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Equation of state of a laser-cooled gas
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We experimentally determine the equation of state of a laser-cooled gas. By employing the Lane-Emden
formalism, widely used in astrophysics, we derive the equilibrium atomic profiles in large magneto-optical traps
where the thermodynamic effects are cast in a polytropic equation of state. The effects of multiple scattering
of light are included, which results in a generalized Lane-Emden equation for the atomic profiles. A detailed
experimental investigation reveals an excellent agreement with the model, with a twofold significance. On one
hand, we can infer the details of the equation of state of the system, from an ideal gas to a correlated phase due
to an effective electrical charge for the atoms, which is accurately described by a microscopical description of
the effective electrostatic interaction. On the other hand, we are able map the effects of multiple scattering onto
directly controllable experimental variables, which paves the way to subsequent experimental investigations of
this collective interaction.
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I. INTRODUCTION

The concept of equation of state, the relationship between
thermodynamic state variables such as pressure, P , temper-
ature, T , and volume, V , has evolved beyond the original
formulation of Clapeyron for an ideal gas, PV = NKBT . In
particular, it has been argued that there is a universal form for
the equation of state for solids [1]. Matter at nuclear density
may also allow for a description in terms of an equation
of state, with implications on astrophysical observations of
neutron stars [2–4]. In cosmology, an equation of state is
expressed in terms of the ratio of pressure P to energy density
ρ [5], and can be measured from observations on supernova
distances [6]. Even Einstein’s equation of general relativity can
be derived from the Gibb’s relation δQ = T dS, with δQ being
the energy flux and T the Unruh temperature, allowing for the
interpretation of Einstein’s equation as an equation of state [7].
More recently, with the advent of laser cooling, attention has
been given to the thermodynamics of degenerate Bose [8,9]
and Fermi gases [10].

In astrophysics, the equation of state plays a central role
in the study of stellar structure, where hydrostatic equilibrium
condition of a polytropic gas under the gravitational field and
thermodynamic pressure leads to the celebrated Lane-Emden
equation [11,12]. Based on this approach, Chandrasekhar
derived the mass limit for a white dwarf [13]. Moreover, the
Lane-Emden formalism has also been used to test alternative
theories of gravity in stars beyond the standard models of
stellar structure [14].

In this paper, we extend the Lane-Emden formalism to
experimentally determine the equation of state of a laser-
cooled gas, by directly measuring the atomic density profiles of
large magneto-optical traps. In our experiment, the hydrostatic
equilibrium condition is provided (in first order) by the
balance between the harmonic confinement—the analog of
the gravitational force—and the thermodynamic pressure,
cast in the form of a polytropic equation of state. However,
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when the cooling lasers tuned close to the atomic resonance,
multiple scattering of light occurs and an additional collective
interaction appears, due to the exchange of scattered photons
with nearby atoms [15,16]. In this regime, the atoms expe-
rience a Coulomb-like long-range interaction [17], therefore
allowing us to regard the system as an effective one-component
trapped plasma [18]. Thus, the condition of hydrostatic
equilibrium results in a generalized Lane-Emden equation,
which encompasses the joint effects of harmonic confinement,
thermodynamics, and radiation pressure due to multiple scat-
tering of light. Here, we provide the experimental evidence of
the multiple scattering of light in the equation of state of a laser-
cooled gas and extracting the polytropic exponent by fitting the
density profiles to our theory. A microscopical description of
the interaction induced by multiple scattering is introduced to
explain the experimental deviations from the ideal gas.

II. THEORETICAL MODEL

A fluid description of a laser-cooled gas confined in a
magneto-optical trap (MOT) may be introduced with the usual
continuity and Navier-Stokes equations [18–20]

∂n

∂t
+ ∇ · (nv) = 0, (1)

∂v

∂t
+ v · ∇v = −∇P

mn
+ Ft

m
+ Fc

m
, (2)

where n and v represent the gas density and velocity field,
respectively, and m is the atomic mass. The collective
interaction due to multiple scattering of light is determined
by a Poisson-like equation

∇ · Fc = Qn, (3)

where Q = (σR − σL)σLI0/c represents the square of the
effective charge of the atoms [17], I0 is the total intensity of the
beams and c is the speed of light. Here, σR and σL represent
the emission and absorption cross sections, respectively [21].
The term Ft encompasses the usual MOT cooling and restoring
force as determined by Ft = −αv − κ r , corresponding to a
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damped-harmonic oscillator. The trapping potential is then
assumed to be harmonic, which is a reasonable assumption for
the anti-Helmholtz coils configuration. The spring constant is
approximately given by κ = αμB∇B/�k = κ(δ,I0,Is) where
μB represents the Bohr magneton, α = α(δ,I0,Is) the friction
coefficient from Doppler cooling, δ is the laser detuning, and Is

is the atomic saturation intensity. For magnetic fields gradients
of the order ∼10 G/cm, deviations from the harmonic case
are obtained for very large traps, namely R ∼ 1 cm. In
our experiments, we use R ∼ 2 mm, so we may neglect
anharmonic effects in the confinement. The thermodynamic
effects are cast in the form of a polytropic equation of state

P (r) = Cγ n(r)γ , (4)

where γ is the polytropic exponent, Cγ = P (0)/n(0)γ is a
constant determined by the thermodynamic properties of the
system, and P (0) and n(0) the pressure and density at the
center of the cloud. Introducing the condition of hydrostatic
equilibrium in Eqs. (1), (2), and (3) yields the generalized
Lane-Emden equation [20]

γ
1

ζ 2

d

dζ

(
ζ 2θγ−2 dθ

dζ

)
− �θ + 1 = 0, (5)

where n(r) = n(0)θ (r) and r = aγ ζ , with aγ =√
Cγ

3mω2
0
n(0)(γ−1)/2 a typical scale in the system and

ω2
0 = κ/m the trap frequency. The dimensionless parameter

� = Qn(0)/3mω2
0 = ω2

p/3ω2
0, with ωp = √

Qn(0)/m the
equivalent plasma frequency [19], is the of ratio multiple
scattering (plasma) to the trapping forces. The stability of
the solutions can therefore be directly related to �, with
stable solutions existing for 0 � � < 1, as confirmed both
numerically as by linear stability analysis [20]. The two limits
correspond to distinct physical relevant scenarios. On one
hand, for smaller traps with 107 ∼ 108 atoms and large laser
detuning, the dynamics is determined by the thermal effects
and multiple scattering is negligible, corresponding to the
limit when the atoms have no effective charge, Q → 0, or
equivalently, � → 0. In this limit, the equilibrium density
profiles, for a spherically symmetric cloud, are given by

n(r) = n(0)

(
1 − γ − 1

6γ

r2

a2
γ

)1/(γ−1)

. (6)

The case γ = 1 and C1 = kBT (isothermal gas) simply
corresponds to the Maxwell-Boltzmann equilibrium

n(r) = n(0)e−U (r)/kBT = n(0)e−r2/R2
, (7)

with R =
√

2kBT /mω2
0 the 1/e radius of the cloud. Later we

shall see that the isothermal case is the most relevant solution in
this limit. On the other hand, for very large traps with N � 108

atoms and small detuning, |δ| � , with  being the linewidth
of the transition, the process of multiple scattering dominates,
� → 1, and thermal effects can be ignored. In this case, a
qualitative analytical solution can be found setting γ → 0,
yielding a steplike profile

n(r) = n(0)�(r − R), (8)

with n(0) = 3mω2
0/Q, R = ( 3N

4πn0
)
1/3

the radius of the cloud
and �(r − R) the Heaviside function. These two limit-

ing cases—the temperature-limited and multiple-scattering
regime, respectively—are well known and have been reported
by the early experiments [15,22], although no relation with
an equation of state has been established so far. Our experi-
ments provide a quantitative measurement of the intermediate
regimes, both theoretically and experimentally, on the equation
of state of the gas, and its dependence on the effective charge
Q. We shall also mention that a third regime may be possible,
namely the two-component regime [22]. In this case, there
is a strong confinement near the center of the cloud, due to
the influence of the magnetic field on the optical pumping
between the Zeeman sublevels of the ground state, and a
weaker confinement in the outer region due to the Zeeman
shift of the various excited sublevels. However, in large traps,
almost all the atoms occupy the weak confinement volume,
the trap dynamics is essentially the one presented here and
the presence of polarization gradients in the laser fields no
longer influences the behavior the of system. The influence of
this regime is thus safely excluded both from our theoretical
model and experimental analysis.

III. EXPERIMENTAL SETUP

Our experimental apparatus consists of a MOT [23],
where 85Rb atoms are collected from a dilute vapor in a
background pressure of ∼10−8 Torr. Six independent trapping
(and cooling) laser beams cross the center of the trap with
beam waist of w ∼ 4 cm, power per beam P ∼ 40 mW, and
wavelength λ ∼ 780 nm. The beams are not retroreflected, thus
avoiding feedback instability mechanisms [24]. The trapping
laser operates on the D2 line of 85Rb (F = 3 → F ′ = 4), and
is red detuned by δ, which can be precisely controlled by a
double passage through an acousto-optic modulator (AOM).
The transition linewidth is approximately /2π = 6 MHz. A
magnetic field gradient (∇B) created with a pair of water-
cooled coils in an anti-Helmholtz configuration (zero field in
the center of the trap) generates a spatially dependent Zeeman
split of the energy levels, yielding the restoring force of the
trap. An additional repump beam, operating on the hyperfine
levels F = 2 → F ′ = 3 of the D2 line repopulates the trapping
transition. The repump detuning is set by searching for
the maximum fluorescence signal, corresponding the larger
number of atoms in the trap. We thus obtain a cold cloud with
T ∼ 100 μK and N ∼ 107 to N ∼ 1010 atoms, depending on
the laser detuning δ. A CCD camera collects the fluorescence
signal, illuminating the cloud with far from resonance light
(δ = −4), to avoid multiple scattering during the imaging
process. In this way we measure the atomic distribution of
the trap, integrated along the line of sight of the camera. Two
additional CCD cameras, positioned in orthogonal directions,
allow us to monitor the shape of the cloud. By using half-
wave plates we independently control the intensity of the six
trapping beams to achieve a spherically symmetric atomic
ensemble.

IV. RESULTS AND COMPARISON WITH THE THEORY

For each experimental condition, determined by the laser
detuning δ and magnetic field gradient ∇B, we aver-
age the experimental CCD profiles over 30 realizations.
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FIG. 1. Integrated atomic density profiles (in false color code),
and a one-dimensional horizontal cut passing through the center of the
cloud (white points). The corresponding fitting curves to numerically
generated solutions of the Lane-Emden equation in (5) are also
displayed (black dashed line). The magnetic field gradient varies
from top to bottom as ∇B = 7.5, 10, and 12.5 G/cm. From left to
right, we vary the detuning as δ = −3.2, −2.8, and −2.4 . The error
bars here correspond to standard deviations of the CCD pixel values,
taken over 30 realizations.

One-dimensional (1D) profiles are obtained by cutting through
a direction crossing the center of the cloud, whose coordinates
are defined as the center of mass of the two-dimensional
image. Each experimental profile is fitted with the general
solution of Eq. (5), numerically computed with a fourth-
order explicit Runge-Kutta method, and integrated along one
arbitrary direction (our system is spherically symmetric). The
agreement between the experimental data and the theoretical
model is excellent, for the whole range of experimental
parameters investigated here, see Fig. 1. By decreasing the
laser detuning, i.e., approaching the resonance, we clearly
observe a transition from a Gaussian to a flattened density
profile, also known as water-bag profile (which corresponds to
a paraboloidal curve, when integrated along the line of sight).
It corresponds to a crossover from the temperature-limited
regime, with γ ∼ 1 and � ∼ 0, to the multiple scattering
regime, with � → 1.

In what follows, we determine how the physical quantities
of the model, the dimensionless plasma frequency � and the
polytropic exponent γ , scale explicitly as a function of the
experimental parameters along the crossover. For that purpose,
we take several averaged realizations of the 2D profile from
which one-dimensional profiles are extracted. By numerically
fitting the latter to the general solution of Eq. (5), we plot �

and γ against δ and ∇B. The error bars thus correspond to
the statistical standard deviations of a large number of fitted
profiles, as depicted in Fig. 2. Note that we are not attributing
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FIG. 2. In the left panel, we plot the normalized plasma frequency
� = ω2

p/3ω2
0 as a function of detuning δ. The right panel depicts the

polytropic exponent γ , also as a function of detuning δ. The different
curves correspond to ∇B = 7.5 G/cm (red line), ∇B = 10 G/cm
(black line), and ∇B = 12.5 G/cm (blue line).

any error to the detuning δ, which is stable in our setup. On the
other hand, the laser power is not constant, with a 5 ∼ 10 %
drift that we can not overcome. This may indeed induce some
fluctuations in the fitted parameters, although its significance
should be mitigated by using large statistics. The size of the
statistical error bars do, in fact, reflect the experimental jitter
associated with not only the laser power fluctuations, but other
parameters drifts.

As expected, when working closer to resonance, the effect
of multiple scattering becomes more important, not only
because of the higher value of the cross sections σR and
σL, but also because the number of atoms in the trap also
grows, increasing the probability of a photon being reabsorbed
before leaving the system. At the same time, larger deviations
from the ideal gas (γ = 1) are also observed, as the gas starts
to behave like a (weakly) coupled one-component plasma.
Very close to resonances, |δ| � 2, we observe the onset
of some mechanical instabilities in the trap, characterized
by an oscillatory behavior of the fluorescence signal. This
effect has been observed by other authors and reported in the
literature as a self-sustained instability [25], which is related
with a competition between the confining force of the trap and
the increasing repulsive interaction associated with multiple
scattering. As our model relies on dynamically stable regimes,
we excluded data taken for |δ| < 2.

At this point, it is pertinent to query about the dependence
of the equation of state, as determined by the the polytropic
exponent γ , on the effective charge of the atoms. To unravel
this dependence, we develop a simple microscopical theory for
the interactions in the system. We start by explicitly computing
the total energy, U = UT + UC , with UT = 3

2NKBT the
usual thermal energy and UC the energy associated with
the Coulomb interactions and responsible for the deviations
from the ideal gas. To compute UC we start with Poisson
equation, ∇2φ(r) = − q

ε0
n(r), with q = √

ε0Q the effective
charge of the atoms and n(r) = n(0) assumed to be constant
throughout the cloud—remember the water-bag solution,
which allows us to explicitly derive an analytical solution.
After determining the electrostatic energy of the system,
we can derive the corresponding pressure resulting from the
exchange of scattered photons as PC = Qn(0)2

6 ( 3V
4π

)
2/3

and the

total pressure of the gas reads P = P0 + Qn2
0

6 ( 3V
4π

)
2/3

, with
P0 = nKBT the ideal gas contribution. Correcting the pressure
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FIG. 3. Polytropic exponent, γ , as a function of the universal
parameter ξ , for ∇B = 7.5 G/cm (red points), ∇B = 10 G/cm (black
points), and ∇B = 12.5 G/cm (blue points). All points corresponding
to different experimental conditions fall on the universal curve defined
by Eq. (9). The inset corresponds to the same experimental points but
binned in the ξ parameter and equally spaced.

in the form of a polytropic equation of state as investigated
above, P = Cγ nγ , yields

γ = 1 + 2/3ξ

1 + ξ
, with ξ = 1

15

(
3N

4πn0

)2/3
�5/3

a2
γ

. (9)

A detailed derivation of this result can be found in Appendix.
Note that, by assuming a constant density distribution, we are
overestimating the correction of the polytropic exponent. For
that reason, we make the substitution N → N eff = αN , with
α expected to be close to unit, α � 1. In fact, allowing α to be
a free fitting parameter yields α � 0.8 as expected. We finally
obtain a universal form for the correction of the polytropic
exponent, which agrees very well with our theory, see Fig. 3.

V. CONCLUSION

In conclusion, we experimentally determined the equation
of state of a gas of cold atoms in large atomic traps by fitting the
density profiles with the solution of a generalized Lane-Emden
equation describing the hydrostatic equilibrium of the gas. By
explicitly evaluating the energy associated with the effective
electrostatic interaction, we were able to explain how the
polytropic exponent depends of the mean-field potential of
the atoms, which in its turn results from the exchange of
scattered photons by the atoms. Our findings constitute a strong
quantitative evidence of the fact that a laser-cooled gas can
effectively simulate and behave like a weakly correlated one-
component plasma. Recently, a Debye-Hückel approach was
introduced in the context of spin ice, where effective magnetic
monopoles interact under a mutual Coulombic force [26], thus
constituting another example where an effective plasmonic
behavior can be induced. The Lane-Emden formalism was, to
the best of our knowledge, for the first time applied outside
the context of astrophysics. The results obtained here pave
the way to the subsequent experimental investigation of more
exotic plasmalike processes in non degenerate cold gases.
We have previously introduced the possibility of observing
effects such as phonon-lasing [27], classical rotons [28],

plasmon modes and Tonks-Dattner resonances [18,19], photon
bubbles [29], the dynamical Casimir-effect [30] and twisted
excitations carrying orbital angular momentum [31]. Multiple
scattering should also play a role in the context of optome-
chanical instabilities in cold matter, recently proposed [32]
and observed [33]. We conclude by referring to the close
relation between the system investigated here and astrophys-
ical processes involving trapped plasmas [34,35]. Being able
to achieve mimicking conditions in cold atoms laboratory
experiments, with a great degree of control and tunability
on the interactions, offers an ideal test bench to investigate
astrophysical problems.
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APPENDIX

The purpose of this Appendix is to guide the reader through
the derivation of the correction of the polytropic exponent, γ .
This parameter accounts for the deviation from an ideal gas
(γ = 1) induced by multiple scattering of photons [15,16].
The atoms behave as if they possess an effective electrical
charge q = √

ε0Q, with Q = (σR − σL)σLI0/c [17], I0 the
total intensity of the beams and c is the speed of light. Here, σR

and σL represent the emission and absorption cross sections,
respectively [21]. The induced collective interaction has been
previously explored [18,19].

Let us begin by determining the electrostatic potential of
the system, which is known to satisfy the Poisson equation

∇2φ(r) = − 1

ε0
qn(r). (A1)

We approximate the density distribution in the cloud by a
water-bag profile—the multiple scattering regime discussed in
the main text—corresponding to a constant density n0 spread
over a radial extent of radius R, i.e., n(r) = n0θ (r − R), with
n0 = 3mω2

0/Q and R = ( 3N
4πn0

)
1/3

. This approximation allows
us to keep the analysis tractable and derive an analytical
correction for γ . We shall then compute the solutions for
the Poisson equation in two different regions. For outside the
cloud, r > R, Eq. (A1) reads, in spherical coordinates(

∂2

∂r2
+ 2

r

∂

∂r

)
φ(r) = 0, (A2)

which admits solutions in the form φ(r) = A
r

+ B. Assuming
that the potential vanishes at infinity, φ(r → ∞) = 0 results in
B = 0. The Gauss theorem allows us to write A = qT

4πε0
with qT

the total charge of the system, qT = 4
3πqn0R

3. We then have,
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for r > R, φ(r) = qn0R
3

3ε0r
. Let now turn to the region inside the

cloud, r � R, where the corresponding Poisson equation reads(
∂2

∂r2
+ 2

r

∂

∂r

)
φ(r) = −qn0

ε0
. (A3)

In this case the solution are of the form φ(r) = A′r2 + B ′.
Substituting in Eq. (A3) results in A′ = − qn0

6ε0
. The integration

constant B ′ is determined by the continuity of the potential
φ(r) in the boundary of the two regions, i.e., φ(R−) = φ(R+).
Finally, we can write the electrostatic potential inside the cloud
as

φ(r) = qn0

6ε0
(R2 − r2) + qn0R

2

3ε0
. (A4)

The next step is the evaluation of the effective electrostatic
energy, determined by

UC = 1

2

∫
V

φ(r)qn(r)dV. (A5)

Introducing again the water-bag density profile yields the
results UC = 4

15πQn2
0R

5 or, equivalently, UC = 1
5 ( 3

4π
)
2/3 QN2

V 1/3

in terms of the volume and the number of particles in the
system, which will be useful in the next steps. We now wish
to evaluate the pressure in the cloud, which encompasses
the contributions from the ideal gas part and the effective
electrostatic interaction, P = P0 + PC, with P0 = kBT n =
kBT N/V and PC determined by

PC = −
(

∂UC

∂V

)
N

, (A6)

since the electrostatic energy does not depend on the tempera-
ture. We then have PC = 1

15 ( 3
4π

)
2/3

QN2V −4/3 or, equivalently,
PC = 1

15Qn2
0R

2. The total pressure in the system is given by

P = kBT N

V
+ 1

15

(
3

4π

)2/3
QN2

V 4/3
. (A7)

We now wish to establish an equivalence between the
former equation of state and a polytropiclike one, in the form
P = Cγ nγ , as in the Lane-Emden derivation. With that in
mind, we can write

Cγ n
γ

0 = kBT n0 + Qn2
0R

2

15
(A8)

or, equivalently, dividing by kBT n0

Cγ

kBT
nε

0 = 1 + Qn0R
2

15kBT
, (A9)

where we defined ε = γ − 1. Note that we can rewrite this last
expression in terms of the parameter of the model introduced
earlier, namely the effective plasma frequency � = Qn0

3mω2
0

and the scaling factor a2
γ = Cγ

3mω2
0
nε

0. Simple mathematical

manipulation of Eq. (A9) finally yields

γ = 1 + 2/3ξ

ξ + 1
(A10)

with ξ an adimensional universal parameter defined as ξ =
1

15 ( 3N
4πn0

)
2/3 �

a2
γ

, where we use the total number of atoms as

N = 4
3πn0R

3.
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