Process-based indicators to assess storm induced coastal hazards

Óscar Ferreira, Theocharis A. Plomaritis, Susana Costas

CIMA/FCT, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; oferreir/tplomaritis/scotero@ualg.pt

Corresponding author: Óscar Ferreira (oferreir@ualg.pt)

Abstract

Storms are responsible for several hazards (e.g. overwash, erosion, inundation) in coastal areas, leading to the destruction of property and loss of life in populated areas. Various indicators are used to express potential storm impact and describe the associated hazards. The most commonly used indicators include either forcing parameters (e.g. wave height, sea level) or coastal morphologies (e.g. dune height or berm width). Whereas they do not represent the processes associated with storm induced hazards in coastal areas. Alternatively, a hazard could be better characterised if process-based indicators are used instead. Process-based indicators express the result of the forcing mechanisms acting over the coastal morphology and reflect both hydrodynamic and morphological characteristics. This work discusses and synthesizes the most relevant process-based indicators for sandy shores subject to overwash, erosion and inundation promoted by storms. Those include: overwash depth, potential and extent; shoreline, berm or dune retreat; vertical erosion; and inundation depth and extent. The selection of a reduced set of process-based indicators to identify coastal hazards induced by storms in sandy coasts will facilitate comparison of different coastal behaviours for distinct storm return periods, and help to optimise coastal management plans, thereby contributing to the reduction of coastal risks.

Process-based indicators to assess storm induced coastal hazards on sandy coasts

3 Óscar Ferreira, Theocharis A. Plomaritis, Susana Costas

4 CIMA/FCT, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal;
5 oferreir/tplomaritis/scotero@ualg.pt

6 Corresponding author: Óscar Ferreira (oferreir@ualg.pt)

8 Abstract

Storms are responsible for several hazards (e.g. overwash, erosion, inundation) in coastal areas, leading to the destruction of property and loss of life in populated areas. Various indicators are used to express potential storm impact and describe the associated hazards. The most commonly used indicators include either forcing parameters (e.g. wave height, sea level) or coastal morphologies (e.g. dune height or berm width). Whereas they do not represent the processes associated with storm induced hazards in coastal areas. Alternatively, a hazard could be better characterised if process-based indicators are used instead. Process-based indicators express the result of the forcing mechanisms acting over the coastal morphology and reflect both hydrodynamic and morphological characteristics. This work discusses and synthesizes the most relevant process-based indicators for sandy shores subject to overwash, erosion and inundation promoted by storms. Those include: overwash depth, potential and extent; shoreline, berm or dune retreat; vertical erosion; and inundation depth

and extent. The selection of a reduced set of process-based indicators to identify
 coastal hazards induced by storms in sandy coasts will facilitate comparison of
 different coastal behaviours for distinct storm return periods, and help to optimise
 coastal management plans, thereby contributing to the reduction of coastal risks.

27 Keywords: indicators; hazards; storms; overwash; inundation; erosion

1. Introduction

Storms impacting sandy coastal areas produce hazards such as erosion and inundation that, in turn, promote risk to life and property damage in occupied areas, and the alteration and/or fragmentation of habitats. Recent examples include the severe coastal erosion and associated destruction of property caused by Hercules storm (January 2014) that impacted the southwest coasts of France and England (Castelle et al., 2015; Masselink et al., 2016a,b); the inundation and loss of life caused by the Xynthia storm (February/March 2010) in western France (e.g. Bertin et al., 2012); the vast destruction caused by the superstorm Sandy (October/November 2012), in the coastal mid-Atlantic states of the USA (Bennington and Farmer, 2015; Clay et al., 2016), or by hurricane Katrina (August 2005), at the Golf coast of the USA (Link, 2010; Kantha, 2013). Potential coastal damages and risks are expected to increase in the near future not only in association with climate change (e.g. sea level rise, change in frequency and magnitude of storms) but also due to increasing human occupation in coastal areas (Neumann et al., 2015).

Indicators, as a metric for coastal state, dynamics, behaviour or hazard, are a straightforward way to express complex data and information and can therefore be an important tool in the dialog among stakeholders (Carapuço et al., 2016). They are often based on a parameter that is used to characterise a coastal area. Coastal hazard indicators are commonly used to express the potential storm impacts in coastal areas, helping to identify and prioritise vulnerable regions (Nguyen et al., 2016). Storm related hazards have been expressed in the literature by a large number of different indicators that have been recently synthesised by the review works of Carapuço et al. (2016) and Nguyen et al. (2016). For coastal erosion and flooding hazards Carapuço et al. (2016) identified (and recommended) the use of several geoindicators, like shoreline/baseline position, shoreline evolution, beach/barrier elevation or beach slope. Nguyen et al. (2016) synthesized the existing indicators in literature related to storm surge-driven flooding and coastal vulnerability and included geoindicators (e.g. coastal slope, geomorphologic characteristics), hydrodynamic indicators (e.g. wave height, tidal range, surge height) and coastal evolution indicators (e.g. erosion rate, shoreline/coastline position). The aforementioned indicators, which represent a summary of the ones that have been widely used and referred to in the international literature, include forcing/driver parameters, coastal morphology characteristics and even coastal evolution. It is, however, not clear how to select the most representative parameter for a given hazard. The most commonly used parameters describe either the driving mechanisms or the coastal morphology, rarely integrating both or fully representing the processes associated with storm induced hazards in coastal areas. Moreover, these indicators hardly differentiate relevant time-scales (or return periods)

67 and/or values that are averaged over time, which can cause difficulties (and
68 exaggerated simplicity) in their application.

69 To fully characterise a coastal hazard it is necessary to use a set of indicators that 70 combines the forcing mechanism and its effect on the coastal morphology, i.e. 71 process-based indicators. The majority of the indicators found in the literature cannot 72 be considered process-based. Process-based indicators can only be obtained from the 73 application of models that incorporate physical forcing mechanisms and that include 74 realistic coastal morphology elements, resulting in a parameter or set of parameters 75 that express the effects of the processes acting on the coastal system.

This work reviews and synthesizes the most relevant process-based coastal indicators that can be applied for sandy coasts subject to storm-induced coastal hazards. The main hazards assessed are: overwash, inundation, and erosion. The main goal is to propose a set of process-based indicators that can serve as a reference for coastal hazard studies on sandy shores. The rationale for using process-based indicators is described in section 2. The definition, discussion and selection of indicators for each analysed coastal hazard are detailed in section 3. Section 4 provides a synthesis of the proposed indicators and their applicability, based on the use of simple parameters highly representative of coastal hazards. Final considerations on current limitations and future use of process-based indicators at sandy coasts are discussed in section 5.

2. Process-based indicators

The vast majority of recommended coastal hazard related indicators in the literature (see reviews by Bush et al., 1999; Carapuço et al., 2016; Nguyen et al., 2016) only take into account: (i) the characteristics of the physical/morphological features of the coastal system, or (ii) the driving mechanism. Combinations between both, representing the processes and the consequent hydrodynamic or morphological results (process-based indicators), are not commonly used and have not yet been the subject of a synthesis. Process-based indicators are directly related to hazard and represent the interaction between driving mechanisms and the coastal morphology. The process-based indicators are therefore obtained by using formulations or models (from simple to complex) that will combine the driving mechanisms (e.g. storm parameters like wave height, wave period, storm duration or sea level) and the coastal system morphology (such as beach face slope, dune height, berm width, grain size or bathymetry) (Figure 1, steps 1 and 2). The result will be an impact (e.g. erosion, overwash occurrence) that can be expressed through an indicator that has a physical meaning (e.g. flood depth, shoreline retreat). Overall, results can be reclassified into new classes that express different levels of hazard according to stipulated limits/thresholds allowing an illustrative mapping of the hazard (Figure 1, steps 3 and 4). These thresholds can be defined locally or regionally, allowing a comparison of the hazard intensity within a specific coastal area and also between different coastal areas. Furthermore, such indicators can often be used to estimate (or to indicate) the extent of the hazards, allowing the representation of the spatial distribution of the coastal hazard. However, it is worth mentioning that the thresholds depend on the hazard receptor-type (e.g. dunes, salt marsh, houses, infrastructure), defined according to the Language of Risk (Gouldby and Samuels, 2005) and, therefore, comparisons should be

restricted to similar receptors. These indicators are comparable in concept to the Coastal State Indicators (CSI), introduced by van Koningsveld et al (2005). CSI are defined as "issue-related parameters that can simply, adequately and quantitatively describe the dynamic-state and evolutionary trends of a coastal system" (Davidson et al., 2006, 2007). The use of process-based indicators can therefore include alongshore and cross-shore variability as well as time-dependency (e.g. inclusion of time-scales or return periods). The indicators must, however, remain simple on application and expression to ensure their applicability by most coastal managers. Examples of commonly used process-based indicators (e.g. Wright and Short, 1984 or Masselink and Hegge, 1995) include beach morphodynamic state indicators such as the surf scaling parameter (Guza and Inman, 1975) and the surf similarity parameter (Battjes, 1974). However, these are not commonly applied to indicate the degree of coastal hazard. In fact, widely accepted process-based indicators to represent storm hazard at sandy coasts have not yet been defined and used.

Figure 1. Scheme representing the steps needed to obtain a process-based indicator, and its use for hazard assessment. Driving mechanisms and coastal morphology (Step 1) are integrated in numerical models (from simple to complex) to produce a process-based indicator (step 3) that can be used to express the hazard degree (step 4).

Two possible approaches can be used to obtain the indicator's variability through time: event approach and response approach (see Divory and McDougal, 2006; Bosom and Jiménez, 2011; Ferreira et al., 2016). The event approach, also called deterministic, uses the extreme probability distribution of the physical forcing parameter and the present day coastal morphology (or any simulated condition) to determine the process-based indicator. The storm parameter (e.g. wave height) for a given return period is obtained from the corresponding extreme distribution. A formulation/model (Step 2 on Figure 1) is then applied for the dominant (or other) morphological condition and the process-based indicator is obtained (e.g. overwash depth, shoreline retreat) for that return period. In this approach the obtained indicator is then associated with one value of a storm parameter, for a given return period, losing significant information on the natural variability of the process (Sánchez-Arcilla et al., 2009). The response approach, also called the probabilistic approach, uses the entire forcing parameter time-series (e.g. water level, wave height, storm duration) to obtain the indicators for all known conditions (e.g. runup, erosion) through time. A probability distribution of extremes must be fitted to the obtained indicator time-series and the indicator associated with a given return period will be computed from its own probability distribution. This method is particularly recommended when the forcing variables are poorly correlated or statistically independent (Bosom and Jiménez, 2011).

3. Proposed process-based indicators

A large number of the indicators that are currently used are frequently poorly defined (Carapuço et al., 2016). The existing lack of standardization of concepts and assumptions restricts the comparability between indicators and among different coastal areas (Nguyen et al., 2016). The use of different indicators may even result in significantly different hazard estimates, requiring greater caution in the selection of the appropriate indicators (Hanslow, 2007). All above expressed shortcomings call for a standardized approach, with clear guidelines for the determination and applicability of hazard indicators. Indicators should, therefore, be as simple as possible, unambiguous, reproducible in different coastal regions, and based on a consistent methodology that enables comparison between sites (see Carapuço et al., 2016; Nguyen et al., 2016). Moreover, they should be suitable for defining the morphodynamic and hydrodynamic state of sedimentary coasts, in support of coastal zone management (Davidson et al., 2006).

The indicators analysed in this paper are process-based and therefore describe the dynamic interaction between the coastal morphological states and the driving mechanisms of the particular hazard. The computation of the proposed indicators for existing (or hindcast) data time-series, and subsequent probabilistic analysis of the indicators' distribution, will allow their use in association with return periods. Since the selected indicators are applicable to sandy coastal areas and can be associated with a given probability of occurrence, they allow direct comparisons or ranking of the hazard intensity between different coastal areas. For each indicator a set of thresholds can be

established (at local, regional or international level) that can be used to classify and
rank the hazard. Those limits will not be the subject of detailed analysis in this paper,
although application examples will be mentioned after the physical description of each
indicator.

178 Overwash indicators

Overwash occurs when wave induced runup overtops the foredune ridge or the highest beach/barrier elevation if the dune is absent. Following Matias and Masselink (2017) the overwash is a discontinuous flow of seawater and sediment over the dune/beach crest, which will propagate inland for a given extent (distance to the initial dune/beach crest position). The two main indicators reflecting overwash induced hazards are: overwash potential and overwash depth. Overwash potential is defined as the vertical difference (in meters) between the potential wave runup (along an imaginary extended beach/dune slope) and the dune/beach crest elevation (Matias et al., 2012, 2016; Figure 2). Overwash depth can be defined (adapted from Donnelly, 2008) as the water depth (in meters) at a point (dune crest or backbarrier) during an overwash event. Overwash depth decreases with the distance across the backbarrier until reaching a zero value at the maximum inland overwash extent (Figure 2). Computation of both indicators requires the use of empirical equations to predict the runup (e.g. Holman, 1986; Stockdon et al., 2006; see Matias et al., 2012 for a review on formulations) and a digital terrain model. For complex environments, such as partially engineered coastlines or areas with a complex geomorphological framework, processbased models should be used to determine such indicators.

Both indicators (overwash potential and overwash depth) state a vertical difference between a water level associated with the overwash and the terrain (Figure 2). The overwash potential is easier to use because of its computational simplicity since it compares the result of a runup formulation with the height of the dune/berm crest. The overwash depth needs extra formulations to determine the effective water lens depth at the crest and its cross-shore variability (see Donnelly, 2008). However, the overwash depth has the advantage of being physically representative of the actual process as it can be applied not only at the dune/beach crest but also at the backbarrier up to the maximum extent of the overwash (Figure 2). The computation of the overwash depth can be performed using the formulations proposed in Donnelly (2008), relating the overwash depth with infiltration and the velocity of the overwash flux. However, this approach has not been calibrated for all grain-sizes and assumes a simplified morphology. Overwash depth values at the back of the dune can be estimated by using an exponential decay that varies according to infiltration and lateral expansion of the flow. This also allows the definition of a maximum overwash extent which represents the total cross-shore extension of the overwash and can be applied as an indicator of the area prone to be flooded (e.g. Garcia et al., 2010; Ferreira et al., 2016; Christie et al., 2017). The inclusion of processes like infiltration and lateral expansion increases the applicability of the method by providing free parameters that can be set to local conditions and used as calibration parameters. A more effective (but also more complex and computationally demanding) way to compute the overwash depth is to use 1D or 2D numerical models. Other potential indicator to state the overwash hazard (for expected damages) is the overwash velocity. This is currently obtained (with limited field validation) by using models and it is therefore of restricted

application. Alternatively, the overwash velocity can be estimated as a function of the
overwash depth at the dune crest, as determined by Donnelly (2008) and Matias et al.
(2016).

Existing studies mostly use the overwash depth and the overwash potential to determine the possibility of overwash for a given event. Negative values of these indexes are associated with swash or collision states, according to the storm impact scale proposed by Sallenger (2000), while positive values imply overwash (e.g. Almeida et al., 2012; Rodrigues et al., 2012) or higher hazard levels such as inundation (e.g. Bosom and Jiménez, 2011). Several researchers have applied the overwash potential indicator in order to find a storm threshold for morphological changes (e.g. Stockdon et al., 2007; Almeida et al., 2012; Armaroli et al., 2012; Del Río et al., 2012; Haerens et al., 2012; Trifonova et al., 2012). The use of the overwash depth is still limited (e.g., Ferreira et al., 2016; Poelhekke et al., 2016; Valchev et al., 2016; Christie et al., 2017) since it is not directly obtained by the most commonly used formulas (e.g. Holman, 1986; Stockdon et al., 2006) and has been rarely measured in the field, leading to lack of validation. However, it has to be stated that overwash depth is a measurable value in the field in contrast with the overwash potential. For gravel barriers and laboratory conditions, such measurements have been obtained by Matias et al. (2011) as a result of the Bardex Project (Williams et al., 2009). Future application of the overwash depth and overwash potential values should be based on severity scales, to be developed at local, regional or even international levels, as a function of the potential hazard associated with each overwash level. Specific depth damage curves can then be obtained to assess the risk associated with overwash such as already exists for riverine floods.

Fig 2. Cross-shore and plan view representing the concept and application of overwash
indicators. Grey squares represent the location of the hazard receptors (e.g. houses).
OD – overwash depth; OP – overwash potential; OE – overwash extent.

249 Inundation indicators

250 Inundation, which is here defined according to the concept proposed by Sallenger (2000), occurs when the storm related still water level (tide + surge) is sufficient to 251 252 completely and continuously submerge a barrier (i.e. the dune crest or the highest 253 barrier elevation). Inundation should not be confused with overwash, were an 254 intermittent runup level overpasses the barrier for short periods (seconds), and must be treated separately as different time (hours to days) and spatial (larger areas and 255 256 depths) scales are involved. Important processes for tide/surge interactions that can 257 affect the water level (surge height) are surge propagation during the tidal cycle and 258 wind forcing. The continental shelf depth and width are important factors on the 259 amplification (mainly for shallow and wide shelves) of both processes (see Fortunato et 260 al., 2016). Finally, the storm trajectory and the timing of the storm affect the total

261 water level (Bertin et al., 2012). For small areas, the total water level can be assumed 262 constant but when the inundation affects very large areas a variable level could be 263 applied (Breilh, et al., 2014).

The extent of the inundation can be determined through several methods with different degrees of complexity. A simple bathtub model approach can be used for areas with low morphological complexity (Figure 3). In this method, a given area becomes inundated if its elevation is less than the water level (Poulter and Halpin, 2008) while a vertical water depth can be computed at each point. The method does not account for infiltration, roughness or shear stress and therefore it can lead to overestimation. An adaptation can be performed in order to reduce the level of error on the estimation of the inundated area and water depth by using a tilted water surface (Figure 3) along a sloping plane (see Sekovski et al., 2015) based on historical information and cartography. Problems arise from the application of this simple methodology when the total inundated area is large and therefore the time needed to achieve complete inundation is too long when compared with the actual flooding time. This is particularly valid in inundation areas subjected to tides, where the inundation level can occur for just a few hours. In such cases, more complex methods, such as the flood intensity index (Dottori et al., 2016) should be applied. This index reproduces flooding processes using as theoretical background the 1D uniform flow equation, and considers the vertical differences between the water level at a given source of the flow and the elevation of the adjacent terrain. Inundation models, such as LISFLOOD (De Roo et al., 2000), which can account for lateral connectivity and permeability, can also be used to better represent the inundation area and depth. The main indicator to be used on hazard assessment should be the flood depth (see Figure 3) at each hinterland

position, which expresses the intensity of the hazard and its variability along each considered coastal region. Other useful indicators worth of mentioning are the total flood extent (see Figure 3) from a given reference point (e.g. the shoreline), and the percentage of flooded area per coastal sector (from the shoreline to a given previously defined hinterland limit). The overflowing discharge volume can also be used. This indicator is a function of the overflow depth at the crest of a dune or dyke multiplied by its length and integrated over time using the rectangular weir discharge equation of Kindsvater and Carter (1957). The extension of the overflowing discharge volume can be calculated by a step by step increase in the water level until the total volume is reached. Similarly, the volume can be used in combination with the tilting bathtub method to compare inundation volumes.

An example of the application of the tilted bathtub method can be found in Sekovski et al. (2015). The authors used both the flood depth (total water level at a given point) and the flood extent to evaluate present-day and future flood hazards at coastal cities from Emilia-Romagna (Italy). An inter comparison of the above methods to assess the inundation caused by the Xynthia storm to La Faute-sur-Mer is provided by Breilh et al. (2013) and Vousdoukas et al. (2016). Furthermore, Vousdoukas et al. (2016) applied the above indicators to assess the flood hazard along the entire European coast. Poulter and Halpin (2008) used and improved the bathtub method by incorporating the hydrological connectivity between grid cells by considering that only cells that have a connection with the open sea or with nearby cells are considered flood-prone. Perini et al. (2016) used the tilted bathtub approach and the Cost Distance tool of ArcGIS to produce a least-path cost analysis and to remove isolated areas without hydrological connectivity in order to improve the final flood maps.

Fig 3. Cross-shore and plan view representing the concept and application of the inundation indicators. White polygons represent the location of the hazard receptors (e.g. houses, hotels). FD – Flood depth; FE – Flood extent.

314 Erosion indicators

Erosion in this paper simply refers to short-term (episodic) effects driven by storm events or storm groups effecting coastal areas, excluding continuous erosion caused by persistence of sediment scarcity. Storm-induced erosion can be observed as a vertical lowering of the beach/dune system (or by scarp or bluff formation, including subsequent dune avalanching) or as a horizontal inland displacement of the coast (e.g. barrier rollover). The erosion associated with storms will not necessarily result on an overall and definitive displacement of the shoreline since the coast can recover to its original configuration if there is enough sediment available. However, the promoted vertical and horizontal shifts are capable of producing destruction and damages if occupation or other receptors are present. Three main indicators can be proposed: shoreline/berm retreat, dune foot retreat, and vertical erosion (all in meters) at a given point (e.g. dune foot, dune crest, at the infrastructure) (Figure 4). The shoreline/berm retreat and the dune foot retreat represent the horizontal displacement produced by

the storm at a given coastal feature (Figure 4), and can be directly compared with occupation to assess vulnerability. The use of the shoreline/berm retreat versus the dune foot retreat as indicators depends very much on the exposed elements to be assessed. For coastal areas with infrastructure located on the beach berm or on the beach face (e.g. bars, amenities) the shoreline/berm retreat should be used, which can then be transformed (or not) into a remaining beach width or into a distance to occupation. For coastal areas where development and infrastructure (e.g. houses, roads) are located on the dune or at the hinterland, the dune foot retreat should be applied. This can also be transformed into a remaining distance to the developed area when necessary/applicable. The use of the shoreline/berm retreat versus the dune foot retreat also depends on the coastal morphology; at sandy coasts without a dune the shoreline/berm retreat should be used. The vertical erosion corresponds to the vertical difference between the original morphology and the computed/observed morphology during and after the storm (Figure 4). Vertical differences can result in potential damage for the existing development on the beach. This indicator can be equally used on the berm, dune or backbarrier, for any storm and given morphological characteristics, allowing the cross-shore determination and comparison of the vertical erosion indicator. The retreat/erosion indicators can be computed by using relatively simple analytical models, such as the convolution model (Kriebel and Dean, 1993), Larson's method (Larson et al., 2004), the erosion structural function (Mendoza and Jiménez, 2006), or the ShoreFor behaviour model (Davidson et al., 2013), among many others. These models use relatively simple analytical formulations that integrate driving mechanisms (such as wave height, storm duration and sea level) jointly with the morphological and sedimentological characteristics of the coastal area (e.g. dune

height, berm width, beach slope or grain size) to determine coastal erosion (volume or retreat) induced by each storm. All the above methods deal with swash and collision conditions but not with overwash and inundation. For the later regimes, the erosion processes are different and generally more complex. Process-based models, like XBeach (Roelvink et al., 2009), can also be employed to determine the same indicators, for all regimes and with greater detail but requiring a higher level of computational complexity and available data for model calibration. Process-based models like XBeach reproduce the processes occurring at coastal areas during a storm, containing the essential physics of dune erosion, overwash, avalanching, swash, infragravity waves and wave groups (Roelvink et al., 2009). Finally, if LIDAR (Light Detection and Ranging) or similar resolution/quality data (e.g. from UAVs or satellite imagery) exists for pre-and post-storm conditions the erosion indicators can also be computed based on direct measurements (for example by comparing pre and post storm digital terrain models) and for all storm impact regimes following the method of Stockdon et al. (2007).

According to Ciavola et al. (2015) dune erosion volume, berm retreat or dune height reduction can be used directly or against thresholds to identify areas prone or resistant to erosion hazards. Nevertheless, the use of process-based erosion indicators is not widespread, with trend indicators such as shoreline position, high water line, vegetation line or scarp location (see Hanslow, 2007) being the most widely used. The sub-aerial beach and dune volume are also used as coastal indicators (Hanslow, 2007; Armaroli et al., 2012) but not necessarily as process-based indicators, with exceptions such as the use of the erosion resistance index by Judge et al. (2003), the eroded volume and the beach retreat (e.g. Mendoza and Jiménez, 2006), and the dune

stability factor by Armaroli et al. (2012). Examples of use of process-based erosion
indicators also include the distance between the dune and the shoreline or the
comparison between the momentary coastline position and a given landward
boundary, such as the dune foot (see Davidson et al., 2006).

Fig 4. Cross-shore and plan view representing the concept and application of the erosion indicators. White polygons represent the location of the hazard receptors (e.g. houses, hotels). SBR – Shoreline/Berm retreat; DFR – Dune foot retreat; VE – Vertical erosion.

386 4. Summary of indicators and discussion of use

A synthesis of the reviewed and proposed indicators for three main analysed hazards (overwash, inundation and erosion), on sandy shores, can be found in Table I. The proposed process-based indicators are all simple in concept and refer to a measurable distance, permitting a cartographic expression of the hazard (see figures 2 to 4). Several indicators report a vertical difference to the initial topographic surface

(overwash depth, overwash potential, flood depth, vertical erosion) representative of an interaction between driving processes (e.g. water level, runup) and such surface (as is the case for overwash depth, overwash potential and flood depth) or the result of the morphodynamic process measured as a difference between pre and post-event surfaces (vertical erosion). Others (overwash extent, flood extent, shoreline/berm retreat, and dune foot retreat) register the cross-shore extent of the hazard. The alongshore integration of both (vertical and horizontal indicators) allows, in most cases, for an overall three-dimensional cartography of the hazard, including the potentially affected areas and the vertical level of action. That is, for instance, the case of the joint use of the overwash/flood depth and the associated extent. The vertical erosion indicator, since it is immediately associated with an inland position, allows a direct three-dimensional representation of the hazard when expressed alongshore.

The here-reviewed and proposed indicators can be applied on natural sandy (or gravely) beaches with or without dune systems or backbarriers. Although the indicators are not necessarily limited in their use, some of the proposed approaches are, and they can only be applied to coastal areas with low morphological complexity. This includes the case of the determination of the flood depth/extent by using a bathtub (or tilted bathtub) approach. Most of the existing formulations and models are also not completely adapted to heavily developed hinterlands (e.g. dominated by impermeable surfaces) and will require some adaptation. Previous knowledge of the dominant processes during storms will also help to correctly select the methods and indicators to use in the most cost-effective way.

A direct comparison on the applicability of selected (based on the works of Carapuço et al., 2016 and Nguyen et al., 2016) geo- and driver- based indicators against the proposed process-based indicators is expressed at Table II. Most geo- and driver-based indicators are easier to obtain since they can be directly extracted from existing cartography or field measurements (geoindicators) and from instrumental measurements or hindcast predictions (driver-based indicators) often available on-line. They are commonly converted into several simple semi-quantitative values (e.g. from 1 to 5) that are added (quantified) alongshore to permit a representation of the hazard, making them simple to use even for non-experts. They are therefore still used as a simple methodology to classify the coast according to its vulnerability (e.g. Jiménez et al., 2016). They do not, however, account for the acting processes and can therefore affect the final results as observed by Judge et al. (2003) when considering the crest height as a predictor of dune vulnerability. Process-based indicators require both geo-and driver-based information and the additional use of formulations/models, to obtain a final value. If using return periods, a statistical analysis (for either the event or response approach) is also required. This implies, from the users, a higher expertise on coastal dynamics, including the perception of the physical processes acting in coastal areas and responsible for hazards. This reduces the applicability of process-based indicators to users with sufficient background on coastal dynamics. Process-based indicators have, however, several advantages that will, most probably, increase their future use. Most indicators have the possibility of including both detailed longshore variability and cross-shore expression of the hazard, while driver-based indicators have a reduced representativeness of the longshore variability, mainly if wave propagation models are not used. Most used geo and driver-based indicators are also not able to

438 include the cross-shore expression of the hazard (with the exception of the erosion439 rate).

Geo- and driver-based indicators when used alone are often site-specific and hardly comparable between coastal areas. Process-based indicators present an outcome that can be easily compared among sites. For instance, the vertical expression of a hazard (e.g. flood depth or overwash depth) can be compared between coastal regions with similar settings and a higher value of the indicator will represent a potentially higher hazard. That is not the case for driver-based indicators, for instance. A higher wave height or water level cannot be compared between coastal areas since the hazard will depend on the relationship with the coastal elevation. A lower value of a driver-based indicator can be responsible for a higher hazard if the coastal elevation is low, and the opposite is also valid. This prevents the compared use of geo- and driver-based indicators to assess the hazard for distinct coastal areas. The extensive use of process-based indicators, for different coastal regions will allow, in the future, the development of hazard levels/scales that can be internationally adopted. Since process-based indicators can be associated with a given probability of occurrence and can be directly compared between coastal regions, they can also be used to rank the hazard intensity for vast coastal areas, for equal return periods. It must however be stressed that, for the moment, no universal application of indicators exists and that there are no internationally widely accepted intervals to classify each indicator according to the potential hazard. This is still work to be performed, to be based on the lessons learned from the application of process-based indicators at a large-scale.

The here proposed process-based indicators do not integrate feedback mechanisms resulting from the interaction between morphology and forcing agents (e.g. waves, currents). That is also the case for geoindicators and for indicators solely based on driving mechanisms. The hazard and consequent risk can change as a result of feedback mechanisms. For instance, the lowering of a dune by overwash will increase the overwash potential and the overwash depth, leading to an increase in the hazard when compared with the initial (and considered) situation/morphology. The feedback mechanism can occur differently alongshore, as a function of the nearshore, shoreface and dune morphologies. In cases where feedback mechanisms may be highly relevant, these (and other indexes) may not fully reflect the impacts associated with a given event. In those cases only process-based models with high resolution topo-bathymetric grids, after validation and calibration, may be helpful to better understand the hazard in coastal areas. It must be also kept in mind that the indicators must remain simple in concept and application to ensure their use by most coastal managers. Highly complex indicators requiring extreme computational effort and a high degree of specialization will probably fail to be widely applied by most coastal end-users, including managers.

478 5. Conclusions, limitations and future improvements

The current use of process-based indicators is still on its infancy, being necessary to
establish a set of the most relevant indicators that can better express potential hazards
at sandy (and gravelly) shores:

• Overwash: overwash depth, potential and extent;

- • Inundation: flood depth and extent; Erosion: shoreline/berm and dune foot retreat, and vertical erosion. The future use of process-based indicators to quantify coastal hazards is recommended, mainly when compared to the most classical and commonly used geo-and driver-based indicators, since they allow: a) better quantification of the hazard by representing the interaction between forcing mechanisms and morphology; b) better expression of the alongshore and cross-shore (extent) variability of the hazard, including its three-dimensional representation (longshore, cross-shore and vertical); and c) comparison between coastal areas. The development of the process-based indicators' potential will rely on their generalised use in the future. Only an increase in their use will allow the definition of common hazard levels for distinct coastal regions and a large-scale application to vast areas (e.g. at pan-European level). A few limitations still exist that prevent the wider use of these indicators. These include: i) limited available quality data for several regions, regarding either morphologic and hydrodynamic parameters, which is particularly relevant when long-term time-series (e.g. wave characteristics) are needed to better define return periods; ii) restricted current use of formulations and models by end-users and namely coastal managers;

 iii) reduced possibility of integrating feedback mechanisms, with the exception of the most complex process-based models.

The first limitation will be solved (with time) by the ongoing and increasing improvement on data access (and quality) worldwide, including on-line access to coastal morphology and wave/water level series. To obviate the second limitation an improvement will be needed on the transfer of knowledge from the coastal scientific community towards coastal end-users. The third limitation will be solved by integrating process-based models into user-friendly frameworks for generalised use. The improved and generalised use of process-based indicators will provide coastal managers with a highly relevant tool to evaluate coastal hazards and risks and, therefore, to better establish and implement disaster risk reduction in the future, in the most cost-effective way.

1389 517

1392 518 Acknowledgments

519 This work was supported by the European Community's 7th Framework Programme 520 through the grant to RISC-KIT ("Resilience-increasing Strategies for Coasts – Toolkit"), 521 contract no. 603458, and by contributions by the partner institutes. Susana Costas 522 research is funded through the "FCT Investigator" program (ref. IF/01047/2014). This 523 work was also supported by the Portuguese Science Foundation (FCT) through the 524 grant UID/MAR/00350/2013 attributed to CIMA/University of Algarve

526

References

1417		
1418		
1419	527	Almeida L P Ferreira O Taborda R 2011 Geoprocessing tool to model beach
1420	527	
1421	500	aracian due to storme, application to Fare basch (Portugal) Journal of Coastal
1422	520	erosion due to storms, application to rato beach (rontugal), journal of coustar
1423	500	December 61 (4, 4000, 4004
1424	529	Research, SI 64, 1830-1834.
1425		
1420	520	Almeida I. P. Vousdoukas M. V. Ferreira O. Podrigues, R.A. Matias, A. 2012
1427	530	Almelua L. F., Vousuoukas M. V., Penella O., Roungues, D.A., Matias, A., 2012.
1429	504	Thresholds for storms imposts on an eveneed condy second large in southern Dertusal
1430	531	infestions for storm impacts on an exposed sandy coastal area in southern Portugal,
1431		
1432	532	Geomorphology, 143, 3-12. DOI: 10.1016/j.geomorph.2011.04.047
1433		
1434	500	America Contrata D. Dentri I. Calabrara I. Lenite C. Malantini A. Marine M.
1435	533	Armaroli, C., Clavola, P., Perini, L., Calabrese, L., Lorito, S., Valentini, A., Masina, M.,
1436		
1437	534	2012. Critical storm thresholds for significant morphological changes and damage
1438		
1439	535	along the Emilia-Romagna coastline, Italy. <i>Geomorphology</i> , 143, 34-51.
1440		
1441	536	DOI: 10.1016/j.geomorph.2011.09.006
1442		
1443		
1444	537	Battjes, J.A., 1974. Surf similarity. Coastal Engineering'74, 446-480.
1440		
1440	_	
1448	538	Bennington, B. and Farmer, E.C., 2015. Learning from the impacts of Superstorm Sandy.
1449		
1450	539	Ed. J. Bret Bennington and E.Christa Farmer. Academic Press. Elsevier, 123 p.
1451		
1452	= 10	
1453	540	Bertin, X., Bruneau, N., Brelin, J.F., Fortunato, A.B., Karpytchev, M., 2012. Importance
1454		
1455	541	of wave age and resonance in storm surges: The case Xynthia, Bay of Biscay. Ocean
1456		
1457	542	Modelling, 42, 16-30. DOI: 10.1016/j.ocemod.2011.11.001
1458		
1459		
1460	543	Bosom, E. and Jiménez, J.A., 2011. Probabilistic coastal vulnerability assessment to
1401		
1463	544	storms at regional scale - application to Catalan beaches (NW Mediterranean). Natural
1464		
1465	545	Hazards and Earth System Sciences, 11, 475-484. DOI: 10.5194/nhess-11-475-2011
1466		
1467		
1468	546	Breilh, J.F., Chaumillon, E., Bertin, X., Gravelle, M., 2013. Assessment of static flood
1469		
1470	547	modeling techniques: application to contrasting marshes flooded during Xynthia
1471		
1472		
1473		
14/4		
14/J		

1476		
1477		
1478	5/18	(western France) Natural Hazards Earth Systems Science 13 1595-1612
1479	540	(Western Hance). Natural Hazaras Eurth Systems Science, 15, 1575 1012.
1480	5.40	DOI 40 5404/mh and 4505 0040
1481	549	DOI:10.5194/nness-13-1595-2013
1482		
1483		
1484	550	Bush, D.M., Neal, W.J., Young, R.S., Pilkey, O.H., 1999. Utilization of geoindicators for
1485		
1486	551	rapid assessment of coastal-hazard risk and mitigation. Ocean and Coastal
1487		
1488	552	Management, 42, 647-670. DOI: 10.1016/S0964-5691(99)00027-7
1489		
1490		
1491	553	Callaghan, D.P., Nielsen, P., Short, A., Ranasinghe, R., 2008. Statistical simulation of
1492		
1493	554	wave climate and extreme beach erosion <i>Coastal Engineering</i> 55(5) 375-390
1494	551	
1495		DO(10, 1016/i) constalong 2007 12,002
1496	222	DOI:10.1010/J.COAStaleng.2007.12.003
1497		
1498	556	Carapusa MM Taborda P Silvoira TM Deuty ND Andrado C Froitas MC
1499	220	Carapuço, M.M., Taborua, K., Silveira, T.M., Fsuty, N.F., Anuraue, C., Freitas, M.C.,
1500		
1501	557	2016. Coastal geoindicators: Towards the establishment of a common framework for
1502		
1503	558	sandy coastal environments. <i>Earth-Science Reviews</i> , 154, 183-190. DOI:
1504		
1505	559	10.1016/j.earscirev.2016.01.002
1500		
1508		
1500	560	Castelle, B., Marieu, V., Bujan, S., Splinter, K.D., Robinet, A., Senechal, N., Ferreira, S.,
1510		
1511	561	2015. Impact of the winter 2013-2014 series of severe Western Europe storms on a
1512		
1513	562	double-barred sandy coast. Beach and dune erosion and megacush embayments
1514	502	double burred sundy coust. Beden and dane crosion and megacusp embayments.
1515	540	Commernhalogy 229, 125, 149, DOI: 10, 1016/i geomernh 2015, 02,006
1516	503	Geomorphology, 236, 133-146. DOI: 10.1010/J.geomorph.2013.03.000
1517		
1518	E L A	Christia E.K. Spansor T. Owen D. Melver A.L. Möller I. Visvattone C. 2017
1519	504	Christie, E.K., Spencer, T., Owen, D., Mcivor, A.L., Moher, I., Vlavattene, C., 2017.
1520		
1521	565	Regional coastal flood risk assessment for a tidally dominant, natural coastal setting:
1522		
1523	566	North Norfolk, southern North Sea. Coastal Engineering, in press. DOI:
1524		
1525	567	10.1016/j.coastaleng.2017.05.003
1526		
1527		
1528		
1529		
1530		

1535		
1536		
1537	568	Ciavola, P., Ferreira, O., van Dongeren, A., de Vries, J., Armaroli, C., Harley, M., 2015.
1538		
1539	569	Prediction of storms impacts on heach and dune systems. In: Hydrometeorological
1540	507	rediction of storms impacts on beden and durie systems. In: Hydrometeorological
1541	570	Hazarda Interfacing Science and Policy Ed. Philippe Queyouviller, John Wiley S. Song
1542	570	Hazaras: Interfacing science and Policy. Ed: Philippe Quevauviller, John Wiley & Sons.
1543		
1544	571	Clay P.M. Colburn I.I. Seara T. 2016 Social bonds and recovery: An analysis of
1546	571	Clay, F.M., Colburn, E.E., Scara, T., 2010. Social bonus and recovery. An analysis of
1547	570	Universe Country in the first warm often landfall Manine Daliny 74, 004,040, DOL
1548	572	Hurricane Sandy in the first year after landfall. Marine Policy, 74, 334-340. DOI:
1549		
1550	573	10.1016/j.marpol.2016.04.049
1551		
1552		
1553	574	Davidson, M.A., Aarninkhof, S., van Koningsveld, M., Holman, R.A., 2006. Developing
1554		
1555	575	coastal video monitoring systems in support of coastal zone management. Journal of
1556		
1557	576	Coastal Research, SI 39, 49-56.
1558		
1559		
1560	577	Davidson, M.A., van Koningsveld, M., de Kruif, A., Rawson, J., Holman, R., Lamberti, A.,
1561		
1562	578	Medina, R., Kroon, A., Aarninkhof, S., 2007. The CoastView project: Developing video-
1563		
1564	579	derived Coastal State Indicators in support of coastal zone management. Coastal
1565	• • •	
1566	580	Engineering 54 463-475 DOI: 10 1016/i coastaleng 2007 01 007
1507	500	Engineering, 54, 400 475. Doi: 10.1010/j.codstateng.2007.01.007
1560		
1570	581	Davidson, M.A., Splinter, K.D., Turner, I.L., 2013, A simple equilibrium model for
1571		
1572	582	predicting shoreline change Coastal Engineering 73 191-202 DOI:
1573	502	predicting shoreline change. coustai Engineering, 70, 171202. DOI.
1574	500	10.1016/i coortalong 2012 11.002
1575	203	10.1010/ J.COAStaleng.2012.11.002
1576		
1577	581	De Roo A P. L. Wesseling, C.C. van Deursen, W.P.A. 2000, Physically base driver basin
1578	504	De Roo, A.F.J., Wessening, C.G., Van Deursen, W.F.A., 2000. Physically base univer basin
1579	505	medalling within a CIC, the UCELOOD medal, Unductorial Discourses 11, 1001, 1000
1580	585	modelling within a GIS: the LISFLOOD model. Hydrological Processes, 14, 1981-1992.
1581		
1582	586	DOI: 10.1002/1099-1085(20000815/30)14:11/12<1981::AID-HYP49>3.0.CO;2-F
1583		
1584		
1585	587	Del Rio, L., Plomaritis, T.A., Benavente, J., Valladares, M., Ribera, P., 2012. Thresholds
1586		
1587	588	for storm impacts along European coastlines. Geomorphology, 143-144, 13-23.
1588		
1589	589	DOI:10.1016/j.geomorph.2011.04.048
1590		
1592		
1593		

1594		
1595		
1596	590	Divory, D. and McDougal, W.G., 2006. Response-based coastal flood analysis.
1597		
1590	591	Proceedings of the 30 th International Conference on Coastal Engineering, 5291-5301,
1600		
1601	592	ASCE.
1602		
1603		
1604	593	Donnelly, C., 2008. Coastal Overwash: Processes and Modelling. PhD Thesis. Lund
1605		
1606	594	University, Sweden, 53 pp.
1607		
1608		
1609	595	Dottori, F., Martina, M.L.V., Figueiredo, R., 2016. A methodology for flood
1610		
1612	596	susceptibility and vulnerability analysis in complex flood scenarios. Journal of Flood
1613		
1614	597	Risk Management, DOI: 10.1111/jfr3.12234
1615		
1616		
1617	598	Durán, R., Guillén, J., Ruiz, A., Jiménez, J.A., Sagristà, E., 2016. Morphological changes,
1618		
1619	599	beach inundation and overwash caused by an extreme storm on a low-lying embayed
1620		
1621	600	beach bounded by a dune system (NW Mediterranean). Geomorphology, 274, 129-142.
1622		
1623	601	DOI: 10.1016/j.geomorph.2016.09.012
1624		
1626		
1627	602	Ferreira, O., Viavattene, C., Jiménez, J., Bole, A., Plomaritis, T., Costas, S., Smets, S.,
1628		
1629	603	2016. CRAF Phase 1, a framework to identify coastal hotspots to storm impacts. E3S
1630		
1631	604	Web Conf. 7, 11008 (FLOODrisk 2016: 3rd European Conference on Flood Risk
1632		
1633	605	Management).
1634		
1635		
1636	606	Fortunato, A.B., Li, K., Bertin, X., Rodrigues, M., Miguez, B.M., 2016. Determination of
1620		
1630	607	extreme sea levels along the Iberian Atlantic coast. Ocean Engineering, 111, 471-482.
1640		
1641	608	DOI:10.1016/j.oceaneng.2015.11.031
1642		
1643		
1644	609	Garcia, T., Ferreira, O., Matias, A., Dias, J.A., 2010. Overwash vulnerability assessment
1645		
1646	610	based on long-term washover evolution. Natural Hazards, 54, 225-244. DOI:
1647		
1648	611	10.1007/s11069-009-9463-3
1049		
1651		
1652		
-		

1653		
1654		
1655	612	Gouldy B and Samuels P 2005 Language of Risk - Project Definitions Report: T32-
1656	012	
1657	613	04-01 Eloodsite Project Available at www.floodsite.net
1658	015	04 01.1 loodsite Project. Available at www.hoodsite.het
1659		
1660	614	Guza R T and Inman D I 1975 Edge waves and beach cusps Journal of Geophysical
1661	014	Suzu, Kir and minan, bill, 1775. Edge waves and beden casps. Southar of Scophysical
1663	615	Pasaarch 80 1328-1342 DOI: 10.1029/IC080i021p02007
166/	013	Research, 60, 1526-1542. DOI: 10.1027/JC0601021p0277/
1665		
1666	616	Haerens P. Bolle A. Trouw K. Houthuys R. 2012 Definition of storm thresholds for
1667	010	
1668	617	cignificant morphological change of the candy beaches along the Polgian coastline
1669	01/	significant morphological change of the sandy beaches along the Belgian coastine.
1670	() 0	
1671	618	Geomorphology, 143-144, 104-117. DOI:10.1016/J.geomorph.2011.09.015
1672		
1673	(40	Hendow D.L. 2007 Deach exercises twend researchements A semenarises of trend
1674	019	Hanslow, D.J., 2007. Beach erosion trend measurement: A comparison of trend
1675		
1676	620	indicators. Journal of Coastal Research, SI 50, 588-593.
1677		
1678	601	Hinkol I Linsko D. Vafaidis A.T. Parratta M. Nicholls P.I. Tal P.S.I. Marzaian P.
1679	021	minker, J., Lincke, D., Valeidis, A.T., Perfette, M., Nicholis, R.J., Tol, R.S.J., Marzelon, D.,
1680		
1681	622	Fettweis, X., Ionescu, C., Levermann, A., 2014. Coastal flood damage and adaptation
1692		
1684	623	costs under 21st century sea-level rise, Proceedings of the National Academy of
1685		
1686	624	Sciences of the United States of America, 111, 3292-3297. doi:
1687		
1688	625	10.1073/pnas.1222469111
1689		
1690		
1691	626	Holman, R.A., 1986. Extreme value statistics for wave run-up on a natural beach.
1692		
1693	627	Coastal Engineering, 9, 527–544. DOI: 10.1016/0378-3839(86)90002-5
1694		
1695		
1696	628	Jiménez, A.C., Avila, J.I.E, Lacouture, M.M.V., Casarín, R., 2016. Classification of beach
16097		
1600	629	erosion vulnerability on the Yucatan Coast. Coastal Management, 44, 333-349. DOI:
1700		
1701	630	10.1080/08920753.2016.1155038
1702		
1703		
1704	631	Judge, E.K., Overton, M.F., Fisher, J.S., 2003. Vulnerability indicators for coastal dunes.
1705		
1706	632	Journal of Waterway, Port, Coastal and Ocean Engineering, 129, 270-278. DOI:
1707		
1708	633	10.1061/(ASCE)0733-950X(2003)129:6(270)
1709		
1/10		
1/11		

1712		
1713		
1714	634	Kantha L 2013 Classification of hurricanes: Lessons from Katrina lke Irene Isaac and
1715	001	
1716	(05	Sandy Ocean Engineering 70, 124, 129, DOI: 10, 1016/i economy 2012, 06, 007
1717	030	Sandy. Ocean Engineering, 70, 124-126. DOI: 10.1010/j.oceaneng.2013.06.007
1718		
1719	(0)	Kindeveter C and Carter D. 1057 Discharge characteristics of restancy lar this plate
1720	030	Kindsvater, C. and Carter, R., 1957. Discharge characteristics of rectangular thin-plate
1721		
1722	637	weirs, Journal of the Hydraulics Division, ASCE, 83, 1453/1-1453/36.
1723		
1724		
1725	638	Kriebel, D. and Dean, R.G., 1993. Convolution model for time-dependent beach-profile
1726		
1727	639	response. Journal of Waterway, Port, Coastal and Ocean Engineering, 119, 204-226.
1728		
1729	640	DOI: 10.1061/(ASCE)0733-950X(1993)119:2(204)
1730		
1731		
1732	641	Larson, M., Erikson, L., Hanson, H., 2004. An analytical model to predict dune erosion
1733		
1734	642	due to wave impact. Coastal Engineering 51, 675-696, DOI:
1736	012	
1737	612	10 1016/i coastaleng 2004 07 003
1738	043	10.1010/ J.Coastaleng.2004.07.003
1739		
1740	611	Link L.E. 2010. The anatomy of a disaster, an overview of Hurricane Katrina and New
1741	044	Link, L.L., 2010. The anatomy of a disaster, an overview of fluricane Natima and New
1742	(15	Orleans Occar Engineering 27, 4,42, DOL 40,404//i second and 2000,00,002
1743	045	Oneans. Ocean Engineering, 37, 4-12. DOI: 10-1010/J.oceaneng.2009.09.002
1744		
1745	646	Long IW de Bakker ATM Plant N.G. 2014 Scaling coastal dune elevation changes
1746	040	
1747	1 47	access starm impost regimes Casebusical Descered Latters 11
1748	647	across storm-impact regimes. Geophysical Research Letters, 41.
1749		
1750	648	DOI:10.1002/2014GL059616
1751		
1752	(10	Manufall C and Users D. 4005 Manufacture of more and mean tidel bescher
1753	649	Masselink, G. and Hegge, B., 1995. Morphodynamics of meso and macrotidal beaches:
1754		
1755	650	examples from central Queensland, Australia. Marine Geology, 129, 1-23. DOI:
1756		
1/5/	651	10.1016/0025-3227(95)00104-2
1758		
1759		
1761	652	Masselink, G., Scott, T., Poate, T., Russell, P., Davidson, M., Conley, D., 2016a. The
1762		
1763	653	extreme 2013/2014 winter storms: hydrodynamic forcing and coastal response along
1764		
1765	654	the southwest coast of England. Earth Surface Processes and Landforms. 41. 378–391.
1766	- •	
1767	655	DOI: 10.1002/esp.3836
1768	000	501. 10.1002/ C3p.0000
1769		
1770		

1771		
1772		
1773	656	Masselink G. Castelle B. Scott T. Dodet G. Suanez S. Jackson D. Eloc'h F. 2016h
1774	050	
1775	157	Extreme wave estivity during 2012/2014 winter and mershalesized impacts along the
1776	05/	Extreme wave activity during 2013/2014 winter and morphological impacts along the
1777		
1778	658	Atlantic coast of Europe. Geophysical Research Letters, 43, 2135-2143. DOI:
1779		
1780	659	10.1002/2015GL067492
1781		
1782		
1783	660	Matias, A., Masselink, G., Turner, I., Williams, J.J., Ferreira, Ó., 2011. Detailed analysis
1784		
1785	661	of overwash on gravel barriers, Journal of Coastal Research, SI 64, 10-14
1786	001	
1787		
1788	662	Matias A Williams I Masselink C Ferreira O 2012 Overwash threshold for gravel
1789	002	Matias, A., Williams, J., Massellik, G., Perfeira, C., 2012. Overwash threshold for graver
1790		
1791	663	barriers. Coastal Engineering, 63, 48-61. DOI: 10.1016/j.coastaleng.2011.12.006
1792		
1793		
1794	664	Matias, A., Blenkinsopp, C.E., Masselink, G., 2014. Detailed investigation of overwash
1795		
1796	665	on a gravel barrier. <i>Marine Geology</i> . 350, 27-38. DOI: 10.1016/j.margeo.2014.01.009
1797		
1798		
1799	666	Matias, A., Masselink, G., Castelle, B., Blenkinsopp, C.E., Kroon, A., 2016.
1800		
1801	667	Measurements of morphodynamic and hydrodynamic overwash processes in a large-
1802	00,	
1803	440	scale ways flyma Coastal Engineering 112 22.46 DOL
1804	000	scale wave nume. Coastal Engineering, 115, 55-46. DOI.
1805		
1806	669	10.1016/j.coastaleng.2015.08.005
1807		
1808		
1809	670	Matias, A and Masselink, G., 2017. Overwash processes: lessons from fieldwork and
1810		
1811	671	laboratory experiments. In: Coastal Storms: Processes and Impacts. Ed: Paolo Ciavola
1812		
1813	672	and Giovanni Coco. John Wiley & Sons.
1814		
1815		
1816	673	Mendoza, E.T. and Jiménez, J.A., 2006. Storm-induced beach erosion potential on the
1817		······································
1818	671	Catalonian coast Journal of Coastal Pasaarch SI 18 81-88
1819	074	catalonian coast. Journal of coustar Rescurch, 51 40, 61 00.
1820		
1821	675	Noumann P. Vafaidic A.T. Zimmarmann I. Nicholls P.J. 2015 Eutura Coastal
1822	075	Neumann, D., Valeiuis, A.I., Zimmermann, J., Nichons, K.J., 2013. Future Coastar
1823	· - ·	
1824	676	Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global
1825		
1826	677	Assessment. PLoS ONE, 10, e0118571.
1827		
1828		
1829		

1831		
1832 1833	678	Nguyen, T.T.X., Bonetti, J., Rogers, K., Woodroffe, C.D., 2016. Indicator-based
1834 1835	679	assessment of climate-change impacts on coasts: A review of concepts, methodological
1836 1837 1838	680	approaches and vulnerability indices. Ocean and Coastal Management, 123, 18-43.
1839 1840	681	DOI: 10.1016/j.ocecoaman.2015.11.022
1842 1843	682	Perini, L., Calabrese, L., Salerno, G., Ciavola, P., Armaroli, C., 2016. Evaluation of coastal
1844 1845	683	vulnerability to flooding: comparison of two different methodologies adopted by the
1846 1847 1848	684	Emilia-Romagna region (Italy). Natural Hazards and Earth Systems Science, 16, 181-
1849 1850 1851	685	194. DOI: 10.5194/nhess-16-181-2016
1852 1853	686	Poelhekke, L., Jäger, W.S, van Dongeren, A., Plomaritis, T.A., McCall, R., Ferreira, O.,
1854 1855	687	2016. Predicting coastal hazards for sandy coasts with a Bayesian Network. Coastal
1856 1857 1858	688	Engineering, 118, 21-34. DOI: 10.1016/j.coastaleng.2016.08.011
1859 1860	689	Poulter, B. and Halpin, P. N., 2008. Raster modelling of coastal flooding from sea-level
1861 1862 1863	690	rise. International Journal of Geographical Information Science, 22, 167-182.
1864 1865 1866	691	DOI: 10.1080/13658810701371858
1867 1868	692	Ramirez, J.A., Lichter, M., Coulthard, T.J., Skinner, C., 2016. Hyperresolution mapping
1869 1870	693	of regional storm surge and tide flooding: comparison of static and dynamic models,
1871 1872 1873	694	Natural Hazards, 82, 571–590. DOI: 10.1007/s11069-016-2198-z
1874 1875 1876	695	Rodrigues, B. A., Matias, A., Ferreira, O., 2012. Overwash hazard assessment.
1877 1878 1879	696	Geologica Acta, 10, 427-437. DOI: 10.1344/105.000001743
1880 1881	697	Roelvink, D., Reniers, A., van Dongeren, A.P., de Vries, J.V.T., McCall, R., Lescinski, J.,
1882 1883	698	2009. Modelling storm impacts on beaches, dunes and barrier islands. Coastal
1884 1885 1886 1887 1888	699	Engineering, 56, 1133-1152. DOI: 10.1016/j.coastaleng.2009.08.006

1889		
1890		
1891	700	Sallanger A H 2000 Storm impact scale for barrier islands Journal of Coastal
1892	/00	Sallenger, A.H., 2000. Storm impact scale for barrier islands. Journal of Coustar
1893		
1894	701	Research, 16, 890-895.
1895		
1896		
1897	702	Sánchez-Arcilla, A., Jiménez, J.A., Peña, C., 2009. Wave-induced morphodynamic risks.
1808		
1000	702	Characterization of oversmos Coastal Dynamics 2009 World Scientific (CD) paper 127
1000	703	characterization of extremes. Coustar Dynamics 2009, World Scientific (CD), paper 127.
1900		
1901	704	Calcurati I. Armanali C. Calchuser I. Manaini F. Staashi F. Davini I. 2015. Counting
1902	/04	Sekovski, I., Armaroli, C., Calabrese, L., Mancini, F., Stecchi, F., Perini, L., 2015. Coupling
1903		
1904	705	scenarios of urban growth and flood hazards along the Emilia-Romagna coast (Italy).
1905		
1906	706	Natural Hazards and Earth System Sciences 15 2331-2346 DOI: 10 5194/phess-15-
1907	700	
1908		
1909	707	2331-2015
1910		
1911		
1912	708	Silveira, T.M., Taborda, R., Carapuço, M.M., Andrade, C., Freitas, M.C., Duarte, J.F.,
1913		
1914	709	Psuty N.P. 2016 Assessing the extreme overwash regime along an embayed urban
1915	, .,	
1916	740	hand Communication 074 (4.77 DOI 40.404/// communic 004/ 00.007
1017	/10	beach. Geomorphology, 274, 64-77. DOI: 10.1016/J.geomorph.2016.09.007
1010		
1010		
1020	711	Smallegan, S.M., Irish, J.L., van Dongeren, A.R., den Bieman, J.P., 2016. Morphological
1920		
1921	712	response of a sandy barrier island with a buried seawall during Hurricane Sandy.
1922		
1923	710	Coastal Engineering 110, 102, 110, DOI: 10, 1016/i coastalong 2016, 01, 005
1924	/13	Coastal Engineering, 110, 102-110. DOI: 10.1010/j.coastaleng.2010.01.005
1925		
1926		
1927	714	Stockdon, H.F., Holman, R.A., Howd, P.A., and Sallenger, A.H., 2006. Empirical
1928		
1929	715	parameterization of setup, swash and run-up. Coastal Engineering, 53, 573-588.
1930		
1931	716	DOI: 10.1016/i coastalang 2005 12.005
1932	/10	DOI: 10.1010/ J.Coastaleng.2003.12.003
1933		
1934		
1935	/1/	Stockdon, H.F., Sallenger Jr, A.H., Holman, R.A., Howd, P.A., 2007. A simple model for
1936		
1037	718	the spatially-variable coastal response to hurricanes. Marine Geology, 238, 1-20.
1038		
1020	719	DOI:10 1016/i margeo 2006 11 004
1939	/1/	D01.10.1010/ J.mai 5c0.2000.11.004
1940		
1941		
1942		
1943		
1944		
1945		
1946		
1947		

1948		
1949		
1950	720	Trifonova, E.V., Valchev, N.N., Andreeva, N.K., Eftimova, P.T., 2012, Critical storm
1951	/	
1952	701	thresholds for morphological changes in the western Black Sea coastal zone
1953	/21	
1954		
1955	722	Geomorphology, 143–144, 81–94. DOI:10.1016/j.geomorph.2011.07.036
1956		
1957		
1958	723	Valchev, N., Andreeva, N., Eftimova, P., Prodanov, B., Kotsev, I., 2016. Assessment of
1959		
1960	724	vulnerability to storm induced flood hazard along diverse coastline settings. E3S Web
1961		
1962	725	Conference 7, 10002, FLOODrisk 2016 - 3rd European Conference on Flood Risk
1963		,
1964	726	Management
1965	720	
1966		
1967	727	van Koningsveld M. Davidson M.A. Huntley, D.A. 2005 Matching science with
1968	121	van Koningsveid, M., Davidson, M.A., Hundey, D.A., 2003. Matering selence with
1969	700	the second second to the second for successive second to be the indicatory
1970	/28	coastal management needs: The search for appropriate coastal state indicators.
1971		
1972	729	Journal of Coastal Research, 21, 399-411. DOI: 10.2112/03-0076.1
1973		
1974		
1975	730	van Verseveld, H.C.W., van Dongeren, A.R., Plant, N.G., Jäger, W.S., den Heijer, C.,
1970		
1078	731	2015. Modelling multi-hazard hurricane damages on an urbanized coast with a
1970		
1980	732	Bayesian Network approach. <i>Coastal Engineering</i> , 103, 1-14. DOI:
1981		
1982	733	10 1016/i coastaleng 2015 05 006
1983	,00	10.1010/j.coustaleng.2013.03.000
1984		
1985	734	Vousdoukas, M.I., Voukouvalas, F., Mentaschi, L., Dottori F., Giardino, A., Bouziotas, D.,
1986	,	
1987	725	Pianchi A. Salaman B. Eavan J. 2016 Davalanments in Jarga-scale coastal flood
1988	/35	biancin, A., Salamon, F., Feyen, L., 2010. Developments in large-scale coastal noou
1989		
1990	736	hazard mapping. Natural Hazards Earth System Science, 16, 1841-1853. DOI:
1991		
1992	737	10.5194/nhess-2016-124.
1993		
1994		
1995	738	Williams, J.J., Masselink, G., Buscombe, D., Turner, I., Matias, A., Ferreira, O., Metje, N.,
1996		
1997	739	Coates, L., Chapman, D., Bradbury, A., Albers, A., Pan, S., 2009. BARDEX (Barrier
1998		
1999	740	Dynamics Experiment): taking the beach into the laboratory. Journal of Coastal
2000		
2001	741	Research SI 56: 158-162
2002	, 47	
2003		
2004		
2005		
2006		

2007		
2008		
2009	742	Wright, L.D. and Short, A.D., 1984, Morphodynamic variability of surf zones and
2010	· ·=	
2011	740	handhan a suithadia Marina Carlagy 5(00.110 DOL 10.101/ (0005.0007/04)00000
2012	/43	beaches: a synthesis. Marine Geology, 56, 93-118. DOI: 10.1016/0025-3227(84)90008-
2013		
2014	744	2
2015		
2016		
2017		
2018		
2019		
2020		
2021		
2022		
2023		
2024		
2025		
2026		
2027		
2028		
2029		
2030		
2031		
2032		
2033		
2034		
2035		
2036		
2037		
2038		
2039		
2040		
2041		
2042		
2043		
2044		
2045		
2046		
2047		
2048		
2049		
2050		
2051		
2052		
2053		
2054		
2055		
2056		
2057		
2058		
2059		
2060		
2061		
2062		
2063		
2064		
2065		

Overwash depth; OE - Overwash extent; FD - Flood depth; FE - Flood extent; SBR - Shoreline/berm retreat; DFR - Dune foot retreat; VE - Vertical erosion. The numbers in Table I. Synthesis of process-based indicators by hazard, including calculation methods, input parameters, area of application and potential visual expression. OD brackets refer to works where the indicators application/details can be found.

Hazard	Indicator	Method	Input parameters	Application [References]	Visual expression
Overwash	Overwash potential	Runup formulation (e.g. Holman, Stockdon)	Hs, Tp, sea level, beach face slope, dune crest height	Natural beaches/dunes [1-12]	Linear (along dune crest)
	Overwash depth	Runup formulation (e.g. Holman, Stockdon) + Donnelly formulation for depth decrease	Hs, Tp, sea level, beach face slope, dune crest height, backbarrier topography, overwash lens angle, backbarrier slope	Natural beaches/dunes/backbarriers [13-15]	2D with 3D possibility in association with OE
_		Numerical models (e.g. XBeach)	Nearshore wave conditions (Hs, Tp, direction); topo-bathymetry	Natural beaches/dunes/backbarriers [16, 17]	2D with 3D possibility in association with OE
	Overwash extent	Donnelly Washover extent Formulation/XBeach	Hs, Tp, sea level, beach face slope, dune crest height, backbarrier topography, overwash lens angle, backbarrier slope/Nearshore wave conditions (Hs, Tp, direction); topo-bathymetry	Natural beaches/dunes/backbarriers [13-15, 18]	2D with 3D possibility in association with OD
Inundation	Flood depth/extent	Bathtub or tilted bathtub	Total sea level (tide + surge); Topography	Coastal areas with low morphological complexity [19- 26]	2D with 3D possibility in association with FE/FD
_	Flood depth/extent	Numerical models (e.g. LISFLOOD) or semi-static approaches	Water discharge/level; Topography	Low to complex hinterland morphologies [19, 24, 26]	3D
	Overflowing discharge volume	Numerical models (e.g. LISFLOOD) or semi-static approaches	Water discharge/level; Topography	Low to complex hinterland morphologies [19, 26]	3D

ical erosion Numerical models (e.g. Nearshore wave conditions (Hs, Tp, Natural beaches/dunes [16, 33- SBR and DFR - 2D; VE - 3D XBeach) XBeach) 35] 2012; [2] Armaroli et al., 2012; [3] Bosom and Jiménez, 2011; [4] Del Rio et al., 2012; [5] Duran et al., 2016; [6] Haerens et al., 2014; [9] Rodrigues et al., 2012; [10] Silveira et al., 2017; [11] Stockton et al, 2007; [12] Trifonova et al., 2012; [13] Ferreira et al., 2016; [6] Duran et al., 2013; [7] Long et al., 2014; [9] Rodrigues et al., 2012; [10] Silveira et al., 2017; [11] Stockton et al., 2007; [12] Trifonova et al., 2012; [13] Ferreira et al., 2016; [14] Christie et al., 2016; [16] Duran et al., 2012; [13] Ferreira et al., 2016; [14] Christie et al., 2016; [16] Duran et al., 2016; [16] Duran et al., 2016; [16] Poelhekke. et al., 2016; [17] van Verseveld. et al., 2015; [18] Garcia et al., 2010; [19] Breilh et al., 2013; [20] Duttori et al., 2016; [2]	Ical erosion Numerical models (e.g., Marshore wave conditions (Hs, Tp, Matural beaches/dunes [16, 33- SBR and DFR - 2D; VE - 3D direction); topo-bathymetry 35] 2012; [2] Armaroli et al., 2012; [3] Bosom and Jiménez, 2011; [4] Del Rio et al., 2012; [5] Duran et al., 2015; [6] Haerens et al., 2015; [14] Christie et al., 2015; [10] Silveira et al., 2015; [11] stockton et al., 2015; [12] Fureira et al., 2015; [20] Dottori et al., 2015; [12] Perneira et al., 2015; [20] Dottori et al., 2015; [21] Mendola et al., 2015; [23] Pourter et al., 2015; [23] Pourter et al., 2015; [23] Pourter et al., 2015; [23] Mendola et al., 2015; [23] Pourter et al., 2015; [23] Mendola et al., 2015; [23] Pourter and Hapin, 2008; [24] Ramirez et al., 2016; [25] Sekovski et al., 2015; [23] Vousdoukas et al., 2015; [23] Mendola and Jiménez, 2006; [31] Jiménez et al., 2016; [32] Wendoza and Jiménez, 2006; [33] Mccall et al., 2016; [35] Van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] Mccall et al., 2016; [35] Van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] Mccall et al., 2016; [35] Van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] Mccall et al., 2016; [35] Van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] Mccall et al., 2016; [35] Van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] Mccall et al., 2016; [35] Van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mccall et al., 2006; [33] Mccall et al., 2016; [32] Van Verseveld et al., 2015; [30] Davidson et al., 2016; [32] Van Verseveld et al., 2015; [30] Davidson et al., 2016; [32] Van Verseveld et al., 2016; [33] Mccall et
2012; [2] Armaroli et al., 2012; [3] Bosom and Jiménez, 2011; [4] Del Rio et al., 2012; [5] Duran et al., 2016; [6] Haerens et al., 2012; [7] Long et al., 20 014; [9] Rodrigues et al., 2012; [10] Silveira et al., 2017; [11] Stockton et al, 2007; [12] Trifonova et al., 2012; [13] Ferreira et al., 2016; [14] Christie et v et al., 2016: [16] Poelhekke. et al., 2016: [17] van Verseveld . et al., 2015: [18] Garcia et al., 2010: [19] Breilh et al., 2013: [20] Dottori et al., 2016: [2	2012; [2] Armaroli et al., 2012; [3] Bosom and Jiménez, 2011; [4] Del Rio et al., 2012; [5] Duran et al., 2016; [13] Haeren's et al., 2015; [14] Christie et ce al., 2016; [10] Silveira et al., 2017; [11] Stockton et al, 2007; [12] Trifonova et al., 2012; [13] Ferreira et al., 2014; [14] Christie et v et al., 2016; [16] Poelhekke, et al., 2016; [17] van Verseveld , et al., 2015; [18] Garcia et al., 2016; [19] Breilh et al., 2015; [20] Dottori et al., 2016; [17] Van Verseveld , et al., 2015; [18] Garcia et al., 2016; [17] Van Verseveld , et al., 2015; [18] Garcia et al., 2016; [19] Breilh et al., 2015; [20] Dottori et al., 2016; [21] Almeida et al., 2016; [22] Perini et al., 2016; [23] Poulter and Halpin, 2008; [24] Ramirez et al., 2016; [25] Sekovski et al., 2016; [29] Vousdoukas et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [22] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] Verdoza and Jiménez, 2006; [33] McCall et al., 2016; [35] Verdoza and Jiménez, 2006; [33] McCall et al., 2016; [35] Verdoza and Jiménez, 2006; [33] McCall et al., 2016; [35] Verdoza and Jiménez, 2006; [33] McCall et al., 2016; [35] Verdoza and Jiménez, 2006; [33] McCall et al., 2016; [35] Verdoza and Jiménez, 2006; [31] Verdoza and Jiménez, 2006; [33] McCall et al., 2016; [35] Verdoza and Ji
014; [9] Rodrigues et al., 2012; [10] Silveira et al., 2017; [11] Stockton et al, 2007; [12] Trifonova et al., 2012; [13] Ferreira et al., 2016; [14] Christie et v et al., 2016; [16] Poelhekke, et al., 2016; [17] van Verseveld, et al., 2015; [18] Garcia et al., 2010; [19] Breilh et al., 2013; [20] Dottori et al., 2016; [27	014; [9] Rodrigues et al., 2012; [10] Silveira et al., 2017; [11] Stockton et al., 2005; [12] Trifonova et al., 2012; [20] Dottori et al., 2016; [21] v et al., 2016; [21] Prenieria et al., 2015; [20] Dottori et al., 2016; [21] Nameida et al., 2016; [22] Perini et al., 2016; [22] Poulter and Halpin, 2008; [24] Ramirez et al., 2016; [25] Sekovski et al., 2015; [26] Vousdoukas et al., 2016; [27] Almeida aghan et al., 2008; [29] Ciavola et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] Van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] Van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2016; [35] Van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] McCall et al., 2016; [32] Van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] McCall et al., 2016; [31] Van Verseveld et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016
	4; [22] Perini et al., 2016; [23] Poutter and Halpin, 2008; [24] Ramirez et al., 2016; [25] Sekovski et al., 2015; [26] Vousdoukas et al., 2015; [37] Almeida laghan et al., 2008; [29] Ciavola et al., 2015; [30] Davidson et al., 2006; [31] Jiménez et al., 2016; [32] Mendoza and Jiménez, 2006; [33] McCall et al., 2 al., 2016; [35] van Verseveld et al., 2015.

Table II. Comparison between computation type, longshore variability, comparability among coastal areas and cross-shore expression for selected geo, driver and processbased indicators.

Indicator type	Indicator name	Computation	Longshore	Hazard comparability	Cross-shore hazard
:		type	variability	between coastal areas	expression
Geoindicators	Shoreline position	DM/CE	Yes	Reduced	No
	Barrier/beach elevation	DM/CE	Yes	Reduced	No
	Beach/coastal slope	DM/CE	Yes	Reduced	No
	Erosion rate	CE/F/M	Yes	High	Yes
Driver-based indicators	Wave height	H/I	Reduced/Yes ^a	Reduced	No
	Tidal range	H/I	Reduced	Reduced	No
	Surge height	H/I	Reduced	Reduced	No
Process-based indicators	Overwash depth	F/M	Yes	High	Yes
Overwash	Overwash potential	F/M	Yes	High	No
	Overwash extent	F/M	Yes	High	Yes
Process-based indicators	Flood depth	F/M	Yes	High	Yes
Flood	Flood extent	F/M	Yes	High	Yes
Process-based indicators	Shoreline/berm retreat	F/M	Yes	High	Yes
Erosion	Dune foot retreat	F/M	Yes	High	Yes
	Vertical erosion	F/M	Yes	High	Yes
^a requires wave propagation	models to include detailed lo	nsghore variability	near the coastline:		

DM – direct measurement; CE – cartographic extraction; I – instrumental; H – hindcast; F – formulation; M – model.