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Summary. When analyzing data with complex structures such as high dimensionality and
non-linearity, one often needs sophisticated models to capture the intrinsic complexity.
However, practical implementation using these models could be difficult. Striking a bal-
ance between parsimony and model flexibility is essential to tackle data complexity while
maintaining feasibility and satisfactory prediction performances. In this work, we proposed
the use of Structured Mixture of Gaussian Locally Linear Mapping (SMoGLLiM) when
there is a need to use high-dimensional predictors to predict low-dimensional responses
and there is a possibility that the underlying associations could be heterogeneous or non-
linear. Besides using mixtures of linear associations to approximate non-linear patterns
locally and using inverse regression to mitigate the complications due to high-dimensional
predictors, SMoGLLiM also aims at achieving robustness by adopting cluster-size con-
straints and trimming abnormal samples. Its hierarchical structure enables covariance
matrices and latent factors being shared across smaller clusters, which effectively reduce
the number of parameters. An Expectation-Maximization (EM) algorithm is devised for
parameter estimation and, with analytical solutions; the estimation process is computa-
tionally efficient. Numerical results obtained from three real-world datasets demonstrate
the flexibility and ability of SMoGLLiM in accommodating complex data structure. They
include using high-dimensional face images to predict the parameters under which the
images were taken, predicting the sucrose levels by the high-dimensional hyperspectral
measurements obtained from different types of orange juice and a magnetic resonance
vascular fingerprinting (MRvF) study in which researchers are interested at using the so-
called MRv fingerprints at voxel level to predict the microvascular properties in brain. The
three datasets bear different features and presents different types of challenges. For ex-
ample, the size of the MRv fingerprint dataset demands special consideration to reduce
computational burden. With the hierarchical structure of SMoGLLiM, we are able to adopt
parallel computing techniques to reduce the model building time by 97%. These exam-
ples illustrate the wide range of applicability of SMoGLLiM on handling different kinds of
complex data structure.
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1. Introduction

Regression is a widely used statistical tool. A large number of applications consists of
learning the association between responses and predictors. From such an association,
different tasks, including prediction, can then be conducted. To go beyond simple lin-
ear models while maintaining tractability, non-linear mappings can be handled through
transformation of the data into a so-called feature space using kernel methods (Elisseeff
and Weston, 2001; Wu, 2012). Exploration of local linearity presents an alternative to
model non-linear association. The non-linear relationship can be captured by a mix-
ture of locally linear regression models. In general, conventional mixture of regressions
(De Veaux, 1989; Frhwirth-Schnatter, 2006; Goldfeld and Quandt, 1973) are inadequate
for regression because they assume assignment independence (Hennig, 2000). This means
that the assignments to each of the regression components are independent of the covari-
ate values. In contrast, when a mixture of locally linear models is considered, one can let
the membership indicator of the mixture component depend on the values of the covari-
ates. Consequently, when extended with assignment dependence, models in the family
of mixtures of regressions are more likely to be suitable for regression applications. This
is the case of the so-called Gaussian Locally Linear Mapping (GLLiM) model (Deleforge
et al., 2015) that assumes Gaussian noise models and is, in its unconstrained version,
equivalent to a joint Gaussian Mixture Model (GMM) on both responses and covariates.
GLLiM includes a number of other models in the literature. It may be viewed as an
affine instance of mixture of experts as formulated in (Xu et al., 1994) or as a Gaussian
cluster-weighted (CW) model (Gershenfeld, 1997) except that the response variable can
be multivariate in GLLiM while only scalar in CW models.

The modeling and computational flexibility of Gaussian mixture models makes it pos-
sible to model a rich class of relationships while providing a simple mathematical form
for inference. However, when the number of covariates is large, estimating a function
defined over a large number of variables is generally difficult because standard regres-
sion methods require the estimation of a large number of parameters, which in turns
requires an even larger number of observations. With the increasing necessity to handle
high-dimensional settings, parsimonious models have gained a lot of attention in recent
years. Parsimonious models generally refer to some model instances where the number of
parameters is reduced compared to the full parameterization. When dealing with high-
dimensional data, the goal is to find a good compromise between model flexibility and
parsimony. Complex models cannot be estimated accurately in most real life settings
due to lack of data and simple models may not be able to capture the full data structure.
In terms of number of parameters, the largest costs usually come from high-dimensional
covariance matrices. Diagonal covariance matrices are parsimonious and often tractable
in very high-dimension but they cannot capture complex dependence structures. Sig-
nificant gains are then expected from adopting parsimonious covariance representations.
In model-based clustering (Banfield and Raftery, 1993; Fraley and Raftery, 2002), co-
variance matrices are decomposed into eigenvalues. The number of parameters can be
reduced by assuming constraints on the eigen-decomposition, e.g. (Bouveyron et al.,
2007). Factor models (McLachlan and Peel, 2000) that induce a decomposition into a
diagonal and a low rank matrix also result in a parsimonious parameterization. The
concept of sparsity (Städler et al., 2010; Tibshirani, 1996; Yi and Caramanis, 2015) is
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another very popular example yet different as parsimonious covariance matrices may not
be sparse.

In a mixture of regressions context, the work of (Subedi et al., 2013) uses a factor
analyzer approach (CWFA) to enhance CW modeling when the number of covariates
is large. The high dimensionality issue is overcome by imposing constraints on the co-
variance matrix of the high-dimensional variables. GLLiM, in its more general version,
referred to as hybrid-GLLiM in Deleforge et al. (2015) also adopts such a factor-model
based parameterization to accommodate the high-dimensional covariates (see eq. (20)
in Deleforge et al. (2015)) but with a different interpretation. In particular, the high-
dimensional variables were postulated as a sum of two components: the one that is
linearly related with the low-dimensional responses, and the other which can be pro-
jected onto a factor model and then be presented as augmented latent variables. This
data-augmentation approach is interesting for solving regression problems in many ap-
plication scenarios, whenever certain variables are only partially observed or corrupted
with irrelevant information. This augmentation step, with added latent variables, acts
as a factor analyzer modeling for the noise covariance matrix in the regression model.
GLLiM is based on a joint modeling of both the responses and covariates, observed or
latent. This joint modeling allows for the use of an inverse regression strategy to han-
dle the high dimensionality of the data. Mixtures are used to approximate non-linear
associations. GLLiM groups data with similar regression association together. Within
the same cluster, the association can be considered as locally linear, which can then
be resolved under the classical linear regression setting. However, when the covariate
dimension is much higher than the response dimension, GLLiM may result in erroneous
clusters at the low dimension, leading to potentially inaccurate predictions. Specifically,
when the clustering is conducted at a high joint dimension, the distance at low dimen-
sion between two members of the same cluster (component) could remain large. As a
result, a mixture component might contain several sub-clusters and/or outliers, violating
the model Gaussian assumption (see examples in Figure 1 and Table 1). This results
in a model misspecification effect that can seriously impact prediction performance. A
natural way to lessen this effect is to increase the number of components in the mixture
making each linear mapping even more local. But this also increases the number of
parameters to estimate and therefore requires to be done in a parsimonious manner to
avoid over-parameterization.

In this work, we propose a parsimonious approach which we refer to as Structured
Mixture of Gaussian Locally Linear Mapping (SMoGLLiM) to solve the aforementioned
problems. It follows a two-layer hierarchical clustering structure where local components
are grouped into global components sharing the same high-dimensional noise covariance
structure, which effectively reduces the number of parameters of the model. SMoGLLiM
also includes a pruning algorithm for eliminating outliers as well as determining an
appropriate number of clusters. Moreover, the number of clusters and training outliers
determined by SMoGLLiM can be further used by GLLiM for improving prediction
performance. As an extension, a subsetting and parallelization techniques are discussed
for the efficiency concern.

With the goal of investigating the flexibility in accommodating data structure and the
ability to protect from influences of outliers, we evaluate our method on three datasets
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with different characteristics. The face dataset contains face images, the associated an-
gles of faces and the source of the light. There is no obvious cluster structure at first
glance nor the existence of real outliers. We use this dataset to evaluate the ability
of SMoGLLiM on modeling regression relationship through local linear approximation.
The orange juice dataset contains continuous spectrum predictors and some abnormal
observations. Using this dataset, we aim to show that SMoGLLiM is robust and can
effectively identify outlying observations. We use these two moderate size datasets to
demonstrate how the method works at data with different features and the insensitivity of
tuning parameter selection on a wide range of selection domain. Finally, at our last data
analysis, we study a problem where researchers are interested in predicting the microvas-
cular properties using the so-called magnetic resonance vascular fingerprinting (MRvF).
Hereafter we refer to this dataset as the fingerprint data. In Lemasson et al. (2016), a
synthetic fingerprint dictionary is obtained with computer simulations. The assessment
on a real world fingerprint sample is done by finding the closest match in the synthetic
fingerprint dictionary, which provides a connection of microvascular parameters between
the synthetic data and the real world data. Here we focus on predicting measurements of
two parameters: blood volume fraction (BVf) and apparent diffusion coefficient (ADC).
Although the results of using dictionary matching on the BVf is satisfactory, there is still
room for improvement on predicting ADC. In addition, finding appropriate dictionary
matches for real-world observations can be computationally costly. SMoGLLiM pro-
vides a model-based alternative that finds the intrinsic relation between microvascular
parameters and the fingerprints. In contrast, SMoGLLiM takes only 25% of the time
required by the dictionary matching approach, which is implemented using MATLAB
with parallel computing toolbox, in conducting prediction. On top of that, we explore
the use of the hierarchical structure of SMoGLLiM that can adopts parallelization tech-
niques for handling large dataset. This practice further reduces the original processing
time by about 97%. Results show that SMoGLLiM can provide comparable prediction
performance on BVf and smaller prediction error on ADC.

This paper is organized as follows. In Section 2 we explain and illustrate the issue
encountered with unstructured GLLiM in high-dimensional settings. In Section 3, we
present the structured alternative that we propose. The experiment results on three real
datasets are provided in Section 4. For the analysis of the fingerprint dataset, we also
illustrate a parallelization/aggregation implementation of SMoGLLiM to further reduce
the computation time. Finally, Section 5 concludes with discussion and potential future
directions.

2. Unstructured Gaussian Locally Linear Mapping (GLLiM)

To predict low-dimensional data X ∈ RL using high-dimensional data Y ∈ RD, GLLiM
elegantly copes with several challenging issues simultaneously. The high-to-low mapping
difficulty is circumvented by inverse regression. The role of the predictors and responses
are exchanged. And then the desired high-to-low relationship could be easily converted
from the low-to-high associations under a proper model construction. Non-linearity is ap-
proximated by mixtures of linear associations. The parameter estimation can be carried
out by an Expectation-Maximization algorithm, which nicely incorporates estimation of
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latent variables.
The original GLLiM model is hierarchically defined by the following equations:

p(Y = y|X = x, Z = k; θ) = N (y;Akx+ bk,Σk). (1)

p(X = x|Z = k; θ) = N (x; ck,Γk), (2)

p(Z = k; θ) = πk.

The model parameters are: θ = {ck,Γk, πk, Ak, bk,Σk}Kk=1.
A distinct feature of GLLiM is that X needs not be a completely observable vector.

In fact, it is set to have X> = (T>, W>), where T contains the observable covariates
and W, being latent, absorbs the remaining dependency and variation in Y. The inclusion
of W strengthens the chance to reach validity of (1).

The issue with GLLiM is that the high dimensionality of the data may have an
unexpected impact on the posterior probability of the cluster assignment. When D >>
L, this comes from the following observation: in the ith iteration of E-step with θ̂ =
θ(i), the posterior probabilities rnk (Equation (27) in Deleforge et al. (2015)) could be
computed as:

r̃nk = p(Zn = k|xn, yn; θ(i)) =
π
(i)
k p(yn, xn|Zn = k; θ(i))∑K

j=1 π
(i)
j p(yn, xn|Zn = j; θ(i))

(3)

for all n and all k, where p(yn, xn|Zn = k; θ(i)) can be computed as p(yn|xn, Zn =
k; θ(i))p(xn|Zn = k; θ(i)). The first term is a density with much higher dimension (D)
so that its value could dominate the product. In addition, xn can be decomposed into
two parts: the observed variable tn and the latent variable wn. The component wn

reflects the remaining variation in yn that cannot be explained by yn’s association with
tn. When wn accounts for explaining most of the variation in yn, the clustering outcome
would highly depend on wn and weakens the ability in detecting sub-clusters in T .

Therefore, although GLLiM assumes that within each cluster p(X = x|Z = k; θ)
is Gaussian and centered on ck, in practice, the model groups data according to the
high-dimension term and could fail in imposing the Gaussian shape on the tn’s. In
other words, the model rather chooses the clusters to satisfy the assumption in Equation
(1). And this induces a clustering of the (xn, yn)’s into groups within which the same
affine transformation holds. Thus, a cluster could contain several sub-clusters and/or
outliers since the Gaussian assumption on T , as part of the X, in Equation (2) is some-
times neglected. This may cause a serious impact on the estimation of ck and Γk and
consequently on the prediction step.

We illustrate this issue by presenting an example using a face dataset (Tenenbaum
et al., 2000). This dataset contains 698 images (of size 64 × 64 and being further
condensed to 32 × 32). The pose of each image is defined by three variables of T :
Light, Pan and Tilt, as shown in Figure 1 (a). We adopt GLLiM to predict these T ’s
(low-dimensional) using the image (high-dimensional). The superiority of GLLiM in
prediction, comparing to multiple existing approaches, for this data set was numerically
illustrated in Deleforge et al. (2015).
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Figure 1(b) shows the scatter plot of T within Clusters 7 and 13, grouped by GLLiM.
By visual inspection, both clusters seem to consists of two or more sub-clusters. In
GLLiM, samples within the same cluster are assumed to follow Gaussian distributions.
This sub-cluster structure, however, violates the assumption and potentially increases
the prediction errors. We demonstrate the difference of prediction performance before
and after accounting for the sub-cluster structure in Table 1. We use prediction Sum
of Squared Error (SSE) for testing data pre- and post cluster-division. We observe that
the prediction errors are mostly reduced if we account for the sub-cluster structure.

Dividing samples at low dimension is an effective and straightforward solution for
this issue. However, we could obtain small sub-clusters after division and the prediction
variance of these small sub-clusters could be large. In Table 1, Images 114 and 223 were
assigned to small and/or tight local clusters and the prediction of T for these two im-
ages become worse after cluster-division. Conceptually, small clusters could damage the
prediction performances for several reasons: the small number of observations in such
a cluster lead to estimates with large variation; a small cluster with a small covariance
matrix determinant (volume) could lead to instability of the whole likelihood-based algo-
rithm, and a small/tight cluster could consider a close-by testing sample unfit and force
it to be predicted by another less suitable cluster with a larger within-cluster covariance.
The last consideration is not relevant to model building but plays an important role in
prediction precision.

This observation motivates us to look into enhancing prediction stability and accuracy
by eliminating small clusters in the training samples. Another factor that would influence
stability is the presence of outliers. We further explore both issues in Section 4.

(a) (b)

Fig. 1: The clustering results of the face dataset obtained from GLLiM: (a) six face
images from Cluster 7; (b) scatter plot of T for points within Cluster 7 and 13 clustered
by GLLiM. Data with orange color are from Cluster 7, and data with green color are
from Cluster 13. Three variables are (Light, Pan, Tilt).
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Table 1: The comparison of original and post cluster-division SSE. The improved ratio
is calculated as the ratio of difference of SSE from pre- to post cluster-division over
the original SSE. The value is positive if the procedure reduces the SSE, and negative,
otherwise.

Image ID GLLiM cluster Original SSE Post-Division SSE Improved ratio
56 7 0.306 0.043 86.03%
223 7 0.016 0.180 -1039.83%
293 7 0.060 0.023 61.27%
302 7 0.087 0.003 96.99%
114 13 0.114 0.118 -2.93%
204 13 0.307 0.073 76.19%
294 13 3.119 0.120 96.15%

3. Structured Mixture of Gaussian Locally Linear Mapping (SMoGLLiM)

In our proposed work, we intend to strike a balance between model flexibility and vari-
ation reduction in the estimated predictive model, with the goal of predicting the low-
dimensional observable variables, T, using the high-dimensional Y . These predictive
models need not be the true model but they could be effective in prediction. To present
the fundamental concepts with clarity, we will first describe the model structure when
X = T, with minimum required notations. The scenario of X containing W is easily
extended in Section 3.2.

3.1. Model description
The joint probability of high-dimensional data Y and low-dimensional data X can be
written as:

p(Y = y,X = x; θ) =

K∑
k=1

M∑
l=1

p(Y = y|X = x, Z = k, U = l; θ)p(X = x|Z = k, U = l; θ)p(Z = k, U = l; θ),

where θ denotes the vector of parameters; Z and U are, respectively, latent indicators of
global and local cluster assignment. The linear relationship between X and Y is given
by the model below:

Y =

K∑
k=1

M∑
l=1

I(Z = k, U = l)(AklX + bkl + Ek),

where I is the indicator function, Akl ∈ RD×L and bkl ∈ RD maps X onto Y , and
Ek ∈ RD×D is the error term that absorbs the remaining uncertainty. Here, we let
the local cluster size M(k) ≡ M for notation simplicity only. We assume, within a
global cluster, all local clusters share the same error structure which follows zero-mean
Gaussian with covariance matrix Σk. We obtain:

p(Y = y|X = x, Z = k, U = l; θ) = N (y;Aklx+ bkl,Σk).
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The model is completed by assuming X follows a mixture of Gaussian and defining a
prior for clustering assignment:

p(X = x|Z = k, U = l, θ) = N (x; ckl,Γkl),

p(Z = k, U = l, θ) = ρkl,

where ckl ∈ RL, Γkl ∈ RL×L and
∑K

k=1

∑M
l=1 ρkl = 1. It follows that the parameters in

the inverse regression model are:

θ = {ckl,Γkl, ρkl, Akl, bkl,Σk}K,M
k=1,l=1.

The inverse conditional density can be written as:

p(Y = y|X = x; θ) =

K∑
k=1

M∑
l=1

ρklN (x; ckl,Γkl)∑K
i=1

∑M
j=1 ρijN (x; cij ,Γij)

N (y;Aklx+ bkl,Σk),

and the conditional density in the forward regression model is expressed as:

p(X = x|Y = y; θ∗) =

K∑
k=1

M∑
l=1

ρ∗klN (y; c∗kl,Γ
∗
kl)∑K

i=1

∑M
j=1 ρ

∗
ijN (y; c∗ij ,Γ

∗
ij)
N (x;A∗kly + b∗kl,Σ

∗
kl),

where θ∗ denotes the parameter vector in the forward regression model, as:

θ∗ = {c∗kl,Γ∗kl, ρ∗kl, A∗kl, b∗kl,Σ∗kl}
K,M
k=1,l=1.

Note that θ∗ has closed-form expressions as functions of θ, which makes it computation-
ally efficient. The relation is obtained analytically with:

c∗kl = Aklckl + bkl,

Γ∗kl = Σk +AklΓklA
>
kl,

ρ∗kl = ρkl,

A∗kl = Σ∗klA
>
klΣ
−1
k ,

b∗kl = Σ∗kl(Γ
−1
kl ckl −A

>
klΣ
−1
k bkl),

and Σ∗kl = (Γ−1kl +A>klΣ
−1
k Akl)

−1.

The prediction can be done by taking expectation over the forward conditional density:

E[X|Y = y] =

K∑
k=1

M∑
l=1

ρ∗klN (y; c∗kl,Γ
∗
kl)∑K

i=1

∑M
j=1 ρ

∗
ijN (y; c∗ij ,Γ

∗
ij)

(A∗kly + b∗kl) (4)

3.2. SMoGLLiM model with partially-latent responses
Recall that the low-dimensional data X contains a latent component W . Namely,

X =

[
T
W

]
,
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where T ∈ RLt is observed and W ∈ RLw is latent and L = Lt + Lw. It is assumed that
T and W are independent given Z, and so are W and U. According to the decomposition
of X, the corresponding mean (ckl), variance (Γkl) and regression parameters (Akl) of
X, at the local-cluster level, are given as:

ckl =

[
ctkl
cwk

]
, Γkl =

[
Γt
kl 0
0 Γw

k

]
, and Akl = [At

kl A
w
k ]. (5)

That is, when Z = k, U = l, at the local-cluster level, T ∼ N(ctkl,Γ
t
kl); when Z = k, at

the global-cluster level, W ∼ N(cwk ,Γ
w
k ). It follows that locally, the association function

between the high-dimensional Y and low-dimensional X can be written as:

Y =

K∑
k=1

I(Z = k)

{
M∑
l=1

I(U = l)(At
klT + bkl) +Aw

kW + Ek

}
, (6)

Finally, the parameter vector θ in the inverse regression model is rewritten as: θ =
{ρkl, ctkl,Γt

kl, A
t
kl, bkl, c

w
k , Γw

k , Aw
k ,Σk}K,M

k=1,l=1.

It follows that (6) rewrites equivalently as

Y =

K∑
k=1

I(Z = k)

{
M∑
l=1

I(U = l)(At
klT + bkl) +Aw

k c
w
k + E′k

}
, (7)

where the error vector E′k is modeled by a zero-centered Gaussian variable with a D ×D
covariance matrix given by

Σ′k = Σk +Aw
k Γw

kA
w>
k . (8)

Considering realizations of variables T and Y , one may view this as a supervised model
in which the noise covariance has a specific structure, namely (8), where Aw

k Γw
kA

w>
k is

at most a rank-Lw matrix. When Σk is diagonal, this structure is that of factor analysis
with at most Lw factors, and represents a flexible compromise between a full covariance
with O(D2) parameters on one side, and a diagonal covariance with O(D) parameters
on the other.

The model parameters, θ, can be estimated using the Expectation-Maximization
(EM) algorithm (see Appendix A.1). We also discover that the model stability plays
an important role in the prediction performance. SMoGLLiM controls the cluster size
and removes abnormal observations to guard against disturbances caused by outliers or
unstable clusters using a refined alternative whose details can be found in Appendix A.2.

4. Numerical Investigation

We analyze three datasets and use the outcomes to illustrate the usage of the proposed
method. Key features of each data, thus the type of data they represent, are reported
in the corresponding subsections. Our primary focus is on the analysis of fingerprint
data but the other two smaller datasets illustrate the wide usage of the method and the
use of tuning procedure. Throughout, unless otherwise noted, we use squared error to
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evaluate prediction merit for each data point. The squared error (E2) for each testing
sample i is calculated using:

E2
i = ||tpredi − ti||22,

where tpredi is the prediction of testing data i and ti is the true value. We also
calculate the prediction mean squared error (MSE) among all testing samples with

MSE =
∑Ntest

i=1 E2
i /Ntest, where Ntest is the total number of testing samples.

We calculate and compare the MSE or the quantiles of E2 over several methods:

(a) SMoGLLiM: This is the proposed method. The user-defined parameters K and Lw

are set to the value using the method described in Appendix A.3. The number of
local clusters M is set to 5 to reflect the possible sub-cluster structure. In each
global cluster, the number of local clusters varies and depends on the structure of
the dataset. Some of the local clusters would be dissolved so the number of local
clusters could be less than M . The initial cluster assignment is done by dividing
the GLLiM clustering outcomes at the low dimension using R package mclust.
As stated before, the refined version of the EM algorithm is used throughout the
version. For every experiment, we follow the suggestion described in the previous
section. We set minSize = 5 for all three analyses and post-analysis checks at the
neighborhood of 5 suggest this is an appropriate choice. The prediction MSE using
different values of dropThreshold would be calculated and compared.

(b) GLLiM: The original GLLiM algorithm. GLLiM is compared to other methods
under the same settings of K and Lw. The initial cluster assignment is done by
applying Gaussian Mixture Model to a dataset that combines the low- and high-
dimensional T and Y together.

(c) GLLiM Structure: This method adopts the number of mixtures learned structurally
by SMoGLLiM. In addition, outliers identified by SMoGLLiM are removed from
the training dataset. We adopts the same tuning parameters as GLLiM and the
initial conditions are obtained from the outcomes of SMoGLLiM. The key difference
between GLLiM Structure and SMoGLLiM is that GLLiM Structure uses local
estimated covariance, which may be more appropriate for a large and more data
set. Its effectiveness also suggests an additional usage of SMoGLLiM, in terms of
structure learning and identification of outliers.

4.1. The face dataset
The face dataset was analyzed in the original GLLiM paper (Deleforge et al., 2015).
For this dataset, we are interested in predicting the pose parameters (Lt = 3) using the
image information. The size of each image is condensed to 32× 32, and thus D = 1024 .
In addition, T is standardized so that they are equally weighted in each low-dimensional
direction. The histograms of the three T variables bear no clustering structure. Conse-
quently, the mixture modeling serves the purpose of local linear approximation and the
inverse regression enables dimension reduction.

For each run, we select 100 testing samples and 598 training samples. We repeated
this procedure 20 times to establish 2000 testing samples. According to the approach
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Table 2: The prediction MSE and the average cluster number of the face dataset when
dropThreshold = 0.5.

K=10 K=15 K=20 K=25
MSE #Cluster MSE #Cluster MSE #Cluster MSE #Cluster

GLLiM 0.0711 10.00 0.0441 15.00 0.0369 20.00 0.0321 25.00
SMoGLLiM 0.0314 43.90 0.0318 51.35 0.0294 53.75 0.0295 53.45
GLLiM Structure 0.0307 43.90 0.0301 51.35 0.0291 53.75 0.0288 53.45

described in Appendix A.3, we run cross-validation on K from 10 to 25, Lw from 1 to
10. The range of Lw is extended to 15 to demonstrate the trend as Lw increases. The
cross-validation results in Figure 2(a) suggest that K = 20, Lw = 9. It is also observed
that the change of prediction error is relatively small when Lw exceeds a certain value.
Therefore, we fix the number of latent factors and compare the prediction performance
under K = 10, K = 15 and K = 25.
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Fig. 2: Results for different user-defined parameters of the face dataset. (a) The
SMoGLLiM cross-validation results for different K and Lw. (b) The prediction MSE of
different K and different methods against different dropThreshold.

Figure 2(b) shows prediction outcomes under different values of dropThreshold. We
observe that for different methods and different K, the prediction MSEs are not sensitive
to the values of dropThreshold. Thus, we compare the prediction MSE of SMoGLLiM,
GLLiM Structure when dropThreshold = 0.5 to GLLiM in Table 2. The prediction MSE
for GLLiM decreases as K increases, which indicates that more clusters could be helpful
to capture the non-linear relationship between Y and T . For SMoGLLiM, we observe
that the prediction MSE is not sensitive to the choice of K. In addition, the numbers
of clusters are similar under different choices of K. This indicates that SMoGLLiM
could adjust itself to reach the number of clusters suitable to its setting. As for GLLiM
Structure, the prediction MSE’s are slightly smaller than those of SMoGLLiM. This is
because GLLiM Structure estimates all parameters using local clusters, local covariances,
and the prediction would be less biased when the local structures sufficiently differ.
In the face dataset, there is no obvious cluster structure and, as a result, clustering
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only serves the purpose of improving local approximation. Thus, the prediction MSE
for GLLiM Structure would be smaller. However, the differences of prediction MSE’s
between SMoGLLiM and GLLiM Structure are small, which implies that the settings
learned from SMoGLLiM are appropriate, even though SMoGLLiM imposes a global-
cluster structure when there is none. Overall, the prediction performance for SMoGLLiM
is similar when K = 20 and K = 25. As for GLLiM Structure, the MSE is smaller when
K = 25 but the difference is negligible.

4.2. The orange juice dataset
The orange juice dataset contains the spectra measured on different kinds of orange
juice (N = 218). The goal is to use the spectra to predict the level of sucrose (Lt = 1).
We follow the step described in Perthame et al. (2018) and decompose the spectra on a
spline basis with (D = 134) to make D ≈ N . This dataset is known for the presence of
outliers; the realization of Y and T is given in Figure 3.

We setup the following prediction evaluation procedure. In each run, we randomly
select 20 testing samples from the main population (excluding outliers). The remain-
ing 198 samples (including outliers, unless otherwise specified) are used for training.
These outliers were identified through Leave One Out Cross Validation (LOOCV) using
GLLiM, with K = 10 and Lw = 2. Although the set of outliers may differ for different
selection of K, Lw, the severe outliers are always selected and they are included here.
We identify 11 points, which are the observations with top 5% of the prediction E2s
(above 4.8) among all data points, as outliers. Removing outliers from testing data pre-
vents the summarized outcomes being overwhelmed by prediction results of few points,
which potentially make the differences among methods less obvious. All methods were
evaluated using the same settings.

Figure 4(a) shows the cross-validation results, which suggests the use of K = 5,
Lw = 8. For comparison purpose, we also provide MSE results for K = 10 and K = 15.
The rest of the settings are the same as the experiment settings used for the face dataset.

To evaluate the influence of outliers on GLLiM, we conduct an analysis in which
we use the same cluster number as in GLLiM Structure but without removing training
outliers. This method is referred to as GLLiM Outlier. In addition, we consider SLLiM
in Perthame et al. (2018) provided by the R package xLLiM. SLLiM is a counterpart of
GLLiM that accommodates abnormal samples using Student’s t-distribution. Precisely,
instead of normal, the high-dimensional Y is now modeled by a mixture of K generalized
multivariate Student’s t-distributions, using the structure given in Section 5.5 (p.94) of
Kotz and Nadarajah (2004). We also compare SLLiM performances by using the same
cluster number learned structurally by SMoGLLiM. We refer to the resulting procedure
as “SLLiM Structure”. We use the default settings in xLLiM for the remaining SLLiM
configurations.

Figure 4(b) shows the prediction MSE for different dropThreshold. The prediction
MSEs vary, mainly reflect the high variation in this data set, partially due to out-
liers. For a small dropThreshold, the number of identified training outliers is more
than expected. This reduces the training data size and makes the prediction unreliable
. As dropThreshold reaches a reasonable value, the prediction performance becomes
better. However, more and more abnormal training samples would be included in the
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Fig. 3: The orange Juice dataset. The upper panel shows the high-dimensional data (Y )
and the lower one shows the low-dimensional data (T ).
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Fig. 4: Results for the user-defined parameters of the orange juice dataset. (a) The
SMoGLLiM cross-validation results for different K and Lw. (b) The prediction MSE of
different K and different methods against different dropThreshold.

training dataset as dropThreshold keeps increasing. These outlying data enlarge the
model variance and downgrade the prediction performance. Table 3 shows the results
for dropThreshold = 0.5. We observe that for K = 5, the cluster number is not suf-
ficiently large for GLLiM to capture the non-linear trend in the data, which results in
a relatively large prediction MSE. SMoGLLiM, on the other hand, adjusts the cluster
number automatically and the prediction errors are smaller. In addition, SMoGLLiM
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Table 3: The prediction MSE and the average cluster number of the orange juice dataset
when dropThreshold = 0.5.

K=5 K=10 K=15
MSE #Cluster MSE #Cluster MSE #Cluster

GLLiM 0.1259 5.00 0.1210 10.00 0.0918 15.00
SMoGLLiM 0.0587 9.95 0.0681 11.85 0.0692 12.80
GLLiM Structure 0.0621 9.95 0.0742 11.85 0.0746 12.80
GLLiM Outlier 0.0976 9.95 0.1171 11.85 0.1044 12.80
SLLiM 0.1039 5.00 0.0788 10.00 0.0706 15.00
SLLiM Structure 0.0907 9.95 0.0747 11.85 0.0721 12.80

removes training outliers that would deteriorate the model performance. This explains
why even though the cluster number is large enough (K = 10, K = 15), GLLiM still
suffers for large prediction errors. We can also observe the benefit of removing outliers
by comparing GLLiM Structure and GLLiM Outlier. The prediction errors for GLLiM
Structure are smaller than those produced by GLLiM Outlier and the only difference
between GLLiM Structure and GLLiM Outlier is whether training outliers, identified
by SMoGLLiM, are removed. There are 11 outliers in the training dataset. SMoGLLiM
could effectively identify and remove all of them. In addition to these outliers, some po-
tential outlying samples that could result in unstable model are trimmed as well. Overall,
about 6% to 10% of the training samples would be removed by SMoGLLiM. SLLiM and
SLLiM Structure use t-distributions to accommodate the existence of outliers. They are
expected to perform better than their Gaussian counterparts (GLLiM and GLLiM Out-
lier). When K is small, it is observed that accommodating outliers with t-distributions is
not as effective as removing them by comparing SLLiM Structure and GLLiM Structure.
However, as K = 15, the cluster size is small and removing outliers would further reduce
the cluster size. Under K = 15, SMoGLLiM outperforms other methods since it controls
the cluster size for robustness concern. In addition, SMoGLLiM estimates the covari-
ance matrices under global cluster level and this estimation is more reliable compared to
GLLiM Structure, which estimates covariance matrices locally. SLLiM does not remove
any samples and thus the performance would be better than GLLiM Structure under
this situation. Although removing outliers is more effective, accommodating outliers
may still be an alternative to combat outliers when the cluster size is the concern.

4.3. A magnetic resonance vascular fingerprint dataset
It is of great interest to scientific community to be able to efficiently assess microvascular
properties, such as, blood volume fraction, vessel diameter, and blood oxygenation, in
brain so that the ability in diagnosis and management of brain diseases can be improved.
Recently, a new approach called magnetic resonance vascular fingerprinting (MRvF)
was proposed as an alternative to overcome the limitations of analytical methods in
measuring microvascular properties. The approach was built on a system in which the
signal acquired in each voxel, also called “fingerprint”, was compared to a dictionary
obtained from numerical simulation. Finding the closest match to a fingerprint record
in the dictionary allows a direct link between the parameters of the simulations and the
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microvascular variables (also referred to as parameters in these studies) at the image
voxel (Lemasson et al., 2016; Ma et al., 2013).

A synthetic MRv fingerprint (hereafter referred to as fingerprint) dataset composed
of 1, 383, 648 observations was created to serve as a “search/match” library. Each obser-
vation in the library consists of a fingerprint measurement and associated parameters:
mean vessel radius (Radius), Blood Volume Fraction (BVf) and a measurement of blood
oxygenation (DeltaChi). The goal is to predict these parameters (Lt = 3) using the
fingerprint measurement (D = 32). In addition to these three parameters, other param-
eters (variables) that have influence over the fingerprint measurements include Apparent
Diffusion Coefficient (ADC), vessel direction (Dir) and vessel geometry (Geo).

Model building time is a critical issue for large and dataset. As the number of
samples increases, the time of computing posterior probability in the E-step increases.
In addition, it takes longer for the EM algorithm to converge and it would be more
difficult to find a proper initial setting. To speed up the computation, we could take
advantage of the hierarchical structure of SMoGLLiM. The model building step can
be accelerated by subsetting the dataset into smaller groups and applying SMoGLLiM
on the resulting groups in parallel. Finally, the prediction can be conducted using the
estimated model aggregated from different groups.

We divide the synthetic library into 20 groups (see Appendix B for more details)
according to different combinations of Dir (6 levels), Geo (3 categories) and Radius (3
levels). In addition, we observe the peak value in fingerprint could play an important
role when forming cluster. Thus, groups are further divided into “Low-peak” and “High-
peak” subgroups, according to the average of the three highest values in the fingerprint
signal. The threshold to separate these two subgroups is set to be 5.

Training is performed within each group separately. In each group, the cluster mem-
bership is estimated and model parameters are updated based on the cluster member-
ship iteratively until convergence. Once the models for each group are obtained, the
prediction can be conducted by combining models from different groups. This can be
easily done by creating a new latent global-cluster indicator, Z∗ = (G,Z), where G
indicates the group assignment and Z is the cluster assignment within group G. By
replacing Z with Z∗, the backward parameter vector, θ, aggregates all backward pa-
rameters from different groups. The forward regression model parameter vector, θ∗, can
be updated accordingly using equations described in Section 3.1. Prediction is done by
taking expectation over the forward conditional density with the newly updated θ∗. One
key potential drawback of adopting group-division is using unsuitable group-assignment
strategy. When this happens, the posterior probability of a data point belonging to a
group A given the estimated model parameters could remain high even though this data
was originally assigned to group B. Thus, to accommodate the group-division, parallel
computing strategy, we create a latent global cluster indicator Z∗. Replacing Z with Z∗

in (11) and summing all rnk in (11) with Z∗ belonging to a group g produce the poste-
rior probability of data point n belonging to that group g. The group with the highest
group posterior probability represents the most suitable group assignment and it bears
the largest weights when conducting prediction. If a data point is indeed assigned to
the group it originally belongs to, we consider the group assignment being accurate. In
our analysis, the accuracies of group assignment for SMoGLLiM and GLLiM Structure
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are 92.11%, 92.34%, respectively. A similar rate of 93.62% is obtained for the dictionary
matching method, in which the accuracy of group assignment is obtained when a point
and its closest match identified for prediction belong to the same group. Additionally,
the highest group posterior probability is greater than 0.99 for over 97% of the data.
These numbers imply that, for the analysis of this fingerprint dataset, our strategy on
how the groups should be formed in conducting parallel computing is adequate.

In terms of saving in computation time via group-division and parallel computing,
major factors influencing the model building time are the number of training samples
and the total number of clusters. When dividing into groups, the time allotted to realize
these 2 tasks could be effectively reduced and model could be built in parallel.

When the training dataset is divided into groups and parallelization is adopted,
for SMoGLLiM and GLLiM Structure, it takes about 549.86 and 362.94 seconds, re-
spectively, for each method to complete the EM computation. In comparison, it takes
19341.51 and 14107.63 seconds without using the parallel computing strategy. We eval-
uate and compare the performance of different methods through cross-validation. The
numbers of testing and training data are picked so that every data in the smallest group
could be covered in 20-fold cross-validation. In addition, we add a small amount of the
real image data in the training dataset for calibration; fingerprint samples from the real
world were noisier than their synthetic counterparts. This practice enables the training
model to readily accommodate the real fingerprint samples in prediction. The ratio of
the synthetic samples to the real image samples is 4 to 1. For each fold, there would
be 68920 training samples and 2040 testing samples. The cluster number and latent
factor number are selected using the method described in Appendix A.3 and were set to
K = 1240 and Lw = 9, respectively.

In Lemasson et al. (2016), numerical performances of dictionary matching method
were presented. For comparison purpose, we implement the dictionary matching method
adopted in Lemasson et al. (2016). The coefficient of determination (r2) is used to
measure the similarity between a testing sample and the training samples (dictionary).
The coefficient of determination, r2, between testing sample ytest and the training sample
ytrain is calculated as:

r2 = 1−
∑D

d=1(y
test
d − ytraind )2∑D

d=1(y
test
d − ȳtest)2

, (9)

where ȳtest = 1
D

∑D
d=1 y

test
d . The matched fingerprint is the training fingerprint with the

largest r2 and we could predict the parameters of the testing data using the matched
fingerprint.

Table 4 shows the 50%, 90% and 99% quantiles of the squared errors for different
parameters using different methods through cross-validation. The outcomes reported
under the 50th and 90th percentiles give the indication of “average” and “almost-all”
prediction performances for each method. The 99th percentile values allow the compar-
isons of worse-case scenarios. We observe that the prediction is close to the true value for
90% of the predicted values. Using GLLiM, we would obtain slightly large values of E2

for Radius. However, all four methods reach similar values of E2 for Radius at the 99%
quantile. For BVf, GLLiM performs worse than the other methods but its 99% squared
error level is still acceptable. The prediction performances of BVf for all methods are
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Table 4: The 50%, 90% and 99% quantiles of squared error using different methods.

Dictionary matching GLLiM SMoGLLiM GLLiM Structure
50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

Radius < 10−4 0.2843 21.44 < 10−4 0.3114 21.44 < 10−4 0.2144 21.44 < 10−4 0.2144 21.44
BVf < 10−4 < 10−4 0.0023 < 10−4 < 10−4 0.0406 < 10−4 < 10−4 0.0091 < 10−4 < 10−4 0.0242

DeltaChi < 10−4 0.0143 0.3571 < 10−4 0.0132 0.5972 < 10−4 0.0009 0.2236 < 10−4 0.0007 0.3361

Table 5: The mean predicted values within ROIs of different vascular parameters from
different categories.

9L C6 F98 Stroke Healthy
Radius BVf DeltaChi Radius BVf DeltaChi Radius BV DeltaChi Radius BVf DeltaChi Radius BVf DeltaChi

Dictionary matching 21.85 14.49 0.98 13.59 4.17 0.77 11.56 3.86 0.65 14.69 4.22 0.60 8.16 3.58 0.76
GLLiM 20.14 14.33 0.93 16.01 4.01 0.76 13.14 3.96 0.66 13.51 4.49 0.63 7.96 3.51 0.72

SMoGLLiM 22.12 14.71 1.03 13.67 4.25 0.79 11.13 4.01 0.62 14.31 4.13 0.62 8.54 3.63 0.74
GLLiM Structure 21.52 14.25 0.94 13.81 4.52 0.74 11.23 3.97 0.61 14.41 4.25 0.63 8.34 3.56 0.80

better than those of other parameters, with the relationship between BVf and Y being
the strongest among all parameters. For DeltaChi, the E2s for dictionary matching are
larger than those of other methods at the 90% quantile level. At the 99% quantile level,
its performances become similar to those of SMoGLLiM and GLLiM Structure. Note
that the model is built using Radius, BVf, ADC and DeltaChi. The parameter ADC is
included for evaluating the prediction performance on the real image data. However, for
a model-based approach, it is known that ADC is not a very effective parameter and its
inclusion in fact could downgrade the overall prediction performances. When the goals
do not include predicting ADC, we would obtain a slightly better predictive model to
predict other parameters, including BVf, as shown in Appendix B.

We now apply these methods to a fingerprint data set collected at an animal study.
This dataset contains samples from 115 rats categorized into 5 different groups: healthy,
3 kinds of tumors (9L, C6 and F98) and stroke. For each rat, there are 5 brain slices
of 128×128 voxels and each voxel contains 32 dimension fingerprint information. For
each slice, the lesion (unhealthy) and the striatum (healthy) areas are labeled and they
form the region of interest (ROI). Here, BVf is of particular interest since its values
are different in the lesion and the striatum region, which can be used to distinguish
healthy and unhealthy regions. Figure 5 shows the predicted BVf image using different
methods. As indicated in Lemasson et al. (2016), the values of true BVf is not available
at the voxel level, and instead, they are measured over the whole ROI’s. Nevertheless,
the comparison between the true values and those obtained by dictionary matching
method, at the ROI level, indicates that the method has successfully provided close-
to-truth match; see Lemasson et al. (2016). Table 5 shows the mean prediction results
within the ROI’s obtained by different methods. Three additional methods considered
here, besides the method used in Lemasson et al. (2016), are GLLiM, SMoGLLiM and
GLLiM Structure. All four methods provide similar prediction results.

There are 1,385,509 samples in the real image dataset. For the dictionary match-
ing method using a parallel for-loop (parfor) and a pre-processing technique as in
Lemasson et al. (2016), it took about 2.4 hours (precisely 8639.53 seconds) to match
the whole real image samples to the training dataset (N train = 1, 383, 648). A direct
computation without parfor and pre-processing took 429507.79 seconds and reach the
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GLLiM Structure
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Fig. 5: The predicted BVf images of one animal from the 9L group using either (a)
dictionary matching, (b) GLLiM, (c) SMoGLLiM or (d) GLLiM Structure. The lesion
ROI and striatum ROI are labeled in red and green, respectively.

same outcomes. For the model-based method, utilizing the grouped structure and the
parallel computing technique, it takes 1058.32/2133.51/1922.37 seconds for GLLiM/S-
MoGLLiM/GLLiM Structure to process the real image dataset. Thus, the prediction
procedure of GLLiM/SMoGLLiM/GLLiM Structure is much more efficient than the
dictionary matching method.

The parameter ADC was not thoroughly investigated in Lemasson et al. (2016). The
main reason is that ADC values, obtained using the dictionary matching approach, were
not comparable as the ones measured in vivo by MRI. Since, in vivo ADC values are
available at the voxel-level, understanding how the synthetic data and real measurements
differ for a given parameter is scientifically important to developing new instruments and
future knowledge advancements. Here, we study ADC and use it to evaluate the pre-
diction performances of different methods. Figure 6 shows the true ADC image and the
images of the differences between the true and predicted ADC values. The differences
are shown in the ratio against the signal levels for each ROIs. Most of the predictions
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Table 6: The 50%, 90% 99% quantiles of ADC squared errors for different methods on
different image categories.

Dictionary matching GLLiM SMoGLLiM GLLiM Structure
50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

9L 1.1180 3.9803 10.6829 0.2392 0.5684 14.5668 0.1132 0.7613 11.8721 0.1018 0.7154 10.9574
C6 1.1208 4.4719 14.4888 0.3043 2.6091 26.7575 0.3252 1.9840 22.5427 0.3138 1.7764 20.0213
F98 1.0994 4.2373 14.4888 0.3802 3.4129 55.4479 0.2951 2.3672 35.3199 0.2801 2.4129 50.8133

Stroke 1.1663 5.8045 14.8888 0.4779 4.5668 66.1164 0.3218 3.0975 55.7821 0.3192 3.1424 53.9315
Health 1.0931 3.8086 7.7912 0.2131 1.2510 14.5668 0.1527 1.1087 11.9597 0.1054 1.1145 13.2165

made by dictionary matching are deviated from the true values. On the other hand,
SMoGLLiM and GLLiM Structure provide better ADC images. There are some voxels
with extreme differences (dark red or dark blue) that all methods cannot predict well.
The prediction on these voxels are limited by the information provided by the synthetic
fingerprint data. If no suitable training information could be used for conducting pre-
diction, the nearest training samples would be used and results in unreliable outcomes.
This would be discussed later in details. Table 6 shows the 50%, 90% and 99% quantiles
of the ADC squared errors. We still obtain predictions with large errors using GLLiM/S-
MoGLLiM/GLLiM Structure. However, for majority of the data, the squared errors are
smaller than those obtained by the dictionary matching method. We figure out that the
data with large errors come from the High-peak subgroup and there is no suitable cluster
to conducting prediction for these data. For GLLiM/SMoGLLiM/GLLiM Structure, if
a suitable cluster for conducting prediction does not exist, the cluster with the closest
Mahalanobis distance would be applied for prediction. However, the largest membership
posterior probability rnkl among all k, l in Equation (10) would be smaller than the ma-
jority of the data. This information could be utilized to identify unreliable prediction
results. The worst case of dictionary matching seems to produce smaller prediction error
when being compared to other methods. Nevertheless, this is due to the nature of the dif-
ference among approaches. The dictionary matching method always predict using values
obtained from a member in the dictionary, so that its prediction error cannot go beyond
what would be provided by the possible values in the dictionary. This phenomenon does
not apply to model-based methods. When prediction is conducted on the data outside of
the range of the training dataset, the prediction error could become considerably large,
as shown by the outcome of 99 percentiles of prediction squared errors. As a result,
even though dictionary matching seems to outperform other model-based methods at
these extreme cases, it does not necessary indicates that dictionary method is practically
useful for these cases, with the outcomes being so much worse than predicting the rest
of the dataset. Our model-based approaches, on the other hand, do have the advantage
of identifying these troublesome cases for further considerations.

5. Discussion and conclusion

We propose SMoGLLiM as a parsimonious version of GLLiM. SMoGLLiM adopts a two
level hierarchical structure of clusters. The associations of observed data are estimated
under local cluster level; while the parameters for latent variables and covariance matrices
are estimated under global-cluster level to avoid over-parameterization. In addition, we
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implement a refined, namely constrained with outliers-trimming, version of SMoGLLiM
to prevent existence of small clusters and identify outliers. This added refined steps tend
to enhance model stability and reduce prediction variation. Jointly selecting suitable
cluster-size, K, and dimension of latent W, Lw, under GLLiM could be computationally
challenging when a CV search is directly implemented. Our proposal of using BIC to
locate a much smaller range for SMoGLLiM to select the global cluster size K and Lw

by CV reduces the computational challenges for this task. SMoGLLiM further leads to
a post-learning version of GLLiM, called GLLiM structure. By using local means and
local variances, while with unfitted points removed, GLLiM structure tends to reach
improved empirical performances.

The motivation behind SMoGLLiM and GLLiM Structure is to achieve precise pre-
diction by constructing stable training models. The resulted training model may or
may not reflect the exact true model that generates the data, but it captures the key
structure and establishes a model that can be stably estimated using the data available.
The size and ity of this model would be determined by the data. Finally, the learning
procedure could be accelerated by dividing data into groups and adopting paralleliza-
tion computation technique. We illustrate that this practice is readily accommodated
by SMoGLLiMs hierarchical model structure.
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(e)

GLLiM Structure difference  against signal level
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Fig. 6: The true ADC images and the differences between the true values and the pre-
dicted values against the signal levels of one animal from the 9L group. Differences
are normalized by the average true ADC values in each ROI. (a) The true ADC image.
Difference maps between true values and predicted values against the signal levels us-
ing either (b) dictionary matching method, (c) GLLiM, (d) SMoGLLiM or (e) GLLiM
Structure.
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A. Implementation

In this section, an EM algorithm for SMoGLLiM is provided for parameter estimation.
We then present an extended version, tailored for ensuring stability and outlier trimming.
The selection of tuning parameters is discussed, aiming at obtaining better prediction
performances.

A.1. The EM algorithm for SMoGLLiM
Three sets of latent variables are involved in the SMoGLLiM model: Z1:N = {ZN}Nn=1,
U1:N = {Un}Nn=1 and W1:N = {Wn}Nn=1. The first two variables indicate global and local
cluster assignment and the last one is the latent covariate.

The EM algorithm for SMoGLLiM can be divided into several steps: E-Z,U step for
estimating the posterior probability of being assigned to a global or a local cluster, E-W
step for finding estimation of latent variable W and a maximization step for estimating
parameters at the local and global cluster levels.

E-Z,U Step:
We denote the posterior probability of observation n being assigned to global cluster k,
local cluster l, based on the observed data, to be

rnkl = p(Zn = k, Un = l|tn, yn; θ); (10)

and equivalently,

rnk = p(Zn = k|tn, yn; θ). (11)

The posterior probability of sample n being assigned to local cluster (k, l) is given by,

rnkl = p(Zn = k, Un = l|tn, yn; θ)

=
ρklp(tn, yn|Zn = k, Un = l; θ)∑K

i=1

∑M
j=1 ρijp(tn, yn|Zn = i, Un = j; θ)

,

where p(tn, yn|Zn = k, Un = l; θ) = p(yn|tn, Zn = k, Un = l)p(tn|Zn = k, Un = l). The
first term is given by p(yn|tn, Zn = k, Un = l) = N (yn;At

kltn+bkl+A
w
k c

w
k , A

w
k Γw

kA
w>
k +Σk)

and recall that the second term p(tn|Zn = k, Un = l) = N (t; ctkl,Γ
t
kl).

A direct derivation shows that

rnk = p(Zn = k|tn, yn; θ)

=

M∑
l=1

rnkl.

E-W Step:
The distribution p(wn|Zn = k, tn, yn; θ) can be shown to be Gaussian with mean µwnk
and covariance matrix Sw

k . The estimation of the mean and covariance matrix is given
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by:

µ̃wnk =

M∑
l=1

rnkl
rnk

S̃w
k

(
Aw>

k Σ−1k (yn −At
kltn − bkl) + (Γw

k )−1cwk

)
,

S̃w
k =

{
(Γw

k )−1 +Aw>
k Σ−1k Aw

k

}−1
. (12)

The maximization step consists of two sub-steps. The first step aims to estimate param-
eters for Gaussian Mixture Model and the second one focuses on estimating parameters
for mapping.

M-GMM Step:

In this step we only consider the parameters related to the Gaussian Mixture Model. In
particular, we want to estimate {ρkl, ctkl,Γt

kl, }
K,M
k=1,l=1. Hereinafter, we let rkl =

∑N
n=1 rnkl

and rk =
∑N

n=1 rnk. We obtain:

ρ̃kl =
rkl
N
, (13)

c̃tkl =

∑N
n=1 rnkltn
rkl

,

and Γ̃t
kl =

∑N
n=1 rnkl(tn − c̃kl)(tn − c̃tkl)>

rkl
.

M-mapping Step:
The M-Mapping step aims to estimate {At

kl, bkl, A
w
k ,Σk}K,M

k=1,l=1. It is assumed that T
and W are independent given the cluster assignment. Based on this, we could update
Aw

k first:

Ãw
k = ỸkṼ

>
k (ṼkṼ

>
k )−1 (14)

where

Ṽk =
1
√
rk

[
√
r1k(µ̃w1k − µ̃wk )...

√
rNk(µ̃wNk − µ̃wk )],

Ỹk =
1
√
rk

[
√
r1k(y1 −

M∑
l=1

r1kl
r1k

ỹkl)...
√
rNk(yN −

M∑
l=1

rNkl

rNk
ỹkl)],

µ̃wk =

N∑
n=1

rnk
rk
µ̃wnk,

ỹkl =

N∑
n=1

rnkl
rkl

yn.

Note the difference between how Y and V being centered. For Y , we center it against
the local cluster mean, while we let V be centered at the global cluster level.
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Once we obtain Aw
k we subtract the latent variables component from Y and update At

kl

and bkl, accordingly. Letting y∗nk = yn − Ãw
k µ̃

w
nk, we get:

Ãt
kl = Ỹ ∗klT̃

>
kl (T̃klT̃

>
kl )
−1,

b̃kl =

N∑
n=1

rnkl
rkl

(y∗nk − Ãt
kltn),

where

T̃kl =
1
√
rkl

[
√
r1kl(t1 − t̃kl)...

√
rNkl(tN − t̃kl)],

Ỹ ∗kl =
1
√
rkl

[
√
r1kl(y

∗
1k − ỹkl)...

√
rNkl(y

∗
Nk − ỹkl)],

t̃kl =

N∑
n=1

rnkl
rkl

tn,

ỹkl =

N∑
n=1

rnkl
rkl

y∗nk.

Finally, we can update Σk by:

Σ̃k = Ãw
k S̃

w
k Ã

w
k +

N∑
n=1

rnk
rk

[yn−
M∑
l=1

rnkl
rnk

(Ãt
kltn+b̃kl)−Ãw

k µ̃
w
nk][yn−

M∑
l=1

rnkl
rnk

(Ãt
kltn+b̃kl)−Ãw

k µ̃
w
nk]>.

(15)

A.2. Refined alternative to improve prediction
The EM algorithm as stated in Appendix A.1 gives the key structure of the method.
However, implementing it as it is may induce enlarged prediction variation caused by
small clusters and could be subject to the influence of outliers. Refining the iterative
algorithm, for variation reduction is necessary for stability concerns. The stability can
be achieved by constraining the sizes of the clusters (control both covariance volume
and prediction variance) and trimming outliers. Each cluster is associated with a cluster

weight, which is calculated as
∑N

n=1 rnkl for cluster (k, l). Each data point in a cluster
whose cluster weight is smaller than a pre-determined minSize is reassigned to a larger
cluster that gives the data point the lowest prediction squared error. The point is
kept in that cluster when the prediction squared error is less than a pre-determined
dropThreshold ; otherwise, it would be excluded from the current EM iteration when
updating the estimated parameters. The refined algorithm is described as follows:

(a) The algorithm is initialized by adopting the parameters θ, µ̃wnk, S̃w
k and cluster

assignment rnkl obtained from the EM algorithm described in Appendix A.1.

(b) The estimating procedure iterates through the following substeps until the algo-
rithm converges:
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(i) Trimming step: In order to remove outliers, we scan through all local clusters
and remove all samples whose in-sample prediction squared error are greater
than a pre-determined dropThreshold. The in-sample prediction squared error
for n-th sample is calculated as:

E2
n = ||tpredn − tn||22, (16)

where tn is the true value and tpredn is the prediction from Equation (4). Note
that the low dimension data {tn}Nn=1 are standardized before training so that
each dimension would be equally weighted. The samples with in-sample predic-
tion squared error larger than dropThreshold are considered as outliers and are
temporarily removed. Specifically, rn∗kl is set to 0 for all possible combination
of (k, l) and n∗ is the training samples such that E2

n∗ > dropThreshold.

(ii) Maximization step with a cluster size constraint: The estimation of θ is similar
to the Maximization step described in Appendix A.1 but with an addition
cluster size constraint. Before estimating parameters for each local cluster
(k, l), we first check the associated cluster weight. If the cluster weight is
smaller than the given minSize, we force the training data originally assigned
to this cluster to either be assigned to other clusters during the E-Z,U step, or,
if no appropriate cluster could be found, be trimmed during the next Trimming
Step.

(iii) Update step for the latent variables: Estimation of µ̃wnk, S̃w
k and rnkl are done

using E-W and E-Z,U step described in Appendix A.1.

All outcomes in Section 4 are obtained using the algorithm presented in this section.

A.3. Tuning parameter selection
For SMoGLLiM, there are several user-defined parameters: the dimension of the latent
variables Lw, the number of global clusters K, the number of local clusters M , the
minimum allowed cluster size minSize and the maximum allowed in-sample prediction
error dropThreshold. Through the changes of these tuning parameters, the algorithm
can be used to analyze all kind of data. We identify default recommendations for certain
parameters, that work for almost all cases, and suggest simple procedures that can be
used to select others.

• K and Lw: The number of cluster, K, reflects the number of local linear associations
between covariates and responses. On the other hand, the number of latent factors,
Lw, models the variation that cannot be captured by these linear associations. The
combination of (K,Lw) influences the ability of capturing the mean and covariance
structure of the relationship between Y and X. Selecting K and Lw through cross-
validation is time-consuming, particularly because there could be a large set of
potential K to be considered. We propose a method to restrict the searching space
via the use of BIC. Using the face dataset as an example, Table 7 shows the cluster
number selected using BIC when Lw is fixed; while Table 8 shows the number of
latent factors selected by BIC when K is fixed. These two tables show the roles
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Table 7: The value of BIC and K selected by BIC for a given Lw. For a fixed Lw, row
1: the minimum value of BIC; and row 2: the number of clusters, K, that achieves this
BIC.

Lw=0 Lw=1 Lw=2 Lw=8 Lw=9 Lw=10
BIC -8.75e+05 -9.35e+05 -9.48e+05 -1.08e+06 -1.09e+06 -1.11e+06
K 14 13 10 6 6 6

Table 8: The value of BIC and the Lw selected by BIC for a given K. For a fixed K,
row 1: the minimum value of BIC; and row 2: the dimension of W, Lw, that achieves
this BIC.

K=5 K=10 K=15 K=20 K=25 K=30 K=35 K=40
BIC -1.11e+06 -1.03e+06 -9.72e+05 -9.33e+05 -8.90e+05 -8.53e+05 -8.14e+05 -8.09e+05
Lw 10 8 7 3 1 1 0 0

played by K and Lw as how they compensate each other. The model ity increases
as we increase K or Lw. Therefore, BIC prefers the combination of either a small
K with a large Lw or a large K with a small Lw. It is also known that BIC
is conservative, thus the parameters are most likely underestimated. Though it
matters less here, with additional sub-clustering steps in SMoGLLiM, we slightly
adjust the K and Lw selected by BIC to improve prediction performance. We
construct a search grid of K and Lw described as follows. First, we select K using
BIC under a small Lw. This cluster number is called KBIC . Next, we fix the
cluster number to KBIC and select the corresponding number of latent factors,
LKBIC

w . To identify the possible range of K and Lw, we increase the cluster number
and select the corresponding number of latent factors. As an example, we could
set the cluster number as KBIC + 15 and find the corresponding number of latent
factors, LKBIC+15

w , again by BIC. Note that LKBIC+15
w is smaller than LKBIC

w . If
not, we can use K = KBIC + 20 or even KBIC + 25, until the resulting Lw is
smaller than LKBIC

w and this K would be the upper bound we used for values of
K. Applying an equivalent consideration of preventing being too conservative, we
could extend the search range of LKBIC

w to LKBIC

w + 2. Finally, a cross-validation is
conducted within the range of (KBIC ,KBIC + 15) and (LKBIC+15

w , LKBIC

w + 2) for
searching the combination of K and Lw that achieves the best performance.

• M : It is assumed that there would be one or more local clusters within each global
cluster. The choice of M depends on how the data structure is. We found that
the final result would not be sensitive to M ; the EM algorithm combined with
the refining algorithm would adjust itself and unneeded local clusters would be
dissolved.

• minSize: A two dimension grid search can be used to search for the best combina-
tion of minSize and dropThreshold and we have explored this option. However,
this practice could be time-consuming. To obtain an appropriate suggested value
for minSize we calculate the matrix volume of Γ∗kl, the covariance matrix used in
prediction, and look for the drop off. Using the face dataset as an example, we
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implement SMoGLLiM with K = 15, M = 5 and set Lw = 2. The volume of
Γ∗kl is approximated by the product of top three eigenvalues. Figure 7 shows the
relationship between volumes of Γ∗kl versus cluster sizes. A small covariance matrix
is likely to cause a surge in likelihood and difficulties for nearby testing sample to
be classified as a member of the cluster, both lead to inflation of the prediction
MSE. Figure 7 suggests that small covariance matrices could be expected when the
cluster size is smaller than 4. In view of this, we set minSize = 5 for this case.
Our empirical experiences imply that this simple approach leads to comparable
outcomes to the more complicated two-dimensional grid search algorithm.

• dropThreshold: As minSize being fixed, dropThreshold could be simply estimated
by a K-fold cross-validation. From the experimental results, we establish that the
prediction MSE is not sensitive to the choice of dropThreshold within a reasonable
range. We show this using the outcomes in Section 4.
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Fig. 7: The logarithm of approximated volume of Γ∗kl against the cluster size.

B. The distribution of microvascular parameters in the synthetic fingerprint dataset
and group separation

In Table 9, we summarize the values and the range of the microvascular parameters
(t1 ∼ t6) of the fingerprint dictionary. The values for each parameter are shown in
Figure 8. There are 1,383,648 observations in the dictionary. The dataset is divided to
cover as many kinds of data as possible for cross-validation purpose. First, we use t6 to
form Group 1 (t6 = 1) and Group 2 (t6 = 2). Our exploratory analysis shows the high
ity when t6 = 3. Thus, it is necessary to separate more groups on t6 = 3 to reflect the
ity. For data with t6 = 3, we divide t1 into 3 categories and consider 6 different values
in t5. All together, for t6 = 3, we construct 18 groups (Group 3 to Group 20). The
available size of each group is shown in Table 10.

To construct a 20-fold cross-validation, the testing sample size is picked so that all
data within the smallest group would be used. The smallest group size is 2030 (Group 3
to Group 14). Within these groups, we select 102 testing samples from each group. Some
data could have replicates but the number of replicates would be no more than 2. This
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Table 9: The unique values and the range of microvascular parameters

Parameter Parameter meaning No. of unique values Range
t1 R (µm) 38 0.5 ∼ 1000
t2 BV (%) 47 0.25 ∼ 50
t3 ADC (µm · s−1 ) 33 2× 10−10 ∼ 18× 10−10

t4 DeltaChi (ppm) 29 0 ∼ 1.4
t5 Direction (radians) 6 0, 0.314, 0.628, 0.943, 1.257, 1.571
t6 Geometry 3 1, 2, 3

Table 10: The size of each group.

Group ID Value Available Size Group ID Value Available Size
Group1 t6=1 1052352 Group11 t1category2, t5value3 2030
Group2 t6=2 233856 Group12 t1category2, t5value4 2030
Group3 t1category1, t5value1 2030 Group13 t1category2, t5value5 2030
Group4 t1category1, t5value2 2030 Group14 t1category2, t5value6 2030
Group5 t1category1, t5value3 2030 Group15 t1category3, t5value1 12180
Group6 t1category1, t5value4 2030 Group16 t1category3, t5value2 12180
Group7 t1category1, t5value5 2030 Group17 t1category3, t5value3 12180
Group8 t1category1, t5value6 2030 Group18 t1category3, t5value4 12180
Group9 t1category2, t5value1 2030 Group19 t1category3, t5value5 12180
Group10 t1category2, t5value2 2030 Group20 t1category3, t5value6 12180

aims to make the number consistent through all groups and folds. After excluding testing
data, we would randomly pick 10,000 for Group 1 and Group 2 as training samples. For
Group 3 to Group 14, the remaining 1928 samples would become the training data. For
Group 15 to Group 20, we would pick 2000 training samples. As a result, within each
fold, there would be 55136 training samples (10,000 from Group 1 and Group 2, 1928
from Group 3 to Group 14, 2000 from Group 15 to Group 20) and 2040 testing data
(102 from each group).
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(a)

(b)

Fig. 8: The distribution of parameters (T ). The x-axis shows the index of observations
and y-axis marks the values of each observation in different dimensions. (a) Dimension
1 to 3; (b) Dimension 4 to 6.
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Table 11: The 50%, 90% and 99% quantiles of squared error using different methods.
The models are built upon 3 microvascular parameters: Radius, BVf and DeltaChi.

Dictionary Matching GLLiM SMoGLLiM GLLiM Structure
50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

Radius 0.2144 69.3636 82.5297 < 10−4 0.2916 21.44 < 10−4 0.2144 21.44 < 10−4 0.2144 21.44
BVf < 10−4 0.2277 0.2277 < 10−4 < 10−4 0.0261 < 10−4 < 10−4 0.0068 < 10−4 < 10−4 0.0269

DeltaChi < 10−4 0.0571 0.7000 < 10−4 0.0108 0.6385 < 10−4 0.0013 0.2012 < 10−4 0.0005 0.3158

C. The cross-validation results under 3 microvascular parameters for synthetic
fingerprint dataset

It is noticed that adding weakly informative parameter, such as ADC, in the model
would downgrade the prediction performance. If predicting ADC is not the major task,
we could obtain lower prediction error when training the model with Radius, BVf and
DeltaChi. The results of using 3 parameters are shown in Table 11.

On the other hand, when adopting dictionary matching, testing data are compared
to fingerprint observations, which are associated to 6 parameters as shown in Figure 8.
With all parameters embedded inside fingerprint observations, the dictionary matching
method is actually using information from 6 parameters. If we restrict the parameter
space, i.e. only consider Radius, BVf and DeltaChi, there would be multiple fingerprints
associated to the same set of the restricted parameters. To evaluate the performance
under restricted parameter setting, we randomly select a fingerprint as the representative
for the same set of parameters. Table 11 shows the cross-validation results on the
restricted synthetic fingerprint dataset.

Comparing Table 11 to Table 4, we observe improvement on 90% quantiles for model-
based methods, which indicates that we could obtain better prediction outcomes by re-
moving ADC from the training data. On the contrary, the results of dictionary matching
method become worse. This is a natural consequence of lacking sufficient details to cat-
egorizing and distinguishing samples in the dictionary. If the remaining parameters are
insufficient to reflect the data ity, it is likely to match a testing data to an inadequate
member within the dictionary and, as a result, we would obtain a large prediction error.
This comparison shows the difference between the dictionary matching method and the
model-based method. For dictionary matching method we hope to enumerate all possible
distinction in the dictionary. Thus, the prediction performance deteriorates when this
goal cannot be achieved. However, this may not apply to model-based methods, where
the most appropriate model among the ones being considered is used to conduct pre-
diction. The performance could improve when weakly informative parameter covariates
are removed.
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