time-domain schemes [RFH28]. In 1966, Yee introduced a staggered grid in space (see �gure
1.2) to solve the curl formulation of Maxwell’s equations [Yee66]. The method relies on a combination
of Taylor expansions to express the spatial derivatives, and on a centered Leap-Frog (LF) scheme in time.
As of today, FD represent a particularly simple method to solve electromagnetics problems, combining
simple implementation and high computational e�ciency. They were applied successfully to numerous
nano-optics con�gurations [SCG10].

(i, j, k) Ey

Ey

Ey

Ey

Ez Ez

Ez Ez

Ex Ex

Ex Ex

Hy Hy

Hz

Hz

Hx

Hx

Figure 1.2 | Staggered unknowns discretization in a Yee cell. The H �eld components are on the center of the faces, while
the E ones are on the center of the edges.

However, FD algorithms su�er from serious drawbacks. First, a smooth discretization of curved geo-
metries is impossible due to the �xed cartesian grid imposed by the Yee algorithm. This approximation
leads to the well-known staircasing e�ect, which is an important source of inaccuracy [DDH01]. To over-
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come this pitfall, the user can either use an extreme re�nement of the grid, which leads to a serious rise
in computational cost, or exploit one of the numerous possible modi�cations of the FD method that have
been proposed for tackling the staircasing e�ect [HR98]. However, all the latter available modi�cations
represent a tradeo� between the simplicity of the classical algorithm and the accuracy of the boundary
description. The second main source of inaccuracy in the FDTD method arises in the case of heterogen-
eous problems. In this case, the Taylor approximation used is no longer valid, since the electromagnetic
�elds are not smooth across the interface. The consequence is that higher-order FD schemes in space are
usually reduced to second-order. Advanced FDTD methods were developed to tackle this problem [TH05],
at the price of an increased complexity of the algorithm. Moreover, there is no theoretical convergence
proof for FDTD algorithms outside the uniform grid case.

Finite Elements (FE) were introduced in 1969 by Silvester to solve waveguide problems [Sil69]. This
method does not rely on a grid, but on a tessellation of the geometry of the problem. Starting from the
continuous equations, a discrete variational form is obtained by approximating the unknowns in a �nite
dimensional space. Then, its discretization leads to a sparse matrix-vector system that has to be solved
at each timestep. In the speci�c case of electromagnetism, the use of nodal basis functions, e.g. such as
their value is unity at a given vertex and zero on every other, is subject to caution. Indeed, it was proved
that they can lead to spurious oscillations, due to an ill representation of the curl kernel [SMYC95]. To
overcome this issue, Nédélec introduced a new family of vector �nite elements in 1986 [N8́0], named
Nédélec �nite elements, or edge �nite elements. These elements display several interesting properties:
(i) their divergence is zero, and (ii) each basis function associated to an edge has a constant tangential
component on the latter, and a zero tangential component on the others. Hence, the tangential continuity
of the electric �eld across the edge is naturally enforced.

In order to adjust the accuracy of the simulation, FE methods can use either (i) a local re�nement
or coarsening of the mesh, (ii) a local or global increase of the order of the basis functions, or (iii) a
combination of both. However, these improvements lead to larger linear systems to solve at each timestep,
which can make the FE method impractical in time-domain simulations for very large systems. For this
reason, in nano-optics, FE methods are more often used in frequency-domain. However, a few references
can be found exploiting time-domain FE for nanophotonics applications [HLY13].

1.4 The Discontinuous Galerkin Time-Domain method

Discontinuous Galerkin (DG) methods were originally introduced in 1973 by Reed and Hill [RH73], and
have been widely used since in the computational �uid dynamics �eld. However, their application to
the time-domain Maxwell equations is more recent [RF98]. DG methods can be seen as classical �nite
element methods for which the global continuity of the approximation is lifted. In the same fashion as
FE methods, the unknowns are approximated on a �nite set of basis functions. However, for DG, the
support of basis functions are restrained to a single discretization cell. Hence, the solution produced by
a DG method is discontinuous (similarly to �nite volumes), and multiple di�erent �eld values are stored
for each element/element interface degree of freedom (see �gure 1.3). The three main consequences
are that (i) DG methods naturally handle material and �eld discontinuities, (ii) the weak formulation is
local to an element, implying no large mass matrix inversion in the solving process, and (iii) the order
of polynomial approximation in space can be made arbitrarily high by adding more degrees of freedom
inside the elements. However, this also means that DG methods have higher memory requirements than
standard FE methods. Afterward, connexion between the cells is restored by the use of a numerical �ux,
in the fashion of �nite volume methods. The choice of the numerical �ux has a great in�uence on the
mathematical properties of the DG discretization, as energy preservation, for example.
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(a) Finite elements : continuous,
non-constant-per-cell solution

(b) Finite volumes : discontinu-
ous, constant-per-cell solution

(c) Discontinuous Galerkin :
discontinuous, non-constant-per-
cell solution

Figure 1.3 | Concept comparison between FE, FV and DG. The triangles represent the cells of the mesh, while the orange
dots represent the degrees of freedom. For FE, the whole problem is considered at once, and the obtained numerical solution is
continuous across cell interfaces. For FV, a local problem is considered in each cell, leading to a discontinuous, constant-per-cell
solution. For DG, the method is analog to FV, but the solution is not restrained to a constant per cell. In this case, a �rst-order
polynomial approximation is used for the DG discretization.

The discontinuity of the approximation makes room for numerous methodological improvements,
such as e�cient parallelization ([Die12], [BFLP06]) or the use of non-conforming [FL10] and hybrid
meshes [LVD+14]. Recent studies in the DG framework include local timestepping [Pip05] as well as
locally implicit formulations [Moy12]. Also, a wide choice of time-integration schemes can be used for
the discretization of time derivatives, including Leap-Frog (LF) and Runge-Kutta (RK).

The DGTD method for solving the time domain Maxwell equations is increasingly adopted by sev-
eral physics communities. Concerning nanophotonics, unstructured mesh based DGTD methods have
been developed and have demonstrated their potentialities for being considered as viable alternatives
to the FDTD method. The most remarkable achievements in the nanophotonics domain since 2009 are
due to Busch et al. Busch [NKSB09]-[SKNB09]-[BKN11] has been at the origin of seminal works on the
development and application of the DGTD method in this domain. These works not only deal with the
extension of the DGTD method with regards to the complex material models and source settings required
by applications relevant to nanophotonics and plasmonics [KBN10]-[MNHB11]-[WROB13], but also to
core contributions aiming at improving the accuracy and the e�ciency of the proposed DGTD solvers
[NKP+10]-[NDB12]-[DNBH15].

1.5 Outline

The remaining of this manuscript is structured in the following way:

� Chapter 2 presents the usual concepts of electromagnetics, as well as some standard textbook prob-
lems and their analytical solutions. An extensive presentation and analysis of dispersive models
for metals follows, along with a comparison of our custom generalized dispersive model with other
classical dispersion models.

� The �rst section of chapter 3 runs, step by step, through the spatial discretization of Maxwell’s
equations by the discontinuous Galerkin method. Then, two classical time integration methods are
proposed and brie�y studied to complete the discretization. The algorithm is then validated for
classical and dispersive materials. Finally, a few theoretical results are given on the method.
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� Chapter 4 regroups practical techniques that are pre-requisites for the resolution of realistic prob-
lems, such as perfectly-matched layers, sources, total-�eld scattered-�eld technique, as well as
physical post-treatments.

� In chapter 5, the DG method is extended to the use of quadratic tetrahedra, which allow both a
better geometrical description of the problems, and lifts the numerical accuracy limit from 2nd to
4th order in the case of curved geometries. Several nano-optics relevant test-cases are considered
that confort the interest of this development.

� Chapter 6 is dedicated to a locally-adaptive DG formulation, where polynomial interpolation order
can be de�ned independently in each cell of the mesh. An e�cient repartition algorithm is supplied,
which provides interesting speedups over homogeneous polynomial repartition in several realistic
test-cases.

� The sequential and parallel performances of our Fortran discontinuous Galerkin time-domain (DGTD)
implementation are assessed in chapter 7. First, a renumbering algorithm is proposed that enhances
the sequential performances by reducing adressing time. Then, the speedup and parallel balance of
the MPI implementation are tested on a standard cavity case.

� The last chapter is dedicated to realistic nanophotonics computations processed with our DGTD
code: (i) the electron energy loss spectrum (EELS) of an aluminium nanosphere, (ii) the gap-plasmon
resonances obtained under chemically-produced nanocubes with realistic shapes, and (iii) 1D and
2D dielectric re�ectarrays, with study of the lithography defects on their performances.
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2
Classical

electromagnetics
Before focusing on nanophotonics, it seems necessary to recall the classical principles of electromagnetics.
First, Maxwell’s equations are presented in vacuum and dielectric media (section 2.1), and a few exact
solutions are exhibited. To remain concise, the covered concepts are restricted to the minimum necessary
for the present study (however, a very complete presentation of classical electrodynamics can be found
in [Jac98] or [RC01]). Then, the modeling of dispersive media (such as metals in the visible spectrum)
is introduced (section 2.2). A generalized model is presented, and its accuracy is compared to standard
ones. An extension to non-local models is also brie�y outlined.

2.1 Maxwell’s equations

In a somehow tautological way, the electric charge is usually de�ned as the fundamental property of
matter that causes it to undergo the electromagnetic interaction. More precisely, a particle of charge q
and speed v is subject to the Lorentz force:

F = q (E + v× B) , (2.1)

where E and B are respectively the electric �eld and the magnetic induction vectors in R3. In most
physics textbooks, E and B are considered to be the "fundamental �elds". However, it is customary to
introduce additional �elds, namely the electric displacement D and the magnetic �eld H. One shall see
in the next section how these are related to E and B. For a given medium, we also introduce the density
of free electric charges ρ, and the free electric current density J. All these quantities depend on position
x = t(x, y, z) and time t. One can now write Maxwell’s equations in their modern version, in SI units:
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∇× E = −∂B
∂t
, (2.2)

∇×H =
∂D
∂t

+ J, (2.3)

∇ · D = ρ, (2.4)

∇ · B = 0. (2.5)

Maxwell’s equations

along with the continuity equation1:

∂ρ

∂t
+∇ · J = 0. (2.6)

Continuity equation

The two curl equations are often called "fundamental" equations, while the two divergence ones are
referred to as "auxiliary" equations. Indeed, one can see that (2.4) and (2.5) are not evolutionary, in the
sense that they do not contain any time derivative, but only bring constraints on the solutions of (2.2)
and (2.3). Taking the divergence of (2.2) and (2.3), and combining with (2.6), one obtains:

∂

∂t
(∇ · D− ρ) = 0,

∂

∂t
(∇ · B) = 0.

(2.7)

Hence, if the divergence conditions are veri�ed for the initial state, they should also be veri�ed for
any future state. One shall therefore drop the divergence conditions in the remaining of this thesis by
considering that they are veri�ed for all the considered initial states. Additional considerations on this
topic can be found in [RC01].

By examining system (2.2 – 2.3), one may notice that it contains 12 scalar unknowns for only 6 scalar
equations. Hence, the system is not closed, and therefore not �t for solving. This is the purpose of next
section.

2.1.1 Constitutive relations

To close system (2.2 – 2.3), relations between (E,B) and (D,H) are required. In the most general case,
the constitutive relations are:

D = ¯̄ε E,
B = ¯̄µH,

(2.8)

where ¯̄ε and ¯̄µ are tensors depending on x, t, E and B. To simplify this presentation, a few assump-
tions are made, at least temporarily:

1At this point, it is important to notice that although (2.6) can be derived from (2.3) and (2.4), it can also be derived inde-
pendently from physical considerations (see [RC01] for more details).
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Table 2.1 | Units and numerical values of electromagnetic constants.

ε0 µ0 Z0 c0 q

Unit F.m−1 H.m−1 Ω m.s−1 C

Type of value Approx. Exact Approx. Exact Approx.

Value 8.854× 10−12 4π × 10−17 119.9×π 2.997 924 58× 108 1.602× 10−19

� The considered materials are linear, thus ¯̄ε and ¯̄µ are independent of E and B;

� Materials are isotropic, which means ¯̄ε ≡ εI3 and ¯̄µ ≡ µI3;

� Materials are homogeneous, i.e. ε and µ are constant within a given material;

� Although dispersive materials will be a central point in this work, it is assumed temporarily that ε
and µ are independent of time.

Hence, in such a material with constant permittivity ε and permeability µ, (2.8) becomes:

D = εE,
B = µH.

It is customary to introduce ε0 and µ0 the vacuum permittivity and permeability, as well as εr and µr
the relative permittivity and permeability of the considered material. Obviously, in vacuum, εr = 1 and
µr = 1. Hence, the constitutive relations are written as follows:

D = ε0 εr E,
B = µ0µrH.

(2.9)

It is then straightforward to obtain Maxwell’s equations for linear, homogeneous, isotropic, non-
dispersive materials:

∇× E = −µ0µr
∂H
∂t
,

∇×H = ε0 εr
∂E
∂t

+ J.
(2.10)

System (2.10), completed with adequate boundary and initial conditions, is now �t to solving. How-
ever, it is preferable to eliminate ε0 and µ0 from the equations for the numerical treatment. This is the
purpose of next section.

2.1.2 Adimensionning

New variables are introduced to normalize system (2.10). For a physical variable X , the new variable is
noted X̃ . The adequate substitutions are:

H̃ = Z0H, Ẽ = E, t̃ = c0t, and J̃ = Z0J,

where Z0 =
√

µ0

ε0
is the vacuum impedance and c0 = 1√

ε0µ0
the speed of light in vacuum. It seems

useful to remind the values and units of these constants, which is done in table 2.1. Then, the normalized
system is:
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Table 2.2 | Units of the original and the normalized Maxwell systems.

H E J t

Original unit A.m−1 V.m−1 A.m−2 s

Normalized unit V.m−1 V.m−1 V.m−2 m

µ0c0

Z0

∂H̃
∂t̃

= − 1

µr
∇× Ẽ,

ε0c0Z0
∂Ẽ
∂t̃

=
1

εr

(
∇× H̃− J̃

)
,

The units of the original and normalized systems are given in table 2.2. Given the de�nitions of c0

and Z0, one sees that µ0c0
Z0

= ε0c0Z0 = 1. Hence, dropping the tilde notation, one obtains the normalized
Maxwell system, which will be exploited from now on:

∂H
∂t

= − 1

µr
∇× E, (2.11)

∂E
∂t

=
1

εr
(∇×H− J) . (2.12)

Maxwell normalized system

2.1.3 Material interfaces

Ampere’s, Faraday’s and Gauss’ laws

Ampere’s, Faraday’s and Gauss’ laws are obtained by applying the Stokes and Ostrogradsky formulae to
(2.2 – 2.5), leading to four integral forms that will help derive the interface conditions.

For a closed contour Γ delimitating a surface S , one obtains Ampere’s law by applying the Stokes
formula to (2.3):

˛
Γ
H · dl =

¨
S

(
J +

∂D
∂t

)
· nS dS, (2.13)

where nS is the unit normal to surface S . In a similar fashion, applying Stokes formula to (2.2) yields
Faraday’s law:

˛
Γ
E · dl = −

¨
S

∂B
∂t
· nS dS. (2.14)

For a closed surface Σ delimitating a volume V , the Ostrogradsky formula applied to (2.4) and (2.5)
respectively gives Gauss’ laws for electric and magnetic �elds:

‹
Σ
D · nΣ dΣ =

˚
V
ρ dV, (2.15)

‹
Σ
B · nΣ dΣ = 0, (2.16)
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n2→1

Σ ≡ ∂VΓ ≡ ∂S
nS nΣ

n1→2

(ε1, µ1)

(ε2, µ2)

Figure 2.1 | Integration domains for jump relations. The blue plane represents the interface between the two materials. Γ
is a closed curve on which the Ampere theorem is applied, while Σ is a closed surface used for the Gauss theorem. The interface
hosts free surface currents Js and charges ρs.

where nΣ is the unit normal to surface Σ.

Interface conditions

In the presence of a material interface, i.e. a jump of εr or µr across a surface, the smoothness of the
electromagnetic �eld is not preserved. To obtain a solution to Maxwell’s equations, one must inspect the
behavior of E and H across the discontinuity. To do so, consider the situation presented on �gure 2.1.
Suppose an interface between two materials of parameters (ε1, µ1) and (ε2, µ2). The adequate integration
domains Γ and Σ are de�ned to apply Ampere’s, Faraday’s and Gauss’ laws across the material interface.
The interface is supposed to hold free surface currents Js and charges ρs. Applying Ampere’s law (2.13)
to the closed contour Γ, and taking the cross-product with n1→2 yields, after a few manipulations:

n2→1 ×H1 + n1→2 ×H1 = Js.

Here, the sign Js obviously depends on the orientation of the surface. Taking into account thatn1→2 =
−n2→1, these normals are indi�erently replaced by n and−n. Then, one obtains the following condition
for the tangential magnetic �eld at the interface:

n× (H1 −H2) = Js.

On the other hand, Gauss’ law for magnetic �elds (2.16) yields:

µ1n ·H1 = µ2n ·H2.

In the same manner, Gauss’s law for electric �elds (2.15) gives:

n · (ε1E1 − ε2E2) = ρs.

Finally, Faraday’s law (2.14) yields the continuity of the tangential electric �eld:

n× E1 = n× E2.
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Hence, for a general material interface between two media, only the tangential component of E is
continuous:

n× (H1 −H2) = Js,
n× (E1 − E2) = 0,

n · (µ1H1 − µ2H2) = 0,

n · (ε1E1 − ε2E2) = ρs.

(2.17)

Interface conditions

Conditions on a perfect electric conductor

Following what was established above, it is easy to deduce the boundary conditions on a perfect electric
conductor (PEC). Considering that all �elds must be equal to zero inside the conductor, one obtains:

n×H = Js,
n× E = 0,
n ·H = 0,

n · E =
ρs
ε
.

(2.18)

PEC conditions

2.1.4 Some analytical solutions to Maxwell’s equations

The handful of electromagnetic propagation problems that admit an analytical solution are essential in
validating numerical implementations of electromagnetic solvers. In this section, the solutions to six
elementary propagation problems are presented. They will be used as reference solutions later in this
manuscript.

Plane wave in a homogeneous medium

In this section, Maxwell’s equations are considered in a homogeneous medium of constant relative ma-
terial parameters (εr, µr). Additionally, it is considered to be source-free, i.e. J and ρ are equal to zero. By
combining the curl of (2.11) and the time derivative of (2.12), one obtains after some manipulations:

∆E =
1

c2
r

∂2E
∂t2

, (2.19)

where cr = 1√
µrεr

is the relative speed of light. Taking the Fourier transform (see section 4.3) of (2.19)
yields:

∆Ê =
ω2

c2
r

Ê, (2.20)

where Ê designates the frequency-dependent �eld associated to the time-dependent �eld E, and ω the
angular frequency. Propagating solutions of (2.20) in R3 are given by:
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k

E

H

Figure 2.2 | Spatial representation of a linearly polarized plane wave. E, H and k are orthogonal two by two.

Ê = Ê0 eik·x,

with k the wave vector, related to the angular frequency ω by:

ω2 = |k|2c2
r .

The expression for Ĥ can be obtained by exploiting the Fourier transform of (2.11):

Ĥ =

√
εr
µr

k
|k| × Ê0 eik·x,

It is now straightforward to deduce time-domain solutions for E and H:

E(x, t) = E0

(
t− k · x
|k|cr

)
,

H(x, t) =

√
εr
µr

k
|k| × E.

(2.21)

Hence, for plane waves, both E and H are constant at every point in the plane perpendicular to the
propagation direction, while E, H and k are orthogonal two by two. Illustrated on �gure (2.2) is the case
of a rectilinear polarization (i.e. there is no initial phase delay between the di�erent components of the
electromagnetic �elds).

Dielectric �lm in normal incidence

The considered set-up, shown in �gure 2.3, consists in a thin slab made of medium 2 , sandwiched
between two media 1 and 3 , and in�nite in the x− and x+ directions (see �gure 2.3). The geometry
is periodic in both y and z directions. A plane wave traveling in 1 in the x+ direction is considered,
impinging in normal incidence on the slab. At the interface between 1 and 2 , the incident �eld Einc is
partially re�ected to 1 , and partially transmitted to 2 , in the following fashion:

E1 = r12Einc and E12 = t12Einc.
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z

xy

l
(ε
2,
µ 2
)

(ε
1,
µ 1
)

(ε
3,
µ 3
)

Einc E1

E12

E122
E123

Figure 2.3 | Dielectric slab illuminated with a plane wave. The system is periodic in both x and y directions, while the
incident plane wave propagates in the z+ direction. At the bottom of the picture, a few re�ected and transmitted waves are
represented.
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Here, E1 represents the wave that was re�ected in 1 at the interface with 2 , and E12 the wave
that was transmitted from 1 to 2 . r12 is the amplitude re�ection coe�cient of 1 on 2 , and t12 is
the amplitude transmission coe�cient from 1 to 2 . From the interface relations (2.17), it is possible to
deduce the values of these parameters:

r12 =
n1 − n2

n1 + n2
and t12 =

2n1

n1 + n2
,

where ni =
√
εiµi is the refractive index of the ith medium. While E1 propagates inde�nitely toward

z−, the same scenario is repeated when E12 reaches the interface between 2 and 3 :

E122 = r21E12 and E123 = t23E12.

Eventually, an in�nite number of re�ections and transmissions occur at the two interfaces, yielding a
solution in the form of an in�nite summation of waves, all proportional to Ei via a composition of r and
t coe�cients. In the stead of exploiting a truncated solution in time domain, it is possible to calculate the
power re�ection and transmission coe�cients, given by:

R =
r12 + r23 e−2ikl

1 + r12r23 e−2ikl
, (2.22)

T =
(1 + r12)(1 + r23) e−ikl

1 + r12r23 e−2ikl
, (2.23)

with k the modulus of the wavevector (k = |k|) and l the thickness of the dielectric slab.

Perfect electric conductor cavities

Vacuum-�lled cubic cavity Closed cavities surrounded by perfect electric conductor (PEC) walls in
simple geometries also allow the full calculation of time-domain solutions. First, a parallelepipedic cavity
of side lengths (ax, ay, az) �lled with vacuum is considered. On all its external faces, PEC conditions are
applied (see (2.18)). This cavity supports an in�nite number of modes, whose expressions are of the form:

E(x, y, z, t) =



Ex,0 cos(kxx) sin(kyy) sin(kzz)
Ey,0 sin(kxx) cos(kyy) sin(kzz)
Ez,0 sin(kxx) sin(kyy) cos(kzz)


 cos(ωt),

H(x, y, z, t) =



Hx,0 sin(kxx) cos(kyy) cos(kzz)
Hy,0 cos(kxx) sin(kyy) cos(kzz)
Hz,0 cos(kxx) cos(kyy) sin(kzz)


 sin(ωt).

In the previous expressions, ki = niπ
ai

for any integers ni 6= 0. Following (2.11), the amplitude vectors
of E and H are related as:

H0 =
k× E0

ω
,

where:

E0 =



Ex,0
Ey,0
Ez,0


 and H0 =



Hx,0

Hy,0

Hz,0
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Additionally, the following equality must be veri�ed to ful�ll the divergence condition:

kxEx,0 + kyEy,0 + kzEz,0 = 0.

Finally, the frequency of the (nx, ny, nz) mode is given by:

ω = π

√
n2
x

a2
x

+
n2
y

a2
y

+
n2
z

a2
z

.

For the needs of this work, a (nx = ny = nz = 1) mode is considered in a unit cavity (ax = ay =
az = 1). Hence, with (kx = ky = kz = k = π) and ω =

√
3π:

E(x, y, z, t) =



− cos(kx) sin(ky) sin(kz)

0
sin(kx) sin(ky) cos(kz)


 cos(ωt),

H(x, y, z, t) =



− sin(kx) cos(ky) cos(kz)
2 cos(kx) sin(ky) cos(kz)
− cos(kx) cos(ky) sin(kz)


 k
ω

sin(ωt).

(2.24)

Vacuum-�lled spherical cavity In the case of a spherical cavity of unit radius, a similar, however more
tedious derivation is possible. For the needs of this work, the following (0, 1, 1) mode will be considered:

H(x, y, z, t) =
sin (ωt)

kr2

(
sin (kr)

kr
− cos (kr)

)

−y
x
0


 ,

E(x, y, z, t) =
z cos (ωt)

k2r4

(
sin (kr)

(
kr − 3

kr

)
+ 3 cos (kr)

)

x
y
z




− cos (ωt)

k2r2

(
sin (kr)

(
kr − 1

kr

)
+ cos (kr)

)


0
0
1


 ,

(2.25)

where r = |x|. The mode frequency is solution of a transcendental equation, and the approximate
value ω ' 0.13091174401040966770 GHz is retained.

Cubic cavity �lled with an anisotropic material The solution of the cubic cavity �lled with an an-
isotropic material is also available. In the most general case, the permittivity tensor is real and symmetric,
and can therefore be diagonalized. Hence, we here restrain ourselves to the case of diagonal permittivity
tensors ¯̄ε r = diag [εx, εy, εz]. Unlike the isotropic case, for a given ¯̄ε r the dispersion relation is a fourth-
order equation in ω, which allows two real modes in the cavity. For the sake of brevity, the full derivation
is not detailed here, and we settle for providing an explicit solution of the problem. As in the isotropic
case, modes are of the form:
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Ej(x, y, z, t) =



Ex,j,0 cos(kxx) sin(kyy) sin(kzz)
Ey,j,0 sin(kxx) cos(kyy) sin(kzz)
Ez,j,0 sin(kxx) sin(kyy) cos(kzz)


 cos(ωjt),

Hj(x, y, z, t) =



Hx,j,0 sin(kxx) cos(kyy) cos(kzz)
Hy,j,0 cos(kxx) sin(kyy) cos(kzz)
Hz,j,0 cos(kxx) cos(kyy) sin(kzz)


 sin(ωjt),

where j ∈ {1, 2}. Once again, we choose the (nx = ny = nz = 1) modes in a unit cavity (ax = ay =
az = 1), which gives (kx = ky = kz = k = π). The anisotropic material is chosen as ¯̄ε r = diag [1, 3, 5],
which yields two possibles modes, ω1 ' 0.837624 GHz and ω2 ' 1.42078 GHz, both solutions of the
dispersive relation. Finally, the divergence condition is taken into account to choose the amplitude vectors
Ej,0 and Hj,0. A possible choice is:

Ex,j,0 = (εr,2 − εr,3) k2,

Ey,j,0 = εr,1εr,3ω
2
j − (2εr,3 + εr,1) k2,

Ez,j,0 = − 1

εr,3
(εr,1Ex,j,0 + εr,2Ey,j,0) ,

Hj,0 =
k× Ej,0
ωj

.

Solutions based on the Mie theory

The Mie theory [vdH81] was derived in 1908 by Gustav Mie, and brings an analytical solution to the scat-
tering of spherical particles in the form of in�nite series of Hankel functions and Legendre polynomials.
Starting from the Helmholtz equation, the �elds are split in separate variables. After a few calculations,
the radial part is solution of a Bessel equation, the polar part, of a Legendre equation, while the azimuthal
part veri�es a simple oscillatory problem. The aforementioned reference contains the detailed derivation,
which is thus not reported here. Among others, it allows for the computation of the near and far �eld, as
well as the cross-sections (see section 4.4) of spherical scatterers. In this manuscript, it will be exploited
as a reference solution in section 5.3 to compare the computed cross-section of a metallic sphere.

2.2 Dispersive models

2.2.1 Underlying physics

Dispersion is a common phenomenon to all kinds of waves traveling through a medium: it results from the
way the latter reacts to the presence of the wave, therefore a�ecting its propagation. For a polychromatic
wave, it often happens that all the frequencies do not travel at the same speed through the medium: this
phenomenon is called dispersion. Among the numerous phenomena encountered in electromagnetics,
many rely on the dispersive properties of materials. Indeed, in speci�c ranges of wavelengths, biological
tissues [GGC96], noble [JC72] and transition metals [JC74], but also glass [Fle78] and certain polymers
[CC41] exhibit non-negligible dispersive behaviors. In the mathematical framework, this phenomenon
is modeled by a frequency-dependent permittivity2 function ε(ω), often derived from physical consid-
erations. Regarding nanophotonics applications, an accurate modeling of the permittivity function for

2We remind the reader that this work is restrained to non-magnetic materials
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metals in the visible spectrum is crucial. Indeed, the free electrons of metals are the key ingredient in the
propagation of surface plasmons [NH07] (see section 2.2.5 for more details).

In the presence of an exterior electric �eld, the electrons of a metal are subject to a Coulomb force
which brings them, in a given characteristic time τc, to an equilibrium position. This leads to a general
electric polarization of the metal, which is usually expressed in the frequency domain with the polar-
ization vector P̂. The latter constitutes an additional term to the electric displacement: D̂ = ε0Ê + P̂.
Moreover, P̂ can be related to Ê in homogeneous isotropic media through its susceptibility χ(ω) such
that P̂ = χ(ω)Ê. If one is to consider a variable electric �eld of given angular frequency ω, the frequency
dependence of P̂ can be intuitively understood: for su�ciently low frequencies, the electrons relaxation
time τ is negligible compared to 1

ω . Therefore, the electrons dispose of a su�cient amount of time to adapt
to the variations of the electric �eld. However, at higher frequencies, the �eld varies signi�cantly during
the time τ required by the electrons to reach a stable state. Then, the higher the frequency, the shorter
the distance traveled by the electrons from their steady state equilibrium, and the lower the polarization.
This explains the observed transparency of the metals for very high frequencies electromagnetic waves.
One should now grasp the importance of taking the dispersion e�ects into account when P̂ cannot be
neglected, since it has a signi�cant in�uence on the permittivity ε(ω) of the considered medium, and
hence on its refractive index.

2.2.2 Drude and Drude-Lorentz models

The Drude model is based on the kinetic theory of gases [Dru00]. In this approximation, the metal is
considered as a static lattice of positive ions immersed in a free electrons gas. The interactions of these
electrons with the ion lattice are condensed in a collision frequency parameter γd, while electron-electron
interactions are totally neglected. For the electron gas, this leads to the following classical equation of
motion:

∂2x
∂t2

+ γd
∂x
∂t

= − e

me
E(t),

where me represents the electron mass, and e the electronic charge. It is worth noticing that γd
matches the de�nition of the inverse of the mean free path τf . Then, considering a harmonic time-
dependence of the form e−iωt, one obtains:

x̂ =
e

me

1

ω2 + iωγd
Ê.

Given the de�nition of the polarization P̂ = −neex̂, with ne the electronic density, the latter equality
can be rewritten as:

P̂ = −ε0
nee

2

meε0

1

ω2 + iωγd
Ê.

Then, the electric displacement becomes:

D̂ = ε0

(
1− ω2

d

ω2 + iωγd

)
Ê,

where ωd =
√

nee2

meε0
is called the plasma frequency of the electrons. It is common to include an

additional parameter, χb, describing the contribution of the bound electrons at in�nite frequency [Mai07]:
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Figure 2.4 | Real and imaginary parts of the silver relative permittivity predicted by the Drude model compared to
experimental data from Johnson & Christy. The parameter values are ε∞ = 3.7362, ωd = 1.3871× 107 GHz and γd =
4.5154× 104 GHz.

D̂ = ε0

(
1 + χb −

ω2
d

ω2 + iωγd

)
Ê.

Then, the de�nition of the relative permittivity function is directly obtained by matching the previous
expression with D̂ = ε0εr(ω)Ê:

εr,d(ω) = ε∞ −
ω2
d

ω2 + iωγd
, (2.26)

where ε∞ = 1 + χb is the permittivity at in�nite frequency. The real and imaginary parts of the
Drude permittivity function for silver are plotted in �gure 2.4, along with experimental curves from
Johnson and Christy [JC72]. One notices that, if the real part �ts the Drude prediction, the experimental
imaginary part shows features that are not predicted by the model. For certain metals (especially noble
ones), electronic transitions between valence and conduction band occur around the visible frequency
range. These contributions correspond to electrons that are bound to their ion cores. Hence, in the same
classical fashion as before, a spring term is added to the equation of motion:

∂2x
∂t2

+ γl
∂x
∂t

+ ω2
l x = − e

me
E(t).

Following the same development as for the Drude model, one easily obtains the expression of a Lorentz
pole:

εr,l(ω) = − ∆εω2
l

ω2 − ω2
l + iωγl

.

The total permittivity of the Drude-Lorentz model is the simple addition of the Drude and Lorentz
terms:

εr,dl(ω) = ε∞ −
ω2
d

ω2 + iωγd
− ∆εω2

l

ω2 − ω2
l + iωγl

. (2.27)
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Figure 2.5 | Real and imaginary parts of the silver relative permittivity predicted by the Drude-Lorentz model com-
pared to experimental data from Johnson & Christy. The parameter values are ε∞ = 2.7311, ωd = 1.4084× 107 GHz, γd =
6.6786× 103 GHz, ∆ε = 1.6336, ωl = 8.1286× 106 GHz and γl = 3.6448× 106 GHz.

Here, the ∆ε parameter represents the amplitude of the associated Lorentz pole. As can be seen for
silver in �gure 2.5, the high-frequency range of the imaginary part is in better adequation with exper-
imental data than it was for the Drude model. However, there is still room for improvement: for some
metals such as gold or silver, the addition of multiple Lorentz terms brings a much better �t between
experimental and theoretical values, at the cost of an increased complexity of the model. Based on this
remark, the L4 model of [HN07] combines four Lorentz poles with a conductivity term.

2.2.3 Generalized model

Given an experimental set of points describing a permittivity function of a material, a Padé type ap-
proximation is a convenient analytical coe�cient-based function to approach experimental data. The
fundamental theorem of algebra allows to expand this approximation as a sum of a constant, one zero-
order pole (ZOP), a set of �rst-order generalized poles (FOGP), and a set of second-order generalized poles
(SOGP), as:

εr,g(ω) = ε∞ −
σ

iω
−
∑

l∈L1

al
iω − bl

−
∑

l∈L2

cl − iωdl
ω2 − el + iωfl

, (2.28)

Generalized dispersive model

where ε∞, σ, (al)l∈L1 , (bl)l∈L1 , (cl)l∈L2 , (dl)l∈L2 , (el)l∈L2 , (fl)l∈L2 are real constants, and L1, L2 are
non-overlapping sets of indices. The constant ε∞ represents the permittivity at in�nite frequency, and σ
the conductivity.

This general writing allows an important �exibility for several reasons. First, it uni�es most of the
common dispersion models in a single formulation. Indeed, Debye (biological tissues in the MHz regime),
Drude and Drude-Lorentz (noble metals in the THz regime), retarded Drude and Drude-Lorentz (trans-
ition metals in the THz regime), but also Sellmeier’s law (glass in the THz regime), are naturally included.
Second, as will be shown later, it permits to �t a large range of experimental data set in a limited number
of poles (thus leading to reasonable memory and CPU overheads). A similar approach was used in the
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Table 2.3 | Quality of the �t obtained by various dispersion models for silver and gold in the [300, 1500] THz range.

Silver Gold

∆r ∆i ∆r ∆i

Drude 0.8366 1.622 1.715 3.752

Drude-Lorentz 0.4649 0.4412 0.5482 0.5759

L4 0.2028 0.2199 0.2354 0.3256

1SOGP 0.8366 1.738 1.328 2.960

2SOGP 0.2061 0.2458 0.2034 0.1891

4SOGP 0.08928 0.06690 0.1019 0.1237

case of the Critical Points (CP) model with two (see [VLDC11]) and three (see [LC09]) poles, and in the
Complex-Conjugate Pole-Residue Pairs model (CCPRP) (see [HDF06]). In essence, these techniques allow
for complex coe�cients in their developments, and can therefore write the decomposition of the permit-
tivity function in pairs of single-order poles only, whereas choosing real coe�cients leads to a collection
of �rst-order and second-order poles. However, the numerical complexity of their implementations is
equivalent to that of the generalized dispersive model.

In order to �t the coe�cients of (2.28) to experimental data, various techniques can be used, such as
the well-known least square method. Vector �tting techniques (see [GS99]) are also well developed for
the CCPRP formulation. For an increasing number of poles, one can be left with a large optimization
problem presenting many local maxima. Simulated Annealing (SA) methods have proved to be partic-
ularly e�cient in �nding global maxima in these situations, even when the initial guess is far from the
optimal point ([KGV83]). Hence, a free existing algorithm from W. L. Go�e3 was adapted for this study.
In practice, for a given model, a set of experimental data is provided to the optimization algorithm: in this
study, the well-known Johnson and Christy tables ([JC72], [JC74]) were exploited, although others are
also widely-used [Pal98]. This method demonstrated good e�ciency while �tting up to 17 parameters
simultaneously.

A key point in the quality of the �tting is the wideness of the spectrum of interest. Indeed, for a �xed
number of parameters and poles, and depending on the behavior of the experimental permittivity function
in the selected frequency range, one can obtain a good or a poor �t. In this section, the frequency interval
is set to [300, 1500] THz, which constitutes a wide enough range for most problems in this manuscript.

For gold, silver and copper, the results obtained with Drude, Drude-Lorentz, 2SOGP, 4SOGP, and L4
models are compared. All the parameters were �tted with the SA algorithm. The quality of the �t is
evaluated by a point-by-point L1 error normalized by the number of experimental samples. The quality
of the real part �t is noted ∆r , while ∆i is the one of the imaginary part. Results are displayed in table
2.3. As can be seen, using SOGP instead of classical Drude and Lorentz poles provides a neat bene�t in
the description of the permittivity function. The 2SOGP and 4SOGP �ts reduce the errors by a factor
2 when compared to the Drude-Lorentz and L4 �ts, for both gold and silver. The only case where no
improvement is obtained is the 1SOGP �t for silver, compared to the Drude model. As an illustration, the
�tting obtained for gold with the 4SOGP model is presented in �gure 2.6.

Although gold and silver are widely used, transition metals, such as nickel, cobalt or iron, were re-
cently considered for plasmonic applications [PPM+14]. However, the permittivity functions of such
metals cannot be represented by the classical Drude model, since the latter assumes the electrons to be

3http://ideas.repec.org/c/wpa/wuwppr/9406001.html
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Figure 2.6 | Real and imaginary parts of the gold relative permittivity predicted by the 4SOGP model compared to
experimental data from Johnson & Christy. The parameter values can be found in appendix A.

Table 2.4 | Quality of the �t obtained by Drude and 1SOGP models for nickel in the [300, 1500] THz range.

∆r ∆i

Drude 1.079 8.323

1SOGP 1.1272 0.8750

non-correlated. In transition metals, however, this assumption is not true, and the global equilibrium is
not reached instantaneously, inducing a retardation e�ect [WROB13]. In the latter reference, a retarded
Drude model is derived from physical considerations, which can be represented by a proper choice of
parameters with a SOGP, the dl parameter in (2.28) being linked to the relaxation time scale. Here, this
feature is illustrated by computing coe�cients for nickel with Drude and 1SOGP models: the results are
displayed in table 2.4, and a graphic representation can be found in �gure 2.7. While the real part is close
to experimental data, one clearly sees how the Drude model underestimates the losses in the metal. The
improvement of the imaginary part with the 1SOGP model is very appreciable, for a constant memory
cost.

2.2.4 Maxwell’s equations in dispersive materials

In this section, the modi�ed Maxwell’s equations for dispersive media are derived. As a �rst example, the
Drude model is considered. Then, the equations for the generalized dispersive model are given.

Maxwell-Drude equations

Consider the case of a frequency-dependent medium, under the hypothesis of a Drude model:

εr(ω) = ε∞ −
ω2
d

ω2 + iωγ
,

The constitutive relation on Ê, already given in (2.9), can now be written:
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Figure 2.7 | Real and imaginary parts of the nickel relative permittivity predicted by the Drude and the 1SOGPmodel
compared to experimental data from Johnson & Christy. The parameter values are, for Drude: ε∞ = 1.78, ωd = 1.16× 107

GHz and γd = 1.058× 106 GHz; for 1SOGP: ε∞ = 1.0, c1 = 1.1943× 1014 GHz2, d1 = 4.6603× 107 GHz, e1 = 0.0 GHz2

and f1 = 2.2176× 105 GHz.

D̂(ω) = ε0ε∞Ê(ω)− ε0
ω2
d

ω2 + iωγ
Ê(ω).

which is traditionally summed up under the following formulation:

D̂(ω) = ε0ε∞Ê(ω) + P̂, (2.29)

where P̂ is the polarization of the medium. Combining the inverse Fourier transform of (2.29) with
Maxwell’s equations yields:

µ0
∂H
∂t

= −∇× E,

ε0ε∞
∂E
∂t

= ∇×H− ∂P
∂t
− Js.

Here, the notation Js refers to the source currents only, to avoid confusion with other types of currents.
Above, P̂ was de�ned as:

P̂(ω) = −ε0
ω2
d

ω2 + iωγ
Ê(ω).

Hence, an inverse Fourier transform gives:

∂2P
∂t2

+ γd
∂P
∂t

= ε0ω
2
dE. (2.30)

By de�ning the dipolar current vector Jp =
∂P
∂t

, the global system can be rewritten as follows:
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µ0
∂H
∂t

= −∇× E,

ε0ε∞
∂E
∂t

= ∇×H− Jp − Js,

∂Jp
∂t

= −γdJp + ε0ω
2
dE.

After a normalization similar to what was done in section 2.1.2, one obtains:

∂H
∂t

= −∇× E,

∂E
∂t

=
1

ε∞

(
∇×H− Jp − Js

)
,

∂Jp
∂t

= −γdJp + ω2
dE.

(2.31)

In the latter system, γd and ωd are normalized by c0.

Maxwell-generalized dispersive model equations

Following similar steps as for the Drude model, one derives the system of PDEs, accounting for the gen-
eralized dispersive model in time-domain:

∂H
∂t

= −∇× E,

∂E
∂t

=
1

ε∞


∇×H− Js −J 0 −

∑

l∈L1

J l −
∑

l∈L2

J l


 ,

J 0 = (σ +
∑

l∈L2

dl)E,

J l = alE− blPl ∀l ∈ L1,

∂Pl
∂t

= J l ∀l ∈ L1,

∂J l

∂t
= (cl − dlfl)E− flJ l − elPl ∀l ∈ L2,

∂Pl
∂t

= dlE +J l ∀l ∈ L2.

(2.32)

Maxwell-Generalized dispersive model

2.2.5 An illustration: a metallic sphere

In order to illustrate the concept of localized surface plasmon, the illumination of a gold nanosphere of
radius R = 50 nm by a plane wave of unit amplitude is considered. The gold is described by a simple
Drude model of parameters ε∞ = 1.0, γd = 3.23× 104 GHz, and ωd = 1.39× 107 GHz. For this
con�guration, the Mie theory predicts a resonance around fres = 1053 THz [Mai07]. At this frequency,
the collective oscillation of electrons reaches its maximal amplitude, producing locally enhanced electric
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Electronic plasma

Figure 2.8 | Plasmon oscillation in a metallic sphere due to an exterior electric �eld. This scheme assumes that the
plasmonic oscillation takes place instantly as the electric �eld is imposed. The electronic displacement causes an induced electric
�eld outside the sphere. Its maximum intensity is reached in the polarization direction, at the dielectric/metal interface.

�eld in the vicinity of the sphere, along the polarization direction of the incident plane wave (see �gure
2.8). To illustrate this resonance, the full Fourier transform of the electric �eld is computed on the whole
domain, at frequencies below, equal and above the resonance frequency. The results are displayed on
�gure 2.9. A local �eld enhancement factor of approximately 8 is obtained at f = fres at the poles of the
sphere in the x direction, which corresponds to the polarization of the incident wave. Below and above
fres, the observed �eld enhancement is weaker.

(a) f = 0.8× fres (b) f = fres (c) f = 1.2× fres

0 4 8

Figure 2.9 | Plasmonic resonance of a gold nanosphere. The plots show the modulus of the electric �eld Fourier transform.
The metal is described by a Drude model. The full resonance is obtained for fres = 1053 THz (�gure 2.9(b)). Above and below
fres (resp. �gures 2.9(a) and 2.9(c)), the local �eld enhancement is weaker. In all �gures, the maximum electric �eld amplitude is
arbitrarily set to 8.
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2.2.6 A digression on non-local models

In the classical description of the electron, the latter is considered to be a point particle, i.e. its size is
negligible. This assumption has two important consequences, which are (i) electrons do not interact with
each other, and (ii) the response of an electron to an exterior �eld only depends on the value of this �eld
at its location. However, quantum mechanics teach us that, under the wave/particle duality description,
an electron should be described by a probability density function: from a naive (and su�cient) point of
view, that means that to be more rigorous, an electron should be considered to have a non-zero spatial
extent, the latter being called "range of non-locality", noted ∆nl, and which typical value would be a few
Å [ESVM+06].

One would now be interested in knowing when the impact of this range of non-locality is to be
considered, and when it is not. To be as clear as possible, consider the di�erent situations presented on
�gure 2.10. In case 2.10(a), the wavelength λ of the electric �eld experienced by the electron is much larger
than ∆nl. Therefore, a relatively reasonable error is committed by assuming that (i) the response of the
electron will be mainly driven by the value of E at the center of its non-locality range, and (ii) the electron
will have no in�uence on its neighbors. The resulting error would typically be of order ∆nl

λ [ESVM+06].
On the contrary, in 2.10(b), one sees that an important error is committed, since the electric �eld varies
signi�cantly on a typical length of ∆nl. In this case, it is required to consider that non-local e�ects will
be brought into play. An easy calculation shows that a 1 % error is committed for a wavelength roughly
equal to 10 nm, which approximately corresponds to a few PHz. However, one must not think that below
such values, non-locality does not take part into photonic calculations. Indeed, another situation where
an electron experiences important variations of the electric �eld inside its range of non-locality is the
edge of the considered nano-structure, where material properties (and therefore �elds) change rapidly:
as depicted on �gure 2.10(c), every electron found in the orange shell would be poorly described by a
standard model at any frequency. Again, this impact would be limited in every case where the typical
dimension (hereafter noted R) of the object (or the gap) is large compared to ∆nl. Indeed, in the standard
model, all the electrons are considered to reside in a shell of in�nitesimal thickness at the surface of the
object. But, as can be seen on �gure 2.10(d), as soon as R is of the order of a few ∆nl, the response of the
material is not properly described for a majority of its free electrons, leading to biased results. In order
not to confuse causes and consequences, the latter paragraphs are summed up in a few words:

� The non-local model gives a better description of what an electron is and how it reacts to the
presence of (i) an external electric �eld, and (ii) other electrons. This improved description is made
by de�ning the non-locality range, which is a consequence of the quantum theory;

� The sensibility of the electron to very short wavelengths is therefore a consequence of the latter
point;

� As well, the fact that the electrons "see the walls" as well as each other is a consequence of their
non-zero spatial extent.

The spatial extension of the electrons causes a new kind of interaction that was excluded up to now,
namely the electron-electron interaction. The quantum theory tells us that the electrons, as every other
fermions, obey the famous Pauli principle which states that two identical fermions cannot occupy the
same quantum state at the same time. At our level, the main consequence is that two electrons will
experience a repulsive force between them that will be proportional to the overlapping of their respect-
ive non-locality ranges. In the hydrodynamic evolution equation, this repulsion will be expressed by a
pressure term proportional to the gradient of the electronic density [Boa82]:
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Figure 2.10 | Non-locality is required when the wavelength and/or the geometrical features are of comparable size with the
range of non-locality (right panels). Otherwise, a local description is usually su�cient (left panels).
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m
∂nv
∂t

= neeE−mγdv−mβ2∇n. (2.33)

Therefore, electronic density pro�les will be smoothened by the pressure term, and higher �eld val-
ues will be required to increase the density. Here, β is a phenomenological parameter whose value is
proportional to the Fermi velocity4 vF . The proportionality constant depends on the dimension of the
problem, as well as on the frequency. A short discussion on this matter can be found in [MCS13]. The
same development as in the standard Drude case can be followed:

∂J
∂t

= ω2
dE− γdJ− β2∇ne. (2.34)

Integrating the continuity equation with respect to time leads to the following equality, introducing
the polarization P such as ∂P

∂t = J:

ne+∇ · P = 0.

Considering that the system is initially at rest, the integration constant is taken equal to 0. Plugging
the latter equality into (2.34) yields:

∂2P
∂t2

= ω2
dE− γd

∂P
∂t

+ β2∇ (∇ · P) . (2.35)

This additional di�erential equation (ADE) to the Maxwell system can be expressed in the (k, ω) space
through the following relation:

εDrude, non local(k, ω) = − ω2
d

ω2 + iγdω − β2k2
. (2.36)

From a numerical point of view, the main di�erence with local models is that the additional equation
is now a PDE. To illustrate this topic, the illumination of an in�nite gold nanowire by a plane wave is
considered, both with local and non-local models. The radius of the nanowire is 2 nanometers while the
pulse central frequency is fc = 1.602× 104 THz. The gold is described by a Drude model with parameters
ε∞ = 1, ωd = 1.339× 104 THz, γd = 1.143× 102 THz, and β = 1.1349× 106 m.s−1 (β is set to zero
for the local model). The computations are performed with the code described in [SSL+], and the full
Fourier transform of the electric �eld are extracted: plots for local and non-local models are presented on
�gure 2.11. As can be seen, in the non-local case, a bulk plasmon is excited that does not appear with the
local model. Besides exciting this volume plasmon, the non-local model also has the property to blue-shift
the localized surface plasmon resonance of the nanosphere. One should note that this behavior is only
obtained for frequencies above the plasma frequency. Further study and implementation of the non-local
model were carried out in 2D by N. Schmitt [SSL+], and the reader is referred to this publication for a
more complete presentation of this phenomenon.

2.2.7 Causality principle

Whatever the chosen dispersion model, the latter has to respect the causality principle, which relies on
the natural observation that any physical system should not depend on future states of the system. It
can be expressed mathematically thanks to the Kramers-Krönig relations as an analyticity condition for
the frequency-dependent permittivity function. Even if this characterization is well established among

4See [ESVM+06] [MCS13] and references therein.
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(a) Local model (b) Non-local model

0 1

Figure 2.11 | Non-local resonance of a gold nanosphere at frequency fc = 1.602× 104 THz. The plots show the modulus
of the electric �eld Fourier transform. The right panel shows the excited bulk plasmon due to non-local model, which does not
appear for the local model, on the left panel. Note that the situation is di�erent when the incident frequency is below the plasma
frequency (see [SSL+]). The sphere radius is 2 nm, and is described by a hydrodynamic Drude model, with parameters ε∞ = 1,
ωd = 1.339× 104 THz, γd = 1.143× 102 THz, and β = 1.1349× 106 m.s−1 (β is set to zero for the local model).

physicists, the justi�cation of this condition may sometimes be quite vague. The proof of the causal-
ity of the generalized dispersive model is detailed in [LSV] and is not reproduced here. However, it is
staightforward to prove that it will impose dl > 0, el > 0 and fl > 0.
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3
The DGTD method

To go further than the few cases for which we have access to an analytical solution of Maxwell’s equations,
resorting to a numerical method is unavoidable. To this end, we introduce the basics of the discontinu-
ous Galerkin (DG) method, for dielectric (section 3.1) and dispersive media (section 3.4) in three spatial
dimensions. Various possible time integration techniques are presented in section 3.2. Basic validations
of the method are presented in section 3.3. To remain as clear as possible, the presentation of some tech-
nical details useful to DG calculations is postponed to chapter 4. Eventually, theoretical stability and
convergence results are presented (section 3.5).

3.1 DG method for Maxwell equations

3.1.1 Weak formulation

Let Ω ⊂ R3 be a bounded convex domain, and n the unitary outward normal to its boundary ∂Ω. Let
Ωh be a discretization of Ω, relying on a quasi-uniform triangulation Th verifying Th =

⋃N
i=1 Ti, where

N ∈ N∗ is the number of mesh elements, and (Ti)i∈J1,NK the set of simplices. The internal faces of
the discretization are denoted aik = Ti

⋂
Tk if Ti and Tk are adjacent cells, and nik is de�ned as the

unit normal vector to the face aik, oriented from Ti toward Tk. For each cell Ti, Vi is the set of indices
{k ∈ J1, NK | Ti

⋂
Tk is a trangular face}. Then, the quasi-uniform assumption implies that:

∃δ, ∀Ti ∈ Th,∀k ∈ Vi, hk ≤ δhi,
with hi the size of element Ti. It is now possible to write the weak formulation of problem (2.11) in

the cell Ti. By taking the L2 scalar product of each term with a vector test function ψ, one obtains the
following variational problem:

Find (E,H) ∈ H0 (curl,Ωh)×H (curl,Ωh) such that ∀ψ ∈ H (curl,Ωh) ,ˆ
Ti

µr
∂H
∂t
·ψ +

ˆ
Ti

∇× E ·ψ = 0,
ˆ
Ti

εr
∂E
∂t
·ψ −

ˆ
Ti

∇×H ·ψ = −
ˆ
Ti

J ·ψ.
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Formally rewriting the latter equalities using classical vectorial calculus and Green formulae gives:
ˆ
Ti

µr
∂H
∂t
·ψ +

ˆ
Ti

E · ∇ ×ψ =

ˆ
∂Ti

(ψ × E) · ni,
ˆ
Ti

εr
∂E
∂t
·ψ −

ˆ
Ti

H · ∇ ×ψ = −
ˆ
Ti

J ·ψ −
ˆ
∂Ti

(ψ ×H) · ni.

One immediatly notices that the previous equality only holds if the boundary terms exist. Considering
the properties of the mixed product, the latter becomes:

(ψ × E) · ni = (E× ni) ·ψ,
which implies that taking E in H0 (curl,Ωh) requires the existence of the trace of ψ on ∂Ti. We will

thus take ψ in H1 (Ωh) instead of H (curl,Ωh). Hence, ∀Ti,∀ψ ∈ H1 (Ωh),

ˆ
Ti

µr
∂H
∂t
·ψ +

ˆ
Ti

E · ∇ ×ψ =

ˆ
∂Ti

(E× ni) ·ψ,
ˆ
Ti

εr
∂E
∂t
·ψ −

ˆ
Ti

H · ∇ ×ψ = −
ˆ
Ti

J ·ψ −
ˆ
∂Ti

(H× ni) ·ψ.
(3.1)

Weak formulation

3.1.2 Space discretization

First, we de�ne the following approximation space Vh:

Vh =
{
v ∈

(
L2(Ω)

)3
, v Ti ∈ (Pp(Ti))3 ∀Ti ∈ Th

}
,

where Pp(Ti) is the space of polynomials of maximum degree p on Ti. The semi-discrete �elds,
seeked in space Vh, are hereafter denoted (Hh,Eh, Jh), and on each cell Ti the restrictions (Hi,Ei, Ji) =(
Hh Ti ,Eh Ti , Jh Ti

)
are de�ned. A set of scalar basis functions (φik)16k6di

is de�ned for each Ti, where
di is the number of degrees of freedom (d.o.f.) per dimension. Additionally, to each scalar basis function,
the three vectors φvik are associated:

φ1
ik =



φik
0
0


 ,φ2

ik =




0
φik
0


 ,φ3

ik =




0
0
φik


 .

One now seeks the approximations Eh and Hh of E and H in space Vh. The contribution of each cell
is therefore de�ned as Ei = Eh Ti . Here, one must notice that, for a 3D system, Ei is actually a vector
that has 3 components:

Ei =



Exi
Eyi
Ezi


 ,

each of which is locally expanded on the chosen set of basis functions:

Evi =

di∑

j=1

Evijφij , v ∈ {x, y, z} . (3.2)
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Therefore, for practical purpose, one de�nes three vectors of di components:

E v
i =



Evi1

...
Evidi


 , v ∈ {x, y, z} ,

as well as the following 3di components vector:

E i =




(
Exij

)
16j6di(

Eyij

)
16j6di(

Ezij

)
16j6di



.

that will be handy to cast the matrix-vector form of our system. In the following sections, focus is
made on the E evolution equation. However, the H evolution equation is treated in the exact same way to
obtain the discrete system. Hence, a discrete variational formulation can be written with the unknowns
Eh and Hh, analogously to (3.1). However, as will be shown in next section, the boundary terms in this
formulation require some additional treatment before progressing further on in the discretization process.

3.1.3 Numerical �uxes

Given that the test functions are now allowed to be discontinuous at the interfaces between cells, it is
important to notice that the surface integrals, such as:

ˆ
ail

(Eh × nil) ·ψ, (3.3)

and
ˆ
ail

(Hh × nil) ·ψ, (3.4)

are not unequivocal, since the unknows can relate to either the �eld value on the Ti or the Tl side
of the interface. The introduction of a numerical �ux allows to recover a proper de�nition of the latter
surface integrals, and is essential to connect the �eld values between neighbouring cells. One must notice,
however, that there is not a unique valid choice for �uxes, and that in the case of a set of linear equations,
di�erent choices can lead to stable and convergent discrete schemes. The expressions of equations (3.3)
and (3.4) are therefore replaced with the following ones:

ˆ
ail

(E∗ × n) ·ψ,

and
ˆ
ail

(H∗ × n) ·ψ,

where E∗ and H∗ remain to be de�ned. As will be shown later, the �ux can be seen as the solution
of a Riemann problem at cell interfaces. However, in order not to interfere with the development of the
DG formulation, this technical calculation is postponed to section 3.1.8. In this thesis, we will exploit two
very common �ux choices. The �rst one is the centered �ux, which reads:
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E∗ =
Ei + El

2
, H∗ =

Hi + Hl

2
. (3.5)

This �ux is in essence non-dissipative and leads to an L2 spatial convergence in hp if �elds are
searched for in Vh. Coupled to a non-dissipative time-integration scheme such as Leap-Frog (see sec-
tion 3.2.2), this choice can yield a totally non-dissipative DGTD scheme [F+05]. A weighted version of
the centered �ux is also commonly exploited:

E∗ =
YiEi + YlEl
Yi + Yl

, H∗ =
ZiHi + ZlHl

Zi + Zl
, (3.6)

where Yi =
√

εi
µi

is the admittance for cell Ti, and Zi = 1
Yi

=
√

µi
εi

is its impedance. The e�ects of
weighting on convergence are shortly explored in section 3.3.3. The second possibility is the upwind �ux,
which expression is given by:

E∗ =
1

Yi + Yl
({Y E}il + αn× JHKil) , H∗ =

1

Zi + Zl
({ZH}il − αn× JEKil) , (3.7)

where {A}il = Ai + Al is twice the mean value of A across the interface, JAKil = Al − Ai is the
jump of A across the interface, and α ∈ [0, 1] is a tunable parameter that allows to vary between the
centered �ux (3.6) for α = 0, to a fully upwind �ux for α = 1. Unlike its centered counterpart, the jump
term of the upwind �ux introduces dissipation in the DG scheme, which can be very helpful in situations
where instabilities might occur [HW08], since it helps in damping unphysical modes (see section 3.1.9).
Additionaly, it leads to an L2 spatial convergence as hp+1. The convergence for intermediate values of α
is assessed numerically on a simple textbook case in section 3.3.2.

3.1.4 DG matrices

Mass matrix

Test functions ψ are chosen to be the 3 di vectors φvik, which constitutes the Galerkin choice:

ˆ
Ti

µr
∂Hi

∂t
· φvik +

ˆ
Ti

Ei · ∇ × φvik =
∑

l∈Vi

ˆ
ail

(E∗ × nil) · φvik,
ˆ
Ti

εr
∂Ei
∂t
· φvik −

ˆ
Ti

Hi · ∇ × φvik = −
∑

l∈Vi

ˆ
ail

(H∗ × nil) · φvik −
ˆ
Ti

Ji · φvik.
(3.8)

In the remaining of this manuscript, the indices present in formulations such as (3.8) are de�ned over
the following sets: i ∈ J1, NK, k ∈ J1, diK and v ∈ {x, y, z}. One then exploits the local �eld expansions
from (3.2). For the �rst component of the time-derivative term of equation (3.1), this yields:
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ˆ
Ti

εr
∂Ei
∂t
· φxik =

ˆ
Ti

εr
∂Exi
∂t

φik

=

ˆ
Ti

εr

di∑

j=1

∂

∂t
Exijφijφik

=

di∑

j=1

∂

∂t
Exij

ˆ
Ti

εrφijφik

=

(
Mεr
i

∂ E x
i

∂t

)

k

where Mεr
i is the mass matrix, of dimension di × di:

(Mεr
i )jk =

ˆ
Ti

εrφijφik,

with (j, k) ∈ J1, diK2.

Sti�ness matrix

Focus is now made on the curl integral of the equality. The �rst component of the E evolutionary equation
is:

ˆ
Ti

Hi · ∇ × φxik =

ˆ
Ti

(
Hy
i

∂φik
∂z
−Hz

i

∂φik
∂y

)

=

ˆ
Ti

di∑

j=1

(
Hy
ijφij

∂φik
∂z
−Hz

ijφij
∂φik
∂y

)

=

di∑

j=1

Hy
ij

ˆ
Ti

φij
∂φik
∂z
−

di∑

j=1

Hz
ij

ˆ
Ti

φij
∂φik
∂y

=
(
Kz
i H

y
i −Ky

i H
z
i

)
k

= −
(
K i × H i

)x
k
.

Here, the three sti�ness matrices were introduced:

(Kv
i )jk =

ˆ
Ti

φij
∂φik
∂v

for v ∈ {x, y, z} ,

with (j, k) ∈ J1, diK2. From the latter de�nition, we de�ne the general 3di × di sti�ness matrix that
will be used in the �nal system:

K i =




Kx
i

Ky
i

Kz
i


 ,
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Flux matrix

The last part to consider is the surface integral that contains the �ux contribution. The calculation is
here made with the centered �ux (3.5), but the generalization to other �uxes is straightforward. We also
note that in the conforming case, expanding a �eld de�ned on ail over the basis functions of Ti or Tl is
equivalent if the same basis expansions are used. In the non-conforming case, one should consider the
respective expansions of the �eld over the respective bases of the two cells (see chapter 6). We proceed
as we did previously, focusing on the x component of the �ux:

ˆ
ail

(H∗ × nil) · φxik =

ˆ
ail

(
Hy
∗n

z
il −Hz

∗n
y
il

)
φik

=

ˆ
ail

(
Hy
i +Hy

l

2
nzil −

Hz
i +Hz

l

2
nyil

)
φik

=
1

2

di∑

j

(
{Hy}il nzil − {Hz}il n

y
il

) ˆ
ail

φijφik

=
(
Sil
(
H ∗ × nil

))x
k

where the �ux matrices are, in the conforming case:

(Sil)jk =

ˆ
ail

φijφik,

with (j, k) ∈ J1, diK2.

General matrix-vector formulation

It is necessary to de�ne extended mass and �ux matrices in order to write the semi-discrete formulation
in a compact manner:

M u
i =




Mu
i 0di×di 0di×di

0di×di Mu
i 0di×di

0di×di 0di×di Mu
i


 , S il =




Sil 0di×di 0di×di
0di×di Sil 0di×di
0di×di 0di×di Sil


 .

These de�nitions lead to the following compact expression of the semi-discrete DG scheme for Max-
well’s equations:

M µr
i

∂H i

∂t
= −K i × E i +

∑

l∈Vi
S il
(
E ∗ × nil

)
,

M εr
i

∂ E i

∂t
= K i × H i −

∑

l∈Vi
S il
(
H ∗ × nil

)
− M i J i.

(3.9)

Semi-discrete scheme

3.1.5 Mapping from a reference element

As a �nite element method, a strength of the DG method is that the FE matrices are not stored, but are
calculated once on a reference element T̂ , and then mapped on the considered physical tetrahedron Ti.
Let T̂ be de�ned as follows in the ξ = (ξ, η, ζ) coordinates system:
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A1

A2

A3
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ξ

ζ
η
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v2

v3

v4

x

z
y

x = ψTi (ξ)

Figure 3.1 | Linear mapping from the reference element T̂ to the physical element Ti.

T̂ =
{

(ξ, η, ζ) ∈ R3
+, ξ + η + ζ ≤ 1

}
.

Then, the physical tetrahedron is de�ned in the x = (x, y, z) coordinates system as the image of T̂
by the mapping ψTi :

ψTi : T̂ → Ti, such that, ∀ξ ∈ T̂ , x = ψTi (ξ) .

A visual representation can be found on �gure 3.1. The vertices of T̂ are noted (A1, A2, A3, A4),
whereas the vertices of Ti are (v1, v2, v3, v4). In this case, the mapping is a linear combination of ξ, η and
ζ :

ψTi (ξ) = v1 + (v2 − v1)ξ + (v3 − v1)η + (v4 − v1)ζ.

Let us see how the �nite element matrices, calculated on the reference element, are then mapped to the
physical tetrahedra. Let (φij)j=1..di

be the basis functions on Ti, and
(
φ̂j

)
j=1..di

de�ned by φ̂j = φij◦ψTi
on T̂ . Then, the mass matrix on the element Ti will be de�ned as:

(Mi)jk =

ˆ
Ti

φij(x)φik(x)dx

=

ˆ
T̂
φ̂j (ξ) φ̂k (ξ)

∣∣∣JψTi
∣∣∣ dξ,

where JψTi (ξ) is the jacobian matrix of the mapping ψ, de�ned as:

(
JψTi

)
jl

=

(
∂xj
∂ξl

)

jl

=




(v2 − v1)x (v3 − v1)x (v4 − v1)x
(v2 − v1)y (v3 − v1)y (v4 − v1)y
(v2 − v1)z (v3 − v1)z (v4 − v1)z


 .

Its determinant
∣∣∣JψTi

∣∣∣ happens here to be a constant, depending only of the coordinates of the phys-
ical vertices (v1, v2, v3, v4). Hence, in the case of a linear mapping, the mass matrix for each physical
tetrahedron is simply a multiple of the mass matrix calculated on the reference tetrahedron:
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(Mi)jk =
∣∣∣JψTi

∣∣∣
(
M̂
)
jk
.

A similar situation occurs for the sti�ness and �ux matrices, through the following change of variables
(see [Mon03] for additional details):

(Kv
i )jk =

ˆ
Ti

(
φij(x)

∂φik
∂v

(x)

)
dx

=

ˆ
T̂

(
φ̂j(ξ)

[∣∣∣JψTi
∣∣∣ J−1
ψTi
∇ξφ̂k(ξ)

]
v

)
dξ

=

[∣∣∣JψTi
∣∣∣ J−1
ψTi

ˆ
T̂
φ̂j(ξ)∇ξφ̂k(ξ)dξ

]

v

=
3∑

m=1

[∣∣∣JψTi
∣∣∣ J−1
ψTi

]
vm

ˆ
T̂
φ̂j
∂φ̂k
∂ξm

=
3∑

m=1

[∣∣∣JψTi
∣∣∣ J−1
ψTi

]
vm

(
K̂m
)
jk
,

where ∇ξ is the gradient operator in the T̂ basis. Therefore, the sti�ness matrix on Ti can be built
from the precalculated matrices

(
K̂m
)
jk

on the reference element. In the same fashion, the surface matrix
can be rewritten as:

(Sil)jk =

ˆ
ail

φijφlkds

=

ˆ
t̂
φ̂jφ̂k

∣∣∣JψTi
∣∣∣
∣∣∣J−1
ψTi

n̂
∣∣∣ dŝ

=
∣∣∣JψTi

∣∣∣
∣∣∣J−1
ψTi

n̂
∣∣∣
(
Ŝ
)
jk
,

where t̂ denotes the reference triangle. As well, these matrices can be deduced from the precalculated(
Ŝ
)
jk

. Finally, the unitary normals transform as:

nil =
J−1
ψTi

n̂
∣∣∣J−1
ψTi

n̂
∣∣∣
.

Therefore, a single (3× 3) matrix needs to be stored for each cell, in the stead of the whole set of FE
matrices.

3.1.6 Polynomial expansion basis

Although the derivation of the semi-discrete scheme is achieved, the basis functions of the reference
element

(
φ̂j

)
j=1..di

remain to be speci�ed. Although many polynomial bases are available, Lagrange
polynomials are quite a common choice. They can be de�ned by a set of interpolation nodes spread across
the element, which constitutes another free parameter of the DG method. At �rst, the most natural choice
seems to use equispaced interpolation points (see �gure 3.2 for an illustration of their distribution on
triangles and tetrahedra). However, for high-order polynomials, this kind of interpolation is known to be
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Figure 3.2 | Equispaced Lagrange nodes on triangles and tetrahedra for orders ranging from 1 to 4. For tetrahedra,
dashed lines indicate that the node is located inside the volume.

ill-conditioned [HW08]. In this case, more suitable choices exist, such as the Warp & Blend interpolation
sets [War06]. Nevertheless, as will be shown later, fourth-order approximation is rarely exceeded in
practical computations. When referring to [War06], one sees that the improvement of the condition
numbers with the Warp & Blend interpolation for orders lower than �ve is not so clear when compared
to equispaced interpolation (resp. 2.11 against 2.27 for order 3, and 2.66 against 3.47 for order 4). For this
reason, equispaced Lagrange node distributions will be used throughout the remaining of this manuscript.
The Lagrange interpolants Li are de�ned by the following property:

Li(xj) = δij ,∀(i, j) ∈ J1, diK2.

Hence, there must be an equal number of polynomials and nodes to actually de�ne a complete basis.
In a tetrahedron, for a polynomial order p, the number of Lagrange nodes in the volume is equal to:

n(p) =
(p+ 1)(p+ 2)(p+ 3)

6
,

while on each tetrahedron face, the number of Lagrange nodes is:

s(p) =
(p+ 1)(p+ 2)

2
.

Exploiting Lagrange polynomials with equispaced nodes allows a very simple integration of the �nite
element matrices on the reference element, since the nodes positions are known accurately. On �gure
3.3, the six second-order Lagrange polynomials on the reference triangle are presented. Amplitudes are
magni�ed for a better visualization.

3.1.7 Boundary conditions

Every computational setup must be terminated by boundary conditions, which are chosen depending on
the physics of the problem. Electromagnetic cavity problems are usually terminated with perfect electric
conductor (PEC) conditions, which will perfectly re�ect the incident waves. For open problems, it is
necessary to arti�cially truncate the considered physical domain, since computational domains cannot
describe unbounded volumes. Another possibility is to use periodic boundary conditions (PBC), which
describe an in�nite repetition of the same pattern.

In the case of DGTD methods, boundary conditions can be imposed by adding an extra layer of ghost
cells outside the computational domain (see �gure 3.4). By enforcing speci�c values of the �elds in these
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Figure 3.3 | Second order Lagrange polynomials on triangles. Amplitudes are magni�ed by a factor of 4 for visibility.

cells, the behavior of the solution on the boundary is naturally controlled via the numerical �ux. Here,
�eld inside the ghost cells are noted Egc and Hgc, while Ebc and Hbc denote the �elds in the boundary
cells.

Perfect electric conductor condition

PEC condition was previously de�ned (see system (2.18)). To impose a zero tangential electric �eld on a
PEC boundary, one can simply enforce the �eld values in the ghost cells as follows:

Egc = −Ebc and Hgc = Hbc.

Perfect magnetic conductor condition

PMC condition is the reciprocal of the PEC one, and is often used to impose symmetry planes. A zero
tangential magnetic �eld is enforced by setting:

Egc = Ebc and Hgc = −Hbc.

Absorbing boundary condition

Absorbing boundary conditions (ABC) are a family of boundary conditions that allow to partially absorb
�elds radiating out from the physical domain. There exist many forms, the most common being the
�rst-order Silver-Müller boundary condition [Mon03]:

n× (E + Z (n×H)) = 0
n× (H− Y (n× E)) = 0

(3.10)

Silver-Müller boundary condition
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(Egc,Hgc)

(Ebc,Hbc)

Figure 3.4 | Ghost cells layer on the computational domain boundary.

When imposed on the boundary, this condition perfectly absorbs normally-incident plane waves.
However, its performance rapidly decreases when waves are incident at increasing angles (the reader can
refer to section 4.1.1 for technical discussions and numerical tests). Imposing this condition is equivalent
to setting the incoming �ux to zero on the boundary. Its expression depends on the upwinding factor α:

Ygc = Ybc, Zgc = Zbc, Egc = 0 +

(
1− α
Ybc

)
n×Hbc and Hgc = 0−

(
1− α
Zbc

)
n× Ebc.

Periodic boundary condition

Periodic boundary conditions (PBC) allow to simulate arti�cially in�nite mono-directional or bi-directional
arrays while considering only one elementary pattern. To do so, cells from a periodic boundary face are
matched with their neighbors on the opposite boundary of the domain. This way, every cell has a well-
de�ned neighbor, and standard �uxes can be applied.

3.1.8 Derivation of the �ux formulation

This part is dedicated to the derivation of the �ux formulation (3.7). This is done via the resolution
of a Riemann problem on a cell interface. First, the source-free Maxwell’s equations are cast under a
conservative form. Then, the Rankine-Hugoniot relations are applied, which leads to expressions (3.7).

Conservative form

Let us recall the Maxwell’s normalized equations, for the special case of source-free regions:

∂H
∂t

= − 1

µr
∇× E,

∂E
∂t

=
1

εr
∇×H.
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Both electric and magnetic �elds are cast into a unique solution vector W, which therefore holds six
components. A 6x6 material matrix is also de�ned:

W =




Hx

Hy

Hz

Ex
Ey
Ez



, Q = [diag (µr, µr, µr, εr, εr, εr)] .

Then, three vector functions Fx, Fy and Fz are de�ned:

Fx (W) =




0
−Ez
Ey
0
Hz

−Hy



, Fy (W) =




Ez
0
−Ex
−Hz

0
Hx



, and Fz (W) =




−Ey
Ex
0
Hy

−Hx

0



.

One easily sees that the two curl equations can be summed up in the following formulation:

Q
∂W
∂t

+
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

= 0.

A "vector of vectors" is introduced with F = T [Fx, Fy, Fz]. By extending the de�nition of the diver-
gence (∇·) to a vector of vectors, the system can be rewritten in the following conservative form:

Q
∂W
∂t

+∇ · F (W) = 0. (3.11)

Conservative form

Riemann problem

In its simplest form, a Riemann problem is composed of a conservation equation like (3.11), along with a
discontinuous, piecewise initial condition. As will be shown in this section, the solution of such a problem
is of particular interest in the DG framework because of the intrinsic discontinuities of the �elds at cells
interfaces. Expression (3.11) is reformulated in a matrix form:

Q
∂W
∂t

+ Dx
∂W
∂x

+ Dy
∂W
∂y

+ Dz
∂W
∂z

= 0.

Since solutions are sought along the unit normal n, the following operator is introduced:

D =
∑

i∈{x,y,z}
niDi,

where ni is the ith component of the unit normal n. Hence, whatever the dimension of the original
problem, the resulting problem along the normal direction is a 1D problem. The dynamics of this system
are given by the eigenvalues of Q−1D. Three repeated eigenvalues are obtained, that de�ne the possible
velocities of waves propagating in each medium:
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λ±1 = c±, λ±2 = 0, λ±3 = −c± with c± =
1√
µ±ε±

The structure of the 1D Riemann problem (RP) is presented on �gure 3.5. Figure 3.5(a) depicts the
smooth �elds in cells on each side of the interface. On �gure 3.5(b), the situation is considered along
the normal direction. This constitutes a generalized Riemann problem (GRP), i.e. �elds are not constant
on each side of the discontinuity. A method for solving such problems is presented in great details in
[Tor09]. However, the full solving of a GRP is more the prerogative of ADER methods [TDMS09], where
the �ux computation provides a high-order approximation in space and time simultaneously. Here, only
the leading term of the GRP is considered. The leading term Wl is de�ned as the limit of W on the
interface:

W−l = lim
x→0−

W− (x) ,

W+
l = lim

x→0+
W+ (x) .

In the DG framework, these de�nitions clearly �nd their numerical counterparts, since nodes on a
boundary exist separately on both sides. Close to the boundary, it is therefore possible to consider the
limit RP of �gure 3.5(c). This constitutes a standard Riemann problem, which can be solved with the
method of characteristics (�gure 3.5(d)). The solution contains four zones of constant values: the �rst
two where the �elds are known and equal to W−l and W+

l ; the last two, where the �elds are unknown
and equal to W−∗ and W+

∗ .

Rankine-Hugoniot relations

To complete the resolution of the RP, it is necessary to apply the Rankine-Hugoniot relations at the jumps
between the four zones [Tor09]. Given that there are three distinct eigenvalues, these conditions yield
the following equations, where, for the sake of simplicity, the Wl notation is dropped:

c−Q−
(
W−∗ −W−

)
+ n ·

(
F−∗ − F−

)
= 0 (3.12)

n ·
(
F−∗ − F+

∗
)

= 0 (3.13)
−c+Q+

(
W+
∗ −W+

)
+ n ·

(
F+
∗ − F+

)
= 0 (3.14)

First, (3.13) and (3.14) are combined:

c−Q−
(
W−∗ −W−

)
+ n ·

(
F−∗ − F−

)
= 0 (3.15)

−c+Q+
(
W+
∗ −W+

)
+ n ·

(
F−∗ − F+

)
= 0. (3.16)

Then, evaluating c+Q+(3.15) + c−Q−(3.16) yields:

c+c−Q+Q−
(
W−∗ −W− −W+

∗ + W+
)

+ c+Q+n ·
(
F−∗ − F−

)
+ c−Q−n ·

(
F−∗ − F+

)
= 0

with:

n · F =

[
n× E
−n×H

]
.
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T − T +

(a) Discontinuous solution at cell interface

x

W

W+W−

(b) Generalized Riemann problem along face normal
at initial state

x

Wl

W+
lW−

l

(c) Leading term Riemann problem along face normal
at initial state

x

t

W+
l

W+
∗W−

∗

W−
l

λ1

λ2

λ3

(d) Solution of the leading term Riemann problem

Figure 3.5 | Structure of the Riemann problem at cells interfaces. In 3.5(a), the smooth solutions are shown in each cell,
with the discontinuity occurring at the cells interface. When considered in the direction of the normal to the interface, this
constitutes a generalized Riemann problem, as shown in 3.5(b). The in�nitesimally small volume close to the discontinuity,
represented in orange, corresponds to the leading term Riemann problem, and is reproduced in 3.5(c). In 3.5(d), its solution is
shown in the (x− t) space.
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In the following, focus is made on the second component of the �ux. However, very similar treatment
can be applied to the �rst one. Rewriting the previous equality one obtains:

c+c−ε+ε−
(
E−∗ − E+

∗ + E+ − E−
)
−
(
c+ε+ + c−ε−

)
n×H−∗

+ c+ε+n×H− + c−ε−n×H+ = 0.
(3.17)

Dot multiplying (3.17) with n, one sees that:

n ·
(
E−∗ − E+

∗
)

= n ·
(
E− − E+

)
.

Additionally, by (3.13):

n×
(
E−∗ − E+

∗
)

= 0.

Now, consider the following equality:

U = (n · U)n− n× (n× U) , (3.18)

and applying it to
(
E−∗ − E+

∗
)

gives, considering the previous equalities:

E−∗ − E+
∗ =

(
n ·
(
E−∗ − E+

∗
))

n− n×
(
n×

(
E−∗ − E+

∗
))
,

which simpli�es as:

E−∗ − E+
∗ =

(
n ·
(
E− − E+

))
n. (3.19)

Equality (3.18) applied to
(
E− − E+

)
yields:

E− − E+ =
(
n ·
(
E− − E+

))
n− n×

(
n×

(
E− − E+

))
,

which, combined with (3.19), eventually gives:

E−∗ − E+
∗ = E− − E+ + n×

(
n×

(
E− − E+

))
. (3.20)

Hence, the numerical �ux for the evolution equation on E can be written as:

− n×H−∗ =
1

Z+ + Z−
(
−n× {ZH}+− + n× (n× JEK+−)

)
, (3.21)

It appears here that the fully upwind �ux (α = 1) is the exact solution of the lead term RP, while
partially penalized and centered �uxes (α ∈ [0, 1[) are only approximate solutions.

3.1.9 Spectrum of the DG operator

In the same way as for continuous FE methods, the global matrix of the spatial DG operator can be
assembled. The di�erence to the FE case is that there will be no overlap of local matrices in the global
matrix, since at each cells interface the degrees of freedom exist independently on both sides. Eventually,
the semi-discrete DG problem can be rewritten under the following generic form:

∂Wh

∂t
(t) = AhWh(t) + Bh(t), (3.22)

which is a global form, e.g. it includes every cell in the mesh. In (3.22), Bh(t) represents the exterior
sources, while the matrix Ah holds all the information relative to the spatial discretization. As will be
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Figure 3.6 | Eigenvalues of the discrete DG operator with PBCs for various upwinding factors. The considered case is
a cubic cavity made of 162 tetrahedra.

seen in next section, there is no particular reason for Ah to be diagonalizable in the general case. Still, it
remains instructive to give a look at its eigenspectrum: as an example, we compute the eigenvalues of Ah
on a [0, 1]3 cubic domain meshed with 162 tetrahedra with PBC on all edges. P3 polynomial expansion is
used, for various upwinding factors (see �gure 3.6). As can be seen, for α = 0 the DG spectrum is entirely
located on the imaginary axis of the complex plane, yielding a non-dissipative and stable formulation.
However, as noted in [HW08], the spectrum of the discretized DG operator includes both physical and
spurious eigenvalues, which implies here that although the spurious modes will not grow in time, they
will not be damped. For increasing values of α, the situation is di�erent, since a large part of the spurious
eigenvalues corresponding to the spatial discretization have a negative real part, meaning that these
modes will be rapidly damped. As will be seen in next section, the shape of the DG eigenspectrum has a
crucial importance in the choice and e�ciency of the timestepping algorithm.
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3.2 Time discretization

In the previous section, the semi-discrete scheme (3.9) was obtained by discretizing the spatial derivatives
contained in Maxwell’s equations. We now turn to the design of a time discretization. For the study of
the di�erent time schemes, we consider the reduced problem of the 1D Maxwell’s equations:

µr
∂Hy

∂t
=
∂Ez
∂x

,

εr
∂Ez
∂t

=
∂Hy

∂x
+ j(t).

The semi-discrete formulation associated to this system is (the spatial subscripts of the unknowns are
dropped):

Mµr
i

∂Hi

∂t
= KiEi + [E∗]

xi
xi−1

,

Mεr
i

∂Ei
∂t

= KiHi + [H∗]
xi
xi−1
−MiJi,

(3.23)

with:

E∗ =
1

Yi + Yl
({Y E}il + αJHKil) , H∗ =

1

Zi + Zl
({ZH}il + αJEKil) .

In the previous equalities, subscript l indi�erently designates i−1 or i+1. When trying to put system
(3.23) under the form (3.22), one obtains, in the general case, a non-symmetric A matrix:

A =

[
Aα,H AH
AE Aα,E

]
.

The o�-diagonal blocks represent the sti�ness part, as well as the centered part of the �ux, while the
diagonal blocks account for the upwind contribution. Hence, in the case of centered �uxes, A is purely
anti-diagonal. One should note that, in the case of an homogeneous medium (Yi = Yl = Y ), we obtain
the following properties:

� Aα,H and Aα,E are equal, e.g. Aα,H = Aα,E ≡ Aα;

� AH and AE are multiples of each other, e.g. AH = εr
µr
AE ≡ Y 2 εr

µr
AU .

For the sake of simplicity, we consider the simple case of vacuum (εr = µr = 1), which leads to a
symmetric A matrix, and therefore to a diagonalizable system. The main consequence is that, as a �rst
step for the study of the timestepping schemes, it is su�cient to retain the corresponding formulation in
the diagonalized basis, which reduces to a system of ODEs of the form:

∂φ

∂t
(t) = λφ(t) + b(t) ≡ f(t, φ(t)), (3.24)

for each λ eigenvalue of A. A large panel of time-integration techniques coming from the ODE com-
munity are suited to solve (3.24). In the following, a short overview of possible methods is presented. Two
particular techniques, the Leap-Frog (LF) method and the Low-Storage Runge-Kutta (LSRK) method, are
then explored in more details. For both of them, fully-discrete schemes are derived, providing two Discon-
tinuous Galerkin Time-Domain (DGTD) algorithms. Eventually, the last section deals with appropriate
timestep choices.
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3.2.1 A quick overview of time integration schemes

Timestepping methods are generally classi�ed in two main categories. The �rst one gathers the explicit
time integration techniques, for which the time state φ(t + ∆t) is computed explicitely from φ(t), and
possibly other previous time stations. The second category regroups the implicit methods: in this case, the
time-updated solution is obtained by solving an implicit expression of the form g(φ(t), φ(t + ∆t)) = 0.
Numerically, this implies the resolution of a linear system of equations at each timestep, which appears to
be much more expensive than explicit techniques. However, most implicit methods are unconditionnaly
stable, which means that any choice of ∆t will lead to a stable algorithm. In this case, the only limit
to impose on ∆t is deduced from the characteristics of the physical phenomenon being simulated. For
explicit methods, a numerical criterion, the CFL condition (see section 3.2.5), must be full�led, without
which the resulting algorithm will be unstable and blow up. Hence, explicit timestepping usually requires
much more timesteps than implicit methods, but each timestep requires a considerably lower computa-
tional e�ort. In the remaining of this manuscript, solutions are seeked on intervals of the form [0, T ] with
T > 0, and this interval is discretized in timesteps of length ∆t. The notation φn is used to designate the
discrete approximation of φ(tn), with tn = n∆t.

Regarding DG methods, a word can be said about space-time DG methods [PFT00] [AAPG14], in
which time is treated in the same way as space, thus allowing discontinuities between temporal slabs.
The major drawback of these methods is that they usually result in an implicit scheme.

3.2.2 Leap-Frog schemes

The LF2 scheme

Leap-Frog algorithms are a class of multi-level algorithms, which means they make use of more than
one known value of the solution to evaluate the next step. For φ smooth enough, consider the following
Taylor expansions:

φ(t+ ∆t) = φ(t) + ∆t
∂φ

∂t
(t) +

∆t2

2

∂2φ

∂t2
(t) +

∆t3

6

∂3φ

∂t3
(t) +

∆t4

24

∂4φ

∂t4
(t) +O

(
∆t5

)
, (3.25)

φ(t−∆t) = φ(t)−∆t
∂φ

∂t
(t) +

∆t2

2

∂2φ

∂t2
(t)− ∆t3

6

∂3φ

∂t3
(t) +

∆t4

24

∂4φ

∂t4
(t) +O

(
∆t5

)
, (3.26)

Substracting (3.26) to (3.25) yields:

φ(t+ ∆t) = φ(t−∆t) + 2∆t
∂φ

∂t
(t) +O

(
∆t3

)
. (3.27)

Considering (3.24), this is equivalent to:

φ(t+ ∆t) = φ(t−∆t) + 2∆tf(t, φ(t)) +O
(
∆t3

)
. (3.28)

Hence, the second-order accurate LF scheme simply writes as:

φn+1 = φn−1 + 2∆tf (tn, φ
n) . (3.29)

LF2 scheme
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Equation (3.29) expresses that the LF2 scheme approximates the �rst-order time-derivative of φ with
a centered �nite di�erence:

∂φ

∂t
(t)

)

2nd order
=
φ(t+ ∆t)− φ(t−∆t)

2∆t
=
∂φ

∂t
(t) +

∆t2

3

∂3φ

∂t3
(t) +O

(
∆t4

)
(3.30)

Building high-order LF schemes

There are di�erent ways to build higher-order schemes. A �rst way consists in evaluating the �rst-order
derivative with richer combinations of φ(t ± k∆t), in order to successively eliminate the high-order
residual derivatives in (3.29). An example of fourth-order scheme reads:

∂φ

∂t
(t)

)

4th order
=
−φ(t+ 2∆t) + 8φ(t+ ∆t)− 8φ(t−∆t) + φ(t− 2∆t)

12∆t

=
∂φ

∂t
(t)− ∆t4

30

∂5φ

∂t5
(t) +O

(
∆t6

) (3.31)

Although scheme (3.31) has the required accuracy, the full storage of multiple previous timestep solu-
tions is not a desirable feature. Additionally, initiating the timestepping requires three initial conditions,
two of which must be computed with self-starting schemes. A friendlier solution is obtained by �nding
an approximation of the �rst residual term of (3.29) (i.e. the third-order derivative of φ) via successive
convolutions of operator f . This procedure is valid in the case where b ≡ 0 and φ is su�ciently regular:

f3 (φ(t)) = f (f (f (φ(t)))) =
∂3φ

∂t3
(t) for b ≡ 0.

However, this is obviously not the case in the presence of a source term, because of the chain deriv-
ation rule. One can prove that the following LF4 scheme is only fourth-order accurate in the absence of
external sources:

φn+1 = φn−1 + 2∆tf (φn) +
∆t3

3
f3 (φn) . (3.32)

LF4 scheme

The scheme (3.32) does not require additional storage when compared to LF2 (3.29). The higher accur-
acy, in the linear source-free case, is obtained at the cost of two additional matrix-vector multiplications.
In a more general way, LF schemes of arbitrarily high orders (hereafter denoted LFp schemes) can be built
in the following fashion for even values of p ∈ N:

φn+1 = φn−1 +
∑

0<k<p
k odd

2
∆tk

k!
fk (φn) . (3.33)

Properties of the LFp schemes

The properties of time schemes can be studied by using monochromatic solutions φn = eiωn∆t. A general
procedure consists in considering the ampli�cation factor A that links the values of φn at two successive
timesteps:
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φn+1 = Aφn. (3.34)

Considering the monochromatic solution, one can plug (3.34) in (3.29) and then use the de�nition of
f to obtain, for the LF2 scheme:

A2 − 2i∆tωA− 1 = 0,

which solutions are:

A± = iω̃ ±
√

1− ω̃2, with ω̃ ≡ ∆tω.

A+ is called physical mode, i.e. the approximation of the solution of the original ODE, whileA− is the
computational mode, i.e. a parasitic mode that arises from the numerical procedure. The computational
mode originates from the need of two initial conditions for the LF scheme to start, while the original
di�erential equation only requires one [Str04]. For {|ω̃| < 1, ω̃ ∈ R}, it is easy to see that |A±| = 1, which
corresponds to the well-known non-dissipative property of LF schemes: the eigenvalues located on the
imaginary axis are neither damped nor ampli�ed. Although this is a good property for the computational
mode, it also means that the parasitic mode is undamped. If |ω̃| > 1, then |A+| > 1, meaning the scheme is
unstable. When looking at the asymptotic behavior ofA±, one sees thatA+ −−−−→|ω̃|→0

1, which translates the

increasing closeness between the physical mode and the exact solution of the ODE. However, A− −−−−→|ω̃|→0

−1: the numerical mode is oscillatory, switching sign at every iteration. Additionally, the parasitic mode
travels in the direction opposite to the physical one.

The LF2 scheme was originally designed speci�cally for its non-dissipative property, which is e�ective
for eigenvalues located on a portion of the imaginary axis. Since there is no amplitude error in this region,
all the error is committed on the phase. The phase error of the scheme is given by:

θ̃ (ω̃) ≡ arg (A+)− ω̃ = arctan

(= (A+)

< (A+)

)
− ω̃.

This yields, for the LF2 scheme:

θ̃2(ω̃) = arctan

(
ω̃√

1− ω̃2

)
.

The properties of higher-order schemes of the form (3.33) can be studied using the same procedure.
For the LFp scheme, one de�nes the following function, for even values of p:

fp(ω̃) =
∑

0<k<p
k odd

2ik−1 ω̃
k

k!
.

It should be noted that fp is a real function. Then, the stability region of the LFp scheme is given by:

4− fp(ω̃) > 0, (3.35)

and the relative phase error is, for ω̃ verifying (3.35):

θ̃p = arctan

(
fp(ω̃)√

4− fp(ω̃)2

)
. (3.36)
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As said previously, the amplitude error of the LF schemes is 0 in their stability ranges. Outside these
regions, an amplitude error is de�ned for the physical mode as:

Ã+ ≡ |A+| − 1. (3.37)

A plot of the stability regions for di�erent LF schemes is presented on �gure 3.7, along with amplitude
and phase error plots along the upper imaginary axis. The LF2 stability region includes the C− half-plane,
but the non-dissipative property is only observed for the {|ω̃| < 1, ω̃ ∈ iR} set. For the LF4 scheme, this
property is obtained on the larger set {|ω̃| < 2.845, ω̃ ∈ iR}, at a higher computational cost. In return,
the stability region in the left complex half-plane is reduced comparatively to LF2. Additional stability
areas appear in the right complex half-plane, but are of no use for the hyperbolic problems considered
in this manuscript. For LF6, the non-dissipative region is once again larger than that of LF4. However,
it is not convex anymore, with two unstable "holes" appearing for (roughly) {1.5 < |ω̃| < 1.7, ω̃ ∈ iR}.
This region is clearly visible on the amplitude error plot, and makes the LF6 scheme of questionable
interest compared to LF4. Regarding dispersion, the LF2 error grows rapidly with ω̃, indicating that a
�ne time discretization is necessary to achieve an accurate approximation of the exact phase. Moving to
higher-order schemes signi�cantly increases the ω̃ range in which numerical dispersion is negligible.

LF-DG formulation for Maxwell’s equations

Semi-discrete DG formulation for Maxwell’s equations is here recalled for clarity of the following discus-
sion:

M µr
i

∂H i

∂t
= −K i × E i +

∑

l∈Vi
S il
(
E ∗ × nil

)
,

M εr
i

∂ E i

∂t
= K i × H i −

∑

l∈Vi
S il
(
H ∗ × nil

)
− M i J i.

For the discretization of Maxwell’s equations, is it more suitable to rewrite (3.29) as:

φn+1 = φn + ∆tf
(
tn+ 1

2
, φn+ 1

2

)
.

In the case of multiple variables problems (such as Maxwell’s equations), LF schemes need to sample
the unknowns on a staggered grid to remain explicit. A common choice is to split every timestep ∆t in
two: E is approximated at even time stations tn = n∆t, while H and J are approximated at odd time
stations tn+ 1

2
=
(
n+ 1

2

)
∆t. Given what was said earlier, the LF2 scheme consists in seeking the values

of E n+1
i and H n+ 3

2
i when knowing those of E n

i , H n+ 1
2

i and J i
(
tn+ 1

2

)
with the following discretization:

M µr
i

∆t

(
H n+ 3

2
i − H n+ 1

2
i

)
= −K i E n+1

i +
∑

l∈Vi
S il
(
E n+1
∗ × nil

)
,

M εr
i

∆t

(
E n+1
i − E n

i

)
= K iH

n+ 1
2

i −
∑

l∈Vi
S il
(
H n+ 1

2∗ × nil
)
− J i

(
tn+ 1

2

)
.

The previous formulation can be rewritten in a more general form:
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(e) Phase error θ̃ (ω̃) ≡ arg (A+)− ω̃ along
upper the imaginary axis

Figure 3.7 | Stability regions, amplitude error Ã+ and phase error θ̃ induced by LF schemes of order 2 to 6. The �rst
three plots present the stability regions in the complex plane. The orange section along the imaginary axis represents the set
where the non-dissipative property is veri�ed. The lower two plots only show the errors corresponding to the physical mode,
on the upper imaginary axis.
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H n+ 3
2

i = H n+ 1
2

i + ∆tGel
(
E n+1
h

)
,

E n+1
i = E n

i + ∆tGmag

(
tn+ 1

2
, H n+ 1

2
h

)
.

(3.38)

LF2-DG scheme

In the last equalities, the operators Gel and Gmag were introduced:

Gel
(
E n
h

)
=
(
M µr

i

)−1


−K i E n

i +
∑

l∈Vi
S il
(
E n
∗ × nil

)

 ,

Gmag

(
tn+ 1

2
, H n+ 1

2
h

)
=
(
M εr

i

)−1


K iH

n+ 1
2

i −
∑

l∈Vi
S il
(
H n+ 1

2∗ × nil
)
− J i

(
tn+ 1

2

)

 .

To achieve higher-order accuracy, one can simply adapt the formulation given in (3.33). In the present
thesis, schemes are limited to fourth order accuracy, which leads to the following LF4 formulation, which
is of fourth order in the source-free case ( J h ≡ 0):

H n+ 3
2

i = H n+ 1
2

i + ∆tGel
(
E n+1
h

)
+

∆t3

24
Gel ◦Gmag ◦Gel

(
tn+1, E n+1

h

)
,

E n+1
i = E n

i + ∆tGmag

(
tn+ 1

2
, H n+ 1

2
i

)

+
∆t3

24
Gmag ◦Gel ◦Gmag

(
tn+ 1

2
, H n+ 1

2
i

)
.

(3.39)

LF4-DG scheme

Because of the second-order accuracy limitation in the presence of a source, other time schemes must
also be considered. In the next section, we focus on the most used explicit time scheme, i.e. the Runge-
Kutta scheme.

3.2.3 Runge-Kutta schemes

Classical RK schemes

Runge-Kutta schemes are a class of multi-stage algorithms that rely on multiple evaluations of the RHS
of (3.24) to evolve the system in time. Unlike LF schemes, they do not combine di�erent time levels to
cancel terms in the Taylor expansions, which leads to dispersive and dissipative schemes. Suppose that
one formally integrates problem (3.24) between t and t+ ∆t:

φ(t+ ∆t) = φ(t) +

ˆ t+∆t

t
f(u, φ(u))du. (3.40)

Equation (3.40) could be approximated by a quadrature formula with s terms:
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φ(t+ ∆t) ' φ(t) + ∆t
s∑

j=1

βjf(t+ δj∆t, φ(t+ δj∆t))du, (3.41)

where (βj)j∈J1,sK and (δj)j∈J1,sK are constants given by the choice of the quadrature formula. To
evaluate the di�erent φ(t+ δj∆t) values, RK methods exploit a prediction/correction technique, making
use of previous guesses to calculate the next one. A standard way of writing the nth timestep with an
s-stage RK algorithm is:

φ1 = f (tn, φ
n)

φk = f


tn + δk∆t, φ

n + ∆t
s∑

j=1

αj,kφj


 for k = 2, ..., s,

φn+1 = φn + ∆t

s∑

j=1

βjφj ,

(3.42)

where it is supposed that φ0 = φn. In the general case, the system (3.42) is implicit, since the summa-
tion in each intermediate stage extends to the maximum number of stages. In the following, we choose
to work with explicit RK schemes (i.e. αj,k = 0∀k ≥ j), which can be written as:

φ1 = f (tn, φ
n)

φk = f


tn + δk∆t, φ

n + ∆t
k−1∑

j=1

αj,kφj


 for k = 2, ..., s,

φn+1 = φn + ∆t
s∑

j=1

βjφj .

(3.43)

Explicit RK schemes

Let us present an RK algorithm in details. To simplify, only 2 stages are considered. However, the
principle for a larger number of stages remains identical. At time step n, the �rst stage of the method is:

φ1 = f (tn, φ
n) ≡ ftn . (3.44)

Given (3.24), φ1 is obviously an estimate of the slope of the solution at t = tn. Then, the second stage
is:

φ2 = f (tn + δ2∆t, φn + ∆tα1,2φ1) . (3.45)

In (3.45), one recognizes φn+∆tα1,2φ1 as a forward Euler method, providing a �rst-order approxim-
ation of φ(tn+α1,2∆t) by exploiting the approximate value of the slope at t = tn calculated during stage
1. Hence, by setting δ2 = α1,2, one obtains with φ2 an approximate value of the slope of the solution at
tn + α1,2∆t. Since the method is supposed to be done in two stages, the solution at the next timestep is
obtained as:
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φn+1 = φn + ∆t (β1φ1 + β2φ2)

= φn + ∆t (β1ftn + β2f (tn + δ2∆t, φn + ∆tα1,2φ1))

= φn + ∆t (β1ftn + β2f (tn + α1,2∆t, φn + ∆tα1,2φ1)) .

Taylor-expanding the last term to the �rst order in ∆t gives:

φn+1 = φn + ∆t (β1 + β2) ftn + β2α1,2∆t2
(
∂f

∂t
(tn, φ

n) + ftn
∂f

∂φ
(tn, φ

n)

)
+O

(
∆t3

)
.

The latter expression can be matched with the Taylor expansion of φ:

φ(t+ ∆t) = φ(t) + ∆tft +
∆t2

2

(
∂f

∂t
(t, φ) + ft

∂f

∂φ
(t, φ)

)
+O

(
∆t3

)
,

where ft = f(t, φ(t)). In practice, the residual O
(
∆t3

)
is dropped, and the resulting system is:

β1 + β2 = 1,

β2α1,2 =
1

2
.

(3.46)

The �rst equality reminds that RK schemes are equivalent to a quadrature rule, for which the sum of
the weights must be unity. One immediately notices that (3.46) is underdetermined, meaning that there
is not a unique set of coe�cients verifying (3.46). A common choice satisfying the latter system is:

α1,2 = 1,

β1 = β2 =
1

2
.

(3.47)

This choice corresponds to a second-order RK method:

φ1 = f (tn, φ
n)

φ2 = f (tn + ∆t, φn + ∆tφ1)

φn+1 = φn +
∆t

2
(φ1 + φ2) .

(3.48)

In the �rst step, ftn gives an estimate of ∂φ∂t (tn). Then, a �rst-order approximation φn+1
∗ = φn+∆tφ1

of φ(t+ ∆t) is obtained via a forward Euler step. In the second step, φn+1
∗ is used to estimate ∂φ

∂t (tn+1).
Finally, φn+1 is obtained from a second forward Euler step, for which the slope is average between φ1

and φ2. The algorithm is summed up on �gure 3.8.
In the same fashion, the four steps fourth-order RK algorithm extends this method by exploiting four

di�erent evaluations of the slope in the average. The most classical version of this scheme reads:

φ1 = f (tn, φ
n)

φ2 = f

(
tn +

∆t

2
, φn +

∆t

2
φ1

)

φ3 = f

(
tn +

∆t

2
, φn +

∆t

2
φ2

)

φ4 = f (tn + ∆t, φn + ∆tφ3)

φn+1 = φn +
∆t

6
(φ1 + 2φ2 + 2φ3 + φ4) .

(3.49)
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φ(tn+1)
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φ
(t
)

φ
2

φ1

φ

Figure 3.8 | Steps of the RK2 algorithm. φn+1
∗ is the estimate obtained by the forward Euler method, for which the slope

of the solution between tn and tn + ∆t is approached by φ1. The RK2 estimate is obtained by averaging φ1 with a second
approximation of the slope, obtained from φn+1

∗ in tn + ∆t, thus yielding a more precise approximation of φ(tn+1). φ
represents the average of the di�erent slopes.

Table 3.1 | Minimal number of stages to obtain pth-order convergence for standard explicit RK schemes (see [But87] and
[Lam91]).

p 1 2 3 4 5 6 7 8

smin 1 2 3 4 6 7 9 11

This algorithm is summed up on �gure 3.9. Although it could seem that a standard s-stages RK
algorithm is accurate to sth order, this is only true up to order four. Indeed, above this value, obtaining
an RK scheme of order p requires more than p stages ([But87], [Lam91]). The minimal number of stages
to obtain a given order of accuracy are displayed on table 3.1.

Properties of the RKp schemes

As in the case of LF schemes (see section 3.2.2), the properties of RK schemes can be studied via their
ampli�cation factor in the case of a monochromatic solution. Here, we consider a pth-order RK algorithm
based on a Taylor development to order s:

φ(tn+1) ' φ(tn) +

s∑

k=1

∆tk

k!

∂kφ

∂tk
. (3.50)

The ampli�cation factor of (3.50) is:

A =
s∑

k=0

(iω̃)k

k!
. (3.51)

The di�erence to LF schemes is clearly visible, since no compensation can occur during the calculation
of |A|. The stability regions and phase errors computed with expression (3.51) are presented on �gure
3.10 for classical RK schemes from �rst to fourth order. The size of the stability region increases with the
order of the scheme, thus allowing larger timesteps to be used for the computation. However, this is at
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Figure 3.9 | Steps of the RK4 algorithm. φ represents the average of the di�erent slopes.

the cost of a higher computational e�ort and memory occupation. For eigenvalues along the imaginary
axis, the two classical RK3 and RK4 algorithms are accelerating, the fourth-order scheme presenting a
very low phase error for ω̃ up to π

2 .

3.2.4 Low-storage schemes

Although standard RK schemes can achieve very high accuracy, an immediate remark is that, in the
general case, an algorithm of the form (3.43) with s substeps requires s memory registers, in addition
to the solution register. This situation can seem bearable for small systems and/or low values of s, but
memory consumption can quickly become a constraining factor for large problems. A possible solution
is to use a speci�c class of RK algorithms, the low-storage RK schemes, for which the required memory
is limited. Such schemes are usually presented under the Williamson formulation [Wil80]:

φ1 = φn

φ2 = akφ2 + ∆tf (tn + dk∆t, φ1) , } for k = 1, ..., s
φ1 = φ1 + bkφ2,

φn+1 = φ1.

(3.52)

Low-storage RK schemes

It is clear that such algorithms only require two memory registers at every moment, whatever the
number of stages. However, convergence to order p is not ensured in s substeps anymore. At least 5
stages are necessary to achieve a fourth-order convergence [CK94], leading to an ampli�cation factor of
the form:

A =
s∑

k=0

γk(iω̃)k. (3.53)

Since the condition for fourth-order accuracy only imposes four equations on the γk coe�cients, LSRK
schemes properties such as dissipation, dispersion or size of the stability region can be tuned by exploiting
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Figure 3.10 | Stability contour and phase error induced by classical Runge-Kutta schemes of order 1 to 4. Left panel: The
size of the stability region increases with the order of the scheme, thus allowing larger timesteps to be used for the computation.
However, this is at the cost of a higher computational e�ort and memory occupation. Right panel: The two classical RK3 and
RK4 algorithms are accelerating, the fourth-order scheme presenting a very low phase error for ω̃ up to π

2
.

the remaining parameters (see section 3.2.4). The functioning of LSRK schemes is slightly di�erent from
what was exposed previously. For classical RK algorithms, the slope is estimated several times between tn
and tn+1 using better and better averages at each stage. Finally, the solution is evolved from φn to φn+1

in a single Euler step using an average of all the previously calculated slopes. For LSRK methods, the �nal
step is mixed within the slope estimation steps: starting from the initial point, the slope is approximated
(with φ2), and an Euler step is executed, giving an intermediate value of the solution (φ1) at time station
tn + b1. During the next stage, the slope stored in φ2 will be a weighted average between the previous
estimate and the new one, calculated from φ1 at tn + b1. Similarly, at each stage, the slope stored in φ2

is an average between all the preceding slope values and the new one. An example of LSRK algorithm is
presented on �gure 3.11.

LSRK-DG formulation for Maxwell’s equations

One of the most spread LSRK scheme in computational electromagnetics is the 5-stage fourth-order al-
gorithm proposed by Kennedy and Carpenter in 1994 [CK94], hereafter referred to as LSRK4-5. In this
thesis, optimized low-storage RK4 schemes from [NDB12] will be used. Their stability regions are tailored
to �t the DG spectrum as closely as possible, depending on the upwinding factor α. Hence, a 12-stage
scheme (for centered �ux) and a 14-stage scheme (for upwind �ux) are considered, both being fourth-order
accurate. On �gure 3.12(a), the stability contour of the LSRK4-14 algorithm is presented, and compared
to that of the LSRK5 scheme. Although it appears that the stability contour of the LSRK4-14 method
is larger, for an accurate comparison the latter must be scaled by the number of steps required, so the
expected gain in e�ciency can be seen directly on the plot. This is presented on �gure 3.12(b).
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Figure 3.12 | Stability contours of the LSRK4-14 and LSRK4-5 schemes. On the left panel, the contours are scaled by the
number of stages required to complete one iteration of the algorithm. Despite the large number of required stages, the LSRK4-14
scheme provides a much larger maximal stable timestep.
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3.2.5 Timestep choice and the CFL condition

A theoretically possible method to select the timestep in practice would be to compute the set of the largest
DG operator eigenvalues, and to scale them by a small enough timestep so they all �t inside the stability
contour of the time integrator. This technique, however, su�ers from two major drawbacks: (i) it only
constitutes a necessary condition, and (ii) it can become very expensive, even for moderate size systems.
A more thorough method consists in deducing a timestep restriction from an energy-based stability study
(see section 3.5). Such conditions are usually known as Courant-Friedrich-Levy (CFL) conditions, and are
inherent to every explicit timestepping techniques. In this work, we exploit the theoretical results from
[F+05]. Therefore, for a space discretization with polynomial order p, the timestep is chosen as follows:

∆tp = cp min
Ti∈Th

VTi
ATi

, (3.54)

where VTi and ATi are respectively the volume and the area of cell Ti, and cp is an order-dependent
constant. In practice, the maximal acceptable value for cp is determined on a basic test case such as that
described in section 2.1.4.

3.3 Validation and numerical experiments

3.3.1 PEC cubic cavity mode

To validate the implementation of the DGTD algorithm, it is necessary to check that the convergence rate
of the numerical method matches the theoretical rate (see section 3.5). To do so, the cubic cavity mode
described in section 2.1.4 is considered. Increasingly �ne meshes are generated, for which the minimal
edge size is noted hm, where m is the index of the mesh (mesh characteristics are given in table 3.2). The
mode is evolved during a time tmax corresponding to 30 periods in the cavity. For each simulation, the
global l∞

(
[0, tmax] , L2

)
error is computed. For two successive meshes, the maximum error levels are

measured. Then, the numerical rate of convergence is deduced as:

rm+1
m

=

log




max
t∈[0,tmax]

‖E− Ehm‖

max
t∈[0,tmax]

∥∥E− Ehm+1

∥∥




log

(
hm
hm+1

) . (3.55)

The numerical convergence rates are calculated for various spatial and temporal approximations, and
with centered and upwind �uxes. The results are summed up in table 3.3. The asymptotical theoretical
error is in O (∆tn + hp) for centered �uxes, and in O

(
∆tn + hp+1

)
for the upwind case. The numerical

rates match for all combinations of space and time discretization, which validates the implementation of
the DGTD method.

3.3.2 Convergence with centered and upwind �uxes

Although the theoretical rates of convergence are known for centered (α = 0) and upwind (α = 1) �uxes,
the situation for intermediate values of α is unclear. To investigate this matter, convergence is tested
with increasing values of α for the cavity case considered in last section. To obtain signi�cant results,
the retained rate is computed between meshes M3 and M4 only. Results for third order are displayed on
�gure 3.13: as can be seen, a very small upwinding (slightly superior to 0.1) is su�cient to obtain fourth
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Table 3.2 |Meshes characteristics for the cubic PEC cavity case. ns is the number of vertices, nt the number of tetrahedrons
and hm the typical size of the largest tetrahedron.

M1 M2 M3 M4

ns 125 729 4913 35937

nt 384 3072 24576 196608

hm 0.433 0.216 0.108 0.0541

Table 3.3 | Error levels and convergence rates of the cubic cavity case for di�erent approximation orders, �uxes and time
schemes with meshes of increasing re�nement. 0 refers to centered �uxes with LF2, 1 to centered �uxes with LF4, 2 to centered
�uxes with LSRK4, and 3 to upwind �uxes with LSRK4.

M1 M2 M3 M4

‖E− Eh‖ r ‖E− Eh‖ r ‖E− Eh‖ r ‖E− Eh‖ r

P1

0 5.42× 10−1 – 5.48× 10−2 3.31 2.47× 10−2 1.72 9.37× 10−3 1.04
1 – – – – – – – –
2 2.85× 10−2 – 4.42× 10−2 2.69 1.71× 10−2 1.37 7.69× 10−3 1.15
3 2.87× 10−1 – 6.05× 10−2 2.25 8.66× 10−3 2.80 1.46× 10−3 2.57

P2

0 5.55× 10−2 – 9.99× 10−3 2.47 2.27× 10−3 2.13 5.49× 10−4 2.03
1 – – – – – – – –
2 4.32× 10−2 – 5.15× 10−3 3.07 9.83× 10−4 2.39 2.17× 10−4 2.18
3 1.47× 10−2 – 1.36× 10−3 3.43 1.75× 10−4 2.96 2.19× 10−5 3.00

P3

0 1.62× 10−2 – 3.83× 10−3 2.07 9.48× 10−4 2.01 2.36× 10−4 2.00
1 5.25× 10−3 – 4.88× 10−4 3.42 4.97× 10−5 3.29 5.91× 10−6 3.03
2 5.12× 10−3 – 4.82× 10−4 3.41 4.96× 10−5 3.28 5.91× 10−6 3.07
3 9.24× 10−4 – 5.87× 10−5 3.98 3.72× 10−6 3.98 2.33× 10−7 4.00

P4

0 – – – – – – – –
1 5.45× 10−4 – 2.84× 10−5 4.26 1.48× 10−6 4.15 6.36× 10−8 4.02
2 4.10× 10−4 – 2.23× 10−5 4.20 1.25× 10−6 4.16 7.14× 10−8 4.13
3 9.45× 10−5 – 3.11× 10−6 4.92 1.98× 10−7 3.97 1.15× 10−8 4.11
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Figure 3.13 | Convergence rate for DG P3 method with LSRK4 algorithm, for various values of the unwinding factor
α.

order. This remark is coherent with what is exposed in [Gon13]. A possible followup to this point would
be to evaluate the di�erence induced on realistic cases in terms of dissipation of the discrete scheme.

3.3.3 Flux weightings

As shown in section 3.3.2, there is not a unique choice of �ux leading to a stable and convergent DGTD
formulation. The upwind and centered �uxes, as well as all the partially penalized �uxes obtained for in-
termediate values of α between 0 and 1 are acceptable, along with a larger choice available from the �nite
volume community. In certain references from the DGTD literature for Maxwell’s equations, centered and
upwind �uxes are sometimes used in slightly di�erent versions than those presented in section 3.1.3, in
the sense that the contributions from each side of the face are not weighted with their respective imped-
ance/inductance. Although they are valid �ux choices, it seems intuitive that they will be less e�cient
than their weighted counterparts in the case of heterogeneous systems with large ε and µ jumps. To verify
this hypothesis, a doubly periodic dielectric slab surrounded with vacuum is considered (see section 3.4.2).
The latter is illuminated by a wideband plane wave in normal incidence, for which the frequency range of
interest is [300, 1500] THz. For values of εr from 2 to 100, the numerical re�ection coe�cient (see section
4.4.3) is computed and compared with the analytical solution of the problem. A P3 spatial discretization
is used, along with a fourth-order LSRK scheme, with both centered and upwind �uxes. In both cases,
weighted and non-weighted versions are used: results are summed up on �gure 3.14. Although the di�er-
ence is not clear for the centered case, the weighting of the upwind �ux seems to asymptotically induce
a factor 1

2 with the non-weighted �ux on the total error, thus con�rming the interest of the weighted
�ux over the non-weighted version. For small jumps of the permittivity, however, the interest is not so
obvious. Based on this remark, we propose to exploit and validate the use of the non-weighted �ux for
anisotropic materials in next section.

3.3.4 Fluxes for anisotropic materials

The Riemann problem presented in section 3.1.8 has to be rewritten and solved to account for anisotropic
materials, which is done in [AABG12]. However, in the same fashion as last section, non-weighted �uxes
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Figure 3.14 | L1 error obtained for increasing jumps of ε, with Centered (C), Centered Weighted (CW), Upwind (U) and
Upwind Weighted (UW) �uxes. Although the di�erence is not clear for the centered case, the weighting of the upwind �ux
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Table 3.4 | Convergence rates for the anisotropic PEC cavity with meshes of increasing re�nement and P3 polynomials.
Upwind �ux and LSRK4 time-scheme were used. ω1 and ω2 refer to the two admissible modes of the cavity.

M1 M2 M3 M4

ω1 – 3.96 3.98 4.00

ω2 – 4.03 4.00 4.00

naturally account for anisotropic materials with reasonable accuracy. To support this statement, we con-
sider the case of a PEC cavity �lled with an anisotropic material. The solution of this problem is known,
and presented at the end of section 2.1.4. A short convergence study is conducted for both frequencies ω1

and ω2 on increasingly re�ned meshes, similarly to section 3.3.1. P3 polynomial approximation is used
in conjunction with LSRK4 scheme in time and fully upwind �ux: results are summed up on table 3.4. As
expected, the convergence rate inO

(
∆tn + hp+1

)
is obtained, which validates the use of a non-weighted

upwind �ux for anisotropic materials.
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3.4 The ADE method for dispersive materials

3.4.1 ADE formulation in the DGTD framework

The discretization of the ADE formulations presented previously (see 2.31 and 2.32) is straightforward,
since the additional equations do not contain any spatial derivatives. Here, the second-order LFDG
scheme for Maxwell’s equations in a Drude material is given as:

M i

∆t

(
H n+ 3

2
i − H n+ 1

2
i

)
= −K i E n+1

i +
∑

l∈νi
S il
(
E n+1
l × nil

)
,

M ε∞
i

∆t

(
E n+1
i − E n

i

)
= K iH

n+ 1
2

i −
∑

l∈νi
S il
(
H n+ 1

2
l × nil

)
− M i J

n+ 1
2

i ,

1

∆t

(
J n+ 3

2
i − J n+ 1

2
i

)
= ω2

d E
n+1
i − γd

2

(
J n+ 3

2
i + J n+ 1

2
i

)
.

As can be noticed, the currents are evaluated at odd time-stations. Given the relation between J and
P, with this choice polarizations must be evaluated at even time-stations. This remark remains valid in
the case of the generalized dispersive model. In the case of a Runge-Kutta time scheme, the discretization
is straightforward, since all �elds are evaluated at the same time-stations.

3.4.2 Validation

To validate the implementation of the generalized dispersive model in the DGTD framework, a simple
setup composed of a doubly periodic silver slab of thickness 10 nm is considered. The latter is illuminated
by a wideband plane wave in normal incidence, for which the frequency range of interest is [300, 1500]
THz. Silver is described by a 4SOGP model (see section 2.2.3), which parameters are available in appendix
A. The numerical re�ection coe�cient (see section 4.4.3) is computed and compared with the analytical
solution of the problem. The set-up is presented on �gure 3.15(a), while the results are displayed in �gure
3.15(b). For this model as well as for many others tested, a perfect agreement between analytical and
computed solution is obtained, which validates the implementation.

3.4.3 On the necessity of a good description of dispersive materials

In this section, the computation of the scattering cross-section of a core-silica-gold-shell device is presen-
ted. Its geometrical parameters are Rin = 150 nm, and Rout = 172 nm. The latter is enclosed in a
Total-Field/Scattered-Field (TF/SF) interface (see section 4.2.2), on which a wideband plane wave is im-
posed. Details about the computation of the scattering cross-section can be found in section 4.4.1. Several
computations are done, for increasingly-complex gold dispersion models, while the silica core is described
by a constant ε = 1.5 permittivity. Results for Drude and 4SOGP models are presented in �gure 3.16. As
could be expected from what was presented in section 2.2, the high-frequency behavior of the scatterer
is strongly modi�ed when an enhanced dispersion model is used. Hence, depending on the considered
frequency range, a careful selection of the number of poles must be done, 4 second-order generalized
poles being a good compromise for wideband computations. To support this statement, the induced over-
head was calculated for di�erent dispersion models. In average, a dispersive tetrahedron only requires
4.6% additional memory space and 0.6% additional CPU time per pole compared to a non-dispersive one.
Given that the amount of dispersive tetrahedra in classical nano-optics devices is usually less than 20% of
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(a) Mesh of the doubly periodic silver slab.
The slab is in red, while the blue corresponds
to vacuum. Purple boundary triangles cor-
respond to periodic conditions, while on gray
ones an absorbing boundary condition is im-
posed.
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(b) Analytical and computed re�ection spectra for a
4SOGP �t. As can be seen the DGTD results are in
good agreement with the analytical re�ection coe�-
cient. The results are similar for other dispersive mod-
els.

Figure 3.15 | Set-up (3.15(a)) and results (3.15(b)) of the doubly periodic silver slab. P4 polynomial approximation is used
for the spatial DG approximation.
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(a) Modulus of the E �eld in the vicinity of the
nanoshell at t = 2× 10−14 s. A 4SOGP dispersion
model is used to describe the gold shell.
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(b) Computed scattering cross-sections of the
nanoshell for various gold dispersion models.

Figure 3.16 | E near-�eld solution (3.16(a)) and scattering cross-section (3.16(b)) of the silica/gold nanoshell device. P4

polynomial approximation is used for the spatial DG discretization, along with curvilinear elements for an enhanced geometrical
description of the shell (see chapter 5).

the total, this makes the generalized dispersive model a cheap way to achieve a good description of the
material properties.
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3.5 Theoretical results

In this section, stability and convergence results related to LF- and RK-DGTD are presented for both
standard and dispersive materials. In each case, the sketches of the proofs are brie�y reminded, the full
demonstrations being conducted in the references given below. Throughout this section, the norm ‖·‖ is
understood as ‖·‖L2(Ω), unless stated otherwise. Moreover, any constantC is supposed to be independant
of the time and space discretizations, namely ∆t and h.

3.5.1 Stability

The stability of the fully-discrete DGTD algorithm can be proved by energetic considerations. First, an
energy, i.e. a quadratic de�nite positive form of the variables, is associated to the considered di�erential
system. For the non-dispersive, non-magnetic Maxwell equations (2.11) - (2.12) on domain Ω with metallic
boundary conditions, a possible form is:

ξ(t) =
1

2

(
‖H(t)‖2 + εr ‖E(t)‖2

)
. (3.56)

The stability of the system is associated to a decreasing, or at least bounded energy in time. Assuming
that (E,H) have a su�cient regularity, it can be proved that:

∂ξ

∂t
= 0 on [0, T ] .

A similar result can be obtained for the semi-discrete as well as for the fully-discrete Maxwell system.
For the Leap-Frog time scheme, a possible discrete energy form at time-station tn is:

ξn =
N∑

i=1

ξni =
N∑

i=1

1

2

(ˆ
Ti

Hn+ 1
2

i ·Hn− 1
2

i + εr

ˆ
Ti

Eni · Eni
)
, (3.57)

where ξni denotes the local contribution of cell Ti to the total energy ξn. Starting from (3.57) and
using centered �uxes, several lines of work [F+05] yield the following equality:

ξn+1 − ξn
∆t

= −
N∑

i=1

∑

k∈Vi

1

2

ˆ
aik

(
E[n+ 1

2 ]
i ×Hn+ 1

2
k + E[n+ 1

2 ]
k ×Hn+ 1

2
i

)
· nik.

Then, for metallic boundary conditions:

ξn+1 − ξn
∆t

= 0.

Then, under a CFL condition of the type ∆t ≤ Ch, one can prove that (3.57) is a a quadratic de�nite
positive form, and therefore that

∥∥∥Hn+ 1
2

∥∥∥ and ‖En‖ are bounded independantly of n ∈ N. We conducted
a similar work for materials described by the generalized dispersive model, both in centered Leap-Frog
[VKLS13] and upwind Runge-Kutta [LSV]. The retained energy for the continuous �elds is:

ξ(t) =
1

2


‖H(t)‖2 + ε∞ ‖E(t)‖2 +

∑

l∈L1

bl
al
‖Pl(t)‖2

+
∑

l∈L2

el
cl + dlfl

‖Pl(t)‖2 +
∑

l∈L2

1

cl + dlfl
‖J ‖2


 ,

(3.58)
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In both cases, the associated fully discrete �elds were proved to be bounded under the same type of
CFL condition.

3.5.2 Convergence

The goal of the convergence study is to prove that the norm of the di�erence between the exact and the
numerical solution is controlled by a norm of the exact solution, and that it goes to 0 as (∆t, h) → 0.
In a �rst step, the convergence proof of the semi-discrete problem is sketched. Then, using the previous
result, the main steps of the convergence proof of the fully-discrete scheme are given.

Semi-discrete scheme

Let us de�ne πh as the orthogonalL2 projector of the continuous solution on space Vh. Then, let (H,E) be
the solution of the continuous Maxwell problem, and (Hh,Eh) ∈ C1

(
[0, T ] , V 2

h

)
that of the semi-discrete

Maxwell problem. Finally, we de�ne γ(t) as:

γ(t) = ‖πh (H)−Hh‖2 + ‖πh (E)− Eh‖2 , ∀t ∈ [0, T ] .

Following the classical bounding techniques such as in [SL11], one can prove that under CFL con-
dition, if (H,E) ∈ C0

(
[0, T ] , Hs+1 (Ω)6

)
for s ≥ 0, then there exists C ≥ 0 independent of h such

that:

max
t∈[0,T ]

γ(t)
1
2 ≤ Chmin(s,p) ‖(H,E)‖C0([0,T ],Hs+1(Ω)6) .

This result is now used to prove the convergence of the fully-discrete scheme. Similar developments
can be done in the context of Drude and generalized dispersive models for centered [VKLS13] and upwind
�uxes [LSV].

Fully-discrete scheme

To prove convergence of the fully-discrete scheme, one needs to bound the following term:

max
n∈[0,Nt]

(∥∥∥∥H
(
tn+ 1

2

)
−Hn+ 1

2
h

∥∥∥∥
2

+

∥∥∥∥E (tn)− Enh

∥∥∥∥
2
) 1

2

,

assuming that (H,E) ∈ C3
(

[0, T ] , L2 (Ω)6
)⋂ C0

(
[0, T ] , Hs+1 (Ω)6

)
. Here, Nt denotes the max-

imal number of timesteps. This can be done in three steps, by splitting the latter quantity with a triangular
inequality as follows (the development is written for the E part, but is identical for the H part):

‖E (tn)− Enh‖ = ‖E (tn)− πh (E) (tn) + πh (E) (tn)− Eh (tn) + Eh (tn)− Enh‖
≤ ‖E (tn)− πh (E) (tn)‖︸ ︷︷ ︸

β1

+ ‖πh (E) (tn)− Eh (tn)‖︸ ︷︷ ︸
β2

+ ‖Eh (tn)− Enh‖︸ ︷︷ ︸
β3

.

Bounding of β1 is easily obtained as a property of the projector πh, while that of β2 is a direct con-
sequence of what was shown for the semi-discrete scheme. The bounding of β3 relies on the following
steps:

� The quantity Ẽn+1
h is de�ned as the solution of the fully-discrete scheme, with the semi-discrete

solution at timestep tn as the input data;

68



� The consistency error
∥∥∥Eh (tn+1)− Ẽn+1

h

∥∥∥ is bounded by C∆t3 ‖E‖C3([0,T ],L2Ω3) using Taylor ex-
pansions;

� This result is used to bound terms of the form
∥∥Eh (tn+1)− En+1

h

∥∥ via the de�nition of a discrete
error energy and using similar arguments as for the fully-discrete stability proof;

� Finally, the error energy contributions, similar to β3, are bounded using the latter results.

Combining the estimations of β1, β2 and β3, one obtains the following convergence result under CFL
condition for centered �uxes:

max
n∈[0,N ]

(∥∥∥∥H
(
tn+ 1

2

)
−Hn+ 1

2
h

∥∥∥∥
2

+

∥∥∥∥E (tn)− Enh

∥∥∥∥
2
) 1

2

≤ C
(

∆t2 + hmin(s,p)
)(
‖(H,E)‖C3([0,T ],L2(Ω)6) + ‖(H,E)‖C0([0,T ],Hs+1(Ω)6)

)
.

As before, the same results can be obtained for Drude and generalized dispersive model, both for
Leap-Frog [VKLS13] and Runge-Kutta [LSV].
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4
Technicalities

4.1 Domain truncation

In a vast majority of situations, the considered physical devices have a very limited extension in the 3D
space. From a numerical point of view, only a restrained region around the device is usually relevant,
and it is necessary to truncate the computational domain without a�ecting the accuracy of the results.
Limiting the size of the considered system also has an obvious impact on the memory and time required
to compute the problem. The method used for the truncation must totally absorb all radiations crossing
the frontier of the domain, for all wavelengths, polarization, and incidence angle on the boundary.

Two main types of methods are available to achieve this result. The �rst type consists in implementing
a special boundary condition, called Absorbing Boundary Conditions (ABC), on the exterior surface of the
domain. These conditions authorize waves to leave the domain, but no incoming wave is permitted. The
other possibility is to exploit a special volume around the physical system, in which Maxwell’s equations
are modi�ed to strongly damp all the waves that travel through it. This class of methods ensures that no
spurious re�ections occurs at the interface between the physical space and the damping volume, which
is why they are called Perfectly Matched Layers (PML). In the following, a short presentation of ABC is
made, followed by the assessment of a particular class of PMLs.

4.1.1 Absorbing boundary conditions

ABC were previously introduced in section 3.1.7, where expression of the �rst-order Silver-Müller con-
dition was stated. Their proper derivation rely on the expansion theorem for electromagnetic �elds, due
to Wilcox [Wil56]. This theorem states that, outside a sphere enclosing all the scatterers, any radiating
solution to Maxwell’s equations can be expanded in the following form:

E(r) =
e−ikr

r

∞∑

n=0

An(θ, φ)

rn
. (4.1)

Then, an nth order ABC is obtained by �nding an operator that cancels the �rst n terms of (4.1). This
work was done by Webb and Kanellopoulos in [WK89]. The �rst-order operator they obtain is nothing
else than the Silver-Müller condition (SMC) on the domain boundary:
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n× (E + Z (n×H)) = 0,

where Z = 1
Y =

√
µε. Consider the upwind �ux formulation, presented earlier in section 3.1.3, on a

face ail of the mesh:

E∗ =
1

Yi + Yl
({Y E}il + αn× JHKil) .

Now, suppose the medium is homogeneous, i.e. Yi = Yl = Y . Then:

E∗ =
1

2

(
{E}il +

α

Y
n× JHKil

)
.

Given that Y = 1
Z , one obtains, for a fully upwind scheme (α = 1):

E∗ =
1

2
({E}il + Zn× JHKil) =

1

2
(Ei − Zn×Hi)︸ ︷︷ ︸

Outgoing wave

+
1

2
(El + Zn×Hl)︸ ︷︷ ︸

Incoming wave

.

One immediately sees that the SMC corresponds to the canceling of the incoming wave term in the
�ux expression, which is consistent with what was presented in section 3.1.7. A similar reasoning can be
done for the H condition. The SMC being a �rst-order condition, it perfectly absorbs normally-incident
plane waves, but for increasing angles of incidence, its performance rapidly decreases. The re�ection
coe�cient of the SMC is given by [CFS06]:

RSMC(θ) =
1− cos(θ)

1 + cos(θ)
,

where θ is the incidence angle calculated from normal incidence. Moving to higher-order ABC yields
better-performing re�ection coe�cients [B0́7]:

RABCn(θ) =

(
1− cos(θ)

1 + cos(θ)

)n
.

A plot of the re�ection coe�cients is given on �gure 4.1. As expected, SMC requires a near-normal
incidence to correctly absorb outgoing waves. Situation improves for ABC2, however at θ = π

4 re�ection
are still non-negligible. Higher-orders progressively extend the θ range for which R is acceptable. Al-
though it is theoretically possible to keep raising the truncation order, high-order ABC su�er from two
major drawbacks: (i) the complexity of their implementation rises dramatically [WK89], the SMC being
the only condition which implementation is straightforward, and (ii) near-grazing incidences cannot be
well-absorbed, whatever the order of the condition.

In the general case, the ABC must be located relatively far from the scatterer, so the local curvature
of the radiated wavefronts is approximately normal to the boundary of the domain. Obviously, better
performances are obtained for spherical boundaries than cubic ones. For the SMC, a rule of thumb is
to put the boundary approximately one wavelength away from the scatterer1. This usually leads to a
severe overhead in computational time and memory consumption, since the extra volume of free space
can become very large. For this reason, numerical tools often make use of PMLs to truncate computational
domains.

1The considered wavelength must be the largest wavelength considered in the problem.
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Figure 4.1 | Re�ection coe�cients for �rst to fourth-order absorbing boundary conditions. θ is the incidence angle
calculated from normal incidence.

4.1.2 Perfectly matched layers

To overcome the limitations of ABC, Bérenger developed in 1994 a novel numerical concept to absorb the
waves radiated from a system. Instead of using an actual boundary, he de�ned a volume surrounding the
physical space in which the damping should occur progressively. This damping is introduced arti�cially
by modifying Maxwell’s equations in this speci�c zone of the domain. By correctly tailoring the arti�cial
medium, it is possible to obtain no re�ection at the interface between physical space and the absorbing
layer. For this reason, Bérenger called them perfectly matched layers. The functioning of PMLs is depicted
in �gure 4.2: the outgoing wave propagates in the physical domain toward the PML, and crosses the
interface. No re�exion occurs, and the wave continue to propagate in the PML, while being damped
by the arti�cial medium. It eventually encounters the edge of the computational domain, which can be
either PEC or ABC. In either case, the remaining of the wave is totally or partially re�ected toward the
domain, and is therefore damped a second time over the PML length. When it re-enters the physical
zone, its amplitude is attenuated by several orders of magnitude. Hence, the error induced by the PMLs
is supposed to be small enough not to lose the bene�ts of the high-order method. While standard ABC is
only a "geometric" condition (i.e. it only becomes more e�cient with a larger distance from the source),
PMLs take advantage of the high-order spatial discretization, allowing higher levels of damping with
increasing polynomial orders.

PMLs have evolved since Bérenger’s implementation, and several varieties are now available [B0́7].
Two important versions in use for Maxwell’s equations are the uniaxial PML (UPML), and the complex
frequency-shifted PML (CFS-PML).

UPML

UPMLs are widely used in computational electromagnetics, for their implementation is quite straightfor-
ward, and their memory requirements remain low when compared to other types of PMLs. In order to
achieve the perfectly matched feature for any incidence angle, it is not possible to suppose an isotropic
medium in the absorbing layer. However, considering an anisotropic medium makes it feasible [Nie09]:
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Figure 4.2 | General functioning of the PML. The outgoing wave propagates in the physical domain toward the PML, and
crosses the interface. No re�exion occurs, and the wave continue to propagate in the PML, while being damped by the arti�cial
medium. It eventually encounters the edge of the computational domain, (here PEC). In either case, the remaining of the wave is
totally or partially re�ected toward the domain, and is therefore damped a second time over the PML length. When it re-enters
the physical zone, its amplitude is attenuated by several orders of magnitude. Hence, the error induced by the PMLs is supposed
to be small enough not to lose the bene�ts of the high-order method.

¯̄ε ≡ ¯̄Λ ε and ¯̄µ ≡ ¯̄Λµ with ¯̄Λ =




sysz
sx

0 0

0 sxsz
sy

0

0 0
sxsy
sz


 ,

where:

sk(ω) = 1− σk
iω
, with k ∈ {x, y, z} .

Here, σk represents the loss rate of the PML in each direction. Modi�ed equations for the PML region
are easily obtained with the additional di�erential equation technique. Since they will not be exploited in
this thesis, the complete derivation is not given here, and the reader is referred to [Nie09] for additional
details. In counterpart to their low computational cost and easy implementation, the UPMLs present
several limitations: (i) their theoretical damping can be very high, which can cause spurious re�ections
inside the physical domain (see section 4.1.3), (ii) their formulation must be modi�ed if a dispersive or
lossy material enters in contact with the PML, and in this case its memory consumption rises, and (iii)
they only provide one parameter for optimization. Additionally, their performance is not as good as that
of the CFS-PML [Kön11].

CFS-PML

Another approach to design PMLs is to exploit a complex stretch of coordinates in the spatial operator.
This approach was successfully designed by Kuzuoglu and Mittra [KM96], although further developments
showed that it was originally for an erroneous reason [BPG02]. It has been widely used in the FDTD
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community since [RG00]. Recently, König [Kön11] proposed a DGTD implementation of this PML, on
which section 4.1.4 is based. The complex stretching is imposed by the following change of variables:

∂

∂x
→ 1

sx(ω)

∂

∂x
,

∂

∂y
→ 1

sy(ω)

∂

∂y
,

∂

∂z
→ 1

sz(ω)

∂

∂z
,

with:

sk(ω) = κk −
σk

iω − αk
, with k ∈ {x, y, z} .

As for the UPMLs, σk represents the loss rate of the PML. However, two new parameters are intro-
duced. κk represents a real stretching factor, which e�ect is only to arti�cially lengthen the PML. This
parameter is often exploited in FDTD to move away an ABC condition without modifying the computa-
tion grid. However, its e�ect is limited, since it can rapidly degrade the sampling of the �elds inside the
PML (see section 4.1.3). The αk parameter is the actual frequency shift, since it moves the pole of sk(ω)
from ωp = 0 to ωp = iω. In the case αk = 0, linearly-growing instabilities in long-time computations
can arise [BPG02]. These instabilities usually take place when �elds tend to be constant inside the PMLs
(after the incident �eld has left the system, and the resonating structures are almost at rest).

4.1.3 Properties of PMLs

Since the study of PMLs is not at the heart of this manuscript, only the main ideas are exposed here,
without proofs. However, all the derivations and detailed properties can be found in [B0́7]. Consider the
very simple case of a one-dimensional plane wave propagating in the x+ direction toward a PML zone.
In vacuum, the wave is described by:

φ(x, t) = φ0(x, t) ≡ ei(k0x−ωt), with k0 ≡
ω

c
, (4.2)

where c is the wave speed. In the PML, the stretched coordinate transformation is applied, yielding a
modi�ed dispersion relation:

k =
ωs(ω)

c
.

For the CFS-PML, one obtains:

k = k0 + k1 + ik2, with k1 =
ω

c

(
κ− 1 +

ασ

α2 + ω2

)
and k2 =

σω2

c (α2 + ω2)
. (4.3)

k1 is a phase term induced by the complex shift. k2, on the other hand, is the actual damping term of
the PML. Indeed, plugging (4.3) in (4.2) yields:

φ(x, t) = φ0(x, t) eik1x e−k2x. (4.4)

Given (4.4), it is easy to deduce that, for a PEC-backed PML of thickness l, the re�ection coe�cient
in normal incidence is:

RPML(0) = e−2k2l,

the 2 factor coming from the re�ection of the damped wave on the back of the PML. In the more
general case of an oblique incidence, one obtains:
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Figure 4.3 | Re�ection coe�cient of the CFS-PML for traveling waves in normal incidence. θ is the incidence angle
calculated from normal incidence. In plot 4.3(a) the e�ect of an increasing thickness is showed. Parameters are α = 1, ω = 1,
σ = 1 and c = 1. Plot 4.3(b) presents the in�uence of the quotient α

ω
on R and k2. In this case, parameters are l = 1, σ = 1

and c = 1.

RPML(θ) = e−2k2l cos(θ), (4.5)

where θ is the incidence angle calculated from normal incidence. By observing (4.5) one sees that
re�ection from the PML layer can be lowered exponentially by increasing its width (see plot 4.3(a)), at
a certain computational cost. It can also be lowered by choosing higher values of σ. From a numerical
point of view, increasing σ implies that the numerical method must resolve a steeper exponential decay
inside the layer without additional degrees of freedom. Hence, the �elds inside the PML could become
under-resolved by the spatial discretization for too high values of σ, producing spurious re�ections inside
the physical domain. Concerning this point, a good tradeo� must be found (see section 4.1.5). Regarding
the values of α, one sees that α� ω yields k2 −→ 0: in this case, frequencies that are low compared to α
will not be absorbed correctly. On the other hand, α� ω gives k2 ' σ

c (equal to 1 on the plot), which is
the result for the standard Berenger PML. This case yields a low theoretical re�ection, but in practice, the
exponential decay may become too steep to be correctly resolved (see plot 4.3(b)). Intermediate values of
α, on top of preventing long-time instabilities, allow a moderate absorption, neither too strong nor too
weak, that can be resolved by the numerical method.

The case of evanescent waves remains to be considered. Since they are already exponentially de-
creasing, adding extra absorption to an evanescent wave entering a PML would most certainly end up in
spurious re�ections from under-resolved �elds. In [B0́7], the author shows that the CFS-PML, contrarily
to the standard PML, only provides a real stretch of coordinates for evanescent waves, proportional to k1.
Hence, an arti�cially extended domain is provided to evanescent waves to naturally decay in the PML.

4.1.4 CFS-PML for Maxwell’s equations

The full derivation of the CFS-PML formulation is not reproduced here, and the reader is referred to
[Kön11] for the full details. Starting from the coordinate stretch, the frequency-domain equation on the
Ex component becomes:
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−iωεrEx =
1

sy

∂Hz

∂y
− 1

sz

∂Hy

∂z
.

The contributions coming from the ∂y and the ∂z will be kept in separate auxiliary variables, respect-
ively noted GExy and GExz . After some algebraic manipulations, one obtains the following time-domain
equations:

εr
∂Ex
∂t

=
1

κy

∂Hz

∂y
− 1

κz

∂Hy

∂z
−GExy −GExz,

∂GExy
∂t

=
σy
κ2
y

∂Hz

∂y
−
(
αy +

σy
κy

)
GExy,

∂GExz
∂t

= −σz
κ2
z

∂Hy

∂z
−
(
αz +

σz
κz

)
GExz.

Equations for the other components are obtained by proper substitutions. As stated previously, two
additional �elds per physical component are necessary to account for the CFS-PML. However, as will be
seen in the next section, in most cases a single layer of PML cells su�ce to obtain a proper absorption of
outgoing waves, thus limiting the computational overhead. Following the usual steps, a DG formulation
is obtained:

Mεr
i

∂Ex,i
∂t

=
1

κy
Ky
iHz,i −

1

κz
Kz
iHy,i −Mi

(
GExy,i +GExz,i

)
−
∑

l∈Vi
Sil [H∗ × nil]x , (4.6)

Mi

∂GExy,i
∂t

=
σy
κ2
y

Ky
iHz,i −

(
αy +

σy
κy

)
MiG

E
xy,i −

σy
κ2
y

∑

l∈Vi
Sil [H∗ × nil]xy , (4.7)

Mi

∂GExz,i
∂t

= −σz
κ2
z

Kz
iHy,i −

(
αz +

σz
κz

)
MiG

E
xz,i −

σz
κ2
z

∑

l∈Vi
Sil [H∗ × nil]xz , (4.8)

where [H∗ × nil]xy corresponds to the y-derivative part of the x component of the �ux (following the
notation GExy), i.e. the part involving the Hz term. Hence, one obtains:

[H∗ × nil]x = [H∗ × nil]xy + [H∗ × nil]xz . (4.9)

Although both (4.7) and (4.8) contain additional �ux terms, it is not necessary to calculate them during
the update ofGExy andGExz . By separately calculating and storing (only for the PML cells) the two sti�ness
and �ux contributions during the electric �eld update, the computational cost of the CFS-PML remains
limited.

Since the parameters of the PML are di�erent in each direction of space, it is necessary in practice to
di�erentiate three types of volumes. In the �rst kind, only one of the three damping parameters will be
non-zero (for example, σx if it corresponds to a face perpendicular to the x axis): this results in six faces,
two for each direction. In the second kind, two out of three parameters are non-zero, leading to twelves
ridges in the cubic domain. The last kind corresponds to areas where the three parameters are non-zero,
yielding eight corners in the �nal computational domain. A sketch of the 3D con�guration is shown on
�gure 4.4
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Figure 4.4 | PML con�guration for a cubic domain. Grey faces correspond to one non-zero parameter, blue ridges to two
non-zero parameters, and orange corners to three non-zero parameters. This results in 26 speci�c areas.

4.1.5 Performance assessment in the DGTD framework

In this section, the performances of the CFS-PML are assessed on a textbook case, similar to the one
described in [Kön11]. At the center of a cubic domain of lateral size 2, a gaussian pulse in time and
space is imposed, propagating in time toward outer space. The pulse is imposed via a source current,
as described in 4.2.1. The computational domain is terminated with a single-cell layer of PML, backed
with a SMC. In this case, the PML parameters are identical in all directions (i.e. σx = σy = σz = σ,
and the same for α). The domain is divided in small cubes, which are in turn divided in six identical
tetrahedra of side length 0.5. The resulting mesh contains 1331 vertices and 6000 tetrahedra. During the
simulation, �elds are recorded at a probe point located in (1.5, 1.5, 1.5). To obtain a reference solution,
a �rst possibility would be to exploit an exact solution of the problem. However, the error calculated in
this procedure would incorporate both the error due to the spatial and temporal discretization, and the
error due to the PML. Hence, a numerical reference solution is preferred. It is obtained by computing the
pulse propagation on a very large PEC-backed domain, large enough so that the waves re�ected on the
boundary do not have the time to travel back to the center of the domain. The large domain has the same
spatial discretization as the small one, and therefore the same timestep is used in both cases. After the
computation, the error due to re�ections coming from the PML is evaluated at the chosen probe point as:

∆ =
max
t
|Enum

z − Eex
z |

max
t
|Eex

z |
.

This error is plotted on �gure 4.5 for di�erent combinations of (σ, α), with polynomial orders ranging
from 1 to 4. For this con�guration, κ = 1. It is visible that higher polynomial orders allow a better
resolution of the exponential decay that takes place in the PML, hence leading to less spurious re�ections
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inside the physical domain. For a �xed value of α, one sees the existing balance between absorption and
resolution of the exponential decay. When σ is too low, the decay is very well resolved, but the absorption
is not important enough. Rising σ eventually leads to an optimum value for which the re�ections in the
physical domain are minimal. Moving to higher values of σ re-introduces spurious re�ections caused by
the under-resolved �eld variations in the PML.

The overhead in terms of memory and CPU induced by one layer of PMLs around the domain is
calculated and averaged over the four polynomial orders. One layer of PMLs introduced approximately
18.9 % of additional CPU time, and required 7.2 % more memory than the same con�guration with the
PMLs replaced by vacuum. It must be kept in mind that here, the single PML layer holds more than 50 %
of the total number of tetrahedra: this is a very high value due to the homogeneous meshing, and tends
to be smaller in realistic con�gurations.

For comparison, the same test-case is considered, with a SMC condition instead of the PML. The
distance d from the source to the boundary is progressively enlarged, and at each step the memory con-
sumption, the CPU time and the re�ection error are computed. Results are presented on �gure 4.6. Since
the SMC is a geometric condition, the errors obtained are almost independent of the polynomial order.
The CPU time and memory consumption, however, are not. In both cases, it makes no doubt that the
PML is pro�table to the performance of the computations.

4.2 Sources and TF/SF formulation

4.2.1 Sources

A good control of the properties of incident �elds is of major concern, since the physical response of a
nanophotonic system depends, in the �rst place, on how it is excited. In this thesis, only plane waves,
dipoles and waveguide modes will be considered. However, a wide range of sources is available from
realistic physical applications, including for example laser beams [NH07].

Plane waves

Plane waves are the most simple kind of source. Although they only correspond to an asymptotic physical
con�guration (i.e. any radiating source propagating on a su�ciently large distance should resemble a
plane wave), they are often used in numerical electromagnetics to determine the fundamental properties
of a physical system. The spatial pro�le of plane waves was already described in section 2.1.4. However,
the choice of the time dependence is crucial. Indeed, on the spectral pro�le of the source depends the
modes and/or resonances that will be excited or not in the physical system. The most basic kind of time
dependence is the monochromatic plane wave, which expression is, in the temporal domain:

E(t) = E0 sin(ω0t). (4.10)

It is obvious that the Fourier transform of (4.10) is proportional to the Dirac function δω0 . Although
this type of source can be useful in several cases (see for example section 8.3), running a whole time-
domain simulation only to obtain the response of the system at one frequency may not be worth it, and
frequency domain methods may be more suited. To obtain a wider frequency spectrum, a usual time
dependency is:

E(t) = E0 sin(ω0(t− t0)) e−
(t−t0)2

2σ2 , (4.11)
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Figure 4.5 | Error due to the CFS-PML for polynomial orders ranging from 1 to 4, with a single cell layer of PML. In this case,
κ = 1.
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Figure 4.6 | Performance of the Silver-Muller condition compared to the CFS-PML. The distance d from the source to
the boundary is progressively enlarged, and at each step the memory consumption, the CPU time and the re�ection error are
computed. Since the SMC is a geometric condition, the errors obtained on 4.6(a) are almost independent of the polynomial order.
The error levels obtained with the PML on the small domain described previously are noted with their approximation order on
the right of the plot. The CPU time and memory consumption for the SMC are plotted (for P1 and P2) as functions of d on 4.6(b),
and compared to those required with the PML in the P3 case.

which is a Gaussian function of width σ centered around t0, modulated by a sine function. This
function has several properties:

� For an appropriate choice of t0, E(0) ' 0;
� In any case, for t su�ciently large, E(t) decays to 0;
� Its Fourier transform is known:

Ê(ω) = E0
iσ

2

√
π

2
eiωt0

(
e−

σ2(ω−ω0)2

2 − e−
σ2(ω+ω0)2

2

)
, (4.12)

which means that such a pulse traveling through a structure will excite it on a wideband of fre-
quencies, and not just on a single one as before (see �gure 4.7);
� Direct control of the spectral pro�le of the pulse is available by tuning the parameter σ. The shorter

the time-domain pulse, the wider the frequency-domain spectrum. From a practical point of view,
there is a tradeo� between the length of the pulse that will travel through the domain (i.e. the
longer the pulse, the more expensive the computation), and the frequencies that will be excited in
the physical system. Choosing a very short pulse may not be a cheap solution, since potentially
uninteresting resonances may be excited and resonate for a very long time, thus leading to an
extended computational time.

Dipoles

Dipoles are commonly used to model sources of �nite extension in space (which is not the case for plane
waves). Two di�erent techniques are available in the DGTD framework to impose such a source. The �rst
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Figure 4.7 | Wideband pulse representation in time-domain and frequency-domain. Parameters are E0 = 20 V.m−1,
ω0 = 3, t0 = 5. The shorter the time-domain pulse, the wider the frequency-domain spectrum.

one consists in approximating the source point by a steep gaussian. This can be done by adding a source
current to one of the components of the electric �eld, in the FDTD soft source fashion [CBB09]2. This
method can be fairly easily implemented, but it is approximative, and the resolution of the very intense
�elds in the vicinity of the source origin requires a very �ne local meshing. Recall the normalized E �eld
evolution Maxwell’s equation with a current source:

∂E
∂t

=
1

εr
(∇×H− Js) .

Integrating between t = 0 and t gives:

E(x, t)− E(x, 0) =
1

εr

(ˆ t

0
∇×H(x, u)du−

ˆ t

0
Js(x, u)du

)
.

Hence, to obtain a virtual electric �eld source of a chosen form Es(x, t), one should apply a current
source which time dependence is proportional to the time derivative of Es(x, t). For example, if one wants
a source of the following form (the origin of the source is taken at (xs, ys, zs)):

Es(x, t) = e−
(t−t0)2

2σ2 e−((x−xs)2+(y−ys)2+(z−zs)2),

then the proper current source is:

Js(x, t) = εr
(t− t0)

σ2
e−

(t−t0)2

2σ2 e−((x−xs)2+(y−ys)2+(z−zs)2).

The second method consists in imposing the exact electric and magnetic �elds via the numerical �ux
on a TF/SF interface (see section 4.2.2). With this method, it is not necessary to discretize the high intensity
�elds close to the origin of the dipole, since the resulting electric and magnetic �elds are imposed further
away from it, where the interface is de�ned. Therefore, it leads to a more accurate approximation of the
dipolar source. The calculations of the electric and magnetic �elds to be imposed on the TF/SF interfaces

2Note that, if this method is here used to approximate a dipole, it is generic and can be used for a lot of other time and space
dependences.
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a

Core, n = n1

Cladding, n = n2Bu�er

Figure 4.8 | Composition of a step-index optical �ber. Typical values for the radii are 3 to 10 µm for the core, around 130
for the cladding, and around 250 for the bu�er. A set of typical values can be a = 5 µm, n1 = 1.455 and n2 = 1.45.

in the general case are detailed in [Nie09], and are not reproduced here. Here, the solution for a z-oriented
dipole with a general time dependence p(t) is given in spherical coordinates:

Er(r, θ, φ, t) =
2Zc

4πε0

cos θ

r

(
ṗ( t )

cr
+
p( t )

r2

)
,

Eθ(r, θ, φ, t) =
Zc

4πε0

sin θ

r

(
p̈( t )

c2
+
ṗ( t )

cr
+
p( t )

r2

)
,

Hφ(r, θ, φ, t) =
1

4π

sin θ

r

(
p̈( t )

c
+
ṗ( t )

r

)
,

with Eφ = Hr = Hθ = 0 and t = t− r
c .

Step-index optical �ber modes

Among the large variety of waveguides, we consider a step-index optical �ber (see sketch in �gure 4.8),
for which the core and the cladding have slightly di�erent optical indices (n1 & n2, where n1 is the core
index, and n2 the cladding index). The modes allowed to travel in such �bers are, in polar coordinates, of
the form:

E(r, φ, z) = e(r) e−ilφ e−iβz, (4.13)

where l is an integer, and β remains to be determined. Skipping the derivations (see for example
[Buc04]), solutions for the radial part are standard Bessel functions (Jl) in the core, and modi�ed Bessel
functions (Kl) in the cladding:

e(r) = E0
Jl
(
U r
a

)

Jl(U)
for 0 ≤ r < a,

e(r) = E0
Kl

(
W r

a

)

Kl(W )
for a < r,

with
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Figure 4.9 | Solutions of the mode equation for step-index optical �bers. The plots represent the left hand side (LHS) and
right hand side (RHS) of the transcendental equation (4.14). In both cases, λ0 = 1 µm, n1 = 1.455 and n2 = 1.45. On the left
panel, for a = 5 µm and l = 0, a unique solution is found, yielding β1

k0
' 1.453764. Hence, only one mode is able to propagate

in the �ber. On the right panel, for a = 10 µm and l = 1, two solutions are obtained: β1
k0
' 1.451772 and β2

k0
' 1.454009.

U = a
√
k2

0n
2
1 − β2 and W = a

√
β2 − k2

0n
2
2.

In the latter expressions, k0 = 2π
λ0

is the wavenumber of the source in vacuum3, λ0 is the wavelength
in vacuum, and n is the optical index, equal to n1 or n2 depending on the position. One can feel that,
because of the index jump, the mode propagating inside the �ber will have an intermediate wavenumber
between those of the core (k1 = n1k0) and the cladding (k2 = n2k0). β can be obtained by considering
the continuity of the �elds at the core/cladding interface. The calculation yields the following equalities:

θ
J1(θ)

J0(θ)
= η

K1(η)

K0(η)
for l = 0,

θ
Jl−1(θ)

Jl(θ)
= −ηKl−1(η)

Kl(η)
for l ≥ 1,

(4.14)

with

θ = V
√

1− b, η = V
√
b, V =

√
U2 +W 2, and b =

W 2

V 2
.

The resolution of the transcendental equation (4.14) �nally provides all the information necessary
to compute an incident �ber mode. Depending on the parameters, (4.14) may have zero, one or more
solutions for β. These solutions are numbered with the integer m = 1, 2, 3, .., and the mth solution then
corresponds to the (l,m) mode. A few examples of the solution of the transcendental equation (4.14) are
presented on �gure 4.9, while the resulting �ber modes are plotted on �gure 4.10. As can be seen, the
�eld slightly extends into the cladding, although it is rapidly damped.

3The �eld inside the �ber is generated by an emitting diode, for which the parameters are imposed relatively to vacuum.
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(a) a = 5 µm, (0, 1) mode (b) a = 10 µm, (1, 1) mode (c) a = 10 µm, (1, 2) mode

−3 0 3

Figure 4.10 | Examples of electric �eld map in �ber modes. The radius and mode numbers (l,m) are given in each
subcaption. The black ring indicates the limit between the core and the cladding, and the geometrical scaling is identical for
all three �gures (the total radius is 15 µm). As can be seen, the �eld slightly extends into the cladding, although it is rapidly
damped.

4.2.2 TF/SF formulation

The way of imposing the sources inside a physical domain has not been discussed yet. A �rst, simple
possibility is to use directly the ghost cells of the SMC (see section 3.1.7), allowing an imposed incident
�eld to enter the domain. This is a viable solution, which however, does not apply in the presence of PMLs.
Another possibility is to de�ne an additional arti�cial contour inside the physical domain, on which the
�eld could be imposed directly (see �gure 4.11).

Consider the following splitting of the electric �eld:

Etot(x, t) = Einc(x, t) + Esca(x, t), (4.15)

where Etot is the total �eld, Einc is the incident �eld, and Esca is the scattered �eld. The incident �eld is
known, since it is imposed by the user. Consider now a splitting of the computational domain in two parts,
as presented on �gure 4.11: a convex region, in which the total �eld is computed, encloses the physical
device, while in the remaining of the domain, the scattered �eld is computed. The interface between these
two regions is called the total �eld/scattered �eld (TF/SF) interface. In each region, the DGTD formulation
derived earlier (see equation 3.9) is valid, and no modi�cation is required. At the interface, however, the
computation of the �ux between the two regions is modi�ed. Consider an interface between two cells,
such that the local cell Ti is a total �eld cell, while the neighbor cell Tl is a scattered �eld cell (situation
is shown on �gure 4.12). The upwind �ux calculated for cell Ti is:

E∗,tot =
1

Yi + Yl
({Y Etot}il + αn× JHtotKil) ,

with {Y Etot}il = YiEi,tot + YlEl,tot and JHtotKil = Hl,tot − Hi,tot. However, the �eld values cor-
responding to cell Tl are not El,tot and Hl,tot, but El,sca and Hl,sca. Hence, the �ux formulation must be
modi�ed to account for this di�erence. By considering (4.15), one easily shows that the right �ux can be
calculated as follows:
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Figure 4.11 | Mesh con�guration including a scatterer, a TF/SF interface, and a PML boundary layer. The scatterer, in
orange, is enclosed by the TF/SF interface, in light gray. The faces of the PML (in light blue) are removed for clarity.

E∗,tot =
1

Yi + Yl
({Y E}il + αn× JHKil)

︸ ︷︷ ︸
E∗

+
1

Yi + Yl
(YlEinc + αn×Hinc)

︸ ︷︷ ︸
E∗,inc

, (4.16)

the minus sign coming from the de�nition of the jump. Symmetrically, the upwind �ux for cell Tl in
the scattered �eld region is:

E∗,sca = E∗ − E∗,inc. (4.17)

Similar derivations can be obtained for the other curl equation. From (4.16) and (4.17), it is obvious
that �uxes computation at the TF/SF interface can be handled by a separate, additional loop on the TF/SF
faces during the �elds update, causing a minimal overhead.

The TF/SF decomposition has several uses: (i) it can be used as a simple interior boundary to impose
incident �elds in cases where PMLs are used, (ii) it allows to observe both the total �eld in the vicinity
of the scatterer and the scattered �eld far from it in a single run, and (iii) it is useful to compute relevant
scattering quantities, such as cross-sections, without using additional interior countours (see section 4.4).

4.3 Fourier transform

Although the numerical method considered here is in the time-domain, many physical quantities, such as
cross-sections (see section 4.4.1) or re�ection and transmission coe�cients (see section 4.4.3), are better
de�ned in the frequency domain. Hence, an e�cient discrete Fourier transform must accompany the
time-domain solver, in order to extract the Fourier �elds on relevant surfaces. As before, for a time-
dependent variable φ(t) being at least in L1(R), its Fourier counterpart is noted φ̂(ω), and the two are
connected via the Fourier transform:

φ̂(ω) =

ˆ +∞

−∞
φ(t) e−iωtdt. (4.18)

A discrete version of (4.18) is:

86



Esca

Etot

TF
/S
F

E∗ + E*,inc

E∗ − E*,inc

Figure 4.12 | TF/SF interface with modi�ed �uxes.

φ̂(ω) '
∑

tj=ti+j∆t

φ(tj) e−iωtj∆t. (4.19)

Having selected a frequency range of interest [ωi, ωf ] and a frequency step ∆ω, one must loop over
the ωk = ωi + k∆ω at each time step, and update (4.19) at each degree of freedom of the selected faces
and/or cells:

φ̂(ωk)← φ̂(ωk) + φ(tj) e−iωktj∆t.

A few remarks arise about this method:

� The accuracy of the algorithm depends only on ∆t, which is usually small enough given the spatial
resolutions required by nanophotonics problems;

� The spectral resolution depends on ∆ω only;

� The memory requirements depend on ωi, ωf and ∆ω, but are independent of the total simulation
time;

� The discrete Fourier transform (DFT) of a non-periodic signal (such as (4.11) for example) usually
requires that this signal starts with a zero amplitude, and that this amplitudes decays to zero again
before the end of the DFT. Otherwise, the obtained spectrum is polluted by what is called spectral
leakage, which is a consequence of the time window used to evaluate the DFT. Hence, for actual
nanophotonics computations, it is necessary to use a time-domain pulse with a zero starting amp-
litude, and to wait for a su�cient decay of the �eld amplitudes before ending the computation.
For certain con�gurations, this can lead to highly increased computational times, and therefore the
relevant frequency range of the incident pulse must be chosen with care.
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4.4 Relevant quantities in electromagnetic scattering

4.4.1 Cross-sections

To describe the power density vehicled by a propagating electromagnetic wave, it is common to use the
Poynting vector, whose de�nition in time-domain is:

π (x, t) = E (x, t)×H (x, t) . (4.20)

When dealing with the range of frequencies encountered in the �eld of nanophotonics, it seems quite
obvious that any regular experimentation device cannot capture the time-domain dynamics of light. The
right quantity to take into account is here the time-averaged Poynting vector:

π (x, ω) =
1

2
<
(
Ê (x, ω)× Ĥ∗ (x, ω)

)
, (4.21)

which is not the Fourier transform of (4.20). Given that de�nition, consider the situation of �gure 4.11,
where the scatterer is totally enclosed by the TF/SF contour. Inside the total �eld region, the computed
�elds are Etot and Htot such as:

Etot = Einc + Esca

Htot = Hinc + Hsca,

The incident �eld is imposed on the TF/SF interface, and therefore, in the scattered region, the com-
puted �elds are Esca and Hsca. From now on, S denotes the closed TF/SF surface. The absorbed energy is
de�ned as:

Wabs (ω) = −
ˆ
S
πtot · n, (4.22)

with n the outward normal to surface S. In the absence of scatterer, all the energy that enters the
total �eld region leaves it, and therefore Wabs = 0, since the di�erent contributions of the integral will
compensate. If a scatterer is added, then a part of the incoming energy may be absorbed, and hence not
all the energy that enters S leaves it. The absorbed part therefore corresponds to the quantity (4.22).
Similarly, the scattered energy is de�ned as:

Wsca (ω) =

ˆ
S
πsca · n, (4.23)

which would trivially be zero in the absence of a scatterer inside S. To eliminate the dependance of
(4.22) and (4.23) on the amplitude of the incident �eld, one de�nes the absorption cross section and the
scattering cross section, respectively:

Cabs (ω) = −

ˆ
S
πtot · n

Sinc
, (4.24)

and:

Csca (ω) =

ˆ
S
πscat · n

Sinc
, (4.25)
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where Sinc = |πinc| is the incident power density in W.m−2. Additionally, one de�nes the extinction
cross section as:

Cext = Cabs + Csca. (4.26)

Sometimes, physical cross-sections are normalized by the geometric cross-section of the scatterer.
These quantities, notedQext,Qabs andQsca, are often called extinction, absorption and scattering e�ciencies.

4.4.2 Volumetric absorption

The absorption due to lossy materials can also be computed with a volumetric method. Indeed, it is
possible to evaluate the Ohm losses directly inside the material instead of computing the �ux of the
Poynting vector through a surface enclosing the scatterer. It can be shown that the power absorbed by
the scatterer as ohmic losses is [LL60]:

POhm(ω) =
ε0ω

2

ˆ
Ωs

=(εr(ω))
∣∣∣Ê(r, ω)

∣∣∣
2
, (4.27)

where Ωs is the volume delimited by the scatterer. In the case of a single scatterer, the losses can either
be computed via the surfacic method (withCabs) or the volumetric method (withPOhm). Depending on the
sizes and discretization of the scatterer and the TF/SF interface, the costs and accuracy of both methods
can vary. The scattering regime also plays a role in the accuracy of both methods, as shown in [KM10].

4.4.3 Re�ection and transmission

In the case of periodic structures, the de�nition of cross-sections does not make sense, since the TF/SF
interface is composed of two in�nite planes, numerically delimited by PBCs (see �gure 4.13). However,
two natural quantities can be computed in such cases: the re�ection and the transmission coe�cients,
which are both frequency-dependent. When a scatterer is illuminated by an incident �eld, the �rst one
represents the proportion of energy coming back due to the scatterer, while the second one represents
the amount of energy that travelled through the system. Hence, one de�nes the re�ection and tramission
coe�cients as, respectively:

R (ω) =

ˆ
Si

πsca · n
ˆ
Si

πinc · n
, (4.28)

and

T (ω) =

ˆ
So

πtot · n
ˆ
Si

πinc · n
, (4.29)

where Si and So are the planes de�ned on �gure 4.13. Additionally, the absorption can be de�ned
from R and T as:

A (ω) = 1− T (ω)−R (ω) . (4.30)

Obviously, the absorption is zero if only dielectric scatterers are present in the TF zone.
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Figure 4.13 | Periodic array of scatterers on a metallic slab. The TF/SF planes, Si and So, are respectively above and below
the photonic device (see the axes). In the z direction, the domain is terminated by a PML layer, while it is periodic in the x and
y directions.

4.4.4 Far �eld and radar cross-section

Although the quantities presented above can provide crucial informations on a given nanostructure, their
knowledge seems, in most cases, insu�cient. Indeed, any notion of directivity is lost in the computation
of cross-sections because positive and negative contributions to the Poynting �ux are averaged on a closed
surface. A large chunk of information is lost as well in the case of re�ection and transmission coe�cients.
However, for some applications, the directivity pattern of the considered nanostructure will play a crucial
role in its e�ectiveness. A possible quantity to measure the directivity of a device (a nanoantenna, for
example) is its radar cross section (RCS), which measures how well it can be detected from afar, in a given
direction. In spherical coordinates, its de�nition is [TH05]:

σRCS(θ, φ) = lim
r→∞

4πr2 Ssca(r, θ, φ)

Sinc(θinc, φinc)
, (4.31)

where Sinc and Ssca are respectively the incident power density and the scattered power density seen
at a distance r from the source. It is noticeable that σRCS does not depend on r, and is therefore a far �eld
quantity. The θinc and φinc angles correspond to the angles of the incident �eld, which is then scattered
unequally by the nanostructure in all directions (described by θ and φ), hence providing a directivity
pattern. In the following, the spherical angles are those de�ned on �gure 4.14.

Here, we follow the procedure described in [TH05] for the computation of the RCS. The main steps
are reproduced, and the reader is referred to the aforementionned reference for further details. As for
scattering cross-sections, the Fourier transforms of the scattered �eld must be computed on the TF/SF
interface. Then, the equivalents currents (see the equivalence theorem in [TH05]) are computed on the
TF/SF surface:
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Figure 4.14 | Spherical coordinates system for the RCS computation.

Js(ω) = n× Ĥsca(ω)

Ms(ω) = −n× Êsca(ω).

In essence, the equivalence theorem implies that the actual source (for example the nanoantenna
illuminated by the incident �eld) can be replaced by �ctitious surfacic current sources, here denoted by Js
andMs. From these currents, the scattered �eld at any point can be computed by integrating the elemental
sources over the closed surface S. This is done by computing the components of the �eld potentials4 in
the (θ, φ) direction:

Nθ(ω) =

ˆ
S

(Jx cos θ cosφ+ Jy cos θ sinφ− Jz sin θ) ė dS,

Nφ(ω) =

ˆ
S

(−Jx sinφ+ Jy cosφ) ė dS,

Lθ(ω) =

ˆ
S

(Mx cos θ cosφ+My cos θ sinφ−Mz sin θ) ė dS,

Lφ(ω) =

ˆ
S

(−Mx sinφ+My cosφ) ė dS,

with:

ė = eik(x sin θ cosφ+y sin θ sinφ+z cos θ).

From the latter expressions, the RCS is deduced [TH05]:

σRCS(θ, φ) =
k2

8πZ0Sinc

(
|Lφ + Z0Nθ|2 + |Lθ − Z0Nφ|2

)
. (4.32)

4These potentials are simpli�ed thanks to the far �eld assumption
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5
Curvilinear elements

As shown previously, the standard DG method relies on a tessellation composed of straight-edged ele-
ments mapped linearly from a reference element (see section 3.1.5). However, for problems with curved
interfaces or boundaries, such meshes represent a serious hindrance for the high-order convergence, since
they limit the accuracy to second order in the spatial discretization. Thus, exploiting an enhanced rep-
resentation of physical geometries is in agreement with the natural procedure of the DG method. There
are several ways to account for curved geometries. One could choose to incorporate the knowledge com-
ing from CAD in the method to design the geometry and the approximation : these methods are called
isogeometric [HCB05], and have received a lot of attention recently. This naturally implies to have ac-
cess to CAD models of the geometry. On the other hand, isoparametric usually rely on a polynomial
approximation of both the boundary and the solution. This can be added fairly easily on top of existing
implementations. Hereafter, we will focus on the latter type of method, since our goal is �rst to envisage
the bene�t of curvilinear meshes in nano-optics.

Early implementations of isoparametric elements have been made in the �eld of computational �uid
dynamics by Bassi and Rebay for the 2D Euler equations : in [BR97], the authors exhibit cases where
the physical meaning of the numerical solution is not consistant with reality unless a proper description
of the boundaries by curved elements is used. In [SSS13], realistic situations of 3D Euler �ows around
airfoil pro�les have been numerically studied; in these cases, the non-analytic nature of the geometry
implies improved results for arbitrary orders of boundary approximation. In computational electromag-
netics, curvilinear elements have also been put at use. In [Nie09], the authors present a 3D discontinuous
Galerkin time-domain (DGTD) method exploiting a second-order mapping. A low storage version of the
method has been proposed in [War10], where the additional memory cost due to curved elements is re-
duced by a modi�cation of the basis functions. In [Fah11], the author points out the causes of suboptimal
rates of convergence for 3D geometries when high-order mappings are considered (cubic and higher).
Realistic 2D nanostructures have already proved to bene�t from the use of curved elements, especially in
the DGTD framework [HKGE10].

In this chapter, the bene�ts of a curvilinear DGTD approach for nano-optics are assessed. First, the
necessary ingredients to the implementation and use of curvilinear tetrahedra in the DGTD framework
are presented. Then, these procedures are validated with a textbook case. Finally, the practical interest of
curvilinear elements in nano-optics is demonstrated with realistic geometries of nanocube absorbers.
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Ωp

Ω \ Ωp

Figure 5.1 | Polygonal approximation of a domain with curved boundaries.

5.1 Formulation for curved elements

5.1.1 Intrinsic limitation of linear elements

Geometrical error

In most cases, FE formulations are solved on a polygonal approximation Ωp of a convex physical domain
Ω. Hence, ∂Ω∩∂Ωp is a set composed of a �nite number of points (see �gure 5.1). Consider the following
generic continuous problem with homogeneous Dirichlet conditions and f 6= 0:

LΩ(u) = f on Ω,

u = 0 on ∂Ω.
(5.1)

Because of the tessellation required by FE methods, the resolution of the FE formulation associated
to (5.1) will provide an approximation of the exact solution of the following problem:

LΩp(up) = f on Ωp,

up = 0 on ∂Ωp.
(5.2)

An interesting point would be to obtain a bound of the di�erence ‖u−up‖Ωp in terms of appropriate
geometrical parameters. This question was addressed by Thomée [Tho73] in the case of a stationary heat
equation with homogeneous Dirichlet boundary conditions. Consider the situation described on �gure
5.2. The geometrical distance between x and yx is denoted d(x, yx). Here, x is a point of ∂Ωp, and yx is the
point of shortest distance to x located on ∂Ω. By means of an appropriate set of rotation/translation, A
can be placed at the origin of an orthonormal frame of vector space, withAB aligned on the abscissa axis.
If ∂Ω is not polynomial, it is assumed that h is small enough so that ∂Ω can be expanded in a polynomial
series in the vicinity of A or B. Then it is straightforward to prove that the maximal distance between
the polygonal and the smooth boundary can be expressed as a polynomial in h, which lowest order is 2.
Therefore, one obtains:

d(x, yx) ≤ Ch2.

Let ep = u− up, and suppose that ep ∈ L∞ (Ωp). Then, one can write:

sup
∂Ωp

‖ep‖ = sup
∂Ωp

‖u− up‖.
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Figure 5.2 | Geometrical distance between a polygonal and a polynomial boundary.

Given that up = 0 on ∂Ωp, then one obtains:

sup
∂Ωp

‖ep‖ = sup
∂Ωp

‖u‖

Exploiting the fact that u = 0 on ∂Ω, one can write:

sup
x∈∂Ωp

‖ep(x)‖ = sup
x∈∂Ωp

‖u(yx)− u(x)‖.

The right hand side can then be bounded as follows thanks to a mean value theorem:

sup
x∈∂Ωp

‖u(yx)− u(x)‖ ≤ Ch2 |u|1,Ω .

Up to now, no assumption has been made on the considered problem. However, the conclusion of
this development requires a major assumption that is known to hold in the case of an elliptic problem,
namely the maximum principle:

sup
x∈∂Ωp

‖ep(x)‖ ≥ sup
x∈Ωp

‖ep(x)‖.

If it is veri�ed, then it ensures the following result for a convex Ω:

sup
∂Ωp

‖u− up‖ ≤ Ch2 |u|1,Ω .

The latter results implies that any �nite element solution of problem (5.2) will approximate the exact
solution of problem (5.1) at most with second order accuracy, irrespectively of the order of approxima-
tion of the FE method. However, there is no such theorem for Maxwell’s equations with PEC boundary
conditions, and although the latter result can be numerically veri�ed in this framework (see section 5.2),
to the best knowledge of the author, no theoretical proof is available.

Numerical error

The error induced by the numerical scheme exploited to solve the problem on Ωp is also a concern.
Standard stability and convergence studies for the DG discretization on rectilinear meshes [F+05] do
not hold, since the involved classical inequalities are usually mapped from the reference element. Given
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Figure 5.3 | Second order mapping from the reference element T̂ to the physical element Ti.

that we are mainly concerned by the feasibility and the pertinence of the use of curvilinear meshes for
nanophotonics and nanoplasmonics problems, we do not go back over these proofs. However, the reader
can refer to [War10] for the main ideas.

5.1.2 High-order mapping

Expression and jacobian matrix

When curvilinear tetrahedra are present in the mesh, a mapping from the reference element T̂ is still
used. The di�erence with the rectilinear case lies in the mapping itself, which will now be non-linear in
(ξ, η, ζ). To de�ne higher order mappings from T̂ to Ti, one needs to de�ne more control points, and the
reader might feel (rightly) that this will be connected in some way with the use of higher interpolation
orders on the tetrahedrons : when using a DG method based on Lagrange polynomials, this connection
is straightforward, and a higher order mapping will be a weighted sum of Lagrange polynomials de�ned
on T̂ . Therefore, for a nth order mapping, the usual Mn degrees of freedom (d.o.f.) on the reference
tetrahedron (Aj)j=1,..,Mn

are de�ned, where Mn = 1
6(n+ 1)(n+ 2)(n+ 3). Hence:

ψ
(n)
Ti

(ξ) =

Mn∑

j=1

L
(n)
j (ξ) vj =

∑

0≤j+k+l≤n
a

(n)
jklξ

jηkζ l.

For example, a second-order mapping would be written as follows:

ψ
(2)
Ti

(ξ) = a
(2)
1 + a

(2)
2 ξ + a

(2)
3 η + a

(2)
4 ζ

+ a
(2)
5 ξη + a

(2)
6 ξζ + a

(2)
7 ηζ + a

(2)
8 ξ2 + a

(2)
9 η2 + a

(2)
10 ζ

2.
(5.3)

A visual representation of a second-order mapping is given on �gure 5.3. In this case, the terms of
the jacobian matrix are �rst-order polynomials in ξ, η, ζ , and its determinant is therefore a third order
polynomial in the same variables.
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Coe�cients

This section details the calculation of the coe�cients for the quadratic mapping. From now on, the ridge
that connects the vertices v1 and v2 through v5 is denoted v1−v2. To determine the coe�cients a(2)

k from
the coordinates of the vertices, each ridge is parameterized by choosing an appropriate set of coordinates
for (ξ, η, ζ) in the expression of the quadratic mapping. If one considers the ridge v1 − v2, for example,
an appropriate parametrization is:

ψ
(2)
Ti

(t, 0, 0) = a
(2)
1 + a

(2)
2 t+ a

(2)
8 t2.

Then, one evaluates the latter parametrization for t = 0, t = 1
2 and t = 1, which respectively

correspond to v1, v5 and v2. This leads to:

a
(2)
1 = v1,

a
(2)
1 +

a
(2)
2

2
+
a

(2)
8

4
= v5,

a
(2)
1 + a

(2)
2 + a

(2)
8 = v2,

whose resolution is straightforward. Repeating this procedure on the other ridges with adapted para-
meterizations then yields the following quadratic mapping coe�cients :

a
(2)
1 = v1,

a
(2)
2 = 4v5 − v2 − 3v1,

a
(2)
3 = 4v7 − v3 − 3v1,

a
(2)
4 = 4v9 − v4 − 3v1,

a
(2)
5 = 4 (v1 + v6 − v5 − v7) ,

a
(2)
6 = 4 (v1 + v8 − v5 − v9) ,

a
(2)
7 = 4 (v1 + v10 − v7 − v9) ,

a
(2)
8 = 2 (v1 + v2 − 2v5) ,

a
(2)
9 = 2 (v1 + v3 − 2v7) ,

a
(2)
10 = 2 (v1 + v4 − 2v9) .

(5.4)

Interpolation and mapping compatibility

There are a few remarks to make regarding boundary approximation and order of interpolation. To make
them clearer, consider the limit case presented on �gure 5.4, where a disk is approached by four triangles
(only the upper right part of this con�guration is presented). To reuse the notations introduced in section
5.1.1, the hypotenuse of the triangle is of length h, and therefore the disk radius is h√

2
. The coe�cients

are computed as explained in the previous section, by considering the following parametrization of the
edge:

x = t

y = α+ βt+ γt2,
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and the following conditions are imposed:

y(0) =
h√
2
, y

(
h

2

)
=
h

2
, y(

h√
2

) = 0.

Then, one deduces the parametrization:

x = t

y =
h√
2

+ t− 2
√

2

h
t2,

which is represented on �gure 5.4 (the reader is reminded that n is the mapping order whereas p is
the approximation order). It is quite obvious that the physical surface is not exactly matched by a second-
order mapping, since the process described previously attempts to approach a circle with a parabola in
2D, and a sphere with a paraboloid in 3D. As presented on �gure 5.4 for 2D settings, not every (n, p)
combination would lead to a proper and e�cient use of high orders. Indeed, one could wonder about the
interest of the (1, 2) and (1, 3) cases, since more points are used to interpolate �elds on an improper shape.
The (2, 1) case is obviously uninteresting, since the d.o.f. are the same as in the (1, 1) case, the second-
order mapping has no e�ect. Higher order is put at good use for the (2, 2) case : indeed, the geometry is
better �tted than in the linear case, and the additional d.o.f. resulting from increased p lie on the physical
boundary. Increasing p again, the (2, 3) case raises the same kind of wonders as the (1, 2). However, as
will be shown in section 5.2, exploiting a quadratic mapping lifts the spatial accuracy limit of the method
from order 2 to order 4: going beyond that limit would require higher mapping order. Although this
reasoning was done for a 2D situation, the discussion is quite similar in 3D, and the conclusions hold.

Higher order mappings could be achieved, but several reasons restrain us from exploiting them :
�rst, curvilinear mesh untangling can become quite problematic, as will be explained in next section.
Then, although they would lift the accuracy level from fourth to sixth and higher orders, computations
of realistic cases rarely allow the use of very high polynomial orders for practical reasons. Hence, for the
sake of robustness and simplicity, only quadratic mappings will be considered in the remaining of this
thesis.

Curvilinear elements validity and quality

The matter of validity and quality of straight-edged elements have been widely studied in the previ-
ous decade, leading to a variety of highly-e�cient mesh generators, such as gmsh [GR09] or Netgen
[Sch97], for example. Each of these mesh builders make use of their own mesh quality optimization al-
gorithm, which criteria are based on various geometrical factors such as lengths, angles and volumes.
Among these, the most common are the aspect ratio, de�ned as the ratio of the longest edge of an ele-
ment to its shortest, and the jacobian determinant, which gives an indication of the deformation of the
physical element compared to the reference one.

The usual curvilinear meshing procedure consists in (i) creating a rectilinear mesh from a given geo-
metry with usual tools, then (ii) orthogonally project the high-order nodes of the rectilinear mesh on the
curved geometry [DOS99]. However simple, this method usually leads to a small amount of tangled ele-
ments, which detection can be achieved from a study of the jacobian determinant of the transformation
[TGRL12]. Indeed, unlike the rectilinear case, it is not trivial to ensure that the jacobian determinant
remains positive everywhere inside the high-order mapped element. Although a direct computation of
the minimum of the jacobian determinant over the cell is possible, the cost of this method happens to rise
dramatically in the case of three space dimensions and high mapping order: indeed, it requires to solve
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(a) (1, 1) (b) (1, 2) (c) (1, 3)

(d) (2, 1) (e) (2, 2) (f) (2, 3)

Figure 5.4 | Proper and improper (n, p) combinations for a quadratic physical surface. The latter is in thick continuous
black, whereas the mapped surface is in dashed blue. The d.o.f. are represented by blue dots.
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(a) Nanocube mesh (b) Selected curvilinear elements

Figure 5.5 | Curvilinear elements selection on a nanocube mesh with rounded corners.

a cubic trivariate equation on each cell for a second order mapping, and a sextic one for a third order
mapping. In [TGRL12], the authors exploit a property of the Bezier polynomials to determine bounds
of the scaled jacobian determinant. These bounds are then exploited in a mesh optimization procedure
that balances the displacement of the nodes with the values of the scaled jacobian. In [JRG12], the lat-
ter bounds are improved by the use of an adaptative procedure, which shows better performances and
robustness than brute-force based algorithms.

Selecting curved elements

Usually, curvilinear mesh generators provide fully-quadratic meshes. Hence, during a pre-processing
phase, their elements need to be sorted, in order to separate straight sided elements from truly curved
ones. This procedure can be executed by examining the scaled jacobian in each element:

|Js| (x) =

∣∣Jψ
∣∣ (x)

|J0|
,

where |J0| is the jacobian value for the straight sided element (e.g. a constant). Therefore, sorting the
elements can be done by exploiting the adaptive procedure described previously. However, for the sake
of simplicity, we make use of a more basic (and more expensive) method, which consists in evaluating
|1− |Js|| for a given number of random points nr in the physical element. Although far from optimal,
this procedure has proven to be e�ective on all the considered situations. As an illustration, �gure 5.5
shows the elements selected by this method on a nanocube mesh with rounded corners (see section 5.4).
The selection procedure is detailed in algorithm 1. In all the computations of the present study, the error
parameter δ is taken equal to 1× 10−5, while the number of random points per element is 100.

Example of hand-made quadratic tetrahedral mesh : the sphere case

Although it exists a wide variety of free meshers, the number of those able to handle the generation of
quadratic meshes is somehow limited. In this work, the well-known gmsh tool is exploited for every
geometry more complex than a simple sphere. However, the quadratic meshing of a sphere is somewhat
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Algorithm 1 Curvilinear elements selection
1: for i← 1, nt do
2: Compute α(2)

j . Compute mapping coe�cients
3: Compute |J0| . Compute linear jacobian
4: end for

5: for i← 1, nt do
6: for k ← 1, nr do . Loop over random points inside Ti
7: Compute |Js| (x) . Compute values of scaled jacobian
8: end for

9: Find |Js|min and |Js|max on Ti
10: if |1− |Js|min| > δ or |1− |Js|max| > δ then . Test if scaled jacobian is close to 1
11: Ti is a curved element
12: else
13: Ti is a linear element
14: end if
15: end for

simple, and can be implemented fairly easily as a pre-processing step of any numerical solver. This is the
purpose of this section.

The coordinates of the center of the sphere are denoted Pc = (xc, yc, zc), r is the radius, and it is
assumed that one disposes of a rectilinear mesh of the latter sphere. The �rst step consists of determining
the tetrahedra that belong to the boundary of the sphere, which can be done considering simple geomet-
rical tests on the coordinates of the vertices. Once this is done, it is necessary to determine if the boundary
tetrahedron has three vertices on the boundary, or only two, in order to select the degrees of freedom
whose coordinates will have to be modi�ed. P1 = (x1, y1, z1) now generically denotes the coordinates of
a P2 degree of freedom that actually has to be moved on the boundary. The next step consists in seeking
the intersection of the line de�ned by (Pc, P1) and the sphere, which will be the �nal location of the bent
degree of freedom, Ps = (xs, ys, zs). A parameterization of the line is:

x = xc + (x1 − xc)t,
y = yc + (y1 − yc)t,
z = zc + (z1 − zc)t,

whereas the sphere is de�ned by:

(x− xc)2 + (y − yc)2 + (z − zc)2 = r2.

Since Ps belongs to both, it is trivial to determine that:

xs = xc + (x1 − xc)ts,
ys = yc + (y1 − yc)ts,
zs = zc + (z1 − zc)ts,

with:
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ts =
r√

(x1 − xc)2 + (y1 − yc)2 + (z1 − zc)2
.

5.1.3 Numerical integration

One of the major drawbacks of using curved elements is that the FE matrices on a curved tetrahedron Ti
cannot be calculated from the FE matrices on the reference tetrahedron T̂ as easily as in the linear case.
Indeed, the Jacobian determinant is not a constant over Ti, and therefore the integrals must be calculated
by means of numerical integration on each curved tetrahedron, which is what we will describe now. The
general expressions of the substitutions for the matrices have already been given in section 3.1.4, and
therefore the reader is referred to this part of the manuscript. In the following, we remind the concept of
numerical integration, and detail a few facts that will a�ect our upcoming integration strategy.

The basic principle of quadrature and cubature rules is to evaluate the integral of a continuous func-
tion by a weighted sum of its values at well-chosen points. Hence, a quadrature or cubature rule can be
de�ned by a set of weight (wi)i=1,..,N and a set of points (λi)i=1,..,N :

ˆ
T̂
f(x)dx '

N∑

i=1

wif(λi)

Several matters arise from these ideas, among which are (i) the assumptions made on f and (ii) the
number of pointsN necessary to obtain a good approximation of the integral. The answer to (i) is simply
that f should be smooth enough to be well approximated by polynomials. In the case where f is poly-
nomial, the integral can be calculated exactly, provided that the cubature rule used to evaluate it is of
su�cient order1. The matter raised in (ii) is indeed an important one, since it will a�ect the time required
for the calculation of the integral, and, in our case, the time necessary for the assembly of the FE matrices.
A very classical set of quadrature and cubature rules are the Gauss-Legendre ones [KS05], which can be
exact up to any order when there is no restriction on the number of cubature points. However, the Gauss-
Legendre exact quadrature rule of a polynomial of order 2r over a d-simplex will require (r+ 1)d points,
which can lead to heavy computational loads in three dimensions of space. In [Coo03], the authors have
compiled optimal existing cubature rules from various references up to the 11th order for tetrahedrons.
They require considerably less points for the same accuracy when compared to Gauss-Legendre. It is
quite straightforward to determine the polynomial order of the integrand for each matrix:

� For the mass matrix, the integrand is a polynomial of order 2p+ 3(n− 1);

� For the sti�ness matrix, the integrand is a polynomial of order 2p− 1 + 3(n− 1);

� For the surface mass matrix, the integrand is not a polynomial.

Therefore, for a second order mapping (n = 2), exact integration can be achieved for the mass and
sti�ness matrices for p ∈ {2, 3, 4}, but no exact integration can be obtained for a third order mapping
with these optimal quadrature rules. Therefore, another set of quadrature and cubature rules is chosen
here [ZCL09]. The rules produced by this algorithm require a bit more evaluation points than the afore-
mentioned ones, but they are all generated from the same source, and are available up to the 13th order
for tetrahedrons, and 20th order for triangles. The number of required integration points for the triangle
and the tetrahedron are respectively given in table 5.1 and 5.2. A graphic comparison of the sets from
[ZCL09] with classical Gauss-Legendre rules is given in �gure 5.6.

1A cubature rule is said to be of order m when it evaluates exactly the integral of a polynomial of same order
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Table 5.1 | Number of integration points required for exact integration on the triangle for order 1 to 20.

Order 1 2 3 4 5 6 7 8 9 10

[ZCL09] 1 3 6 6 7 12 15 16 19 25

Gauss-Legendre 4 4 9 9 16 16 25 25 36 36

Order 11 12 13 14 15 16 17 18 19 20

[ZCL09] 28 33 37 48 57 57 66 84 84 106

Gauss-Legendre 49 49 64 64 81 81 100 100 121 121

Table 5.2 | Number of integration points required for exact integration on the tetrahedron for order 1 to 13.

Order 1 2 3 4 5 6 7 8 9 10 11 12 13

[ZCL09] 1 4 8 14 14 24 37 47 63 100 125 170 171

Gauss-Legendre 8 8 27 27 64 64 125 125 216 216 343 343 512

5 10 15 20
0

50

100

Gauss-Legendre
Zhang et al.

(a) Triangle

2 4 6 8 10 12
0

100

200

300

400

500 Gauss-Legendre
Zhang et al.

(b) Tetrahedron

Figure 5.6 | Number of integrations points required by Gauss-Legendre and [ZCL09] rules on triangle and tetrahed-
ron.
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Table 5.3 | Meshes characteristics for the spherical PEC cavity case. ns is the number of vertices, nt the number of
tetrahedrons and hmax the typical size of the largest tetrahedron. For the curvilinear versions, nc represents the number of
curved tetrahedrons, whereas nr is the number of rectilinear tetrahedrons.

M1 M2 M3 M4

ns 309 2057 14993 114465

nt 1280 10240 81920 655360

hmax 0.461 0.245 0.128 0.0648

nc 560 2400 9920 40320

nr 720 7840 72000 615040

Remark : It must be noted that the surface matrices are here never exactly integrated, since their integrand is not
polynomial.

5.1.4 CFL condition

Since the usual CFL condition relies on the minimal mesh length, it is necessary to take into account
the curvature of the tetrahedra to compute the timestep. In [HW01], the authors provide the following
expression :

∆t 6 CFL min
Ω

√
εrµr

|χ| ,

where, for the reference element given above, and for a polynomial approximation of the �elds of
order p :

χ =
1

p
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.

5.2 Validation on a spherical PEC cavity

In this section, the implementation of the curvilinear DGTD method is validated using the spherical PEC
cavity test-case presented in section 2.1.4 (see equation (2.25)). The cavity mode is simulated for a physical
time tmax = 3.817 10−8 s, which corresponds to 5 periods. Four di�erent rectilinear meshes of increasing
re�nement were generated: their characteristics are summed up on table 5.3, and visual representations
of the M1 mesh can be found on �gure 5.7. These meshes were generated with gestikulator [Vel],
that produces very high quality sphere meshes from successive re�nements of the icosahedron, and the
surface tetrahedra were then bent following the procedure described in section 5.1.2. For each mesh, P1

to P4 approximations are used, both on rectilinear and curvilinear versions, in combination with centered
or upwind �uxes and RK4 time integration.

In the �rst subsection, the h-convergence rates of the method are calculated numerically, con�rming
the statements of section 5.1.1. A focus is also made on the CPU time required to numerically integrate
the FE matrices. To conclude, a few remarks are made on the importance of visualization choices.
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(a) Rectilinear mesh (b) Curvilinear mesh

(c) Boundary representation

Figure 5.7 | M1 mesh for the PEC cavity case and zoom on the boundary.
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Table 5.4 | Convergence rates of the spherical cavity case for di�erent approximation orders and �uxes, with rectilinear
and curvilinear meshes of increasing re�nement. α is the upwinding factor.

α
M1 M2 M3 M4

Rect. Curv. Rect. Curv. Rect. Curv. Rect. Curv.

P1
0 – – 2.01 – 1.85 – 1.51 –
1 – – 2.14 – 2.03 – 2.01 –

P2
0 – – 2.19 2.85 2.14 2.29 2.03 2.30
1 – – 2.20 3.25 2.03 3.08 2.01 3.06

P3
0 – – 2.19 4.17 2.14 3.82 2.03 3.55
1 – – 2.20 4.36 2.03 4.03 2.03 4.03

P4
0 – – 2.18 4.37 2.14 4.25 2.03 4.04
1 – – 2.18 4.36 2.03 4.26 2.03 4.05

5.2.1 Results

h-convergence

For each simulation, the global L2 error is calculated and stored over time for the whole mesh. For two
successive meshes, the maximum error levels are measured, and the h-convergence rates are then de-
duced. The values are displayed on table 5.4 for the three proposed set-ups. These results underline the
statements made in �gure 5.3 about the relation between the geometry and the �eld approximations:
the use of curvilinear tetrahedra restores the optimal spatial convergence rates of the DGTD method,
proportional to hk for centered �uxes, and to hk+1 for upwind �uxes.

For a constant error level, curvilinear elements allow to save a lot in terms of degrees of freedom, and
therefore in CPU time : for the upwind �ux, the best solution obtained with linear elements is compared
with a solution of similar error level obtained from curved elements. Hence, we take on the P1 solution on
the rectilinear M4 mesh (ε = 3.93 10−3, memory consumption of 1500 MB, CPU time 9664 seconds) and
the P3 solution of the curvilinear M1 mesh (ε = 1.73 10−3, memory consumption of 39.6 MB, CPU time
50 seconds). To reach a similar level of accuracy, the curvilinear solution requires 35 times less memory,
and is almost 200 times faster. For the reader, it is worth noticing that in the case of the linear mesh,
increasing the order of approximation yielded no improvement in the solution. As a visual representation
of the bene�ts of curvilinear elements, the P2 numerical solution obtained on the M1 mesh is plotted on
�gure 5.8 for both linear and curved meshes. As one can notice, the curvilinear solution is already almost
converged, which is not the case of the linear solution.

Numerical integration of FE matrices

One might wonder about the time required to numerically integrate the FE matrices in the pre-processing
steps of a curvilinear simulation. On �gure 5.9, the time required per curved tetrahedron to perform this
integration (including the mass matrix inversion) on the M3 mesh is given. The cubature is executed
following the rules given in section 5.1.3, whereas the surface quadrature is performed using a rule which
is always one order higher than the cubature one. The fact that the sti�ness and the surface matrices
require approximately the same time relies on the fact that for both, expensive operations have to be
done : to build K, three di�erent matrices have to be generated (one for each direction of space), each one
requiring to calculate the value of the derivates of the Lagrange functions in a di�erent direction; on the
other hand, building S requires to run a similar process for the four di�erent faces of each tetrahedron,
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(a) Rectilinear M1 mesh (b) Curvilinear M1 mesh

Figure 5.8 | P2 numerical solution for the Ex �eld on the boundary of the M1 mesh, both in rectilinear and curvilinear
cases. The solutions have been scaled to the range [−0.14, 0.14].

thus leading to an important percentage of the total construction. The mass matrix is inverted with the
Lapack algebra library.

5.2.2 Visualization issues

Although DG methods allow to compute high order accurate numerical solutions, the 3D visualization
of post-processed solution often lacks the same accuracy, and it is not uncommon to project a high-
order Pk solution as a P1 solution on an adequatly re�ned mesh. Although there are sometimes no other
alternatives, we would like to show that this procedure induces even more inaccuracies in the case of
curvilinear meshes. To do so, the P2 curvilinear solution from the M1 mesh is projected as a P1 solution
on the M2 mesh (see �gure 5.10) : although it is not clearly visible, the palette indicates di�erent minimum
and maximum values for the two visualizations, the relative di�erence being of a few percent.

5.3 Plasmonic resonances of isolated and coupled gold nanospheres

5.3.1 Isolated nanosphere

Setup

Many nano-optics devices rely on the coupled plasmon resonances of metallic nanospheres, such as
nano-arrays for Raman scattering [LBU+08], Fano resonators [LZM+10], or nanosphere-based biosensors
[CLS+11]. For this reason, we analyse the improvements obtained with curvilinear meshes on isolated
and coupled nanospheres. First, high-order elements are exploited to realize e�cient cross-section com-
putations of a single gold nanosphere described by a Drude model. The analytical solution of this problem
can be computed via the Mie scattering theory [vdH81]. Here, we consider a sphere of radius r = 50 nm
with Drude parameters ε∞ = 3.7362, ωd = 1.387× 107 GHz, γd = 4.515× 104 GHz, and we are inter-
ested in its behavior in the [600, 1200] THz range. The incident �eld is a plane wave, with a sine-module
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M
15 %

M−1

5 %
K

40 %

S
40 %

P2 : 0.133 ms
P3 : 0.499 ms
P4 : 2.124 ms

Figure 5.9 | Total time per curved tetrahedron required for the numerical integration of the FE matrices for P2, P3

and P4 approximations. The displayed percentages correspond to mean values of time required by each step of the numerical
integration.

−0.1423 0 0.1444

(c) P2 curvilinear solution on M1

−0.1391 0 0.1397

(d) P2 curvilinear solution from M1 projected as a P1 solu-
tion on M2

Figure 5.10 |P2 curvilinear numerical solution of the spherical cavitymode on theM1mesh projected as aP1 solution
on the M2 mesh.
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Figure 5.11 | M1 mesh for the cross-section calculation. The scatterer (in red) is enclosed by the total �eld region (in blue),
delimited by the TF/SF interface on which the incident �eld is imposed. Then we �nd the scattered �eld region (in purple),
surrounded by PMLs (in gray).

Gaussian time pro�le, in order to provide a wide enough spectrum for the calculation. The scatterer is
enclosed by a total-�eld/scattered-�eld interface, on which the incident �eld is imposed. A CFS-PML
layer (see section 4.1.2) surrounds the scattered-�eld region, and is terminated by an ABC condition.

Results

We compare the results from DGTD simulations with the Mie solution of the problem. The latter is
calculated with a Matlab script written by Dirk Baumann [BFHL09]. To conduct this study, we build three
meshes M1, M2 and M3 with gmsh, for which the geometry of the sphere is meshed with an increasing
accuracy (the mesh characteristics and a visual representation are respectively given in table 5.5 and
�gure 5.11). Curved elements are exploited only with the M1 mesh, whereas linear elements are used for
the three meshes : all results are presented in �gure 5.12. One immediately notices the convergence of
the results obtained on the linear meshes toward the reference solution. The linear solution on M3 mesh
almost perfectly �ts the Mie prediction, at the cost of a high re�nement level of the sphere surface. On
the other hand, the solutions obtained with the curvilinear M1 mesh are already in very good agreement
with the reference solution: the P2 result is close, but the amplitude of the second resonance peak is still a
bit undervalued. The numerical solution is improved by exploiting P3 approximation, yielding a relative
error to the exact solution of less than 1%.

Although this case corresponds to a basic but realistic nanophotonics con�guration, the gains ob-
tained in terms of CPU time and memory consumption are very encouraging. The best curvilinear solu-
tion (P3 M1) required 92 MB of memory and 884 sec of CPU time2. In comparison, the best linear solution
(P2 M3), which is of similar accuracy, required 312 MB and 6800 sec. Hence, it makes the curvilinear
simulation more than 3 times cheaper in terms of memory, and more than 7 times faster. The di�erence
between these values and those obtained for the spherical PEC cavity can be explained by (i) the more

2All the simulations are run in parallel on 16 CPUs.
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Table 5.5 | Meshes characteristics for the metallic sphere cross section computation case. ns is the number of vertices,
nt the number of tetrahedrons and hsphere the typical size of the largest tetrahedron used to discretize the scatterer. For the
curvilinear versions, nc represents the number of curved tetrahedrons, whereas nr is the number of rectilinear tetrahedrons.

M1 M2 M3

ns 962 1677 10736

nt 4706 8767 61718

hsphere 25× 10−9 10× 10−9 3.5× 10−9

nc 764 0 0

nr 3942 8767 61718

realistic nature of this test-case, that includes more features (TF/SF interface, PMLs, dispersive materials,
on-the-�y Fourier transform), and by (ii) the fact that the successive re�nements are not global, but only
a�ect the surface of the sphere.

It is worth to note that for the M1 mesh, curved tetrahedra roughly represent 15 % of the total number
of cells. As a consequence, the CPU overhead they induce remains limited, which makes them a good
default choice for any problem involving non-trivial geometries. Indeed, on the (P2 M1) case, the CPU
time required for the rectilinear mesh is 234 sec, whereas it is 253 sec for the curvilinear mesh, which
represents a 8.1 % increase.

5.3.2 Coupled nanospheres

As stated earlier, plasmonic coupling between nanoparticles is at the heart of many applications in nano-
optics [FVV07]. Hence, we now consider the coupling of two identical gold nanospheres, with the same
parameters as earlier. The two nanospheres are aligned along the polarization direction of the incident
�eld, and the surface-to-surface distance is set to 4 nm. In this con�guration, the coupled plasmon res-
onance induces very intense �elds in the gap between the particles. Then, a proper near-�eld resolution
is essential to a good understanding of the properties of such coupled structures. To properly account
for the high intensity of the �elds, we use P4 polynomial approximation with upwind �uxes and a low
storage Runge Kutta time-scheme of order 4 (LSRK4). For both rectilinear and curvilinear meshes, the
total Fourier transform of the electric �eld is computed at the resonance frequency f = 953 THz during
the whole simulation, and its modulus is then extracted: a �eld map is shown on �gure 5.13. For the
rectilinear mesh, the �eld intensity in the gap is underestimated, while the �eld behavior at the surface of
the spheres is unclear. The secondary resonances that appear on the curvilinear solution are not resolved
at all on the linear solution. We would like to make the most of this example to illustrate the importance
of near-�eld resolution in nano-optic devices: in the present case, the two �eld maps shown on �gure
5.13 present a striking contrast, which is also clearly visible at the same frequency on the cross-section
computation of �gure 5.14.

In this con�guration, the ratio of curvilinear tetrahedra over the total number of cells is higher, reach-
ing almost 19 %. Roughly half of these tetrahedra lie in the dispersive region. It yields a CPU overhead
of 27.5 %, and an additional memory consumption of 78.3 %. This very high value is explained by the
large size of the curvilinear �nite element matrices for a P4 tetrahedron. Indeed, each tetrahedron here
requires the storage of four 35 × 35 and four 15 × 15 matrices, which also considerably increases the
memory adressing time.
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(a) Csca calculations with linear elements
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Figure 5.12 | Scattering cross-section of ametallic sphere obtained withP2 andP3 approximations for linear and curvilinear
meshes on various re�nement levels.
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(a) Rectilinear P4 computation (b) Curvilinear P4 computation

0 1

Figure 5.13 | Near-�eld visualization of the electric �eld Fourier transform for a gold nanosphere dimer. The compu-
tation is conducted with P4 approximation, for both rectilinear and curvilinear meshes. The �eld values are normalized to 1 in
both cases.
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Figure 5.14 | Absorption cross-section of a gold nanosphere dimer obtained with P4 approximation for linear and curvi-
linear meshes.
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Figure 5.15 | Nanocube mesh with rounded corners. The silver cube (in red) is put on a gold layer (in green), both enclosed
by the total �eld region (in blue). The latter is surrounded by a TF/SF interface on which the incident �eld is imposed. Then, we
�nd the scattered �eld region (in purple), surrounded by PMLs (in gray).

5.4 Realistically-rounded metallic nanocubes

Randomly arranged silver nanocubes placed on a gold �lm have recently attracted attention for their
capacity to support gap plasmon resonances when placed above metallic �lms [MCM+12]. The cubes are
usually chemically produced, which causes small roundings to appear at their angles. A good geometrical
resolution of these roundings is critical in the design process of nanocube-based devices, since they greatly
a�ect the geometry of the gap. In the DGTD framework, this geometrical feature can be quite expensive
to resolve with straight sided elements, given that the typical rounding size is very small compared to
the size of the global device (including the gold �lm). In this section, the impact of this rounding is
presented when it is geometrically resolved by linear and quadratic elements. An extended study of
metallic nanocubes is presented in section 8.2.

A gold slab of thickness 50 nm topped with a 7 nm dielectric spacer of permittivity 1 is considered. A
silver nanocube of edge length 75 nm is placed on top, with circular edge roundings of radius 10 nm. Gold
and silver are described by Drude models, which take into account the dispersive properties of metals.
The general setup is illuminated by a wideband sine-modulated gaussian pulse of central frequency 550
THz imposed on a TF/SF interface, and the chosen physical time is 0.233 ps. The domain is terminated
by a CFS-PML layer: the global setup is shown on �gure 5.15. Absorption cross-sections of the whole
device are computed with P3 approximation and compared for linear and curvilinear elements : results
are presented on �gure 5.16. As one can notice, curvilinear elements make a signi�cant di�erence in
the results by properly resolving the cavity geometry, resulting in a blueshift of 10 THz and a di�erence
in amplitude of almost 10 % for the absorption peak. This enhanced resolution is obtained for a very
reasonable cost, since the required CPU time for the curvilinear solution (7941 s) is only 6.3 % higher than
the rectilinear one (7469 s)3. The memory consumption follows the same trend, with an overhead of 9.7
% (555.6 Mo for the rectilinear solution against 609.4 Mo for the curvilinear solution).

3All the simulations are run in parallel on 32 CPUs.
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Figure 5.16 | Absorption cross-section of a rounded silver nanocube on a gold �lm obtained with P3 approximation for
linear and curvilinear meshes.
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6
Locally adaptive

DGTD method
In section 3.1, the DG formulation was derived assuming a uniform polynomial order across the whole
computational domain. However, in the case of a mesh showing large variations in cell size, the timestep
imposed by the smallest cells can be a serious hindrance when trying to exploit high approximation
orders. Indeed, part of the CPU overhead is devoted to the computation of the �elds inside small cells
where high polynomial orders might not be essential, while they could be necessary in the larger cells.

To overcome this limitation, several strategies can be considered. The �rst one consists in replacing
the explicit method by an implicit timestepping algorithm. This, however, is at the expense of the res-
olution of a large linear system at each timestep [VB09]. In [Ver10] and [Moy13], the authors consider
a hybrid formulation, where only the smallest cells are treated via an implicit scheme, while keeping an
explicit time integration for the rest of the tesselation, thus limiting the timestep constraint. Although
it provides very interesting results in terms of CPU speedup, maintaining high-order time integration
has proven to be di�cult [Moy13]. Another possiblity is to exploit local timestepping: based on the size
of the elements, the mesh is divided in regions, each of which being assigned an appropriate timestep
for an explicit time integration (see for example [Pip06] and [DG09]). As shown in [DG09], high-order
convergence is preserved by this method. However, it seems di�cult to ensure a good load balance in
the case of a parallel implementation, given that the natural repartition is based on a timestep criterion,
instead of a parallel-related one.

A complementary strategy relies on the use of variable polynomial orders: by imposing low orders
in small cells, and high orders in large cells, it is possible to signi�cantly alleviate both the global num-
ber of degress of freedom and the timestep restriction with a minimal impact on the method accuracy.
Strategies exploiting locally adaptive (LA) formulations usually combine both h- and p-adaptivity in or-
der to concentrate the computational e�ort in the areas of high �eld variations. Here, the point of view
is quite di�erent: starting from a given mesh and an homogeneous polynomial order Pk, the LA strategy
exploits all the polynomial orders Pp with p ≤ k to obtain a solution of similar accuracy for a reduced
computational cost.
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In this chapter, the DG formulation of section 3.1 is modi�ed to account for variable polynomial orders.
The resulting algorithm is tested for convergence, and an extended performance study is provided, both
for sequential and parallel executions. Finally, the CPU gains are evaluated on two con�gurations relevant
to nanophotonics.

6.1 DG formulation

In this section, we start again from the variational formulation (3.8), which is reproduced here. For sim-
plicity, the current source term is dropped:

ˆ
Ti

µr
∂Hi

∂t
· φvik +

ˆ
Ti

Ei · ∇ × φvik =
∑

l∈Vi

ˆ
ail

(E∗ × nil) · φvik,
ˆ
Ti

εr
∂Ei
∂t
· φvik −

ˆ
Ti

Hi · ∇ × φvik = −
∑

l∈Vi

ˆ
ail

(H∗ × nil) · φvik,

with v ∈ {x, y, z}. We recall that the i subscript refers to the index of the cell Ti, with i ∈ J1, NK.
A Pp polynomial approximation of the �eld components is used. For the volumic integrals of the above
system (i.e. mass and sti�ness matrices), the development is exactly the same as in section 3.1, and it
is therefore not reproduced here. The �ux integral, however, must undergo a di�erent treatment. For
the sake of simplicity, the centered �ux (3.5) is considered. However, the generalization to other �uxes
is straightforward. For a given i ∈ J1, NK, consider a neighbor cell Tl of Ti with a Pm polynomial
approximation. The �ux integral on their common face from the Ti side for the x component is:

ˆ
ail

(H∗ × nil) · φxik =

ˆ
ail

(
Hy
∗n

z
il −Hz

∗n
y
il

)
φik

=

ˆ
ail

(
Hy
i +Hy

l

2
nzil −

Hz
i +Hz

l

2
nyil

)
φik.

(6.1)

Consider the following expansions for Hy
i and Hy

l , and the analogous relations for Hz
i and Hz

l :

Hy
i =

n(p)∑

q=1

Hy
iqφiq and Hy

l =

n(m)∑

r=1

Hy
lrφlr. (6.2)

Plugging (6.2) in (6.1) leads to:
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φiqφik
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n(m)∑
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(
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) ˆ
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φlrφik,

=
1

2

n(p)∑

q=1

Hiq × nil
ˆ
ail

φiqφik

+
1

2

n(m)∑

r=1

Hlr × nil
ˆ
ail

φlrφik,

=
(
Sil
(
H ∗,i × nil

))x
k

+
(
S∗il.
(
H ∗,l × nil

))x
k

(6.3)

In accordance with the de�nition of section 3.1.4, the �ux matrices are:

(Sil)jk =

ˆ
ail

φijφik and (S∗il)rk =

ˆ
ail

φlrφik. (6.4)

The derivation (6.1) easily extends to the other components, as well as other �ux choices. To summar-
ize, the �ux part is cut in two parts: (i) the part corresponding to local information, which is integrated
via the "regular" �ux matrix, and (ii) the part corresponding to the neighbor information, which is integ-
rated via non-conforming matrices. For a Pp − Pm interface, the corresponding matrix is rectangular, of
size s(p)× s(m) (we recall that s(p) = (p+1)(p+2)

2 ). Integrated reference matrices for Lagrange P1 − P2,
P2 − P3 and P3 − P4 cases are shown in appendix B. From this point, the remaining of the derivation is
similar to the standard case, and the reader is referred to section 3.1 for details. The �nal semi-discrete
scheme is:

M µr
i

∂H i

∂t
= −K i × E i +

∑

l∈Vi
S il
(
E ∗,i × nil

)
+
∑

l∈Vi
S ∗il
(
E ∗,l × nil

)
,

M εr
i

∂ E i

∂t
= K i × H i −

∑

l∈Vi
S il
(
H ∗,i × nil

)
−
∑

l∈Vi
S ∗il
(
H ∗,l × nil

)
,

(6.5)

Locally adaptive semi-discrete scheme

where the de�nition of S ∗il is easily deduced from (6.4) and the analogous de�nition of S il given in
section 3.1. The time integration can be achieved as in section 3.2.
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6.2 h-convergence

We consider the cubic cavity mode of section 2.1.4, and follow the procedure described in section 3.3.1 to
compute the numerical convergence rate of the LA-DGTD method. Four meshes of increased resolution
are used, whose characteristics are summed up in table 3.2. Unless stated otherwise, a fully upwind �ux
is used, coupled to an appropriate LSRK4 scheme. In the present case, the used meshes are uniform, and
the mesh cells all have the same size. To begin, the polynomial order repatition arbitrarily separates the
domain in two halves (see �gure 6.1(a)). The results are given in table 6.1. As expected for a Pk − Pl
con�guration, the asymptotic h-convergence order is min(k, l) + 1.

In order to evaluate the impact of non-conforming interfaces, the interpolation order is distributed
in four equal stripes instead of two halves (see �gure 6.1(b)). Hence, the amount of tetrahedra of each
order remains the same as in �gure 6.1(a), but the number of interfaces is twice as high. As can be seen
on table 6.1, for coarse meshes the higher amount of non-conforming faces yields a slightly higher (but
still acceptable) L2 error. However, this error overhead vanishes for re�ned meshes. In a last numerical
test, another division of the numerical domain in four stripes is used, where each one receives a di�erent
order (see �gure 6.1(c)). As in the previous cases, and since all the cells are of same size, the numerical
error is driven by the lowest order of approximation present in the mesh.

6.3 Order distribution strategy

Starting with a given mesh, it seems obvious that the �nal repartition of interpolation orders across the
di�erent cells will have a major impact on the obtained accuracy, as well as on the CPU time required to
obtain the numerical solution. Suppose the solution is obtained on the given mesh with a homogeneous
polynomial order Pk. The point is here to see how, with a good distribution of polynomial orders Pl with
l ≤ k, a solution of similar accuracy can be obtained for a lower computational e�ort. At �rst glance,
it seems that con�gurations including small geometrical details, or small gaps between two structures,
could bene�t from such a strategy. For this reason, for any given mesh, we de�ne the following quantity:

h =
hmax
hmin

,

which represents the heterogeneity in terms of cell size in the mesh. In the remaining of this chapter,
∆ti represents the timestep corresponding to the cell Ti, computed following the formula given in section
3.2.5, while ∆tpi represents the e�ective timestep obtained if cell Ti is discretized with a Pp polynomial
expansion:

∆tpi = CFL(p)∆ti.

The normalized timestep includes a rough estimate of the computational charge induced by the poly-
nomial order, and is de�ned as:

∆t pi =
∆tpi
n(p)

=
CFL(p)∆ti
n(p)

,

where n(p) is the number of degrees of freedom inside a Pp cell. Finally, we de�ne pmin and pmax the
minimal and maximal user-authorized orders in the mesh. We also add the following constraint: non-
conforming faces cannot connect cells with an order jump higher than one (the allowed con�gurations
are presented on �gure 6.2). Indeed, it is preferable to restrain the number and size of matrices in memory
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Figure 6.1 | Order distribution for the h-convergence validation. To test convergence, the domain is arbitrarily cut in
two halves, each part receiving a di�erent order (�gure 6.1(a)). In order to assess the impact of non-conforming interfaces, the
domain is cut in four equal stripes, thus doubling the number of Pk − Pl faces while keeping the same number of tetrahedron
per order (�gure 6.1(a)). Another test is conducted by setting a di�erent order in each quarter (�gure 6.1(c)).

Table 6.1 | Error levels and convergence rates of the cubic cavity case for mixed orders of approximation on meshes of
increasing re�nement. In the case of mixed orders Pk − Pl, 1 refers to a domain cut in two halves (see �gure 6.1(a)), and 2 to
a domain cut in four stripes (see �gure 6.1(b)). The case P1 − P4 corresponds to a domain cut in four quarters, as depicted on
�gure 6.1(c). All simulations were run with upwind �uxes and LSRK4 time integration.

M1 M2 M3 M4

‖E− Eh‖ h ‖E− Eh‖ h ‖E− Eh‖ h ‖E− Eh‖ h

P1 – 2.87× 10−1 – 6.05× 10−2 2.25 8.66× 10−3 2.80 1.46× 10−3 2.57

P2 – 1.47× 10−2 – 1.36× 10−3 3.43 1.75× 10−4 2.96 2.19× 10−5 3.00

P3 – 9.24× 10−4 – 5.87× 10−5 3.98 3.72× 10−6 3.98 2.33× 10−7 4.00

P4 – 9.45× 10−5 – 3.11× 10−6 4.92 1.98× 10−7 3.97 1.15× 10−8 4.11

P1 − P2
1 2.65× 10−1 – 3.38× 10−2 2.97 6.15× 10−3 2.46 1.42× 10−3 2.12
2 2.07× 10−1 – 3.55× 10−2 2.54 6.30× 10−3 2.49 1.43× 10−3 2.14

P2 − P3
1 8.50× 10−3 – 9.21× 10−4 3.21 1.18× 10−4 2.96 1.48× 10−5 3.00
2 8.70× 10−3 – 9.16× 10−4 3.25 1.17× 10−4 2.97 1.48× 10−5 2.98

P3 − P4
1 6.73× 10−4 – 4.41× 10−5 3.93 2.80× 10−6 3.98 1.76× 10−7 4.00
2 6.81× 10−4 – 4.47× 10−5 3.93 2.85× 10−6 3.97 1.79× 10−7 3.99

P1 − P4 – 2.65× 10−1 – 3.38× 10−2 2.97 6.15× 10−3 2.46 1.42× 10−3 2.12
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Figure 6.2 | Authorized interfaces in the local order of approximation implementation. Order jumps are limited to one,
yielding three types of interfaces for (pmin, pmax) = (1, 4).

in order to improve data locality. Additionaly, it leads to a robust distribution strategy, as will be shown
hereafter.

The �rst step of the algorithm consists in computing the local ∆ti, and sorting them by ascending
order. The cell of lower timestep receives order pmin, and we compute its normalized timestep ∆t pmin

1 .
Two temporary variables, ploc and ∆t loc, respectively store the current order assigned to elements and
the current restrictive normalized timestep. For a given cell, the normalized timestep for increased order
ploc+1 is compared to the current limiting normalized timestep ∆t loc. In the case where the �rst is higher
than the second, switching to the higher order is assumed to have a limited impact on the �nal timestep.
Hence, ploc is increased by one, and ∆t loc is updated. The procedure is summarized in algorithm 2, whose
performances will be assessed in next section.

Algorithm 2 Polynomial order distribution
1: for i← 1, nt do . Compute timestep for each cell
2: Compute ∆ti
3: end for

4: Sort cells by ascending ∆ti
5: p(1)← pmin
6: ∆t loc ← ∆t pmin

1

7: ploc ← pmin

8: for i← 2, nt do . Go over cells by ascending order of ∆ti
9: if ploc + 1 > pmax then . Check that we do not exceed pmax

10: p(i)← pmax
11: else
12: Compute ∆t ploc+1

i

13: if ∆t ploc+1
i > ∆t loc then . Check if it is worth changing order

14: ∆t loc ← ∆t ploc+1
i . Update the limiting timestep

15: p(i)← ploc + 1
16: ploc ← ploc + 1 . Update the current order
17: else
18: p(i)← ploc
19: end if
20: end if
21: end for
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Table 6.2 | Characteristics of the locally re�ned cubic cavity meshes. ns is the number of vertices, nt the number of
tetrahedrons and h is the ratio between the largest and the smallest cells in the mesh.

M’1 M’2 M’3

ns 427 1429 11975

nt 1513 5042 42652

h 10.2 100.9 1000.8

(a) M’1, h = 10 (b) M’2, h = 100 (c) M’3, h = 1000

Figure 6.3 | Meshes with local re�nements for the cubic cavity mode.

6.4 Performance assessment

6.4.1 Sequential speedup

To evaluate the gains provided by the LA implementation, we consider the three meshes M’1, M’2 and
M’3 shown on �gure 6.3. These meshes are obtained by the tesselation of a cubic cavity corresponding to
test-case of section 2.1.4, a local re�nement being imposed on one side of the box. The characteristics of
these meshes are summed up in table 6.2. For each mesh, the cavity mode is computed sequentially for 5
periods. As before, CPU time and maximum L2 error are stored. The results obtained for homogeneous
and mixed orders are presented in table 6.3.

First, it must be noted that the memory occupation values result from a non-optimal implementation.
Hence, it is expected that mixed orders computations require the same memory size than homogeneous
order ones. For mixed order solutions, the speedup of a Pk − Pl computation is obtained by comparing
its CPU time with that of a full Pmax(k,l) computation. On the three considered meshes, mixing two
polynomial orders leads to speedups ranging from 1.5 to 2.2. An interesting point is that the obtained
L2-errors are identical or less than 1% higher than those of the homogeneous polynomial approximations.
Mixing three orders does not provide any improvement for the M’1 mesh, i.e. the distribution algorithm
attributed no cells to the highest order. This can be easily understood by looking at the compared timestep
distribution of the three meshes (see �gure 6.4): since the algorithm imposes the lowest order for the cell
of smallest timestep, a minimal amplitude in the timestep distribution is required to reach higher orders.
As an example, the P1 − P4 distribution is shown on the same �gure for mesh M’3. For M’2 and M’3,
however, very interesting gains are obtained, with speedups ranging from 3 to 4.5. In this case, it seems
that a higher h implies a higher bene�t from the LA algorithm. Finally, mixing orders from 1 to 4 roughly
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Table 6.3 | CPU times, memory consumption and error levels for mixed orders of approximation on locally re�ned
meshes. The order repartition was obtained via the procedure described in section 6.3. All simulations were run with upwind
�uxes and LSRK4 time integration.

M’1 M’2 M’3

P1

CPU (s.) 1.77 48.7 6030
Mem. (MB) 14.1 22.1 107.3
‖E− Eh‖ 3.38× 10−2 3.59× 10−2 3.87× 10−2

P2 −
6.50 180 22460
17.8 34.4 211

3.68× 10−3 3.71× 10−3 3.82× 10−3

P3 −
21.8 611 90020
23.9 54.6 382

2.14× 10−4 2.39× 10−4 2.53× 10−4

P4 −
73.8 2106 228220
32.9 84.7 635

1.42× 10−5 1.76× 10−5 1.97× 10−5

P1 − P2

CPU (s.) 3.84 101 15000
Speedup 1.69 1.78 1.50

Mem. (MB) 17.8 34.4 211
Tet. ratios 0.18, 0.82 0.29, 0.71 0.33, 0.67
‖E− Eh‖ 3.84× 10−3 3.71× 10−3 3.82× 10−3

P2 − P3 −

14.3 372 40470
1.52 1.64 2.22
23.9 54.6 382

0.25, 0.75 0.38, 0.62 0.43, 0.57
2.38× 10−4 2.39× 10−4 2.53× 10−4

P3 − P4 −

49.2 1390 130730
1.5 1.51 1.74
33.0 84.8 635

0.17, 0.83 0.28, 0.72 0.31, 0.69
1.42× 10−5 1.76× 10−5 1.97× 10−5

P1 − P2 − P3 − −

180 19890
3.39 4.53
54.7 392

0.29, 0.31, 0.40 0.33, 0.38, 0.29
2.39× 10−4 2.53× 10−4

P2 − P3 − P4 − −

695 64820
3.03 3.52
84.8 635

0.38, 0.22, 0.40 0.43, 0.27, 0.30
1.76× 10−5 1.97× 10−5

P1 − P2 − P3 − P4 − −

347 37130
6.07 6.15
84.9 636

0.29, 0.32, 0.13, 0.26 0.33, 0.38, 0.15, 0.14
1.80× 10−5 1.99× 10−5
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Figure 6.4 | Compared timestep distribution in M’1, M’2 and M’3 (left), and order distribution for the P1−P4 case on M’3
(right).

provides a speedup of 6, while barely increasing the global L2 error (less than 1%).

6.4.2 Parallel load balance

In this section, we present the results obtained when trying to balance the computational load for a parallel
implementation of the LA-DGTD method. The Metis [KK99] graph partitioning tool is used to split the
computational domain in subdomains, each of which is then mapped on a core. The communications
between the cores are handled via the MPI standard.

At the end of each computation, each CPU core returns its own CPU time, excluding the time spent in
the MPI communication routines. Hence, a good load balance between the cores will manifest as nearly-
identical CPU times for all cores. To reach this result, the Metis package can be provided a weight wi
for each cell Ti. During the partitioning, this weight is taken into account so that the total weight of the
various subdomains are as close as possible. Here, the following weight is used:

wi = n(pi) +
∑

l∈Vi
max(s(pi), s(pl)) (6.6)

The weighting (6.6) is tested on the cavity mode case using the M’3 mesh and running 100 time it-
erations. Given the small number of tetrahedra in the mesh, the study is limited to 4 and 8 subdomains
partitions. For a simpler comparison between the two partitionnings, the relative deviation ∆ (in %)
to the mean CPU time is computed for each core. First, the e�ect of the weighting is assessed by com-
paring relative deviations obtained from weighted and non-weighted partitions. The results for P1 − P4

approximation with 4 and 8 CPUs are shown on �gure 6.5. As can be seen, the use of a weighting pattern
is mandatory to preserve good performances in parallel. For both 4 and 8 cores, applying the weighted
partitionning results in a maximal relative imbalance lower than 5%. To further explore the behavior of
the algorithm in parallel, the CPU load balances with 4 and 8 cores are re-plotted with matching scales.
As expected, increasing the number of cores also increases the maximal imbalance between cores, though
in reasonable bounds.
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Figure 6.5 | Weighted vs non-weighted parallel load balance on 4 and 8 cores with M’3 mesh. Each bar corresponds to
the relative imbalance of a single CPU to the average value computed over all processors. As can be seen, the weighting restores
a good balance of the CPU loads, with no relative imbalance exceeding 5%.
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Figure 6.6 | Nanolens composed of three metallic spheres.

6.5 Plasmonic nanolens

This section presents the computation of the �eld enhancement obtained in a plasmonic nanolens device.
To overcome the limitation of the di�raction limit, it is possible to exploit the focusing e�ect provided
by coupled surface plasmons [DCTS08]. The typical nanolens is composed of a chain of metallic nano-
particles (nanospheres being the most common) of decreasing size, aligned with the polarization direction
of the incident �eld (see �gure 6.6). When the nanospheres are of signi�cantly di�erent sizes, the local
�eld enhancement of the �rst particle is not perturbed by the second one because of its small relative size.
As a result, the locally enhanced �eld of the �rst particle acts as an incident �eld for the second particle,
resulting in a second enhancement, and so on. Eventually, the strongest enhancement is obtained in the
gap between the two smaller particles [LSB03].

Here, we consider a nanolens made of three gold spheres. The geometry is taken from [LSB03]:
the respective radii are 45, 15 and 4.5 nanometers, while the spacings between the sphere surfaces are
respectively 4.5 and 1.5 nanometers. The gold is described by a Drude model of parameters ε∞ = 3.7362,
ωd = 1.387× 107 GHz and γd = 4.515× 104 GHz. The nanolens is illuminated from above with a wide-
band plane wave of central frequency 700 THz, which polarization is aligned with the natural axis of the
lens (here, the x+ direction). Finally, a probe point is set at half-distance between each pair of spheres.
At these positions, the discrete Fourier transform of the �eld is computed, and the �eld enhancement g =
|Êx|
|Êi| is deduced. To obtain a proper resolution of the geometry, very small elements must be used on the
surface of the smallest sphere, as well as in the smallest gap, while the rest of the geometry (largest sphere,
vacuum and PMLs) are meshed with much coarser elements (see mesh on �gure 6.7). As a result, the h
factor is here superior to 800. To obtain convergence with an homogeneous order over the whole mesh,
P3 approximation is required: the solution is obtained in 49 hours 48 minutes on 16 cores, and is taken as
a reference. To exploit the LA-DGTD method, P1 to P3 approximations are used: the order distribution
with respect to timestep is shown on �gure 6.8(a). To further understand the behavior of the repartition
algorithm, a visual representation is added on �gure 6.8(b). As expected, �rst-order polynomials are
attributed to the surface of the smallest sphere, while second-order approximation is used in its vicinity
and for the surface of the second sphere. The rest of the mesh is discretized with third-order polynomials.

The computed �eld enhancements are presented on �gure 6.9. As stated in the litterature, particularly
intense �elds are obtained between the two smallest sphere, where enhancements up to 700 are observed.
The P1−P3 solution is obtained in 19 hours and 17 minutes, hence providing a speedup of 2.6 over the full
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Figure 6.7 | Mesh setup for a metallic nanolens. The gray cells correspond to the metallic spheres, the blue cells to vacuum,
while the red cells constitute the PML region. For this mesh, the ratio h is above 800.
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(a) Order distribution for the nanolens mesh (b) Order selection in the vicinity of the lens

Figure 6.8 | Polynomial order repartition for the nanolensmesh with respect to timestep (left), and geometrical repartition
(right) for the P1 − P3 case. The red elements correspond to P1 approximation, the green ones to P2, and the gray ones to P3.

126



700 720 740 760 780 800 820 840 860 880 900
0

200

400

600

700

f (THz)

g

P1

P3

P1 − P3

Figure 6.9 | Field enhancement in the vicinity of the smallest sphere of a self-similar nanolens obtained with P1, P3

and P1−P3 approximations. Less than 1 % of relative error is observed between full P3 and P1−P3 computations, for a speedup
factor of 2.6.

P3 solution. The observed error over the frequency range of interest is less than 1 %. To further illustrate
the alikeness between those results, time-domain �eld maps are plotted on �gure 6.10. As can be seen,
there is almost no di�erence between P1 − P3 and full P3 approximations. However, the full P1 solution
clearly underestimates the amplitude of the �eld between the spheres.

6.6 Bowtie nanoantenna

In this section, we focus on the computation of the extinction cross-section of a metallic bowtie nanoan-
tenna. These structures are well-known for the very strong �eld enhancement they provide between the
tips of the two triangular nanoparticles (see �gure 6.11), which is known to be inversely proportionnal to
the size of the gap. Hence, bowtie nanoantennas are good candidates for surface-enhanced Raman spec-
troscopy (SERS) applications [HHG+10]. Recent advances in lithography techniques allowed the creation
of structures with gaps as small as 3 nm [ZIC14], while the typical size of the full structure can get close
to 200 nm. Additionally, realistic geometries of such antennas include small roundings at the edges and
tips, which typical size is between a few to a few tens of nanometers [GPK14].

In this case, we consider a pair of 10 nm-thick, equilateral prisms of edge length 100 nm, with a
spacing gap of 3 nm. The rounding radius is 2 nm, and is uniform for all edges and tips. The considered
material is gold, described by a Drude model of parameters ε∞ = 3.7362, ωd = 1.387× 107 GHz and
γd = 4.515× 104 GHz. The nanoantenna is enclosed in a TF/SF interface (see section 4.2.2), and the
domain is terminated by a layer of CFS-PML tetrahedra (see section 4.1.2). As can be seen on �gure
6.12, the typical setup for such computations requires very small elements (geometrical details of the
nanoantenna) as well as very large ones (vacuum and PML cells), and could therefore make good use
of the LA-DGTD formulation presented before. To compute the exctinction cross-section, the bowtie is
illuminated from above with a wide-band plane wave of central frequency 500 THz, polarized along the
major axis of the antenna. With an homogeneous polynomial order on the whole mesh, convergence
is obtained for a P3 approximation, requiring 30 hours and 37 minutes on 16 cores. This is taken as
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(a) P1 (b) P1 − P3

(c) P3

−15 0 15

Figure 6.10 | Ey �eld map in the nanolens device at t = 10 fs. For the three views, the �eld values are scaled to [−15, 15].
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Figure 6.11 | Bowtie nanoantenna with rounded edges.

Figure 6.12 | Mesh setup for a bowtie nanoantenna. The gray cells correspond to the nanoantenna, the blue cells to vacuum,
while the red cells constitute the PML region. For this mesh, the ratio h is close to 275.

a reference for LA-DGTD, for which P1 to P3 approximations are used. The repartition of orders with
regards to the timestep is presented on �gure 6.13, along with a visual representation of the order selection
in the mesh. As expected, the �rst order is attributed to the small cells of the edges and tips, which are
then enclosed into a second layer of P2 elements. All the remaining cells (not represented) receive a third
order interpolation.

The computed exctinction cross-sections are presented on �gure 6.14. A single very large resonance
is observed around 418 THz. As can be seen, the P1 − P3 solution properly �ts the full P3 solution, with
a deviation of less than 2 %. For further comparison, the full P1 solution is also plotted. In terms of
performance, the P1 − P3 solution is obtained in 13 hours and 59 minutes, hence yielding a 2.19 speedup
factor, which is lower than what was observed in section 6.5: the di�erence can be attributed to the lower
proportion of high-order (P3) elements compared to low-order ones (less than 20 % of P3 elements here,
against 40 % for the nanolens case). However, this remains an appreciable gain for a solution of similar
accuracy. As an illustration, a �eld map of |E| is plotted on �gure 6.15 for P1 − P3 approximation.
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Figure 6.13 | Polynomial order repartition for the bowtie mesh with respect to timestep (left), and geometrical repartition
(right) for the P1 − P3 case. The white elements correspond to P1 approximation, while the purple cells are second-order. The
remaining cells (not represented) receive third order approximation.
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Figure 6.14 | Extinction cross-section of the bowtie nanoantenna obtained with P1, P3 and P1−P3 approximations. Less
than 2 % of relative error is observed between full P3 and P1 − P3 computations, for a speedup factor superior to 2.
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(a) Lateral view

(b) Top view

0 10

Figure 6.15 | |E| �eld map in the bowtie device at t = 12.3 fs, obtained with a P1 − P3 approximation. The �eld values are
scaled to [0, 10].
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6.7 Conclusion

In this chapter, the use of local polynomial approximation in the DGTD method was presented. We have
demonstrated the convergence of the algorithm on a standard PEC cavity case. Then, an order-repartition
algorithm was proposed that proved to be e�cient, both for textbook and realistic nanophotonics-related
cases. Although the obtained speedups were lower for realistic cases (between 2 and 2.6 for P1 − P3)
than for academic cases (up to 4.5 for P1 − P3 and 6.15 for P1 − P4), the LA-DGTD algorithm represents
an interesting gain in speed for day-long nano-optics computations. However, the repartition algorithm
being based on a timestep approach, it also implicitely relies on a basic knowledge of the physical behavior
of the computed system (the preliminary grasp of the positions of intense �elds, basically). A good remedy
would consist in a coupling of the algorithm with an a posteriori error estimate, in order to dynamically
adapt the polynomial order, and possibly the mesh discretization.
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7
Improving

performances
In a vast majority of nano-optics problems, the computation of the direct problem cannot be performed
in a reasonable time on a single processor. After a phase of optimization of the sequential performances,
elaborating an e�cient parallel implementation represents a crucial step toward realistic and challenging
nanophotonics computations. In this chapter, the parallel performances of our DGTD implementation are
assessed. First, a renumbering method to improve data locality is proposed, following [LMDL15]. Then,
the performances of a SPMD implementation are assessed.

7.1 Reverse Cuthill-McKee renumbering

The computation of the �ux on a triangular face (see section 3.1.3), requires that the �elds on both sides of
the face are known simultaneously. For large enough problems, it is most probable that these informations
must be retrieved from the global memory (usually RAM) to the local cache memory. Then, in a very
short set of instructions, two memory accesses are required to two memory areas whose proximity is not
ensured a priori. Therefore, the amount of time spent waiting for the data to �ow back to local cache can be
severely highered if the locality is not ensured in memory. A natural solution consists in renumbering the
initial connectivity matrix to lower its bandwidth via the reverse Cuthill-McKee (RCM) algorithm [LS76].
When done before array allocations, this procedure ensures a better locality of the data in memory for
neighbouring cells, thus leading to a reduced addressing time.

As an example, we consider the mesh presented on �gure 7.1. This mesh is used in section 5.3 for the
computation of a gold nanosphere plasmonic resonance. Its size (see table 5.5) and complexity make it a
basic yet representative example of the gains obtained with RCM. On �gure 7.2, the non-zero elements
of the connectivity matrix are represented before and after the RCM processing: as can be seen, the
bandwidth is largely reduced, dropping from a maximal value of 116647 cells to only 6387 cells. To assess
the gains obtained with the RCM renumbering, we run 100 time iterations of the DGTD method on a
single core, for polynomial orders ranging from 1 to 4. The results are summed up in table 7.1: as can
be seen, good speedups are obtained for low orders of approximation, while for higher orders the gain is
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Figure 7.1 | Nanosphere mesh for RCM study.

lower. Indeed, for low orders, the number of tetrahedra for which the full �eld can be held in the cache is
higher. Hence, for a given tetrahedron, the cache reuse ratio is higher with the RCM renumbering, which
eventually leads to a reduced number of memory accesses.

7.2 Performances of a non-blocking MPI implementation

In this section, the parallel performances of our MPI DGTD code are assessed for the classic PEC cavity
case, detailed in section 2.1.4 with a mesh made of roughly 1,000,000 cells. This very simple con�gura-
tion induces a minimal imbalance due to the boundary conditions, thus allowing a fair evaluation of the
partitioning quality and the solver performance.

(a) Before RCM (b) After RCM

Figure 7.2 | Impact of the RCM renumbering on the connectivity matrix. Here, the connectivity matrix bandwidth is
reduced from 116647 to 6387.
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Table 7.1 | Sequential speedup with the RCM algorithm for orders from 1 to 4, for 100 iterations of the Drude nanosphere
test-case.

P1 P2 P3 P4

Computational time without RCM (sec) 115 267 530 1201

Computational time with RCM (sec) 89.8 221 466 1155

Speedup (%) 22.5 17.4 12.1 4.0

Figure 7.3 | Mesh to graph conversion for partitioning.

7.2.1 Mesh partitioning

The mesh partitioning is performed with the Metis graph partitionner [KK99]. A pre-processing step
converts the tetrahedral mesh in a graph structure, where cells are associated to nodes, while faces are
associated to vertices (see �gure 7.3). Then, the partitionning of the graph produces a set of subgraphs
that correspond to the �nal MPI subdomains. An example of a partitionned mesh is given on �gure 7.4,
where each colour represents a subdomain. As can be expected, the partitions quality will have a direct
impact on the parallel performances of the solver. However, it can prove di�cult to properly quantify
it: in the following study, it is considered as an inherent part of the �nal performance of the solver. As
an example, we present on �gure 7.5 the statistics (deviation from the mean for vertices and tetrahedra
repartition, as well as the number of neighbours per subdomain) for the M1 cavity mesh, for a number of
subdomains ranging from 1 to 256.

7.2.2 Strong scaling

To measure the actual gain obtained with a parallel implementation, a �xed size problem is considered,
while the number of processing units dedicated to its solving is progressively increased. In the following,
the time required to compute 100 time iterations of the problem on n CPUs is noted tn. The performance
of the parallel implementation is then given either by the measured speedup s = t1

tn
or e�ciency e = t1

n tn
.

Scalability and point-to-point data exchange

The cluster used for the following study is composed of blades, each holding 2 8-cores Intel(R) E5-2670
2.6GHz processors. Here, we want to point out the di�erent types of data exchange used between the
cores, depending on whether they are on the same blade, or on a di�erent blade. To do so, we plot in �g-
ure 7.6 the total simulation time required to compute 100 time iterations with a P1 approximation, from
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Figure 7.4 | Sub-domains of a Metis-partitioned mesh.
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Figure 7.5 | Statistics of Metis-partitioned meshes, for 1 to 256 sub-domains.

1 to 256 cores. The sudden slope variation at 16 cores indicates that data is not exchanged the same way
whether the cores are on the same blade or not. In fact, within a blade, point-to-point data exchange is
simulated on a shared memory architecture, inducing an inevitable overhead, and dramatically impact-
ing the scalability. Between blades, a true point-to-point communication pattern is used. Hence, in the
following, the 16 cores time is taken as a reference for scalability tests.

Scaling measurements

The measured speedup and e�ciency for 16 to 256 subdomains are plotted in �gure 7.7, for polynomial
orders from 1 to 4. Results are acceptable (e�ciency > 0.9) up to 128 cores. The drop in e�ciency for
256 cores cannot be attributed to the partitionning, since the partitions are very well balanced, and we
observe no sudden rise in the number of neighbors per subdomain (see �gure 7.5). However, at 256 cores,
the number of cells per sub-domain becomes particularly low (around 15560 for 64 cores, 7780 for 128
cores, and 3890 for 256 cores). The time spent in communications becomes too large compared to that
spent actually computing the DG algorithm, leading to the observed drop in e�ciency. This is easily
illustrated by plotting the ratio of average time spent in the MPI patterns against the average time spent
in actual computations, which is done in �gure 7.8. Apart from P2, which displays a slightly di�erent
behavior, one can observe a dramatic rise of the ratio MPI/CPU time. For 256 cores, it ranges from 0.56
for P4 to almost 1 for P1.

7.2.3 Parallel balance

In the case of a parallel computation, each CPU has to share its time between actual computations (here-
after noted CPU time), and communications via the MPI communication pattern (MPI time). Ideally, MPI
times should be equal for all the CPUs used in the computation. However, because of the unbalance of
the partition and the choices made in the parallel implementation, increasing discrepancies appear in the
computational loads with the number of sub-domains. In the case of the cavity mesh, the total num-
ber of tetrahedra per core ranges from almost 1,000,000 (for 1 core) to less than 4,000 (for 256 cores).
Hence, important load discrepancies are to be expected for high core numbers. To illustrate this point,
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Figure 7.6 | Variable data exchange procedures between cores depending on wether they are on the same blade, or on a
di�erent blade.
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Figure 7.7 | MPI speedup and e�ciency for the PEC cavity case on mesh M1, for 16 to 256 subdomains.
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Figure 7.8 | MPI time over CPU time ratio, for 16 to 256 subdomains.

we plot on �gure 7.9 the evolution of the maximal CPU time deviation to the mean (noted ∆ max) over
the subdomains, for increasing number of cores and with polynomial orders ranging from 1 to 4.

7.2.4 Conclusion

As a conclusion, we can state that the proposed MPI implementation presents interesting performances on
partitions with more than 10,000 cells per subdomain, and is suitable for small computation workstations
(a few tens of cores) to medium-sized clusters (a few hundreds of cores). One of the possible reasons
for the collapse of the speedup curve above 128 cores is the rising discrepancy between the minimal and
maximal number of neighbours per subdomain, with a ratio superior to 3 for 256 cores. A �rst step to
enhanced MPI performances could be to overlap communications with the DG computations of the inner
cells of each subdomain.
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8
Realistic nano-optics

computations
In this chapter, three practical nano-optics con�gurations are simulated with our DGTD solver. First,
the EELS spectrum of a metallic nanosphere is computed, based on a procedure described in [MNHB11].
Then, the behavior of metallic nanocubes on a gold slab is investigated. This work is part of a collaboration
with A. Moreau [MCS13]. Finally, several dielectric re�ectarray con�gurations are considered, as part of
a collaboration with M. Klemm [ZLGW+14].

These cases required various numerical features and post-treatments that were introduced previously
in this manuscript. The meshes were produced with gmsh [GR09], which proved very e�cient at pro-
ducing complex curvilinear meshes. 3D visualizations were made with Vizir1.

8.1 Electron energy loss spectroscopy

8.1.1 Introduction

Popularized in the 1990’s, electron energy loss spectroscopy (EELS) consists in using a beam of fast-
moving electrons which energy is known, to scan a device and/or a material. The non-zero probability of
each electron to interact with the structure produces a measurable energy loss in the beam, thus providing
informations on the structure. In particular, various plasmonic resonances can be investigated when the
electron beam passes close to the sample (this method is usually known as low-loss EELS).

Numerical treatments of such problems have already been proposed with standard methods such as
FDTD [CMLN15] or BEM [HT12]. Here, we follow the procedure proposed for DGTD in [MNHB11]: an
electron travels at speed v along a trajectory re(t) colinear to the z axis (i.e. re(t) = r0 + vt ez). The �eld
generated in vacuum by the moving electron is given by [Fey10]:

1https://www.rocq.inria.fr/gamma/gamma/vizir/
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E(r, t) =
q

4πε0

γd(r, t)
(
|d(r, t)|2 + γ2−1

v2 (v · d(r, t))2
) 3

2

,

H(r, t) =
v
c
× E(r, t),

(8.1)

with γ =
√

1

1−( vc )
2 and d(r, t) = re(t) − r. The electron’s trajectory brushes past an aluminum

nanosphere with a minimal distance2 b, which is typically of a few nanometers. In return, the scattered
�eld radiated by the excited plasmons acts back on the electron, slightly lowering its kinetic energy. As
described in [MNHB11], these losses are extremely low compared to the total energy of the electron (at
least a thousand times lower). Hence, a rather good approximation, known as no-recoil approximation,
consists in neglecting the induced slow-down in the loss computation. The classical way of expressing
the energy lost by the electron is to express it as a frequency-dependent loss probability P (ω), which
represents the probability of an electron to lose an energy equal to ~ω:

P (ω) =
1

π~ω

ˆ ∞
−∞
<
(
v · Esca(re, ω) e−iωt

)
dt. (8.2)

One might notice that the incident �eld (8.1) is singular at the electron location (i.e. for r = re).
To avoid this particular problem in practice, this incident �eld is imposed at a certain distance from
the electron’s trajectory, on a TF/SF interface, in the same fashion as for dipolar sources (see section
4.2.1). To do so, a cylindrical surface of su�cient length enclosing electron’s trajectory is de�ned in the
computational domain. To avoid the singular �eld at the top and bottom edges of the cylinder, the TF/SF
surface is closed inside-out, so the TF region is not simply connex (see mesh on �gure 8.1). This technique
is only valid if the electron beam does not travel throught the material. In this latter case, using the TF/SF
interface method can only lead to approximate results, since a portion of the scatterer is excluded from
the total �eld region. To overcome this limitation, one can use a fully-scattered formulation of Maxwell’s
equations, which gives access to the scattered �eld inside the scatterer [Die12].

8.1.2 EELS spectrum of an aluminium nanosphere

As a �rst computational test, the EELS spectrum of an aluminium nanosphere of radius 10 nm is computed
using the method described above (this con�guration is directly derived from [MNHB11]). Aluminium is
described by a Drude model of parameters ε∞ = 1, ωd = 2.278× 107 GHz and γd = 1.5952× 106 GHz.
The impact parameter is 1 nm, and the cylinder enclosing the electron’s path ranges from 35 nm above the
sphere center to 35 nm below. To compute a discrete version of (8.2), the electron’s trajectory is discretized
with N probe points evenly spaced every ∆z = 0.5 nm, between a starting and a �nishing altitudes zs
and zf (here, zs = −35 nm, and zf = 35 nm). At these probe points, the discrete Fourier transform (DFT)
of Ez is computed along the simulation. To avoid spectral leakage in the DFT, it is necessary that it starts
and ends with near-zero �elds. Hence, a retardation factor t0 is added to the incident �eld (8.1), and the
trajectory is described by re(t) = r0 + v(t− t0) ez . At the end of the computation, the loss probability is
evaluated following a simple rectangles rule for each frequency of interest:

P (ω) ' 1

π~ω
∑

k=1,N

v<
(
Ez,sca(re(tk), ω) e−iωtk

)
∆t,

2This minimal distance is hereafter called impact parameter.
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(a) Global view of the mesh (b) Top TF/SF interface

Figure 8.1 | Mesh setup for a metallic sphere EELS spectrum computation. The gray cells correspond to the PML, and the
red ones to the metallic sphere. The green triangles de�ne the TF/SF interface, which is closed inside-out thanks to a cylinder
connecting the upper and lower faces. The z extension of the TF/SF box is voluntarily reduced for clarity.

where tk = (k−1)∆z
v + t0 and ∆t = ∆z

v . The mesh used for the computation is presented on �gure
8.1: for better accuracy, quadratic tetrahedra are used to discretize the sphere. We observed no signi�cant
di�erence between the use of square-section and circular-section cylinders for the surface enclosing the
electron’s trajectory. In all the following computations, P4 polynomials were retained to obtain a fully
satisfying resolution of the EELS spectrum. On �gure 8.2, the spectra computed with the DGTD imple-
mentation are compared to the Mie solution of the problem [Aba10] for v = 0.1, 0.2 and 0.3 times the
speed of light. As an illustration, �eld maps of the Ez component are presented on �gure 8.3. Computa-
tional times on 16 cores range from 2 hours 45 minutes (for v = 0.3) to 3 hours (for v = 0.1).
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Figure 8.2 | EELS spectrum of a single aluminium nanosphere for various electron velocities. P4 approximation is used in
conjunction with curvilinear elements for the sphere.

(a) The electron’s trajectory is ori-
ented from bottom to top

(b) The �eld induced by the electron
in the vicinity of the sphere excites a
surface plasmon

(c) While the electron moves away,
the plasmon continues to resonate

−1 0 1

Figure 8.3 | Ez �eld map during an EELS experiment. The gray cells correspond to the SF cells, in which the �eld is not
represented. In this case the electron velocity is v = 0.2 c0. For the three views, the �eld values are arbitrarily scaled to [−1, 1].
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Figure 8.4 | Random arrangement of chemically-produced nanocubes. Courtesy of A. Moreau.

8.2 Gap-plasmon con�nement with gold nanocubes

The propagation of light in a slit between metals is known to give rise to guided modes. When the slit
is of nanometric size, plasmonic e�ects must be taken into account, since most of the mode propagates
inside the metal. Indeed, light experiences an important slowing-down in the slit, the resulting mode
being called gap-plasmon. Hence, a metallic structure presenting a nanometric slit can act as a light
trap, i.e. light will accumulate in a reduced space and lead to very intense, localized �elds. Recently, the
chemical production of random arrangements of nanocubes on gold �lms at low cost was proved possible
by Moreau et al . [MCM+12] (see �gure 8.4). As shown on �gure 8.5, nanocubes are separated from the
gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube.
When excited from above, this con�guration is able to support gap-plasmon modes which, once trapped,
will keep bouncing back and forth inside the cavity. At visible frequencies, the lossy behavior of metals
will cause the progressive absorption of the trapped electromagnetic �eld, turning the metallic nanocubes
into e�cient absorbers. The frequencies at which this absorption occurs can be tuned by adjusting the
dimensions of the nanocube and the spacer. Here, we propose to study the impact of the geometric
parameters of the problem on the behaviour of a single nanocube placed over a metallic slab. This work
constitutes the base of a wider study in collaboration with A. Moreau.

8.2.1 Physical parameters and quantities

In the following study, both the slab and the cube are made of gold (hence εc = εg). A 3SOGP model (see
section 2.2.3) is used to �t data from [RDEM98] in the [200, 750] THz frequency range. The dispersion
parameters, as well as plots of the real and imaginary parts of the permittivity function can be found in
appendix C. In all the computations, the thickness of the metallic slab h is taken equal to 75 nm. The
spacer is made of a dielectric of constant permittivity εs = 2.1316 corresponding to silica. The rounding
of the cube edges and corners is denoted by r, and its e�ect is studied in the next section. The last section

145



hMetallic slab, εg(ω)

δDielectric spacer, εs

c

r

Metallic cube, εc(ω)

Figure 8.5 | Realistic metallic nanocubes on a dielectric-coated gold slab. The rounding parameter r is the same for all
corners and edges of the cube. The view is a lateral cut of the device.

is dedicated to the impact of the two other geometrical parameters, i.e. the spacer thickness δ and the
nanocube side length c.

Various physical quantities will be considered: (i) the absorption cross-section and e�ciency for the
whole device (nanocube, spacer and full metallic slab), respectively notedCabs andQabs, (ii) the absorption
e�ciency in the cube only, noted Qcube, and (iii) the di�erence between the last two. The computation of
the absorption e�ciency is described in section 4.4.1. To compute Qcube, a volumic method is used (see
section 4.4.2).

8.2.2 In�uence of the rounding

Experimentally, chemically-produced nanocubes present a rounding at the edges and corners, which size
ranges from 3 to 10 nm. In this section, the size parameters are set to δ = 5 nm and c = 75 nm, while the
rounding r is progressively increased from 0 to 10 nm. For each value of r, the absorption cross-section
Cabs is computed. Mesh examples are presented on �gure 8.6, while results are shown on �gure 8.7. For
frequencies above 450 THz, results are very similar, since the absorption is due to bound electrons of the
gold plate (i.e. the absorption is not related to the gap plasmon phenomenon). Below 450 THz, one can
observe a transition of the gap plasmon absorption peak for increasing values of r, from 325 THz for
r = 0, to 375 THz for r = 10 nm. To obtain a converged solution on such small geometrical details, P3

polynomial approximation is used in conjunction with curved elements. In the following of this study,
we keep a r = 3 nm rounding in all computations, which corresponds to the best reproducible chemical
production to date.

8.2.3 Absorption and scattering regimes

In this section, the behavior of single nanocubes on metallic plates is computed, for lateral sizes ranging
from 50 to 80 nm, and spacer thicknesses from 3 to 22 nm. In each case, the resonance frequency is ob-
tained by seeking the maximal value of Qcube over the frequency range. Then, the absorption e�ciencies
Qabs and Qcube at the resonance frequency are retrieved from the results of each computation. All these
results are summed up on �gure 8.8. Several remarks can be made from the analysis of these curves:

� The absorption in the cube due to the gap-plasmon varies with the size of the cube, and absorption
e�ciencies as high as 18 are observed for c = 70 nm and δ = 12 nm (resonance frequency fres = 432
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(a) r = 2 nm (b) r = 6 nm

(c) r = 10 nm

Figure 8.6 | Meshes of rounded nanocubes with rounding radii ranging from 2 to 10 nm. Red cells correspond to the cube.
The latter lies on the dielectric spacer (gray cells) and the metallic plate (green). Blue cells represent the air surrounding the
device.
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Figure 8.7 | Absorption cross-section of the nanocube device for various edge roundings. Larger roundings occasionate
a blueshift of the absorption peak. For these results, δ = 5 nm and c = 75 nm.

THz). Because the gap plasmon mode is roughly symmetric (see �gure 8.9), gap-plasmon absorption
e�ciencies superior to 30 can be expected, which is in accordance with [MCM+12]. Additionally,
there seems to be an optimal set of parameters for Qcube = f (c, δ);

� By substractingQcube toQabs, we obtain the absorption due to (i) the skin e�ect of the direct illumin-
ation of gold, (ii) the absorption in the slab due to the gap plasmon, and (iii) the surface plasmons
generated in the slit between the cube and the gold plate. As can be seen on �gure 8.8(d), the ab-
sorption continues to grow when δ is increased above the Qcube maximum. From that observation,
we can state that, when progressively increasing δ from 0, isolated nanocubes exhibit two di�erent
behaviors: (i) an absorption regime for low δ values (typically between 5 and 10 nm), where a large
part of the absorption occurs in the gap, and (ii) a scattering regime for higher δ values, where most
of the energy is transfered to plasmons propagating on the metallic slab, and upward scattering;

� Putting aside �gures 8.8(b) and 8.8(d), it seems that small nanocubes are good at generating sur-
face plasmons, but experience less intense absorption due to the gap resonance than their larger
counterparts. Large nanocubes, on the contrary, present better absorption rates due to the gap
resonance, but are poor surface plasmon producers.

To further illustrate these two regimes, we plot on �gure 8.9 the modulus of the Ĥ �eld, at resonance
frequency for the (c = 70 nm, δ = 12 nm) and the (c = 60 nm, δ = 18 nm) con�gurations. The obtained Ĥ
�eld is more intense for con�gurations that yield high Qcube values, which is coherent with [MCM+12].
For the (c = 70 nm, δ = 12 nm) case, the gap resonance seems symmetric. However, it is not the case
for the (c = 60 nm, δ = 18 nm) con�guration, where more �eld is concentrated in the cube than in the
metallic slab.

8.2.4 Numerical discussion

All the computations in this study were performed on 8-cores Intel E5-2670 2.6 GHz, with P3 polynomials.
The very small rounding considered for the cube edges induced a dramatic reduction of the minimal edge
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Figure 8.8 | Resonance frequencies and absorption e�ciencies of gold nanocubes for various nanocube sizes and spacer
thicknesses.
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(a) (c = 70 nm, δ = 12 nm), x− z view (b) (c = 60 nm, δ = 18 nm), x− z view

(c) (c = 70 nm, δ = 12 nm), top view (d) (c = 60 nm, δ = 18 nm), top view

0 7.5 15

Figure 8.9 | Ĥ �eld modulus for di�erent nanocube con�gurations. All �eld maps are scaled identically for better com-
parison. The obtained Ĥ �eld is more intense for con�gurations that yield highQcube values. Although the gap resonance seems
almost symmetric on the top left panel, it is not the case on the top right one.

150



length, as well as an important increase of the number of curved cells. Computational times on 32 cores
range from 4 hours 10 minutes for (r = 0nm, c = 75 nm, δ = 5 nm) to 17 hours 15 minutes for (r =
3nm, c = 90 nm, δ = 3 nm). Additionally, due to the multiple on-the-�y Fourier transforms on the
TF/SF surface and in the cube volume, as well as the presence of PMLs and curved elements, parallel
imbalance range from 10 % to more than 60 %, which highlights the need to take these features into
account when partitioning the mesh. It should be noted that the computational domain could be made
smaller by sticking the extremities of the metallic slab directly into the PML layer. Indeed, the CFS-PML
naturally allows dispersive materials to extend into it just by modifying the permittivity accordingly.

151



hMetallic slab, εs(ω)

dr

Dielectric resonator, ¯̄ε r

δ

Figure 8.10 | Unit cell of a realistic monodimensional dielectric re�ectarray composed of dielectric cylinders on a silver
plate. The defect parameter δ is equal to zero for an ideal resonator. The view is a lateral cut of the cell.

8.3 Dielectric re�ectarrays

In the past few years, important e�orts have been deployed to �nd alternatives to on-chip, low-performance
metal interconnects between devices. Because of the ever-increasing density of integrated components,
intra- and inter-chip data communications have become a major bottleneck in the improvement of inform-
ation processing. Given the compactness and the simple implantation of the devices, communications via
free-space optics between nanoantenna-based arrays have recently drawn more attention [HE08]. Here,
we focus on a speci�c low-loss design of dielectric re�ectarray (DRA), whose geometry is based on a peri-
odic repartition of dielectric cylinders on a metallic plate [ZWS+13]. A sketch of the unit cell is presented
on �gure 8.10. When illuminated in normal incidence, speci�c patterns of such resonators provide a
constant phase gradient along the dielectric/metal interface, thus altering the phase of the incident wave-
front. The gradient of phase shift generates an e�ective wavevector along the interface, which is able to
de�ect light from specular re�ection. However, as can be seen on �gure 8.11, the �aws of the lithographic
production process can lead to discrepancies between the ideal device and the actual resonator array.

Here, we propose to exploit our DGTD solver to study the impact of the lithographic �aws on the
performance of a 1D re�ectarray. E�cient computations are obtained by combining high-order polyno-
mial approximation with curvilinear meshing of the resonators, yielding accurate results on very coarse
meshes. The study is continued with the computation of the re�ection of a 2D re�ectarray. This work
constitutes the base of a wider study in collaboration with M. Klemm [ZLGW+14].

8.3.1 Physical parameters and quantities

In the following sections, the silver slab is described by a simple Drude model of parameters ε∞ = 4.0,
γd = 2.73× 104 GHz and ωd = 1.38× 107 GHz. The resonators are made of a diagonally anisotropic
material of parameters ¯̄ε r = diag [8.29, 8.29, 6.71]. The slab thickness h, as well as the height d are
respectively �xed to 200 and 50 nm. The defect parameter is denoted δ, and describes the impact of
the lithography �aws on the cylindrical shape of the resonator. The last geometric parameter is the basis
radius of the resonator, denoted by r. In all computations, the devices are terminated with periodic bound-
ary conditions in both planar directions. The incident �eld is a monochromatic plane wave, impinging
from above in normal incidence.

The physical quantities of interest in this work are: (i) the re�ection coe�cient R, (ii) the re�ected
phase θ for single resonators, and (iii) the radar cross-section σRCS for the resonator arrays. The �rst
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Figure 8.11 | 6-element dielectric re�ectarray produced by lithography. Courtesy of M. Klemm.

one is computed following the method presented in section 4.4.3, while the second one is obtained by
computing the phase of the scattered �eld above the center of a single resonator. In the last section of
the study, the radar cross-section (RCS) of a 1D dielectric re�ectarray is computed as described in section
4.4.4.

8.3.2 In�uence of lithography defects

We propose here to study the e�ects of the �aws induced by the lithography production of the dielec-
tric resonators on its scattering regime. A single resonator with doubly periodic boundary conditions is
considered. The lateral size of the periodic cell is 350 nm, the radius is �xed to r = 85 nm, and δ varies
from 0 to 15 nm. The frequency of the incident plane wave is �xed to f = 473.6 THz (λ = 633 nm). The
re�ection coe�cient and the re�ected phase are computed, and plotted on �gure 8.12. As can be seen, the
re�ected amplitude and phases are signi�cantly blueshifted when δ is increased, which will have a major
impact on the 1D dielectric array, as will be shown in next section.

8.3.3 1D dielectric re�ectarray

Here, we consider the 1D dielectric re�ectarray presented in [ZLGW+14]. This array is designed to de�ect
normally-incident light with an angle of 19.9◦, according to re�ectarray theory. As before, the frequency
of the incident plane wave is f = 473.6 THz (λ = 633 nm). The array is declined in two versions:
the �rst one is made of ideal resonators, while the second one is composed of realistic resonators, with
representative lithography �aws (see �gure 8.13 for a close-up view of the array). The RCS of both arrays
is computed with P4 polynomial approximation and quadratic tetrahedra, and plotted on �gure 8.14.
The ideal array provides a very good directivity toward 18.0◦, with a very small parasitic lobe around
50.0◦. This is con�rmed by the �eld map of �gure 8.15, where one can clearly see nearly-plane waves
propagating away from the array. In this case, nearly 60% of the incident power is de�ected with a
non-cartesian angle. On the other hand, the realistic array presents more imperfections in its directivity
patterns, with numerous parasitic lobes, and a lower e�ciency (around 50%). Additionally, the de�ection
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Figure 8.12 | Re�ection coe�cient and re�ected phase of a single dielectric resonator with lithography defect.

angle is very di�erent from what was predicted by the re�ectarray theory. This results in a much less
satisfying �eld map, where the plane wave is severely distorted. This may enlight the need to compensate
these �aws at the conception level by adjusting the physical parameters of the re�ectors.

8.3.4 2D dielectric re�ectarray

We now consider the 2D re�ectarray design presented on �gure 8.16. This pattern is obtained by period-
ically shifting the 1D array of last section while repeating it along the y axis. As before, the re�ectarray
is illuminated with a plane wave of frequency f = 473.6 THz in normal incidence. Its computed RCS
is presented on �gure 8.17: a clear directivity peak is observed around (θ, φ) = (28.5◦, 45◦), with an
e�ciency close to 60%. Several parasitic lobes are also present, particularly around the normal direction
(θ, φ) = (0◦, 0◦). A 3D time-domain �eld map is presented on �gure 8.18, with the cutting plane oriented
in the direction of maximal radiation, i.e. φ = 45◦.

8.3.5 Numerical considerations

In this section, all computations are performed on 8-cores Intel E5-2670 2.6 GHz.

1D re�ectarray

The time required to evolve the system from the t = 0 to t = 0.1 ps on 4 cores is 4 hours 4 minutes,
with a maximal CPU imbalance of 8.4 %. On 16 cores, the computational time is 1 hour 24 minutes, with
a maximal CPU imbalance of 26.3 %. Here, the low parallel e�ciency (0.72 between 4 and 16 cores) has
several causes:

� The mesh of the ideal 1D re�ectarray is made of 19427 tetrahedra. Hence, on 16 cores, this repres-
ents barely more than 1200 tetrahedra per subdomain, which is partcularly low.

� 4233 cells (22 % of total) are curvilinear, while the PML consists of 2558 tetrahedra (13 % of total).
These elements induce imbalance in the load allocated to the subdomains, since they are not taken
into account during the partitioning. Indeed, when run with linear elements only, CPU imbalances
on 4 and 16 cores respectively fall to 6.3 % and 20.4 %.

154



(a) Ideal re�ectarray

(b) Realistic re�ectarray, δ = 20 nm

Figure 8.13 | Ideal and realistic 1D dielectric re�ectarray meshes. The red tetrahedra correspond to silver, while the green
ones are made of an anisotropic dielectric material. The device is surrounded by air and terminated by a PML above and below,
and by periodic boundary conditions on the lateral sides.
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Figure 8.14 | Radar cross-section of ideal and realistic 1D dielectric re�ectarrays at frequency f . The directivity peak in
the ideal case is observed around 18.0◦, while it is obtained at 14.5◦ for the realistic array.
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(a) Ideal re�ectarray (b) Realistic re�ectarray, δ = 20 nm
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Figure 8.15 | Time-domain snapshot of Ey component for ideal and realistic 1D dielectric re�ectarrays. Solution is
obtained in established regime at t = 0.1 ps. Fields are scaled to [−1, 1].
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Figure 8.16 | Ideal 2D dielectric re�ectarray mesh. The red tetrahedra correspond to silver, while the green ones are made
of an anisotropic dielectric material. The device is surrounded by air and terminated by a PML above and below, and by periodic
boundary conditions on the lateral sides.
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Figure 8.17 | Radar cross-section of an ideal 2D dielectric re�ectarray at frequency f . θ varies from 0 to 90◦, while φ
varies from 0 to 360◦. The directivity peak is observed around (θ, φ) = (28.5◦, 45◦), with an e�ciency close to 60%. Several
parasitic lobes are observed, particularly around the normal direction (θ, φ) = (0◦, 0◦).
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−1 0 1

Figure 8.18 | Time-domain snapshot of Ey component for an ideal 2D dielectric re�ectarray. Solution is obtained in
established regime at t = 0.1 ps. Fields are scaled to [−1, 1]. The cutting plane is chosen following the direction of maximal
radiation, i.e. φ = 45◦.
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� The RCS treatment represents an additional imbalance cause between the processes. When com-
puted sequentially, the total overhead generated by the computation of the RCS (i.e. on-the-�y
Fourier transform during the computation and �nal post-treatment) represents 2% of the total com-
putational time.

2D re�ectarray

For the 2D array, the solution is obtained in 19 hours 8 minutes on 4 cores, and 7 hours 42 minutes on
16 cores, hence yielding a parallel e�ciency of 0.73, similar to the 1D array. For respectively 4 and 16
cores, the parallel imbalances on the curved mesh are 8.9 % and 34.7 %, for a mesh containing 102.984
tetrahedra and 12 % of curved cells. As for the 1D array, these values drop to 6.6 % and 20.6 % respectively
for linear mesh. These results highlight the need to take features such as curved elements, PMLs or on-
the-�y computations for post-treatments into account at the partitionning level. It should also be noted
that, in the case where one does not need �eld maps, these re�ectarray computations can be dramatically
shortened by reducing the amount of vacuum below and above the device.
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9
Outlook

In this chapter, we go over the content of the present manuscript, and point out the future possible works
that are or could be carried to progress toward more complex physics and performant computations.

9.1 Summary

The goal of this thesis was to elaborate a 3D discontinuous Galerkin time-domain code able to handle
complex nano-optics con�gurations. In the following paragraphs, we review the content of this thesis,
and point out our e�orts and associated contributions toward this objective.

First, a customized generalized dispersive model was developed. This model covers a wide range
of dispersive materials, and proved to be roughly twice more accurate to �t experimental data than the
widespread Drude and Drude-Lorentz models, for standard metals such as gold and silver in the THz
regime. A signi�cant improvement was obtained for nickel (a transition metal) when comparing the
performance of the Drude model with a single generalized pole. Finally, a short digression was made on
non-local dispersive models, with preliminary results in 2D.

Then, the discontinuous Galerkin time-domain method was thoroughly developed and validated for
non-dispersive and dispersive materials, and two time-stepping techniques taken from the literature were
proposed. Several numerical experiments related to �uxes were conducted to complete this overview. To
conclude, several theoretical proofs were given, some being the result of associated works conducted
during this thesis.

The next chapter contains all the numerical developments necessary to handle the computation of
realistic cases, such as perfectly-matched layers, total �eld/scattered �eld formulation, complex sources,
or physical post-treatments. Although additional numerical experiments were conducted about the per-
formances of absorbing boundary conditions and perfectly matched layers, these techniques were all
adapted from the literature.

Two methodological developments were then investigated in order to improve the e�ciency and the
accuracy of the DGTD algorithm. First, the possibility to handle curvilinear elements was considered.
This possibility is not new to the DG community, and after a presentation of the mathematical and nu-
merical framework, our approach was resolutely oriented toward the improvements this technique could
bring to nano-optics computations. Through increasingly-complex con�gurations, the use of curvilinear
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elements proved to be a serious asset in terms of performance and accuracy. In the following chapter,
the possibility to exploit variable polynomial orders through the computational domain was explored.
After the necessary developments and a standard validation of the implementation, an order repartition
algorithm was proposed that provided interesting speedups on meshes with heterogeneous mesh sizes
(with a ratio up to 1000), while the accuracy of the results is barely altered (less than 1% of relative error).
However, this implementation relies on a good preliminary knowledge of the physics involved in the con-
sidered con�guration. A coupling with an a posteriori error estimate could lift this limitation by adapting
the polynomial order on-the-�y, which could also alleviate the computational cost. The coupling of the
order repartition algorithm with curvilinear elements can also constitute an interesting exploration path.

In the following chapter, the sequential and parallel performances of our code were assessed. A cell-
renumbering algorithm was shown to provide interesting speedups, especially for low approximation
orders. After a few numerical experiments with the Metis mesh partitioning tool, the speedup and ef-
�ciency of our parallel MPI implementation was assessed on a standard test-case. Results showed that
this implementation provided an acceptable scaling up to a few hundred of cores, as long as the number
of cells per core remained su�ciently high (around 10,000). Computation results from other chapters
also proved that there was a serious need for a better load balance between cores when complex features
(PMLs, curved elements, on-the-�y Fourier transforms, ...) were used.

The �nal chapter aims at demonstrating the capabilities of our current DGTD implementation on
realistic cases. The �rst case consists in the computation of the EELS spectrum of a metallic nanosphere,
and was adapted from existing literature. It constitutes a preliminary step toward more advanced works
dealing with the proper treatment of electron-based electromagnetic sources. The second con�guration
involves the gap-plasmon resonances observed under chemically-produced nanocubes on metallic plates.
First, the in�uence of the rounding at the cube edges was demonstrated. Then, di�erent behaviors were
identi�ed, depending on the cube side length and the thickness of the dielectric spacer. These results will
constitute the base of a wider study in collaboration with A. Moreau [MCM+12]. The last case deals with
1D and 2D dielectric re�ectarrays, which goal is to re�ect incident light with a tunable de�ection angle.
First, the impact of realistic lithography �aws on the performance of a 1D array was assessed. Then, the
computation of a larger 2D re�ectarray is considered. These results are the �rst step toward a wider study
on this topic in collaboration with M. Klemm [ZLGW+14].

9.2 Future works

The topics presented in this manuscript give rise to a number of possible further developments, both from
the numerical and the physical point of view. We close this manuscript with a short discussion of these
topics.

9.2.1 Physics and material models

The numerical treatment of the non-local model, brie�y presented in section 2.2.6, remains to be thor-
oughly studied in the DG framework. Because of the very small physical scale involved, 3D computations
with non-local models promise to be computationally expensive, and an e�cient parallel implementation
would constitute a good asset to compute the response of large-scale systems.

The discretization of non-linear materials in the DG framework also remain to be explored in details.
Literature on this topic is very shallow, with only a handful of references limited to 1D formulations for
Kerr e�ects [Bla13] [FL15].
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9.2.2 Numerical improvements

As was stated in the introduction, the DG method allows a large panel of methodological improvements,
each presenting advantages and drawbacks. In most cases, the goal of these enrichments is either to (i)
alleviate the number of degrees of freedom (hybrid [LVD+14] and non-conforming meshes [FL10]), to (ii)
handle the ill time discretization induced by very small elements (local time-stepping [DG09], implicit/-
explicit formulations [Moy12], space-time DG method [PFT00]), or to (iii) obtain a combination of both
(hp-adaptivity [SW12]).

New numerical methods derived from the classical DG algorithm are also appearing. In the Hy-
bridizable Discontinuous Galerkin (HDG) method, a Lagrange multiplier representing the trace of the
numerical solution on the element faces is introduced. A global problem on the mesh skeletton (i.e. the
faces of the mesh) is obtained and solved, before the volumic solution can be recovered with local, inde-
pendent computations. Originally designed for the time-harmonic Maxwell’s equations [NPC11], implicit
time-domain HDG formulation for Maxwell’s equations have been developped [LP11]. A more general
technique, the Multiscale Hybrid Mixed (MHM) method [HPV13], includes the DG algorithm as an inner
solver to handle large, multiscale problems. In this method, the �nal solution is obtained as the sum of
(i) the global solution of the problem of a coarse mesh and (ii) local, independent solutions computed on
�ner meshes in each cell.

9.2.3 High-performance computing

To compute larger and larger nano-optics systems, one cannot solely rely on Moore’s law, and needs to
call upon adequate parallel implementations. As can be guessed from the results of the present manu-
script, a speci�c e�ort must be made to obtain decent scalings out of very large clusters (i.e. from several
thousands to tens of thousands). OMP- or MPI-only parallel implementations on standard CPU clusters
are not likely to achieve such performances. Hybrid parallelism (MPI/OMP [LLS+14]) or speci�c im-
plementations for advanced HPC architectures (cluster/booster division [LMDL15]) represent potential
candidates to e�cient massively parallel DG algorithms.
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A
Dispersion parameters

This appendix provides dispersion coe�cients for the generalized dispersive formulation for silver and
gold over the [300, 1500] THz frequency range. The experimental data, from [JC72], is �tted to di�erent
models with a simulated annealing algorithm [KGV83]. For each of the two metals, Drude, Drude-Lorentz,
2-SOGP and 4-SOGP coe�cients are given. To ease the reading, quantities are given in PHz. Plots of the
4-SOGP permittivities are displayed in �gure A.1.
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Figure A.1 | Real and imaginary parts of the silver and gold relative permittivity predicted by the 4-SOGP model
compared to experimental data from Johnson & Christy.
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Table A.1 | Coe�cients of various dispersive models for gold.

Parameters Drude Drude-Lorentz 2-SOGP 4-SOGP

ε∞ 3.2629 3.6793 1.0 1.0

ωd 12.147 13.456 – –

γd 0.24304 0.0 – –

∆ε – 5.1899 – –

ωl – 6.3681 – –

γl – 5.7923 – –

c1 – – 161.08 171.61

d1 – – 9.0631 0.0

e1 – – 0.0 0.0

f1 – – 0.0 0.10449

c2 – – 20.437 210.17

d2 – – 19.956 0.0

e2 – – 15.247 149.61

f2 – – 2.8022 4.7838

c3 – – – 95.959

d3 – – – 2.3069

e3 – – – 39.550

f3 – – – 4.1445

c4 – – – 15.321

d4 – – – 4.7361

e4 – – – 16.083

f4 – – – 1.4217
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Table A.2 | Coe�cients of various dispersive models for silver.

Parameters Drude Drude-Lorentz 2-SOGP 4-SOGP

ε∞ 3.7362 2.7311 1.2944 1.0

ωd 13.871 14.084 – –

γd 0.045154 0.0066786 – –

∆ε – 1.6336 – –

ωl – 8.1286 – –

γl – 3.6448 – –

c1 – – 189.09 191.92

d1 – – 2.6584 0.73725

e1 – – 0.0 0.0

f1 – – 0.0 0.0

c2 – – 56.165 164.28

d2 – – 12.005 0.0

e2 – – 43.932 75.648

f2 – – 3.1709 14.161

c3 – – – 10.581

d3 – – – 10.654

e3 – – – 38.369

f3 – – – 4.3307

c4 – – – 0.0

d4 – – – 1.9950

e4 – – – 37.575

f4 – – – 0.94994

168



B
Non-conforming Pp −Pm

matrices

S12 =
1

60




2 −1 −1 8 4 8
−1 2 −1 8 8 4
−1 −1 2 4 8 8




S23 =
1

840




10 1 1 27 −18 −6 −6 −18 27 −18
1 10 1 −18 27 27 −18 −6 −6 −18
1 1 10 −6 −6 −18 27 27 −18 −18
4 4 8 48 48 24 −12 −12 24 144
8 4 4 −12 24 48 48 24 −12 144
4 8 4 24 −12 −12 24 48 48 144
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C
Another gold

permittivity function
This appendix provides the coe�cients for the 3-SOGP model used to approximate the gold behaviour in
the nanocubes computations of section 8.2. Units are the same as in appendix A. The frequency range of
interest is here [200, 750] THz.
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Figure C.1 | Real and imaginary parts of the gold relative permittivity predicted by a 3-SOGP model for gold
nanocubes.

Table C.1 | Coe�cients of 3-SOGP model for gold nanocubes. Quantities are given in PHz.

Parameters 3-SOGP

ε∞ 1.0

c1 496.49

d1 0.0

e1 12.709

f1 127.52

c2 150.19

d2 1.2356

e2 0.0

f2 0.097506

c3 34.069

d3 17.762

e3 16.842

f3 2.7438
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Publications

Research articles

� A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic
structures taking into account non-local dispersion e�ects; N. Schmitt, C. Scheid, S. Lanteri, A. Moreau
and J. Viquerat, submitted

� Analysis of a generalized dispersive model coupled to a DGTDmethod with application to nanophoton-
ics; S. Lanteri, C. Scheid and J. Viquerat, submitted

� Simulation of near-�eld plasmonic interactions with a local approximation order discontinuous Galer-
kin time-domain method; J. Viquerat and S. Lanteri, Photonics and Nanostructures - Fundamentals
and Applications, 18, 43 – 58 (2016)

� A 3D curvilinear discontinuous Galerkin time-domain solver for nanoscale light-matter interactions;
J. Viquerat and C. Scheid, Journal of Computational and Applied Mathematics, 289, 37 – 50 (2015)

� A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave
interaction with metallic nanoparticles; R. Léger, J. Viquerat, C. Durochat, C. Scheid and S. Lanteri,
Journal of Computational and Applied Mathematics, 270, 330 – 342 (2014)

� Recent advances on a DGTD method for time-domain electromagnetics; S. Descombes, C. Durochat,
S. Lanteri, L. Moya, C. Scheid and J. Viquerat, Photonics and Nanostructures – Fundamentals and
Applications, 11, 291 – 302 (2013)

Oral presentations

� Curvilinear discontinuous Galerkin time-domain method for nanophotonics; ACOMEN, Ghent (2014)

� Discontinuous Galerkin time-domain method for nanophotonics; META conference, Singapore (2014)

� Discontinuous Galerkin time-domain method for nanophotonics; WAVES conference, Tunis (2013)

� Simulation de la propagation d’ondes électromagnétiques en nano-optique par une méthode Galerkin
discontinue d’ordre élevé; GDR Ondes GT2, Troyes (2012)
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