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In the main paper, we have introduced a new participating medium model that generalizes the standard microflake model [JAM∗10]. It has
new parameters that characterize self-shadowing effects at the microscopic scale. This model is more complex than the standard model, and
its implementation is difficult unless normal distributions and self-shadowing functions are carefully chosen, so that closed-form expressions
and sampling procedures can be derived. In this document, we present all the details, proofs and derivations for implementing our self-
shadowing model. We first recall the general expressions of this model in Sec. 2 and of the simplified version in which self-shadowing is
isotropic (Sec. 2.5). Then, we discuss the implementation of the model in Sec. 4, and the implementation of the simplified model based on
SGGX distribution [HDCD15] in Sec. 5. We briefly recall the theory of rejection sampling in Sec. 3 because we use it several times in this
document. We provide code that implements our model along with this document. We tested our sampling procedures using chi-square tests,
and verified that our phase functions are normalized using numerical integration.
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1. Notations

In this document, we use often use spherical coordinates and we call φ ∈ (0,2π) the azimuth angle and θ ∈ (0,π) the polar angle, so that a
normalized vector ω writes

ω =

cos(φ)sin(θ)
sin(φ)sin(θ)

cos(θ)

 .
Other commonly used symbols can be found in the following table:

Symbol Meaning Unit
D(ω) Microflake normal distribution st−1

A(ω) Microscopic self-shadowing function 1
ρ Area of microflake per unit volume m−1

σt Attenuation coefficient m−1

σs, σss, σms Scattering coefficients (wavelength dependent) m−1

f , fss, fms Normalized phase functions st−1

α, αss, αms Albedos (wavelength dependent) 1
〈 · 〉 Clamped dot product -
χ+(x) Indicator function of positive reals -

2. The microscopic self-shadowing model

We recall here the main expressions of our self-shadowing model. Motivations for this model can be found in the main paper.

2.1. Anisotropic RTE

The anisotropic radiative transfer equation (RTE) introduced by Jakob et al. [JAM∗10] writes:

(ω ·∇)L(ω)+σt(ω)L(ω) = σs(ω)
∫
S2

f (ω→ ω
′)L(ω′)dω

′+Q(ω) (2.1)

with σt(ω) the anisotropic attenuation coefficient, σs(ω) the anisotropic scattering coefficient (which is usually wavelength dependent), and
f the anisotropic phase function, in the sense that it depends on ω and ω

′, and not just on the angle between ω and ω
′. In this document,

phase function are considered normalized in the second parameter:∫
S2

f (ω→ ω
′)dω

′ = 1, ∀ω. (2.2)
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2.2. Helmholtz’s law of reciprocity

The Helmholtz’s law of reciprocity for anisotropic media writes

σs(ω) f (ω→ ω
′) = σs(ω

′) f (ω′→ ω). (2.3)

This law means that the amount of scattered energy from direction ω in direction ω
′, given by the scattering coefficient σs(ω) and the phase

function, should be equal to the amount of energy scattered from direction ω
′ in direction ω.

2.3. Self-shadowing function

Before introducing our self-shadowing model, we introduce a directional self-shadowing function A with the following properties:

∀ω ∈ S2, 0 < A(ω)≤ 1 and A(ω) = A(−ω). (2.4)

This function represents the probability of self-shadowing at a microscopic scale, depending on the direction ω.

2.4. Self-shadowing model

The anisotropic attenuation coefficient in our self-shadowing model writes

σt(ω) = A(ω)ρ
∫

D(m)〈ω ·m〉 dm. (2.5)

This is the attenuation coefficient in the standard model times the factor A(ω) which takes into account self-shadowing effects. The anisotropic
single scattering coefficient is given by

σss(ω) = ραss(λ)A(ω)
∫

A(ω′)D(m)〈ω ·m〉 dm (2.6)

where ω
′ = 2m(m ·ω)−ω is the reflected direction, given an input direction ω and a microflake normal m. Using the Jacobian of the

transformation from normals ωh to reflected directions provided by Walter et al. [WMLT07],∥∥∥∥∂ωh
∂ω′

∥∥∥∥= 1
4|ωh ·ω′|

,

we can also write

σss(ω) =
ραss(λ)A(ω)

4

∫
A(ω′)D(ωh) dω

′ (2.7)

with ωh =
ω+ω

′

‖ω+ω′‖ the half vector. The single scattering phase function fss is the standard phase function attenuated in some directions due

to microscopic shadowing, and re-normalized:

fss(ω→ ω
′) =

A(ω′)D(ωh)∫
A(ω′′)D

(
ω+ω

′′

‖ω+ω′′‖

)
dω
′′

(2.8)

=
ραss(λ)A(ω)A(ω′)D(ωh)

4σss(ω)
(2.9)

For energy conservation, we introduce a local multiple scattering coefficient:

σms(ω) = αms(λ)ρA(ω)
∫ (

1−A(ω′)
)

D(m)〈ω ·m〉dm (2.10)

= αms(λ)

(
σt(ω)−

σss(ω)

αss(λ)

)
(2.11)

and its associated phase function

fms(ω→ ω
′) = fms(ω

′) =
σms(ω

′)∫
σms(ω′′) dω′′

=
σms(ω

′)

αms(λ)
∫

σt(ω′′)dω′′− αms(λ)

αss(λ)

∫
σss(ω′′)dω′′

(2.12)
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2.5. Simplified model with isotropic self-shadowing

Our model greatly simplifies when the self-shadowing function is isotropic, meaning that A(ω) = A, ∀ω. In the case of isotropic self-
shadowing, expressions reduce to

σt(ω) = Aρ

∫
D(m)〈ω ·m〉 dm (2.13)

σss(ω) = αss(λ)Aσt(ω) (2.14)

fss(ω→ ω
′) =

ραss(λ)A2D(ωh)

4σss(ω)
(2.15)

σms(ω) = αms(λ)σt(ω)(1−A) (2.16)

fms(ω
′) =

σms(ω
′)∫

σms(ω′′) dω′′
=

σt(ω
′)∫

σt(ω′′) dω′′
(2.17)

Note that σt(ω) is equal to the projected area of microflakes times A, and fss is exactly the specular phase function of the standard microflake
model.

3. Rejection sampling

Probability distribution functions (pdf ) are ubiquitous in physically-based rendering, and procedures that generate samples from such distri-
bution are often needed. In particular, generating samples from phase functions tends to decrease noise in volume path tracing.

Unfortunately, it is not always possible to find an efficient sampling procedure for given a pdf. The most common method, known as
inverse transform sampling, requires an expression of the inverse F−1 of the cumulative distribution function of the pdf:

F(u) =
u∫

x=−∞

pdf(x)dx,

but it is not always possible to find closed-form expressions for F−1. Some authors have found sampling procedures using the fact that
their pdf comes from a geometric problem – for instance, sampling visible normals of an ellipsoid viewed from a given direction [HDCD15,
DWMG15]. This strategy cannot be applied to all pdf.

Rejection sampling is a very general method that can generate samples from any normalized pdf. For sampling the distribution pdf1, it
is possible to generate samples from any other distribution pdf2 and to accept or reject these samples with a probability such that accepted
samples follow exactly the distribution pdf1. Rejection sampling is very powerful in the sense that it can be used for sampling arbitrary
distributions, but the algorithm is only efficient if pdf2 is close enough to pdf1. The more pdf2 is different from pdf1, the more samples will be
rejected by the algorithm, leading to a very inefficient sampling procedure. For sampling pdf1 using pdf2, rejection sampling needs a scalar
M such that, for all x,

pdf1(x)≤M pdf2(x)

Then, the sampling procedure is the following:

1. Generate a sample x from pdf2

2. Generate a random number U in (0,1).

If U ≤ pdf1(x)
M pdf2(x)

, accept the sample x and the procedure is finished.

Else, go back to step 1.

The value M is the average number of iterations needed before accepting one sample, and 1/M is the average probability of accepting one
sample from pdf2. It is thus possible to predict how efficient is a sampling procedure – in average.

4. Implementing the self-shadowing model with trigonometric lobes

In this section, we derive closed-form expressions and sampling procedures for implementing our self-shadowing model, using an anisotropic
self-shadowing distribution (Sec. 4.1) and microflake normal distributions based on trigonometric lobes (Sec. 4.2). The derivations include:

• Normalization factors for trigonometric lobes (Sec.4.3).
• Expressions for the attenuation coefficient σt (Sec. 4.5).
• Expressions for the single scattering coefficient σss (Sec. 4.6).
• Expressions for

∫
σt and

∫
σss, involved in the multiple scattering albedo σms (Sec. 4.7).
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• Sampling procedures for the single scattering phase function fss (Sec. 4.10 and 4.11).
• Sampling procedures for the multiple scattering phase function fms (Sec. 4.12).

In the next section (Sec. 5), we discuss an implementation of our simplified self-shadowing model (when self-shadowing is anisotropic)
based on the SGGX distribution.

4.1. Choice of a self-shadowing function

We introduce an anisotropic self-shadowing function A for which we can find closed-form expressions for the spherical convolutions and
integrals involved in our self-shadowing model (Eq. 2.6, 2.12). This anisotropic self-shadowing function writes

A(ω) = a1(ξA1 ·ω)
2 +a2(ξA2 ·ω)

2 +a3(ξA3 ·ω)
2. (4.1)

It can also be written as the square projected area of an ellipsoid in direction ω [HDCD15] with axes ξAi :

A(ω) = ω
T

ξA1 ξA2 ξA3

a1 0 0
0 a2 0
0 0 a3




ξ
T
A1

ξ
T
A2

ξ
T
A3

ω = ω
T SA ω. (4.2)

4.2. Trigonometric lobes: Dcos(ω,ξ,n) and Dsin(ω,ξ,n)

We use distributions based on trigonometric lobes:

Dcos(ω,ξ,n) =
cos2n(ω,ξ)

Ncos(n)
=

(ω ·ξ)2n

Ncos(n)

Dsin(ω,ξ,n) =
sin2n(ω,ξ)

Nsin(n)
=

(1− (ω ·ξ)2)n

Nsin(n)

Diso(ω) =
1

4π

with n ∈ N and Ncos(n) and Nsin(n) the normalization factors.

4.3. Normalization factors

For the cosine lobe, the normalization factor writes

Ncos(n) =
∫

(m ·ξD)
2n dm =

4π

2n+1
.

The normalization factor for the sine lobe writes

Nsin(n) =
∫ (

1− (m ·ξD)
2
)n

dm =
2π

3
2 Γ(1+n)

Γ

(
3
2 +n

) .

In our implementation, we pre-computed the normalization factors for the sine lobe for n ∈ [1..20].

4.4. Proof that distributions Dsin(ω,ξ,n) can be written as a sum of distributions Dcos(ω,ξ,n)

Sine lobes Dsin(ω,ξ,n) have an interesting property: they can be written as a sum of 2n cosine lobes:

Dsin(ω,ξ,n) =
1
2n

2n−1

∑
p=0

Dcos(ω,ξp,n) (4.3)

with ξp being 2n evenly spaced axes in the plane orthogonal to ξ. For example, a Dsin(ω,ξ,5) distribution is equivalent to a sum of 10
Dcos(ω,ξp,5) distributions:

= + + + + + + + + +
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Without loss of generality, we derive the proof in spherical coordinates in the case ξ
sin
D = [0,0,1]T . The sum of cosine lobes writes

1
2n

2n+1
4π

2n−1

∑
p=0




cos
( pπ

2n

)
sin
( pπ

2n

)
0

 ·
cos(φ)sin(θ)

sin(φ)sin(θ)
cos(θ)




2n

=
2n+1

8nπ

2n−1

∑
p=0

(
cos
( pπ

2n

)
cos(φ)sin(θ)+ sin

( pπ

2n

)
sin(φ)sin(θ)

)2n
(4.4)

=
2n+1

8nπ
sin(θ)2n

2n−1

∑
p=0

(
cos
( pπ

2n

)
cos(φ)+ sin

( pπ

2n

)
sin(φ)

)2n
(4.5)

=
2n+1

8nπ
sin(θ)2n

2n−1

∑
p=0

cos
( pπ

2n
−φ

)2n
. (4.6)

We can expand cos(x)2n [Wei17] as follows:

cos(x)2n =
1

22n

(
2n
n

)
+

1
22n−1

n−1

∑
k=0

(
2n
k

)
cos(2(n− k)x)

so we can write

2n−1

∑
p=0

cos
( pπ

2n
−φ

)2n
=

2n−1

∑
p=0

(
1

22n

(
2n
n

)
+

1
22n−1

n−1

∑
k=0

(
2n
k

)
cos
(

2(n− k)
( pπ

2n
−φ

)))
.

We can check that terms involving φ cancel to 0:

2n−1

∑
p=0

n−1

∑
k=0

(
2n
k

)
cos
(

2(n− k)
( pπ

2n
−φ

))
=

n−1

∑
k=0

(
2n
k

)
2n−1

∑
p=0

cos
(

2(n− k)
( pπ

2n
−φ

))
(4.7)

=
n−1

∑
k=0

(
2n
k

)
<

(
2n−1

∑
p=0

exp
(

2i(n− k)
( pπ

2n
−φ

)))
(4.8)

=
n−1

∑
k=0

(
2n
k

)
<

(
exp(−2i(n− k)φ)

2n−1

∑
p=0

exp
(

i(n− k)
2π

2n

)p
)

(4.9)

=
n−1

∑
k=0

(
2n
k

)
<

exp(−2i(n− k)φ)
1− exp(i(n− k)2π)

1− exp
(

i(n− k)
2π

2n

)
 (4.10)

= 0. (4.11)

Finally, we get

2n+1
8nπ

2n−1

∑
p=0




cos
( pπ

2n

)
sin
( pπ

2n

)
0

 ·
cos(φ)sin(θ)

sin(φ)sin(θ)
cos(θ)




2n

=
2n+1

8nπ
sin(θ)2n

2n−1

∑
p=0

1
22n

(
2n
n

)
(4.12)

= sin(θ)2n 2n+1
8nπ

2n
22n

(
2n
n

)
(4.13)

= sin(θ)2n 2n+1
π4n+1

(2n)!
2n!

(4.14)

= sin(θ)2n
√

π(2n+2)!
4n+1(n+1)!

(n+1)
(2n+2)π3/2n!

(4.15)

= sin(θ)2n Γ(n+3/2)
2π3/2n!

(4.16)

= Dsin(ω,ξ
sin
D ,n). (4.17)
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4.5. Closed-form expression of the attenuation coefficient σt(ω)

4.5.1. Derivation of general closed-from expressions for σt(ω)

A general closed-form expression can be found for σt(ω) but this expression is not convenient for evaluation because it involves costly
evaluations of Gauss hypergeometric functions 2F1. For information, we provide a derivation of this expression for the cosine lobe (Eq. 4.41).
For efficient implementation, we have pre-computed simpler closed-form expressions for each n ∈ [1..20] as explained in Section 4.5.2. Note
that a general closed-form expression could also be derived for the sine lobe, using the fact that a sine lobe can be written as a sum of cosine
lobes (Sec. 4.4).

In the case of a cos2n distribution, σt(ω) is given by

σt(ω) = ρA(ω)
∫

Dcos(m,ξD,n)〈m ·ω〉 dm = ρ
A(ω)

Ncos(n)

∫
(m ·ξD)

2n 〈m ·ω〉 dm.

Without loss of generality, we choose a convenient spherical parametrization such that ω = [cos(φi),sin(φi),0] and ξD = [1,0,0]. We have

σt(ω) = ρ
A(ω)

Ncos(n)

∫ cos(φ)sin(θ)
sin(φ)sin(θ)

cos(θ)

 ·
1

0
0

2n ∣∣∣∣∣∣
cos(φ)sin(θ)

sin(φ)sin(θ)
cos(θ)

 ·
cos(φi)

sin(φi)
0

∣∣∣∣∣∣sin(θ) dφ dθ (4.18)

= ρ
A(ω)

Ncos(n)

π/2−φi∫
φ=−π/2−φi

π∫
θ=0

(cos(φ)sin(θ))2n (cos(φ)sin(θ)cos(φi)+ sin(φ)sin(θ)sin(φi))sin(θ) dφ dθ (4.19)

= ρ
A(ω)

Ncos(n)

π/2−φi∫
φ=−π/2−φi

π∫
θ=0

cos(φ)2n(cos(φ)cos(φi)+ sin(φ)sin(φi))sin(θ)2n+2 dφ dθ (4.20)

= ρ
A(ω)

Ncos(n)

√
π Γ

(
3
2 +n

)
Γ(2+n)

π/2−φi∫
φ=−π/2−φi

cos(φ)2n(cos(φ)cos(φi)+ sin(φ)sin(φi)) dφ (4.21)

= ρ
A(ω)

Ncos(n)

√
π Γ

(
3
2 +n

)
Γ(2+n)

cos(φi)

π/2−φi∫
φ=−π/2−φi

cos(φ)2n+1 dφ+ sin(φi)

π/2−φi∫
φ=−π/2−φi

cos(φ)2n sin(φ) dφ

 (4.22)

= ρ
A(ω)

Ncos(n)

√
π Γ

(
3
2 +n

)
Γ(2+n)

cos(φi)

π/2−φi∫
φ=−π/2−φi

cos(φ)2n+1 dφ− 2sin(φi)
2n+2

2n+1

 . (4.23)

Now integral
∫

cos(x)m dx can be written as a finite sum using

∫
cos(x)m dx =

1
m

cos(x)m−1 sin(x)+
m+1

m

∫
cos(x)m−2 dx.

It is also possible to write it with the Gauss hypergeometric function. Given that 0≤ φi ≤ π/2, on the interval (− π

2 −φi,− π

2 ) we perform a
change of variable with X = cos(φ), and get

−π/2∫
φ=−π/2−φi

cos(φ)2n+1 dφ =

0∫
X=cos(−π/2−φi)

X2n+1
√

1−X2
dX (4.24)

=

0∫
X=− sin(φi)

X2n+1
√

1−X2
dX . (4.25)
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Using the change of variable Y =
X2

−sin(φi)
, with

∥∥∥∥∂X
∂Y

∥∥∥∥= sin(φi)

2
√

Y
we get

0∫
X=− sin(φi)

X2n+1
√

1−X2
dX =

1∫
0

Y n+ 1
2 sin(φi)

2n+1√
1−Y sin(φi)2

sin(φi)

2
√

Y
dY (4.26)

=− sin(φi)
2n+2

2

0∫
1

Y n√
1−Y sin(φi)2

dY. (4.27)

Using

Γ(b)Γ(c−b)
Γ(c) 2F1 (a,b,c,z) =

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a dt

we can write

− sin(φi)
2n+2

2

0∫
1

Y n+ 1
2√

1−Y sin(φi)2
dY =− sin(φi)

2n+2

2
Γ(b)Γ(c−b)

Γ(c) 2F1 (a,b,c,z) (4.28)

with a =
1
2

, b = n+1, c = n+2 and z = sin(φi)
2. We have

−π/2∫
φ=−π/2−φi

cos(φ)2n+1 dφ =− sin(φi)
2n+2

2
Γ(n+1)Γ(1)

Γ(n+2) 2F1

(
1
2
,n+1,n+2,sin(φi)

2
)

(4.29)

=− sin(φi)
2n+2

2n+2 2F1

(
1
2
,n+1,n+2,sin(φi)

2
)
. (4.30)

Now, we integrate between −π/2 and 0:

0∫
φ=−π/2

cos(φ)2n+1 dφ =
∫ 1

0

X2n+1
√

1−X2
dX (4.31)

=
∫ 1

0

Y n+ 1
2

√
1−Y

1
2
√

Y
dY (4.32)

=
1
2

∫ 1

0

Y n
√

1−Y
dY (4.33)

=
Γ(b)Γ(c−b)

2Γ(c) 2F1 (a,b,c,1) (4.34)

(4.35)

with a = 1
2 , b = n+1, c = n+2. We have

0∫
φ=−π/2

cos(φ)2n+1 dφ =
1
2

B
(

1
2
,n+1

)
. (4.36)

Finally, using the same approach,

π/2−φi∫
φ=0

cos(φ)2n+1 dφ =

π/2∫
φ=0

cos(φ)2n+1 dφ+

π/2−φi∫
φ=π/2

cos(φ)2n+1 dφ (4.37)

=

0∫
1

X2n+1

−
√

1−X2
dX +

cos(π/2−φi)∫
0

X2n+1

−
√

1−X2
dX (4.38)

=
1

2n+2
B
(

1
2
,n+1

)
− sin(φi)

2n+2

2n+2 2F1

(
1
2
,n+1,n+2,sin(φi)

2
)
. (4.39)
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We can add the three terms and get

π/2−φi∫
φ=−π/2−φi

cos(φ)2n+1 dφ = B
(

1
2
,n+1

)
− sin(φi)

2n+2

n+1 2F1

(
1
2
,n+1,n+2,sin(φi)

2
)
. (4.40)

We proved that

σt(ω) = ρ
A(ω)

Ncos(n)

√
π Γ

(
3
2 +n

)
Γ(2+n)

(
cos(φi)

(
B
(

1
2
,n+1

)
− sin(φi)

2n+2

n+1 2F1

(
1
2
,n+1,n+2,sin(φi)

2
))
− 2sin(φi)

2n+2

2n+1

)
. (4.41)

As explained before, we don’t use this expression in our implementation because more efficient expressions can be found for each particular
value of n, when n is small.

4.5.2. Pre-computing simple closed-form expressions for particular values n

Using symbolic integration [MGH∗05], we have found that for each particular n, σ
cos
t (ω) can be written

σ
cos
t (ω) = ρA(ω)


1

(ω ·ξD)
2

(ω ·ξD)
4

. . . .

(ω ·ξD)
2n

 ·C1

with C1 a n+ 1 vector of coefficients. The evaluation cost is linear in n and this expression is very efficient when n is small. In practice we
pre-computed coefficient up to n = 20 (corresponding to a cos40 lobe). We have found similar expressions for sine lobes. These coefficients
can be found in our code (files matrixcoslobe.h and matrixsinlobe.h).

4.6. Single scattering coeff σss for cosn and sinn microflake distributions

General closed-form expressions for σss are even more complex than expressions for σt (Eq. 4.41) and have no practical interest for rendering.
Like we did for σt , we pre-computed simpler and exact closed-form solutions for each n up to n = 20. We have found using symbolic
integration that

∫
(ξA ·ω′)2Dcos(m,ξD,n)〈m ·ω〉dm =


1

(ω ·ξD)
2

(ω ·ξD)
4

. . . .

(ω ·ξD)
2n

 ·C2 ·

 (ω ·ξA)
2

(ξA ·ξD)
2

1

+(ξA ·ξD)(ξA ·ω)


(ω ·ξD)

(ω ·ξD)
3

. . . . .

(ω ·ξD)
2n−1

 ·C3 (4.42)

with ω
′ = −ω+ 2m(ω ·m), C2 a (n+ 1)× 3 matrix of coefficients and C3 a vector of coefficients of length n. Given Equation 4.1, we sum

contributions of the three shadowing axes and get

∫
A(ω′)Dcos(m,ξD,n)〈m ·ω〉dm =


1

(ω ·ξD)
2

(ω ·ξD)
4

. . . .

(ω ·ξD)
2n

 ·C2 ·

 a1(ω ·ξA1)
2 +a2(ω ·ξA2)

2 +a3(ω ·ξA3)
2

a1(ξA1 ·ξD)
2 +a2(ξA2 ·ξD)

2 +a3(ξA3 ·ξD)
2

a1 +a2 +a3

 (4.43)

+(a1(ξA1 ·ξD)(ξA1 ·ω)+a2(ξA2 ·ξD)(ξA2 ·ω)+a3(ξA3 ·ξD)(ξA3 ·ω))


(ω ·ξD)

(ω ·ξD)
3

. . . . .

(ω ·ξD)
2n−1

 ·C3 (4.44)

We can write

a1(ω ·ξA1)
2 +a2(ω ·ξA2)

2 +a3(ω ·ξA3)
2 = ω

T SA ω

a1(ξA1 ·ξD)
2 +a2(ξA2 ·ξD)

2 +a3(ξA3 ·ξD)
2 = ξ

T
D SA ξD

a1(ξA1 ·ξD)(ξA1 ·ω)+a2(ξA2 ·ξD)(ξA2 ·ω)+a3(ξA3 ·ξD)(ξA3 ·ω) = ω
T SA ξD
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a1 +a2 +a3 = tr(A)

Finally we get, for a cosine lobe Dcos,

σss(ω) = αss(λ)ρA(ω)


1

(ω ·ξD)
2

(ω ·ξD)
4

. . . .

(ω ·ξD)
2n

 ·C2 ·

 ω
T SA ω

ξ
T
D SA ξD

trace(A)

+αss(λ)ρA(ω)
(

ω
T SA ξD

)
(ω ·ξD)

(ω ·ξD)
3

. . . . .

(ω ·ξD)
2n−1

 ·C3 (4.45)

Expressions in the case of sine lobes Dsin are similar, only coefficients in C2 and C3 are different. All coefficients can be found in our code in
files matrixcoslobe.h and matrixsinlobe.h.

4.7. Closed-form expression for
∫

σt and
∫

σss

Integrals
∫

σt(ω) dω and
∫

σss(ω) dω are involved in our multiple scattering phase function (Eq. 2.12). We provide here derivations of their
closed-from expressions.

4.7.1. Closed-form expression of
∫

σt(ω) for cosine lobes Dcos(m,ξD,n)

We want to find a closed-form expression for a cosine distribution:∫
σt(ω) dω = ρ

∫
A(ω)

∫
Dcos(m,ξD,n)〈m ·ω〉 dm dω. (4.46)

We first invert integrals: ∫
A(ω)

∫
Dcos(m,ξD,n)〈m ·ω〉 dm dω =

∫
Dcos(m,ξD,n)

∫
A(ω)〈m ·ω〉 dω dm. (4.47)

We can decompose our shadowing function (Eq. 4.1):∫
A(ω)〈m ·ω〉 dω = ∑ai

∫
(ω ·ξAi)

2〈m ·ω〉 dω. (4.48)

We choose a convenient parametrization: we take m = [1,0,0]T and ξAi = [sin(θA),0,cos(θA)]
T , so that we can write

∫
(ω ·ξAi)

2〈m ·ω〉 dω =

2π∫
φ=0

π/2∫
θ=0

(sin(θA)cos(φ)sin(θ)+ cos(θA)cos(θ))2 cos(θ)sin(θ) dφ dθ =
π

4

(
cos(θA)

2 +1
)
=

π

4

(
(ξAi ·m)2 +1

)
.

(4.49)
We can now substitute this expression in Eq. 4.47 and get∫

Dcos(m,ξD,n)
π

4

(
(ξAi ·m)2 +1

)
dm =

∫
2n+1

4π
(ξD ·m)2n π

4

(
(ξAi ·m)2 +1

)
dm. (4.50)

Choosing a parametrization such that ξD = [0,0,1]T and ξAi = [sin(θA),0,cos(θA)]
T , this writes

2π∫
φ=0

π∫
θ=0

2n+1
4π

cos(θ)2n π

4

(
(sin(θA)cos(φ)sin(θ)+ cos(θA)cos(θ))2 +1

)
sin(θ) dm =

π

(
n(ξD ·ξAi)

2 +n+2
)

4n+6
. (4.51)

Finally, we can sum and factor the formula for the three axes, and we get

∫
σt(ω) dω = ρa1

π

(
n(ξD ·ξA1)

2 +n+2
)

4n+6
+ρa2

π

(
n(ξD ·ξA2)

2 +n+2
)

4n+6
+ρa3

π

(
n(ξD ·ξA3)

2 +n+2
)

4n+6
. (4.52)

Using Eq. 4.2, we can write, for a distribution Dcos(m,ξD,n):

∫
σt(ω) dω = ρ

∫
A(ω)

∫
Dcos(m,ξD,n)〈m ·ω〉 dm dω = ρ

π

(
n(ωT SA ω)+ tr(SA)(n+2)

)
4n+6

(4.53)
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4.7.2. Closed-form expression of
∫

σt(ω) for sine lobe Dsin(m,ξD,n)

The derivation is almost the same as for the Dcos(m,ξD,n) in the previous subsection. We need to compute∫
Dsin(m,ξD,n)

π

4

(
(ξAi ·m)2 +1

)
dm =

∫
2π

3
2 Γ(1+n)

Γ

(
3
2 +n

) (
1− (ξD ·m)2

)n π

4

(
(ξAi ·m)2 +1

)
dm. (4.54)

Choosing the same convenient frame in which ξD = [0,0,1]T and ξAi = [sin(θA),0,cos(θA)]
T , this writes

2×
2π∫

φ=0

π/2∫
θ=0

π

4

(
(sin(θA)cos(φ)sin(θ)+ cos(θA)cos(θ))2 +1

)
sin(θ)2n+1 dm =

π

(
3n+4−n(ξD ·ξAi)

2
)

8n+12
. (4.55)

Again, we have to sum this for each shadowing axis. For a Dsin(m,ξD,n) distribution, we get:

∫
σt(ω) dω = ρ

∫
A(ω)

∫
Dsin(m,ξD,n)〈m ·ω〉 dm dω = ρ

π

(
(3n+4) tr(SA)−n(ωT SA ω)

)
8n+12

(4.56)

4.7.3. Closed-form expression of
∫

σss(ω) for cosine lobe Dcos(m,ξD,n)

In the case of a distribution Dcos(m,ξD,n), we look for a closed-form expression of the integral∫
σss(ω) dω = ραss(λ)

∫
A(ω)

∫
A(ω′)Dcos(m,ξD,n)〈ω ·m〉 dm dω, (4.57)

with ω
′ =−ω+2m(ω ·m). We invert integrals and get∫

Dcos(m,ξD,n)
∫

A(ω)A(ω′)〈ω ·m〉 dω dm. (4.58)

We expand each shadowing term using Equation 4.1 and get 9 terms of the form:∫
Dcos(m,ξD,n)

∫
A(ω)A(ω′)〈ω ·m〉 dω dm = ∑

i, j∈{1,2,3}

∫
Dcos(m,ξD,n)aia j

∫
(ω ·ξAi)

2(ω′ ·ξA j)
2〈ω ·m〉 dω. (4.59)

We first consider the case i = j, and then the case i 6= j.

4.7.3.1. Case i = j

Without loss of generality, we work in the reference frame in which m = [1,0,0] and ξAi = [cos(φAi),sin(φAi),0]. We find∫
(ω ·ξAi)

2((−ω+2m(ω ·m)) ·ξAi)
2〈ω ·m〉 dω (4.60)

=

π/2∫
φ=−π/2

π∫
θ=0

(cos(φAi)cos(φ)+ sin(φAi)sin(φ))2(cos(φAi)cos(φ)− sin(φAi)sin(φ))2 cos(φ)sin(θ)6 dω dθ (4.61)

=
1

24
π

(
15(m ·ξAi)

4−10(m ·ξAi)
2 +3

)
. (4.62)

We integrate this result with Dcos(m,ξD,n) (recall that we want a closed-form expression for Equation 4.57) and find∫
Dcos(m,ξD,n)

1
24

π

(
15(m ·ξAi)

4−10(m ·ξAi)
2 +3

)
dm = π

15n(n−1)(ξD ·ξAi)
4−10n(n−2)(ξD ·ξAi)

2 +3n2 +7n+10
24n2 +96n+90

. (4.63)

4.7.3.2. Case i 6= j

We choose a reference frame such that m = [0,0,1]T , Ai = [sin(θAi),0,cos(θAi)]
T and A j = [cos(φA j)sin(θA j),sin(φA j)sin(θA j),cos(θA j)]

T .
We have

ξAi ⊥ ξA j⇒ sin(θAi)cos(φA j)sin(θA j)+ cos(θA j)cos(θAi) = 0.

We develop and integrate as before, and find∫
(ω ·ξAi)

2((−ω+2m(ω ·m)) ·ξA j)
2〈ω ·m〉 dω =

π

24

(
15(m ·ξAi)

2(m ·ξA j)
2 +(m ·ξAi)

2 +(m ·ξA j)
2 +1

)
. (4.64)
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Finally, we get∫
Dcos(m,ξD,n)

π

24

(
15(m ·ξAi)

2(m ·ξA j)
2 +(m ·ξAi)

2 +(m ·ξA j)
2 +1

)
dm = π

15C1C2n(n−1)+(n2 +10n)(C1 +C2)+n2 +5n+10
24n2 +96n+90

(4.65)
with C1 = (ξAi ·ξD)

2 and C2 = (ξA j ·ξD)
2.

4.7.3.3. Sum of all terms

Given Equation 4.59, 4.63 and 4.65, we can write the closed-form expression of
∫

σss(ω) in the case of a cosine lobe Dcos(m,ξD,n). After
simplification, we get:

∫
σss(ω)dω =

πραss(λ)

24n2 +96n+90

(
15n(n−1)

(
ξ

T
DSAξD

)2

−10n(n−2)ξT
DSASAξD +2n(n+10)

(
ξ

T
DSAξD tr(SA)−ξ

T
DSASAξD

)
+(3n2 +7n+10) tr(SASA)+(n2 +5n+10)

(
tr(SA)

2− tr(SASA)
)) (4.66)

4.7.4. Closed-form expression of
∫

σss(ω) for sine lobe Dsin(m,ξD,n)

The derivation is almost the same as for cosine lobes.

4.7.4.1. Case i = j

We have shown (Sec. 4.7.3.1) that∫
(ω ·ξAi)

2((−ω+2m(ω ·m)) ·ξAi)
2〈ω ·m〉 dω =

π

24

(
15(m ·ξAi)

4−10(m ·ξAi)
2 +3

)
(4.67)

Then∫
Dsin(m,ξD,n)

π

24

(
15(m ·ξAi)

4−10(m ·ξAi)
2 +3

)
dm = π

(45n2−45n)(ξD ·ξAi)
4 +(−50n2 +10n)(ξD ·ξAi)

2 +29n2 +91n+80
192n2 +768n+720

(4.68)

4.7.4.2. Case i 6= j

We have found previously (Sec. 4.7.3.2) that∫
(ω ·ξAi)

2((−ω+2m(ω ·m)) ·ξA j)
2〈ω ·m〉 dω =

1
24

π

(
15(m ·ξAi)

2(m ·ξA j)
2 +(m ·ξAi)

2 +(m ·ξA j)
2 +1

)
(4.69)

We get∫
Dsin(m,ξD,n)

π

24

(
15(m ·ξAi)

2(m ·ξA j)
2 +(m ·ξAi)

2 +(m ·ξA j)
2 +1

)
dm= π

45C1C2n(n−1)− (C1 +C2)n(19n+25)+31n2 +105n+80
192n2 +768n+720

(4.70)
With C1 = (ξA1 ·ξD)

2 and C2 = (ξA2 ·ξD)
2

4.7.4.3. Sum of all terms

Again, we sum terms from cases i = j and cases i 6= j, and after simplification we get the closed-form expression of
∫

σss for sine lobes
Dsin(m,ξD,n):

∫
σss(ω)dω =

πραss(λ)

192n2 +768n+720

(
45n(n−1)

(
ξ

T
DSAξD

)2
+10n(1−5n)ξT

DSASAξD

−2n(19n+25)
(

ξ
T
DSAξD tr(SA)−ξ

T
DSASAξD

)
+(29n2 +91n+80) tr(SASA)+(31n2 +105n+80)

(
tr(SA)

2− tr(SASA)
)) (4.71)
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4.8. Sampling the distribution of visible normals for a cosine lobe Dcos(m,ξD,n)

We address here the problem of sampling the distribution of visible microflake normals [HDCD15] given that the microflake distribution is
a cosine lobe Dcos(m,ξD,n). This sampling procedure is useful when using trigonometric lobes in the standard microflake model or in the
simplified self-shadowing model. Indeed, sampling visible normal distributions is actually the same problem as sampling the specular phase
function. We want to sample the probability density function

Dωi(ωo) =
Dcos(ωh,ξD,n)

4
∫

Dcos(m,ξD,n)〈ωi ·m〉dm
(4.72)

with ωh =
ωi +ωo

‖ωi +ωo‖
. It is more convenient to work in the space of microflake normals, and to sample normals instead of outgoing directions.

Using the Jacobian of the transformation from microflake normals to outgoing directions [WMLT07], the pdf for sampling microflake normals
writes

Dωi(m) =
Dcos(m,ξD,n)〈ωi ·m〉∫

Dcos(m,ξD,n)〈ωi ·m〉dm
. (4.73)

We could not find a procedure for sampling directly this function. We propose a sampling procedure based on rejection sampling (Sec. 3).

4.8.1. Using rejection sampling for sampling visible normals of Dcos(m,ξD,n)

We have found that it is possible to sample the function

Dcos(m,ξD,n)(ωi ·m)2∫
Dcos(m,ξD,n)(ωi ·m)2 dm

which is relatively similar to Dωi(m) (Eq. 4.73) on the hemisphere for which Dωi(m) is not null. We propose a rejection sampling method
based on this function. We introduce the normalized pdf

Ds
ωi(m) =

Dcos(m,ξD,n)((ω1 ·m)2 +1/4)∫
Dcos(m,ξD,n)((ω1 ·m)2 +1/4)dm

because we have

|ω1 ·m| ≤ (ω1 ·m)2 +1/4

so that we can write

Dcos(m,ξD,n)|ωi ·m|∫
Dcos(m,ξD,n)|ωi ·m|dm

≤MDs
ωi(m)

with

M =

∫
Dcos(m,ξD,n)((ω1 ·m)2 +1/4)dm∫

Dcos(m,ξD,n)|m ·ωi|dm
.

Using rejection sampling, we can generate samples from the pdf

Dcos(m,ξD,n)|ωi ·m|∫
Dcos(m,ξD,n)|ωi ·m|dm

by generating samples from Ds
ωi(m) and accepting samples with probability

Dcos(m,ξD,n)|ωi ·m|∫
Dcos(m,ξD,n)|ωi ·m|dm

1
MDs

ωi(m)
=

|ω1 ·m|
(ω1 ·m)2 +1/4

.

Once we get a sample m, we invert its direction if ωi ·m < 0 and get a sample for Dωi .

4.8.2. Sampling Ds
ωi(m)

We show here how to sample the pdf

Ds
ωi(m) =

Dcos(m,ξD,n)((ω1 ·m)2 +1/4)∫
Dcos(m,ξD,n)((ω1 ·m)2 +1/4)dm

.

We choose a reference frame such that ξD = [0,0,1]T and ω = [sin(ti),0,cos(ti)]T , and find

Ds
ωi(φ,θ) = cos(θ)2n((cos(ti)cos(φ)sin(θ)+ sin(ti)cos(θ))2 +1/4)

(2n+1)(2n+3)
π(8ncos(ti)2 +2n+7)

.



Guillaume Loubet / Implementing the self-shadowing model

The marginal pdf for θ is given by

fθ(θ) =
∫

Ds
ωi(φ,θ)sin(θ)dφ =

(2n+3)(2n+1)cos(θ)2n sin(θ)
8cos(ti)2n+2n+7

(
cos(θ)2

(
3cos(ti)

2−1
)
− cos(ti)

2 +
3
2

)
.

For sampling this function, we use inverse transform sampling, meaning that we sample a random number U ∈ (0,1) and solve for θ the
equation

U =
∫ θ

0
fθ(x)dx.

We find that ∫ θ

0
fθ(x)dx =

−cos(θ)2n+1

8cos(ti)2n+2n+7

(
(2n+1)

(
3cos(ti)

2−1
)

cos(θ)2 +(2n+3)
(
−cos(ti)

2 +
3
2

))
.

In our implementation, we solve this function numerically using Brent’s method, although other methods could also be used. Once θ has
been sampled, φ must be sampled from the pdf

Ds
ωi(φ,θ)

fθ(θ)
.

This leads to the following equation for sampling φ:

V =
∫ φ

0

Ds
ωi(x,θ)
fθ(θ)

dx =
2sin(ti)2 sin(θ)2(cos(φ)sin(φ)+φ)+8sin(θ)cos(θ)cos(ti)sin(ti)sin(φ)+4cos(θ)2 cos(ti)2

φ+φ

2π(6cos(θ)2 cos(ti)2−2cos(θ)2−2cos(ti)2 +3))
, (4.74)

V being another random number in (0,1). Again, we invert this equation numerically with Brent’s method, and we obtain a sample m =cos(φ)sin(θ)
sin(φ)sin(θ)

cos(θ)

.

4.9. Sampling the distribution of visible normals for a cosine lobe Dsin(m,ξD,n)

For sine lobes, we use the fact that Dsin(m,ξD,n) can be written as a sum of cosine lobes Dcos(m,ξD,n) (Sec. 4.4). We first sample one of
the cosine lobes proportionally to their projected area in direction ωi, and then sample a visible normal from this lobe using the procedure
derived in the previous subsection (Sec. 4.8).

4.10. Sampling single scattering phase function fss for Dcos(m,ξD,n)

In subsections 4.8 and 4.9, we have derived sampling procedures for the distribution of visible normals. Now, we derive similar sampling
procedures for the single scattering phase function fss. The single scattering phase function is given by

fss(ωi→ ωo) =
ραss(λ)A(ωo)A(ωi)D(ωh)

4σs(ωi)
.

We use Ds
ωi (Eq. 4.8.1) in the space of outgoing directions

Ds
ωi(ωo) =

D(ωh)((ωh ·ωi)
2 +1/4)

4|ωh ·ωi|
∫

D(ωh)((ωh ·ωi)2 +1/4)dm

and write

fss(ωi→ ωo) =
ραss(λ)A(ωo)A(ωi)D(ωh)

4σs(ωi)
(4.75)

= Ds
ωi(ωo)

ραss(λ)A(ωo)A(ωi)

σs(ωi)

|ωh ·ωi|
∫

D(ωh)((ωh ·ωi)
2 +1/4)dm

((ωh ·ωi)2 +1/4)
(4.76)

≤ Ds
ωi(ωo)

ραss(λ)AmaxA(ωi)
∫

D(ωh)((ωh ·ωi)
2 +1/4)dm

σs(ωi)
(4.77)

≤ Ds
ωi(ωo)MA (4.78)

with Amax = max
ω

A(ω) and

MA =
Amax

∫
D(m)((m ·ωi)

2 +1/4)dm∫
A(−ωi +2m(m ·ωi))D(m)|m ·ωi|dm

.
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Using this relation between Ds
ωi and fss, with can generate samples from fss by generating samples from Ds

ωi and accepting them with
probability

fss(ωi→ ωo)

MDs
ωi(ω)

=
A(ωo)|ωh ·ωi|

Amax((ωh ·ωi)2 +1/4)
. (4.79)

4.11. Sampling single scattering phase function fss for Dsin(m,ξD,n)

In the case of a sine distribution Dsin(m,ξD,n), we rely on the sampling procedure for visible normals proposed in subsection 4.9. This
method generates samples from the pdf

Dωi(ωo) =
D(ωh)

4
∫

D(m)|m ·ωi|dm
.

We can write

fss(ωi→ ωo) =
ραss(λ)A(ωi)A(ωo)D(ωh)

4σs(ωi)
(4.80)

≤ Dωi(ωo)
ραss(λ)AmaxA(ωi)

∫
D(m)|m ·ωi|dm

σs(ωi)
(4.81)

(4.82)

so we can sample fss for a sine distribution Dsin(m,ξD,n) by generating samples ωo from Dωi(ωo) and accepting them with probability

pdf1(ωo)

Mpdf2(ωo)
=

ραss(λ)A(ωi)A(ωo)D(ωh)

4σs(ωi)

4
∫

D(m)|m ·ωi|dm
D(ωh)

σs(ωi)

ραss(λ)AmaxA(ωi)
∫

D(m)|m ·ωi|dm
(4.83)

=
A(ωo)

Amax
. (4.84)

4.12. Sampling the multiple scattering phase function fms

Our multiple scattering phase function is given by

fms(ωo) =
σt(ωo)−σs(ωo)/αss(λ)∫
σt(ω)−

∫
σs(ω)/αss(λ)

. (4.85)

We observe that in the case of isotropic self-shadowing, this phase function reduces to the pdf

A(1−A)
∫

D(m)〈m ·ωo〉dm∫
A
∫

D(m)〈m ·ωo〉dmdω−
∫

A
∫

AD(m)〈m ·ωo〉dmdω
=

∫
D(m)〈m ·ωo〉dm∫ ∫

D(m)〈m ·ωo〉dmdω

which is proportional the projected area of microflakes in direction ωo. Given a single microflake with normal m, we can sample a direction
ω proportionally to the projection area of the microflake |m ·ω| by sampling a cosine lobe around direction m. Similarly, we can sample the
projected area of a cloud of microflakes by sampling first a normal from the distribution of normals D, and then by sampling a cosine lobe
around this normal. In subsection 4.13 and 4.14, we show how to sample normals for Dcos and Dsin.

We derive a rejection sampling procedure for fms based on this pdf:

σt(ωo)−σs(ωo)/αss(λ)∫
σt(ω)−

∫
σs(ω)/αss(λ)

=
A(ωo)

∫
(1−A(−ωo +2m(m ·ωo)))D(m)〈m ·ωo〉dm∫

A(ω)
∫
(1−A(−ω+2m(m ·ω)))D(m)〈m ·ω〉dmdω

(4.86)

<

∫
D(m)〈m ·ωo〉dm∫ ∫

D(m)〈m ·ωo〉dmdωo

Amax(1−Amin)
∫ ∫

D(m)〈m ·ωo〉dmdωo∫
A(ω)

∫
(1−A(−ω+2m(m ·ω)))D(m)〈m ·ω〉dmdω

. (4.87)

We find the following probability of acceptance:

A(ω)
∫
(1−A(−ω+2m(m ·ω)))D(m)〈m ·ω〉dm
Amax(1−Amin)

∫
D(m)〈m ·ωo〉dm

. (4.88)

This probability tends to one when self-shadowing is almost anisotropic, and tends to be smaller when Amin and Amax are very different,
meaning that this sampling procedure is less efficient is such case.

4.13. Sampling a normal from Dcos

The distribution

Dcos(ω,ξ,n) = (ω ·ξ)2n 2n+1
4π
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can be sampled easily in the reference frame in which ξ = [0,0,1], using inverse transform sampling. We first sample the azimuth φ uniformly
in (0,2π). Then, the marginal distribution for θ is

2π∫
0

cos(θ)2n 2n+1
4π

sin(θ)dφ =
2n+1

2
cos(θ)2n sin(θ).

The cumulative distribution function writes
x∫

0

2n+1
2

cos(θ)2n sin(θ)dθ =
1
2

(
1− cos(x)2n+1

)
.

This function can be inverted:

U =
1
2

(
1− cos(x)2n+1

)
⇒ cos(x)2n+1 = 1−2U,

If U ≥ 1/2:

x = arccos
(
(1−2U)

1
2n+1

)
. (4.89)

If U ≤ 1/2:

x = π− arccos
(
(2U−1)

1
2n+1

)
. (4.90)

Therefore, θ can be sampled by sampling U in (0,1) and then using Eq. 4.89 or 4.90. Finally, the sample

m =

cos(φ)sin(θ)
sin(φ)sin(θ)

cos(θ)


must be rotated back in the original reference frame of Dcos(ω,ξ,n).

4.14. Sampling a normal from Dsin

Again, we use the fact that Dsin(m,ξD,n) can be written as a sum of cosine lobes Dcos(m,ξD,n) (Sec. 4.4). We first sample one of the cosine
lobes randomly and follow the procedure derived in the previous subsection (Sec. 4.13).

4.15. Sampling a cosine lobe

Sampling simple cosine lobes cos(θ) is very common in path tracing, we recall here the procedure. Given a lobe axis m, sampling a cosine
lobe around this direction can be done easily in the frame in which m = [0,0,1]. In this frame, the cosine lobe on the upper hemisphere in
spherical coordinates writes

cos(θ)
π

1θ∈(0, π

2 )
(θ).

We first sample φ uniformly in (0,2π). The marginal pdf for θ writes

2π∫
0

cos(θ)
π

sin(θ)dφ = 2cos(θ)sin(θ).

Then the cumulative distribution function writes
x∫

0

2cos(θ)sin(θ)dθ = sin(x)2.

So θ can be sampled using a random sample U in (0,1) and the inverse of the cumulative function:

θ = arcsin
(√

U
)
.
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4.16. Case of isotropic distribution D(ω) = 1
4π

We derived above closed-form expressions and sampling procedures of our self-shadowing model for sine and cosine distributions. We now
consider the case of an isotropic microflake distribution

D(ω) =
1

4π

which is much simpler. The attenuation coefficient writes

σt(ωi) = ρA(ωi)
1

4π

∫
〈ωi ·ω〉dω =

ρA(ωi)

4

and the single scattering coefficient

σss(ωi) = ραss(λ)A(ωi)
∫

A(ωo)
1

4π
〈ωi ·ω〉dω (4.91)

= ραss(λ)A(ωi)
1

4π

1
4

∫
A(ωo)dωo (4.92)

= ραss(λ)A(ωi)
1

4π

1
4

4π

3
tr(SA) (4.93)

= ραss(λ)A(ωi)
tr(SA)

12
. (4.94)

The single scattering phase function writes

fss(ωi→ ωo) =
A(ωi)A(ωo)

1
4π

A(ωi)
1

4π

∫
A(ω)dω

=
3A(ωo)

4π tr(SA)
.

This phase function is proportional to the self-shadowing function in the outgoing direction A(ωo). The function A can be written as a sum
of three cos2 lobes as shown in equation 4.1. Using this expression, sampling A(ωo) can be done by sampling one of the lobe proportionally
to the eigenvalues a1, a2 and a3, and then sampling a cos2 lobe (almost the same as in Section 4.13) around the corresponding eigenvector.
The multiple scattering phase function writes

fms(ωo) =
σt(ωo)−σs(ωo)/αss(λ)∫

σt −
∫

σs/αss(λ)

with ∫
σt(ω)dω = ρ

1
4

∫
A(ω)dω =

π tr(SA)

3

and ∫
σss(ω)dω = ραss(λ)

tr(SA)

12

∫
A(ω)dω = ραss(λ)

tr(SA)

12
4π tr(SA)

3
=

π tr(SA)
2

9

so we have

fms(ωo) =
A(ωo)

1
4
−A(ωo)

tr(SA)

12
π

3
tr(SA)−

π tr(SA)
2

9

=
3A(ωo)

tr(SA)4π
= fss(ωi→ ωo). (4.95)

The multiple scattering phase function fms is the same as the single scattering phase function fss in the case of an isotropic microflake normal
distribution.

4.17. Combining trigonometric lobes

In previous sections, we have derived expressions for σt , σss, σms, fss, fms and sampling procedures for cosine, sine and isotropic microflake
distributions. We now provide details for combining various lobes, that is when the microflake normal distribution D can be written

D(ω) = ∑wiDi(ω)

with ∑wi = 1. Several expressions are linear in D, so that we get:

σt(ω) = ρA(ω)
∫

∑wiDi(m)〈m ·ω〉dm = ∑wi σ
i
t(ω)
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σss(ω) = ραss(λ)A(ω)
∫

A(−ω+2m(m ·ω))∑wiDi(m)dm = ∑wi σ
i
ss(ω)

∫
σt(ω)dω =

∫
∑wi σ

i
t(ω)dω = ∑wi

∫
σ

i
t(ω)dω

∫
σss(ω)dω =

∫
∑wi σ

i
ss(ω)dω = ∑wi

∫
σ

i
ss(ω)dω

The single scattering phase function is not a linear combination of phase functions derived from each lobes, because of the normalization
factor:

fss(ωi→ ωo) =
ραss(λ)A(ωi)A(ωo)∑wiDi(ωh)

4∑wi σi
ss(ω)

= ∑
wiσ

i
ss(ω)

∑wi σi
ss(ω)

ραss(λ)A(ωi)A(ωo)Di(ωh)

4σi
ss(ω)

= ∑
wiσ

i
ss(ω)

∑wi σi
ss(ω)

f i
ss(ωi→ ωo).

The weights depend on direction ωi. Intuitively, this means that if one lobe has a small projected area in direction ωi, or if there is more
self-shadowing for this lobe because reflected rays are such that A(ωo) is small, then this lobe contributes less to the combined phase function
from direction ωi. Similarly, the combined multiple scattering phase function writes:

fms(ωo) =
σt(ωo)−σss(ωo)/αss(λ)∫

σt(ω)dω−
∫

σss(ω)/αss(λ)dω
(4.96)

=
∑wi(σ

i
t(ωo)−σ

i
ss(ωo)/αss(λ))

∑wi(
∫

σi
t(ω)dω−

∫
σi

ss(ω)/αss(λ)dω)
(4.97)

= ∑
wi(

∫
σ

i
t(ω)dω−

∫
σ

i
ss(ω)/αss(λ)dω)

∑wi(
∫

σi
t(ω)dω−

∫
σi

ss(ω)/αss(λ)dω)

σ
i
t(ωo)−σ

i
ss(ωo)/αss(λ)∫

σi
t(ω)dω−

∫
σi

ss(ω)/αss(λ)dω
(4.98)

= ∑
wi(

∫
σ

i
t(ωo)−

∫
σ

i
ss(ωo)/αss(λ))

∑wi(
∫

σi
t(ω)dω−

∫
σi

ss(ω)/αss(λ)dω)
f i
ms(ωo). (4.99)

Sampling these phase functions from direction ωi can be done by computing view dependent weights of each lobes, and then sampling one
function f i

ss or f i
ms accordingly.

5. Implementing the simplified self-shadowing model with the SGGX distribution

In this section, we discuss the implementation of our simplified self-shadowing model (Sec. 2.5) using the SGGX distribution. The attenuation
coefficient is given by

σt(ω) = Aρ

∫
D(ωm)〈ω ·ωm〉 dωm.

Using SGGX microflake distributions, this writes

σt(ω) = Aρ

√
ωT S ω

with S the SGGX matrix. Similarly, the single scattering coefficient writes

σss(ω) = αss(λ)Aσt(ω) = αss(λ)A2
ρ

√
ωT S ω.

The single scattering phase function writes

fss(ω→ ω
′) =

ραss(λ)A2D(ωh)

4σss(ω)
=

D(ωh)

4
√

ωT S ω

which is the SGGX specular phase function [HDCD15]. For the microscopic multiple scattering, we have

σms(ω) = αms(λ)σt(ω)(1−A) = αms(λ)ρA(1−A)
√

ωT S ω (5.1)

fms(ω
′) =

σms(ω
′)∫

σms(ω′′) dω′′
=

√
ωT S ω∫ √

ω′′T S ω′′ dω′′
. (5.2)

Unfortunately, there is no closed-form expression for
∫ √

ωT S ω. As this integral does not depend on the orientation of the SGGX distribution,
but only on the eigenvalues of the SGGX matrix, we pre-compute numerically this integral for several sets of eigenvalues. Assuming that the
SGGX is normalized so that its largest eigenvalue is 1, we pre-compute

∫ √
ωT S ω for several pairs of smaller eigenvalues a2 and a3. Table 1

shows the values we used in our implementation.

The multiple scattering phase function fms(ωo) is proportional to the projected area of microflakes in direction ωo. As discussed in Sec. 4.12,
sampling this function could be done by sampling a normal from distribution D and then sampling a cosine lobe around this normal.
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a2�a3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

6.98478

7.24191 7.48864

7.47046 7.70689 7.92137

7.67929 7.90892 8.1193 8.31181

7.87585 8.10067 8.30395 8.49325 8.67262

8.06218 8.28009 8.48044 8.66547 8.84188 9.0083

8.2367 8.45133 8.64776 8.83106 9.00371 9.16961 9.32714

8.4059 8.61678 8.80948 8.99007 9.1601 9.32419 9.47985 9.63083

8.56783 8.77602 8.96504 9.14333 9.31145 9.47266 9.62734 9.77656 9.92073

8.7241 8.92956 9.1162 9.29157 9.45843 9.61683 9.76971 9.91778 10.0615 10.1992

8.87382 9.07574 9.26196 9.43575 9.60125 9.758 9.90851 10.0557 10.1965 10.3334 10.4677

9.02212 9.22178 9.40381 9.57613 9.73718 9.89405 10.0441 10.189 10.3294 10.4648 10.5979 10.7268

9.16639 9.36294 9.54264 9.71236 9.87291 10.0276 10.1762 10.3193 10.459 10.5934 10.7246 10.8529 10.9782

9.30461 9.499 9.67856 9.84528 10.0051 10.1578 10.3046 10.4478 10.5851 10.7189 10.8495 10.9767 11.1013 11.2231

9.44041 9.63153 9.80971 9.9749 10.133 10.2856 10.431 10.572 10.7088 10.8415 10.9713 11.0975 11.2208 11.3416 11.4602

9.57287 9.76264 9.93909 10.102 10.26 10.4098 10.5546 10.6939 10.8301 10.9622 11.0911 11.2159 11.3384 11.4588 11.5763 11.6918

9.70291 9.89037 10.0654 10.2271 10.3821 10.5327 10.675 10.8145 10.9487 11.0797 11.2076 11.3325 11.4543 11.5736 11.6905 11.805 11.9179

9.8299 10.0156 10.1889 10.3496 10.5037 10.6512 10.7945 10.9319 11.0656 11.1956 11.3229 11.4465 11.5676 11.6861 11.8023 11.9167 12.0286 12.1387

9.95539 10.1387 10.3096 10.4694 10.6227 10.7694 10.9105 11.0472 11.1807 11.3094 11.4362 11.5589 11.679 11.7971 11.9125 12.0262 12.1375 12.2471 12.3548

10.0769 10.2589 10.4287 10.5875 10.7391 10.8857 11.0263 11.162 11.293 11.4217 11.5469 11.6693 11.7893 11.9066 12.0209 12.1339 12.2448 12.3537 12.4608 12.5664

Table 1: Pre-computed values for
∫ √

ωT S ω for eigenvalues of S being 1, a2 and a3.

However, there is no efficient way of sampling a normal from SGGX distributions. Available methods are based on rejection sampling and
can be inefficient in some configurations. We observed that the distribution

ω
T S ω∫

ω′T S ω′ dω′

is rather close to fms(ωo), and simple to sample, since it is actually the same distribution as the multiple scattering phase function in the case
of anisotropic self-shadowing and isotropic microflake distribution (Sec. 4.16). Based on this function, we can derive a rejection sampling
method. We know that

√
ωT S ω ≤ ω

T S ω +
1
4

so that
√

ωT S ω∫ √
ω′T S ω′ dω′

≤ ω
T S ω +1/4∫ √
ω′T S ω′ dω′

(5.3)

≤ ω
T S ω+1/4∫

(ω′T S ω′+1/4)dω′

∫
(ω′T S ω

′+1/4)dω
′∫ √

ω′T S ω′ dω′
. (5.4)

We can sample

ω
T S ω+1/4∫

(ω′T S ω′+1/4)dω′

and accept samples with probability
√

ωT S ω∫ √
ω′T S ω′ dω′

∫
(ω′T S ω

′+1/4)dω
′

ωT S ω+1/4

∫ √
ω′T S ω′ dω

′∫
(ω′T S ω′+1/4)dω′

=

√
ωT S ω

ωT S ω+1/4
.

6. Evaluation of the estimation of multiple scattering albedos

In the main paper, in Sec. 7.4.4., we proposed a method for estimating multiple scattering albedos in low-resolution voxels. The multiple
scattering albedos must be chosen such that the resulting effective albedos of low-res voxels, i.e. the color of the light when it leaves the voxel
after one or more scattering event, matches the effective albedo of the corresponding block of input voxels. There is no closed-form expression
of the effective albedo of a voxel of microflake medium, meaning that we cannot compute analytically the perceived color of a voxel given
its density and its single scattering albedo. In our downsampling algorithm (Sec. 7 in the main paper), we estimate the effective albedo in the
block of input voxels using ray casting, and then we rely on approximations for estimating a multiple scattering albedo for the low-resolution
voxel. Thanks to our approximations, we don’t need to rely on iterative optimizations for estimating multiple scattering albedos, which would
be more accurate but also time consuming because effective albedos of low-resolution voxels would have to be evaluated with ray casting at
each iteration.



Guillaume Loubet / Implementing the self-shadowing model

We evaluated our method by computing the relative errors of the RGB values of the effective albedos in low-resolution voxels. For each
low-resolution voxel, we compared the effective albedo (estimated with ray casting and using the multiple scattering albedo obtained with
our approximation) with the effective albedo of the corresponding block of input voxels (also estimated with ray casting). In coarse LoDs
(grid resolution divided by 32 in each dimension), we obtained the relative errors shown in Fig. 1. Our approximations tend to underestimate
the effective albedo, meaning that our multiple scattering albedos in low-resolution voxels are slightly too dark on average. Accuracy depends
on the amount of shadowing and the density in the voxels. Our approach could be improved with a better understanding of these errors.

Interestingly, cases with the highest errors in the effective albedos do not correspond to the highest visual errors at rendering (dense hair
asset, Fig. 9 in the main paper). The average albedo is important, but phase functions also contribute a lot to appearance, especially when the
lighting is not uniform.
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Figure 1: Relative errors between measured effective albedos in our low-resolution voxels and reference effective albedos measured in the
corresponding blocks of input voxels. Charts show relative errors for R, G and B values, in %. Each chart corresponds to one dataset used
in the main paper. Vertical axes give the count of a given relative error in the low-res voxels of the LoD (empty voxels are not taken into
account).
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