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Abstract

Storms are responsible for several hazards (e.g. overwash, erosion, inundation) in coastal 
areas, leading to the destruction of property and loss of life in populated areas. Various 
indicators are used to express potential storm impact and describe the associated hazards. The 
most commonly used indicators include either forcing parameters (e.g. wave height, sea level) 
or coastal morphologies (e.g. dune height or berm width). Whereas they do not represent the 
processes associated with storm induced hazards in coastal areas. Alternatively, a hazard could 
be better characterised if process-based indicators are used instead. Process-based indicators 
express the result of the forcing mechanisms acting over the coastal morphology and reflect 
both hydrodynamic and morphological characteristics. This work discusses and synthesizes the 
most relevant process-based indicators for sandy shores subject to overwash, erosion and 
inundation promoted by storms. Those include: overwash depth, potential and extent; 
shoreline, berm or dune retreat; vertical erosion; and inundation depth and extent. The 
selection of a reduced set of process-based indicators to identify coastal hazards induced by 
storms in sandy coasts will facilitate comparison of different coastal behaviours for distinct 
storm return periods, and help to optimise coastal management plans, thereby contributing to 
the reduction of coastal risks.
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8 Abstract

9 Storms are responsible for several hazards (e.g. overwash, erosion, inundation) in 

10 coastal areas, leading to the destruction of property and loss of life in populated areas. 

11 Various indicators are used to express potential storm impact and describe the 

12 associated hazards. The most commonly used indicators include either forcing 

13 parameters (e.g. wave height, sea level) or coastal morphologies (e.g. dune height or 

14 berm width). Whereas they do not represent the processes associated with storm 

15 induced hazards in coastal areas. Alternatively, a hazard could be better characterised 

16 if process-based indicators are used instead. Process-based indicators express the 

17 result of the forcing mechanisms acting over the coastal morphology and reflect both 

18 hydrodynamic and morphological characteristics. This work discusses and synthesizes 

19 the most relevant process-based indicators for sandy shores subject to overwash, 

20 erosion and inundation promoted by storms. Those include: overwash depth, potential 

21 and extent; shoreline, berm or dune retreat; vertical erosion; and inundation depth 
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22 and extent. The selection of a reduced set of process-based indicators to identify 

23 coastal hazards induced by storms in sandy coasts will facilitate comparison of 

24 different coastal behaviours for distinct storm return periods, and help to optimise 

25 coastal management plans, thereby contributing to the reduction of coastal risks. 

26

27 Keywords: indicators; hazards; storms; overwash; inundation; erosion

28

29 1. Introduction

30 Storms impacting sandy coastal areas produce hazards such as erosion and inundation 

31 that, in turn, promote risk to life and property damage in occupied areas, and the 

32 alteration and/or fragmentation of habitats. Recent examples include the severe 

33 coastal erosion and associated destruction of property caused by Hercules storm 

34 (January 2014) that impacted the southwest coasts of France and England (Castelle et 

35 al., 2015; Masselink et al., 2016a,b); the inundation and loss of life caused by the 

36 Xynthia storm (February/March 2010) in western France (e.g. Bertin et al., 2012); the 

37 vast destruction caused by the superstorm Sandy (October/November 2012), in the 

38 coastal mid-Atlantic states of the USA (Bennington and Farmer, 2015; Clay et al., 2016), 

39 or by hurricane Katrina (August 2005), at the Golf coast of the USA (Link,  2010; 

40 Kantha, 2013). Potential coastal damages and risks are expected to increase in the 

41 near future not only in association with climate change (e.g. sea level rise, change in 

42 frequency and magnitude of storms) but also due to increasing human occupation in 

43 coastal areas (Neumann et al., 2015).
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44 Indicators, as a metric for coastal state, dynamics, behaviour or hazard, are a 

45 straightforward way to express complex data and information and can therefore be an 

46 important tool in the dialog among stakeholders (Carapuço et al., 2016). They are 

47 often based on a parameter that is used to characterise a coastal area. Coastal hazard 

48 indicators are commonly used to express the potential storm impacts in coastal areas, 

49 helping to identify and prioritise vulnerable regions (Nguyen et al., 2016). Storm 

50 related hazards have been expressed in the literature by a large number of different 

51 indicators that have been recently synthesised by the review works of Carapuço et al. 

52 (2016) and Nguyen et al. (2016). For coastal erosion and flooding hazards Carapuço et 

53 al. (2016) identified (and recommended) the use of several geoindicators, like 

54 shoreline/baseline position, shoreline evolution, beach/barrier elevation or beach 

55 slope. Nguyen et al. (2016) synthesized the existing indicators in literature related to 

56 storm surge-driven flooding and coastal vulnerability and included geoindicators (e.g. 

57 coastal slope, geomorphologic characteristics), hydrodynamic indicators (e.g. wave 

58 height, tidal range, surge height) and coastal evolution indicators (e.g. erosion rate, 

59 shoreline/coastline position). The aforementioned indicators, which represent a 

60 summary of the ones that have been widely used and referred to in the international 

61 literature, include forcing/driver parameters, coastal morphology characteristics and 

62 even coastal evolution. It is, however, not clear how to select the most representative 

63 parameter for a given hazard. The most commonly used parameters describe either 

64 the driving mechanisms or the coastal morphology, rarely integrating both or fully 

65 representing the processes associated with storm induced hazards in coastal areas. 

66 Moreover, these indicators hardly differentiate relevant time-scales (or return periods) 
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67 and/or values that are averaged over time, which can cause difficulties (and 

68 exaggerated simplicity) in their application.

69 To fully characterise a coastal hazard it is necessary to use a set of indicators that 

70 combines the forcing mechanism and its effect on the coastal morphology, i.e. 

71 process-based indicators. The majority of the indicators found in the literature cannot 

72 be considered process-based. Process-based indicators can only be obtained from the 

73 application of models that incorporate physical forcing mechanisms and that include 

74 realistic coastal morphology elements, resulting in a parameter or set of parameters 

75 that express the effects of the processes acting on the coastal system.

76 This work reviews and synthesizes the most relevant process-based coastal indicators 

77 that can be applied for sandy coasts subject to storm-induced coastal hazards. The 

78 main hazards assessed are: overwash, inundation, and erosion. The main goal is to 

79 propose a set of process-based indicators that can serve as a reference for coastal 

80 hazard studies on sandy shores. The rationale for using process-based indicators is 

81 described in section 2. The definition, discussion and selection of indicators for each 

82 analysed coastal hazard are detailed in section 3. Section 4 provides a synthesis of the 

83 proposed indicators and their applicability, based on the use of simple parameters 

84 highly representative of coastal hazards. Final considerations on current limitations 

85 and future use of process-based indicators at sandy coasts are discussed in section 5.  

86

87 2. Process-based indicators 
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88 The vast majority of recommended coastal hazard related indicators in the literature 

89 (see reviews by Bush et al., 1999; Carapuço et al., 2016; Nguyen et al., 2016) only take 

90 into account: (i) the characteristics of the physical/morphological features of the 

91 coastal system, or (ii) the driving mechanism. Combinations between both, 

92 representing the processes and the consequent hydrodynamic or morphological 

93 results (process-based indicators), are not commonly used and have not yet been the 

94 subject of a synthesis. Process-based indicators are directly related to hazard and 

95 represent the interaction between driving mechanisms and the coastal morphology. 

96 The process-based indicators are therefore obtained by using formulations or models 

97 (from simple to complex) that will combine the driving mechanisms (e.g. storm 

98 parameters like wave height, wave period, storm duration or sea level) and the coastal 

99 system morphology (such as beach face slope, dune height, berm width, grain size or 

100 bathymetry) (Figure 1, steps 1 and 2). The result will be an impact (e.g. erosion, 

101 overwash occurrence) that can be expressed through an indicator that has a physical 

102 meaning (e.g. flood depth, shoreline retreat). Overall, results can be reclassified into 

103 new classes that express different levels of hazard according to stipulated 

104 limits/thresholds allowing an illustrative mapping of the hazard (Figure 1, steps 3 and 

105 4). These thresholds can be defined locally or regionally, allowing a comparison of the 

106 hazard intensity within a specific coastal area and also between different coastal areas. 

107 Furthermore, such indicators can often be used to estimate (or to indicate) the extent 

108 of the hazards, allowing the representation of the spatial distribution of the coastal 

109 hazard. However, it is worth mentioning that the thresholds depend on the hazard 

110 receptor-type (e.g. dunes, salt marsh, houses, infrastructure), defined according to the 

111 Language of Risk (Gouldby and Samuels, 2005) and, therefore, comparisons should be 
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112 restricted to similar receptors. These indicators are comparable in concept to the 

113 Coastal State Indicators (CSI), introduced by van Koningsveld et al (2005). CSI are 

114 defined as “issue-related parameters that can simply, adequately and quantitatively 

115 describe the dynamic-state and evolutionary trends of a coastal system” (Davidson et 

116 al., 2006, 2007). The use of process-based indicators can therefore include alongshore 

117 and cross-shore variability as well as time-dependency (e.g. inclusion of time-scales or 

118 return periods). The indicators must, however, remain simple on application and 

119 expression to ensure their applicability by most coastal managers. Examples of 

120 commonly used process-based indicators (e.g. Wright and Short, 1984 or Masselink 

121 and Hegge, 1995) include beach morphodynamic state indicators such as the surf 

122 scaling parameter (Guza and Inman, 1975) and the surf similarity parameter (Battjes, 

123 1974). However, these are not commonly applied to indicate the degree of coastal hazard. 

124 In fact, widely accepted process-based indicators to represent storm hazard at sandy 

125 coasts have not yet been defined and used.  

126
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127 Figure 1. Scheme representing the steps needed to obtain a process-based indicator, 

128 and its use for hazard assessment. Driving mechanisms and coastal morphology (Step 

129 1) are integrated in numerical models (from simple to complex) to produce a process-

130 based indicator (step 3) that can be used to express the hazard degree (step 4).

131 Two possible approaches can be used to obtain the indicator’s variability through time: 

132 event approach and response approach (see Divory and McDougal, 2006; Bosom and 

133 Jiménez, 2011; Ferreira et al., 2016). The event approach, also called deterministic, 

134 uses the extreme probability distribution of the physical forcing parameter and the 

135 present day coastal morphology (or any simulated condition) to determine the 

136 process-based indicator. The storm parameter (e.g. wave height) for a given return 

137 period is obtained from the corresponding extreme distribution. A formulation/model 

138 (Step 2 on Figure 1) is then applied for the dominant (or other) morphological 

139 condition and the process-based indicator is obtained (e.g. overwash depth, shoreline 

140 retreat) for that return period. In this approach the obtained indicator is then 

141 associated with one value of a storm parameter, for a given return period, losing 

142 significant information on the natural variability of the process (Sánchez-Arcilla et al., 

143 2009). The response approach, also called the probabilistic approach, uses the entire 

144 forcing parameter time-series (e.g. water level, wave height, storm duration) to obtain 

145 the indicators for all known conditions (e.g. runup, erosion) through time. A probability 

146 distribution of extremes must be fitted to the obtained indicator time-series and the 

147 indicator associated with a given return period will be computed from its own 

148 probability distribution. This method is particularly recommended when the forcing 

149 variables are poorly correlated or statistically independent (Bosom and Jiménez, 2011).
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150

151 3. Proposed process-based indicators

152 A large number of the indicators that are currently used are frequently poorly defined 

153 (Carapuço et al., 2016). The existing lack of standardization of concepts and 

154 assumptions restricts the comparability between indicators and among different 

155 coastal areas (Nguyen et al., 2016). The use of different indicators may even result in 

156 significantly different hazard estimates, requiring greater caution in the selection of 

157 the appropriate indicators (Hanslow, 2007). All above expressed shortcomings call for 

158 a standardized approach, with clear guidelines for the determination and applicability 

159 of hazard indicators. Indicators should, therefore, be as simple as possible, 

160 unambiguous, reproducible in different coastal regions, and based on a consistent 

161 methodology that enables comparison between sites (see Carapuço et al., 2016; 

162 Nguyen et al., 2016). Moreover, they should be suitable for defining the 

163 morphodynamic and hydrodynamic state of sedimentary coasts, in support of coastal 

164 zone management (Davidson et al., 2006). 

165 The indicators analysed in this paper are process-based and therefore describe the 

166 dynamic interaction between the coastal morphological states and the driving 

167 mechanisms of the particular hazard. The computation of the proposed indicators for 

168 existing (or hindcast) data time-series, and subsequent probabilistic analysis of the 

169 indicators’ distribution, will allow their use in association with return periods. Since the 

170 selected indicators are applicable to sandy coastal areas and can be associated with a 

171 given probability of occurrence, they allow direct comparisons or ranking of the hazard 

172 intensity between different coastal areas. For each indicator a set of thresholds can be 
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173 established (at local, regional or international level) that can be used to classify and 

174 rank the hazard. Those limits will not be the subject of detailed analysis in this paper, 

175 although application examples will be mentioned after the physical description of each 

176 indicator.

177

178 Overwash indicators

179 Overwash occurs when wave induced runup overtops the foredune ridge or the 

180 highest beach/barrier elevation if the dune is absent. Following Matias and Masselink 

181 (2017) the overwash is a discontinuous flow of seawater and sediment over the 

182 dune/beach crest, which will propagate inland for a given extent (distance to the initial 

183 dune/beach crest position). The two main indicators reflecting overwash induced 

184 hazards are: overwash potential and overwash depth. Overwash potential is defined as 

185 the vertical difference (in meters) between the potential wave runup (along an 

186 imaginary extended beach/dune slope) and the dune/beach crest elevation (Matias et 

187 al., 2012, 2016; Figure 2). Overwash depth can be defined (adapted from Donnelly, 

188 2008) as the water depth (in meters) at a point (dune crest or backbarrier) during an 

189 overwash event. Overwash depth decreases with the distance across the backbarrier 

190 until reaching a zero value at the maximum inland overwash extent (Figure 2). 

191 Computation of both indicators requires the use of empirical equations to predict the 

192 runup (e.g. Holman, 1986; Stockdon et al., 2006; see Matias et al., 2012 for a review on 

193 formulations) and a digital terrain model. For complex environments, such as partially 

194 engineered coastlines or areas with a complex geomorphological framework, process-

195 based models should be used to determine such indicators. 
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196 Both indicators (overwash potential and overwash depth) state a vertical difference 

197 between a water level associated with the overwash and the terrain (Figure 2). The 

198 overwash potential is easier to use because of its computational simplicity since it 

199 compares the result of a runup formulation with the height of the dune/berm crest. 

200 The overwash depth needs extra formulations to determine the effective water lens 

201 depth at the crest and its cross-shore variability (see Donnelly, 2008). However, the 

202 overwash depth has the advantage of being physically representative of the actual 

203 process as it can be applied not only at the dune/beach crest but also at the 

204 backbarrier up to the maximum extent of the overwash (Figure 2). The computation of 

205 the overwash depth can be performed using the formulations proposed in Donnelly 

206 (2008), relating the overwash depth with infiltration and the velocity of the overwash 

207 flux. However, this approach has not been calibrated for all grain-sizes and assumes a 

208 simplified morphology. Overwash depth values at the back of the dune can be 

209 estimated by using an exponential decay that varies according to infiltration and lateral 

210 expansion of the flow. This also allows the definition of a maximum overwash extent 

211 which represents the total cross-shore extension of the overwash and can be applied 

212 as an indicator of the area prone to be flooded (e.g. Garcia et al., 2010; Ferreira et al., 

213 2016; Christie et al., 2017). The inclusion of processes like infiltration and lateral 

214 expansion increases the applicability of the method by providing free parameters that 

215 can be set to local conditions and used as calibration parameters. A more effective 

216 (but also more complex and computationally demanding) way to compute the 

217 overwash depth is to use 1D or 2D numerical models. Other potential indicator to state 

218 the overwash hazard (for expected damages) is the overwash velocity. This is currently 

219 obtained (with limited field validation) by using models and it is therefore of restricted 
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220 application. Alternatively, the overwash velocity can be estimated as a function of the 

221 overwash depth at the dune crest, as determined by Donnelly (2008) and Matias et al. 

222 (2016).

223 Existing studies mostly use the overwash depth and the overwash potential to 

224 determine the possibility of overwash for a given event. Negative values of these 

225 indexes are associated with swash or collision states, according to the storm impact 

226 scale proposed by Sallenger (2000), while positive values imply overwash (e.g. Almeida 

227 et al., 2012; Rodrigues et al., 2012) or higher hazard levels such as inundation (e.g. 

228 Bosom and Jiménez, 2011). Several researchers have applied the overwash potential 

229 indicator in order to find a storm threshold for morphological changes (e.g. Stockdon 

230 et al., 2007; Almeida et al., 2012; Armaroli et al., 2012; Del Río et al., 2012; Haerens et 

231 al., 2012; Trifonova et al., 2012). The use of the overwash depth is still limited (e.g., 

232 Ferreira et al., 2016; Poelhekke et al., 2016; Valchev et al., 2016; Christie et al., 2017) 

233 since it is not directly obtained by the most commonly used formulas (e.g. Holman, 

234 1986; Stockdon et al., 2006) and has been rarely measured in the field, leading to lack 

235 of validation. However, it has to be stated that overwash depth is a measurable value 

236 in the field in contrast with the overwash potential. For gravel barriers and laboratory 

237 conditions, such measurements have been obtained by Matias et al. (2011) as a result 

238 of the Bardex Project (Williams et al., 2009). Future application of the overwash depth 

239 and overwash potential values should be based on severity scales, to be developed at 

240 local, regional or even international levels, as a function of the potential hazard 

241 associated with each overwash level. Specific depth damage curves can then be 

242 obtained to assess the risk associated with overwash such as already exists for riverine 

243 floods.
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244

245 Fig 2. Cross-shore and plan view representing the concept and application of overwash 

246 indicators. Grey squares represent the location of the hazard receptors (e.g. houses). 

247 OD – overwash depth; OP – overwash potential; OE – overwash extent.

248

249 Inundation indicators

250 Inundation, which is here defined according to the concept proposed by Sallenger 

251 (2000), occurs when the storm related still water level (tide + surge) is sufficient to 

252 completely and continuously submerge a barrier (i.e. the dune crest or the highest 

253 barrier elevation). Inundation should not be confused with overwash, were an 

254 intermittent runup level overpasses the barrier for short periods (seconds), and must 

255 be treated separately as different time (hours to days) and spatial (larger areas and 

256 depths) scales are involved. Important processes for tide/surge interactions that can 

257 affect the water level (surge height) are surge propagation during the tidal cycle and 

258 wind forcing. The continental shelf depth and width are important factors on the 

259 amplification (mainly for shallow and wide shelves) of both processes (see Fortunato et 

260 al., 2016). Finally, the storm trajectory and the timing of the storm affect the total 
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261 water level (Bertin et al., 2012).  For small areas, the total water level can be assumed 

262 constant but when the inundation affects very large areas a variable level could be 

263 applied (Breilh, et al., 2014).

264 The extent of the inundation can be determined through several methods with 

265 different degrees of complexity. A simple bathtub model approach can be used for 

266 areas with low morphological complexity (Figure 3). In this method, a given area 

267 becomes inundated if its elevation is less than the water level (Poulter and Halpin, 

268 2008) while a vertical water depth can be computed at each point. The method does 

269 not account for infiltration, roughness or shear stress and therefore it can lead to 

270 overestimation. An adaptation can be performed in order to reduce the level of error 

271 on the estimation of the inundated area and water depth by using a tilted water 

272 surface (Figure 3) along a sloping plane (see Sekovski et al., 2015) based on historical 

273 information and cartography. Problems arise from the application of this simple 

274 methodology when the total inundated area is large and therefore the time needed to 

275 achieve complete inundation is too long when compared with the actual flooding time. 

276 This is particularly valid in inundation areas subjected to tides, where the inundation 

277 level can occur for just a few hours. In such cases, more complex methods, such as the 

278 flood intensity index (Dottori et al., 2016) should be applied. This index reproduces 

279 flooding processes using as theoretical background the 1D uniform flow equation, and 

280 considers the vertical differences between the water level at a given source of the flow 

281 and the elevation of the adjacent terrain. Inundation models, such as LISFLOOD (De 

282 Roo et al., 2000), which can account for lateral connectivity and permeability, can also 

283 be used to better represent the inundation area and depth. The main indicator to be 

284 used on hazard assessment should be the flood depth (see Figure 3) at each hinterland 
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285 position, which expresses the intensity of the hazard and its variability along each 

286 considered coastal region. Other useful indicators worth of mentioning are the total 

287 flood extent (see Figure 3) from a given reference point (e.g. the shoreline), and the 

288 percentage of flooded area per coastal sector (from the shoreline to a given previously 

289 defined hinterland limit). The overflowing discharge volume can also be used. This 

290 indicator is a function of the overflow depth at the crest of a dune or dyke multiplied 

291 by its length and integrated over time using the rectangular weir discharge equation of 

292 Kindsvater and Carter (1957). The extension of the overflowing discharge volume can 

293 be calculated by a step by step increase in the water level until the total volume is 

294 reached. Similarly, the volume can be used in combination with the tilting bathtub 

295 method to compare inundation volumes. 

296 An example of the application of the tilted bathtub method can be found in Sekovski et 

297 al. (2015). The authors used both the flood depth (total water level at a given point) 

298 and the flood extent to evaluate present-day and future flood hazards at coastal cities 

299 from Emilia-Romagna (Italy). An inter comparison of the above methods to assess the 

300 inundation caused by the Xynthia storm to La Faute-sur-Mer is provided by Breilh et al. 

301 (2013) and Vousdoukas et al. (2016). Furthermore, Vousdoukas et al. (2016) applied 

302 the above indicators to assess the flood hazard along the entire European coast. 

303 Poulter and Halpin (2008) used and improved the bathtub method by incorporating 

304 the hydrological connectivity between grid cells by considering that only cells that have 

305 a connection with the open sea or with nearby cells are considered flood-prone. Perini 

306 et al. (2016) used the tilted bathtub approach and the Cost Distance tool of ArcGIS to 

307 produce a least-path cost analysis and to remove isolated areas without hydrological 

308 connectivity in order to improve the final flood maps.
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309

310 Fig 3. Cross-shore and plan view representing the concept and application of the 

311 inundation indicators. White polygons represent the location of the hazard receptors 

312 (e.g. houses, hotels). FD – Flood depth; FE – Flood extent.

313

314 Erosion indicators

315 Erosion in this paper simply refers to short-term (episodic) effects driven by storm 

316 events or storm groups effecting coastal areas, excluding continuous erosion caused by 

317 persistence of sediment scarcity. Storm-induced erosion can be observed as a vertical 

318 lowering of the beach/dune system (or by scarp or bluff formation, including 

319 subsequent dune avalanching) or as a horizontal inland displacement of the coast (e.g. 

320 barrier rollover). The erosion associated with storms will not necessarily result on an 

321 overall and definitive displacement of the shoreline since the coast can recover to its 

322 original configuration if there is enough sediment available. However, the promoted 

323 vertical and horizontal shifts are capable of producing destruction and damages if 

324 occupation or other receptors are present. Three main indicators can be proposed: 

325 shoreline/berm retreat, dune foot retreat, and vertical erosion (all in meters) at a given 

326 point (e.g. dune foot, dune crest, at the infrastructure) (Figure 4). The shoreline/berm 

327 retreat and the dune foot retreat represent the horizontal displacement produced by 
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328 the storm at a given coastal feature (Figure 4), and can be directly compared with 

329 occupation to assess vulnerability. The use of the shoreline/berm retreat versus the 

330 dune foot retreat as indicators depends very much on the exposed elements to be 

331 assessed. For coastal areas with infrastructure located on the beach berm or on the 

332 beach face (e.g. bars, amenities) the shoreline/berm retreat should be used, which can 

333 then be transformed (or not) into a remaining beach width or into a distance to 

334 occupation. For coastal areas where development and infrastructure (e.g. houses, 

335 roads) are located on the dune or at the hinterland, the dune foot retreat should be 

336 applied. This can also be transformed into a remaining distance to the developed area 

337 when necessary/applicable. The use of the shoreline/berm retreat versus the dune 

338 foot retreat also depends on the coastal morphology; at sandy coasts without a dune 

339 the shoreline/berm retreat should be used. The vertical erosion corresponds to the 

340 vertical difference between the original morphology and the computed/observed 

341 morphology during and after the storm (Figure 4). Vertical differences can result in 

342 potential damage for the existing development on the beach. This indicator can be 

343 equally used on the berm, dune or backbarrier, for any storm and given morphological 

344 characteristics, allowing the cross-shore determination and comparison of the vertical 

345 erosion indicator. The retreat/erosion indicators can be computed by using relatively 

346 simple analytical models, such as the convolution model (Kriebel and Dean, 1993), 

347 Larson’s method (Larson et al., 2004), the erosion structural function (Mendoza and 

348 Jiménez, 2006), or the ShoreFor behaviour model (Davidson et al., 2013), among many 

349 others. These models use relatively simple analytical formulations that integrate 

350 driving mechanisms (such as wave height, storm duration and sea level) jointly with 

351 the morphological and sedimentological characteristics of the coastal area (e.g. dune 
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352 height, berm width, beach slope or grain size) to determine coastal erosion (volume or 

353 retreat) induced by each storm. All the above methods deal with swash and collision 

354 conditions but not with overwash and inundation. For the later regimes, the erosion 

355 processes are different and generally more complex. Process-based models, like 

356 XBeach (Roelvink et al., 2009), can also be employed to determine the same indicators, 

357 for all regimes and with greater detail but requiring a higher level of computational 

358 complexity and available data for model calibration. Process-based models like XBeach 

359 reproduce the processes occurring at coastal areas during a storm, containing the 

360 essential physics of dune erosion, overwash, avalanching, swash, infragravity waves 

361 and wave groups (Roelvink et al., 2009). Finally, if LIDAR (Light Detection and Ranging) 

362 or similar resolution/quality data (e.g. from UAVs or satellite imagery) exists for pre- 

363 and post-storm conditions the erosion indicators can also be computed based on 

364 direct measurements (for example by comparing pre and post storm digital terrain 

365 models) and for all storm impact regimes following the method of Stockdon et al. 

366 (2007). 

367 According to Ciavola et al. (2015) dune erosion volume, berm retreat or dune height 

368 reduction can be used directly or against thresholds to identify areas prone or resistant 

369 to erosion hazards. Nevertheless, the use of process-based erosion indicators is not 

370 widespread, with trend indicators such as shoreline position, high water line, 

371 vegetation line or scarp location (see Hanslow, 2007) being the most widely used. The 

372 sub-aerial beach and dune volume are also used as coastal indicators (Hanslow, 2007; 

373 Armaroli et al., 2012) but not necessarily as process-based indicators, with exceptions 

374 such as the use of the erosion resistance index by Judge et al. (2003), the eroded 

375 volume and the beach retreat (e.g. Mendoza and Jiménez, 2006), and the dune 
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376 stability factor by Armaroli et al. (2012). Examples of use of process-based erosion 

377 indicators also include the distance between the dune and the shoreline or the 

378 comparison between the momentary coastline position and a given landward 

379 boundary, such as the dune foot (see Davidson et al., 2006).

380

381 Fig 4. Cross-shore and plan view representing the concept and application of the 

382 erosion indicators. White polygons represent the location of the hazard receptors (e.g. 

383 houses, hotels). SBR – Shoreline/Berm retreat; DFR – Dune foot retreat; VE – Vertical 

384 erosion.  

385

386 4. Summary of indicators and discussion of use

387 A synthesis of the reviewed and proposed indicators for three main analysed hazards 

388 (overwash, inundation and erosion), on sandy shores, can be found in Table I. The 

389 proposed process-based indicators are all simple in concept and refer to a measurable 

390 distance, permitting a cartographic expression of the hazard (see figures 2 to 4). 

391 Several indicators report a vertical difference to the initial topographic surface 
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392 (overwash depth, overwash potential, flood depth, vertical erosion) representative of 

393 an interaction between driving processes (e.g. water level, runup) and such surface (as 

394 is the case for overwash depth, overwash potential and flood depth) or the result of 

395 the morphodynamic process measured as a difference between pre and post-event 

396 surfaces (vertical erosion). Others (overwash extent, flood extent, shoreline/berm 

397 retreat, and dune foot retreat) register the cross-shore extent of the hazard. The 

398 alongshore integration of both (vertical and horizontal indicators) allows, in most 

399 cases, for an overall three-dimensional cartography of the hazard, including the 

400 potentially affected areas and the vertical level of action. That is, for instance, the case 

401 of the joint use of the overwash/flood depth and the associated extent. The vertical 

402 erosion indicator, since it is immediately associated with an inland position, allows a 

403 direct three-dimensional representation of the hazard when expressed alongshore. 

404 The here-reviewed and proposed indicators can be applied on natural sandy (or 

405 gravely) beaches with or without dune systems or backbarriers. Although the 

406 indicators are not necessarily limited in their use, some of the proposed approaches 

407 are, and they can only be applied to coastal areas with low morphological complexity. 

408 This includes the case of the determination of the flood depth/extent by using a 

409 bathtub (or tilted bathtub) approach. Most of the existing formulations and models are 

410 also not completely adapted to heavily developed hinterlands (e.g. dominated by 

411 impermeable surfaces) and will require some adaptation. Previous knowledge of the 

412 dominant processes during storms will also help to correctly select the methods and 

413 indicators to use in the most cost-effective way. 
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414 A direct comparison on the applicability of selected (based on the works of Carapuço 

415 et al., 2016 and Nguyen et al., 2016) geo- and driver- based indicators against the 

416 proposed process-based indicators is expressed at Table II. Most geo- and driver-based 

417 indicators are easier to obtain since they can be directly extracted from existing 

418 cartography or field measurements (geoindicators) and from instrumental 

419 measurements or hindcast predictions (driver-based indicators) often available on-line. 

420 They are commonly converted into several simple semi-quantitative values (e.g. from 1 

421 to 5) that are added (quantified) alongshore to permit a representation of the hazard, 

422 making them simple to use even for non-experts. They are therefore still used as a 

423 simple methodology to classify the coast according to its vulnerability (e.g. Jiménez et 

424 al., 2016). They do not, however, account for the acting processes and can therefore 

425 affect the final results as observed by Judge et al. (2003) when considering the crest 

426 height as a predictor of dune vulnerability. Process-based indicators require both geo- 

427 and driver-based information and the additional use of formulations/models, to obtain 

428 a final value. If using return periods, a statistical analysis (for either the event or 

429 response approach) is also required. This implies, from the users, a higher expertise on 

430 coastal dynamics, including the perception of the physical processes acting in coastal 

431 areas and responsible for hazards. This reduces the applicability of process-based 

432 indicators to users with sufficient background on coastal dynamics. Process-based 

433 indicators have, however, several advantages that will, most probably, increase their 

434 future use. Most indicators have the possibility of including both detailed longshore 

435 variability and cross-shore expression of the hazard, while driver-based indicators have 

436 a reduced representativeness of the longshore variability, mainly if wave propagation 

437 models are not used. Most used geo and driver-based indicators are also not able to 
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438 include the cross-shore expression of the hazard (with the exception of the erosion 

439 rate). 

440 Geo- and driver-based indicators when used alone are often site-specific and hardly 

441 comparable between coastal areas. Process-based indicators present an outcome that 

442 can be easily compared among sites. For instance, the vertical expression of a hazard 

443 (e.g. flood depth or overwash depth) can be compared between coastal regions with 

444 similar settings and a higher value of the indicator will represent a potentially higher 

445 hazard. That is not the case for driver-based indicators, for instance. A higher wave 

446 height or water level cannot be compared between coastal areas since the hazard will 

447 depend on the relationship with the coastal elevation. A lower value of a driver-based 

448 indicator can be responsible for a higher hazard if the coastal elevation is low, and the 

449 opposite is also valid. This prevents the compared use of geo- and driver-based 

450 indicators to assess the hazard for distinct coastal areas. The extensive use of process-

451 based indicators, for different coastal regions will allow, in the future, the 

452 development of hazard levels/scales that can be internationally adopted. Since 

453 process-based indicators can be associated with a given probability of occurrence and 

454 can be directly compared between coastal regions, they can also be used to rank the 

455 hazard intensity for vast coastal areas, for equal return periods. It must however be 

456 stressed that, for the moment, no universal application of indicators exists and that 

457 there are no internationally widely accepted intervals to classify each indicator 

458 according to the potential hazard. This is still work to be performed, to be based on the 

459 lessons learned from the application of process-based indicators at a large-scale.
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460 The here proposed process-based indicators do not integrate feedback mechanisms 

461 resulting from the interaction between morphology and forcing agents (e.g. waves, 

462 currents). That is also the case for geoindicators and for indicators solely based on 

463 driving mechanisms. The hazard and consequent risk can change as a result of 

464 feedback mechanisms. For instance, the lowering of a dune by overwash will increase 

465 the overwash potential and the overwash depth, leading to an increase in the hazard 

466 when compared with the initial (and considered) situation/morphology. The feedback 

467 mechanism can occur differently alongshore, as a function of the nearshore, shoreface 

468 and dune morphologies. In cases where feedback mechanisms may be highly relevant, 

469 these (and other indexes) may not fully reflect the impacts associated with a given 

470 event. In those cases only process-based models with high resolution topo-

471 bathymetric grids, after validation and calibration, may be helpful to better understand 

472 the hazard in coastal areas. It must be also kept in mind that the indicators must 

473 remain simple in concept and application to ensure their use by most coastal 

474 managers. Highly complex indicators requiring extreme computational effort and a 

475 high degree of specialization will probably fail to be widely applied by most coastal 

476 end-users, including managers.

477

478 5. Conclusions, limitations and future improvements

479 The current use of process-based indicators is still on its infancy, being necessary to 

480 establish a set of the most relevant indicators that can better express potential hazards 

481 at sandy (and gravelly) shores:

482 • Overwash: overwash depth, potential and extent;
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483 • Inundation: flood depth and extent;

484 • Erosion: shoreline/berm and dune foot retreat, and vertical erosion.

485 The future use of process-based indicators to quantify coastal hazards is 

486 recommended, mainly when compared to the most classical and commonly used geo- 

487 and driver-based indicators, since they allow:

488 a) better quantification of the hazard by representing the interaction between 

489 forcing mechanisms and morphology;

490 b) better expression of the alongshore and cross-shore (extent) variability of the 

491 hazard, including its three-dimensional representation (longshore, cross-shore 

492 and vertical); and

493 c) comparison between coastal areas.

494 The development of the process-based indicators’ potential will rely on their 

495 generalised use in the future. Only an increase in their use will allow the definition of 

496 common hazard levels for distinct coastal regions and a large-scale application to vast 

497 areas (e.g. at pan-European level). A few limitations still exist that prevent the wider 

498 use of these indicators. These include:

499 i) limited available quality data for several regions, regarding either 

500 morphologic and hydrodynamic parameters, which is particularly relevant 

501 when long-term time-series (e.g. wave characteristics) are needed to better 

502 define return periods;

503 ii) restricted current use of formulations and models by end-users and namely 

504 coastal managers;
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505 iii) reduced possibility of integrating feedback mechanisms, with the exception 

506 of the most complex process-based models.

507 The first limitation will be solved (with time) by the ongoing and increasing 

508 improvement on data access (and quality) worldwide, including on-line access to 

509 coastal morphology and wave/water level series. To obviate the second limitation an 

510 improvement will be needed on the transfer of knowledge from the coastal scientific 

511 community towards coastal end-users. The third limitation will be solved by integrating 

512 process-based models into user-friendly frameworks for generalised use. The 

513 improved and generalised use of process-based indicators will provide coastal 

514 managers with a highly relevant tool to evaluate coastal hazards and risks and, 

515 therefore, to better establish and implement disaster risk reduction in the future, in 

516 the most cost-effective way.

517
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