Accepted Manuscript

Title: Evaluation of rapid methods for diagnosis of tuberculosis in slaughtered free-range pigs

Author: Fernando Cardoso-Toset, Inmaculada Luque, Shyrley Paola Amarilla, Lidia Gómez-Gascón, Layla Fernández, Belén Huerta, Librado Carrasco, Pilar Ruiz, Jaime Gómez-Laguna

PII:	S1090-0233(15)00040-4
DOI:	http://dx.doi.org/doi: 10.1016/j.tvjl.2015.01.022
Reference:	YTVJL 4408

To appear in: The Veterinary Journal

Accepted date: 24-1-2015

Please cite this article as: Fernando Cardoso-Toset, Inmaculada Luque, Shyrley Paola Amarilla, Lidia Gómez-Gascón, Layla Fernández, Belén Huerta, Librado Carrasco, Pilar Ruiz, Jaime Gómez-Laguna, Evaluation of rapid methods for diagnosis of tuberculosis in slaughtered free-range pigs, *The Veterinary Journal* (2015), http://dx.doi.org/doi: 10.1016/j.tvjl.2015.01.022.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Short Communication
2	Evolution of panid matheds for diagnosis of tuberoulosis in sloughtand free
3	Evaluation of rapid methods for diagnosis of tuberculosis in slaughtered free- range pigs
4 5	range pigs
5 6	
7	Fernando Cardoso-Toset ^{a,b,*} , Inmaculada Luque ^a , Shyrley Paola Amarilla ^c , Lidia
8	Gómez-Gascón ^a , Layla Fernández ^b , Belén Huerta ^a , Librado Carrasco ^c , Pilar Ruiz ^d ,
9	Jaime Gómez-Laguna ^b
10	
11	^a Department of Animal Health, University of Córdoba, International Excellence
12 13	Agrifood Campus 'CeiA3', University Campus of Rabanales, 14071 Córdoba, Spain ^b CICAP - Food Research Centre, 14400 Pozoblanco, Córdoba, Spain
14	^c Department of Anatomy and Comparative Pathology, University of Córdoba,
15	International Excellence Agrifood Campus 'CeiA3', University Campus of Rabanales,
16	14071 Córdoba, Spain
17	^d Microbiology service, Reina Sofia University Hospital, Mycobacteria Reference
18	Center, Avd. Méndez Pidal s/n, 14004 Córdoba, Spain
19	
20	
21	
22	
23	* Corresponding author. Tel.: +34 957 116254.
24	E-mail address: fcardoso@cicap.es (F. Cardoso-Toset).

25 Highlights

26	•	Rapid and accurate diagnostic tests are important for control of tuberculosis.
27	•	This study evaluated methods for diagnosis of tuberculosis in domestic free-
28		range pigs.
29	•	Quantitative real-time PCR (qPCR) on tissues is an accurate method for
30		diagnosis of tuberculosis in pigs.
31	•	A combination of qPCR and histopathology provides optimal diagnostic value.
32	•	Diagnosis of tuberculosis by ELISA in domestic free-range pigs was also
33		evaluated.
34	Abstr	act
35		Free-range pigs can be infected by <i>Mycobacterium tuberculosis</i> complex (MTC)
36	and m	ay contribute to the spread of bovine tuberculosis (bTB). In the present study, the
37	diagno	ostic values of bacteriological culture, a duplex real-time quantitative PCR and an
38	antibo	dy ELISA were evaluated in an abattoir study of submandibular lymph nodes and
39	serum	samples from 73 pigs with and without lesions consistent with bTB. The duplex
40	qPCR	was an accurate method for diagnosis of TB in pigs (specificity 100%; sensitivity
41	80%).	Combining qPCR with histopathology improved sensitivity and had very good
42	conco	rdance ($\kappa = 0.94$) with the reference method. Serological results suggest that the
43	antibo	dy ELISA can be used for monitoring herds but not individuals.
44		

45 *Keywords:* Tuberculosis; Pigs; Diagnosis; Real-time quantitative PCR; ELISA

46	In the Iberian Peninsula, wild boar (Sus scrofa) are a reservoir for
47	Mycobacterium bovis, the cause of bovine tuberculosis (bTB), along with other
48	members of the Mycobacterium tuberculosis complex (MTC) (Parra et al., 2003; Santos
49	et al., 2010). Post-mortem diagnostic tests for TB in livestock include gross pathology,
50	histopathology for detection of tuberculosis-like lesions (TBL) or acid-fast bacilli
51	(AFB) by Ziehl-Neelsen (ZN) staining, bacteriology and PCR (Santos et al., 2010).
52	
53	Although bacteriology is considered to be the gold standard for TB
54	confirmation, this technique is time consuming and may produce false negative results
55	(Boadella et al., 2011; Corner et al., 2012). Antibody ELISAs have been used to
56	complement the diagnosis of TB in wild boar (Aurtenetxe et al., 2008; Richomme et al.,
57	2013). The aim of the present study was to evaluate quantitative real-time PCR (qPCR)
58	and an antibody ELISA as diagnostic tools for TB in slaughtered free-range pigs in
59	relation to histopathology and culture.
60	×Ö
61	Submandibular lymph nodes, the most frequently affected site in cases of M.
62	bovis infection in pigs (Di Marco et al., 2012), were collected at an abattoir from 100
63	free-range pigs > 14 months of age without clinical signs raised on Southern Spanish
64	farms with a history of condemnation due to TBL. Pigs were divided into animals with
65	TBL and animals with no visible lesions on gross examination (Di Marco et al., 2012).
66	
67	Blood samples were collected into plain tubes, allowed to clot and the serum
68	was harvested and stored at -70 °C until testing. Serum samples were tested by means of
69	an indirect ELISA to detect specific antibodies against bovine tuberculin purified
70	protein derivative (bPPD) of <i>M. bovis</i> (TB ELISA-VK; Vacunek S.L.)

71	
72	The presence of epithelioid cells and multinucleated giant (MNG) cells, in the
73	absence of foreign bodies or fungal structures, was considered to be indicative of TB in
74	routine histological sections stained with haematoxylin and eosin (histopathology I) and
75	the presence of AFB was recorded (histopathology II) (see Appendix: Supplementary
76	Fig. 1).
77	
78	Samples were decontaminated with 0.75% hexa-decyl-pyridinium chloride
79	(Sigma Aldrich) and inoculated in Lowënstein-Jensen medium with pyruvate (Oxoid)
80	(Corner et al., 2012). Colonies consistent with MTC were identified by a multiplex PCR
81	assay based on a MTC-specific 23S ribosomal DNA fragment, gyrB DNA sequence
82	polymorphisms and the RD1 deletion of <i>M. bovis</i> BCG (GenoType MTBC, Hain
83	Lifescience) (Richter et al., 2004).
84	
85	DNA was extracted from 25 mg homogenised tissue from each sample
86	(NucleoSpin Tissue, Macherey-Nagel). A duplex qPCR for MTC and Mycobacterium
87	avium complex (MAC) was performed as described by Gómez-Laguna et al. (2010),
88	except that the DNA template was diluted 1:10 in nuclease free-water. All reactions
89	were run in duplicate.
90	
91	TB positive cases (PC) were defined as animals with TBL and positive MTC
92	isolation, while TB negative cases (NC) were defined as animals with no visible lesions
93	and negative MTC isolation (Aurtenetxe et al., 2008). Sensitivity (Se), specificity (Sp)
94	and 95% confidence intervals (CI ₉₅) were assessed using the software WinEpi 2.0^1 .

¹ See: <u>http://www.winepi.net/</u> (accessed 17 July 2014).

Inter-rate agreement between the different diagnostic methods was calculated by means
of Cohen's κ coefficient (GraphPad Software). A combination of tests was also
evaluated.

98

99	Seventy-three animals matched one of two case definitions and were included in
100	the study; 46/73 were classified as PC and 27/73 were classified as NC. Only M. bovis
101	was detected. MTC was detected by duplex qPCR in 40/73 cases; 10/46 samples from
102	PC animals were negative in the duplex qPCR. MTC DNA was amplified from 4/27 NC
103	pigs. AFB or consistent TBL were detected histologically in these samples (see
104	Appendix: Supplementary Table 1). These cases were considered to be false negative
105	bacteriology results but true positive TB cases by means of qPCR and histopathology.
106	All samples were negative for MAC by both culture and qPCR. In the ELISA, 34/46
107	(74%) PC and 7/27 (26%) NC had <i>M. bovis</i> -specific antibodies. Se and Sp, along with
108	95% confidence intervals (95% CI) and concordance values, are summarised in Table 1.
109	×O
110	In the light of previous studies (Gómez-Laguna et al., 2010; Santos et al., 2010;
111	Corner et al., 2012) and because qPCR showed four false negative bacteriology results,
112	a new criterion was established to describe TB positive cases (Table 2). Use of the
113	duplex qPCR had 100% Sp, 80% Se (95% CI 69-91%) and a good concordance with the
114	case definitions ($\kappa = 0.72$). In comparison, PCR on tissue homogenates from wild boar
115	had a lower Se (67%, 95% CI 41-86%) and a similar Sp (100%, 95% CI 95-100%) to
116	the present study (Santos et al., 2010).
117	

Porcine tuberculosis is characterised by paucibacillary lesions, which result in
low levels of extraction of mycobacterial DNA (Santos et al., 2010). This could explain

120	the lack of successful mycobacterial DNA amplification from 10/46 PC samples in the
121	present study. Combining qPCR and histopathology improved Se (98-100%), while
122	maintaining good Sp (96-91%) and concordance ($\kappa = 0.93-0.94$) with respect to the
123	second criterion established for a TB positive case (Table 2).
124	
125	Serodiagnosis has been proposed for large scale and individual TB testing of
126	wild boar (Boadella et al., 2011; Richomme et al., 2013). In the present study, Se was
127	similar, but Sp was lower than reported by Aurtenetxe et al. (2008) (Table 2). Although
128	our results do not support the use of the antibody ELISA for diagnosis of Tb in
129	individual pigs, it could be a valuable tool for the monitoring the TB status of domestic
130	pigs at the herd level.
131	
132	The results of this study suggest that the duplex qPCR is an accurate method for
133	diagnosis of TB in slaughtered free-range pigs when compared with bacteriology as the
134	reference method. Future efforts should focus on improving Se, while maintaining high
135	Sp. Combining qPCR with histopathology resulted in high diagnostic accuracy.
136	G
137	Conflict of interest statement
138	None of the authors has any financial or personal relationships that could
139	inappropriately influence or bias the content of the paper.
140	
141	Acknowledgements
142	This study was financially supported by the Council of Economy, Science,
143	Innovation and Employment of the Andalusian Government (AGR-2685-2012) and by

145	reference IDI-20111633). Cardoso-Toset F was funded by a grant of the Agrifood
146	Campus of International Excellence Programme (ceiA3) from the Ministry of
147	Education, Culture and Sport and by the Santander Universities Global Division.
148	
149	Appendix. Supplementary material
150	Supplementary data associated with this article can be found, in the online version, at
151	doi:
152	
153	References
154 155 156 157 158	Aurtenetxe, O., Barral, M., Vicente, J., De la Fuente, J., Gortázar, C., Juste, R.A., 2008. Development and validation of an enzyme-linked immunosorbent assay for antibodies against <i>Mycobacterium bovis</i> in European wild boar. BMC Veterinary Research 43, 1-9.
159 160 161 162 163	Boadella, M., Lyashchenko, K., Greenwald, R., Esfandiari, J., Jaroso, R., Carta, T., Garrido, J.M., Vicente, J., De la Fuente, J., Gortázar, C., 2011. Serologic tests for detecting antibodies against <i>Mycobacterium bovis</i> and <i>Mycobacterium avium</i> <i>subspecies paratuberculosis</i> in Eurasian wild boar (<i>Sus scrofa scrofa</i>). Journal of Veterinary Diagnostic Investigation 23, 77-83.
164 165 166 167	Corner, L.A.L., Gormley, E., Pfeiffer, D.U., 2012. Primary isolation of <i>Mycobacterium bovis</i> from bovine tissues: Conditions for maximizing the number of positive cultures. Veterinary Microbiology 156, 162-171.
168 169 170 171 172 173	 Di Marco, V., Mazzone, P., Capucchio, M.T., Boniotti, M.B., Aronica, V., Russo, M., Fiasconaro, M., Cifani, N., Corneli, S., Biasibetti, E., et al., 2012. Epidemiological significance of the domestic black pig (<i>Sus scrofa</i>) in maintenance of bovine tuberculosis in Sicily. Journal of Clinical Microbiology 50, 1209-1218.
174 175 176 177 178 179	Gómez-Laguna, J., Carrasco, L., Ramis, G., Quereda, J.J., Gómez, S., Pallarés, F.J., 2010. Use of real-time and classic polymerase chain reaction assays for the diagnosis of porcine tuberculosis in formalin-fixed, paraffin-embedded tissues. Journal of Veterinary Diagnostic Investigation 22, 123-127.
179 180 181 182 183 184	Parra, A., Fernández-Llario, P., Tato, A., Larrasa, J., García, A., Alonso, J.M., Hermoso de Mendoza, M., Hermoso de Mendoza, J., 2003. Epidemiology of <i>Mycobacterium bovis</i> infection of pigs and wild boars using a molecular approach. Veterinary Microbiology 97, 122-133.

185 186	Richomme, C., Boadella, M., Courcoul, A., Durand, B., Drapeau, A., Corde, Y., Hars, J., Payne, A., Fediaevsky, A., Boschirol, M.L., 2013. Exposure of wild boar to
187	Mycobacterium tuberculosis complex in France since 2000 is consistent with the
188	distribution of bovine tuberculosis outbreaks in cattle. PloS One 8, e77842.
189	
190	Richter, E., Weizenegger M., Fahr, A.M., Rüsch-Gerdes, S., 2004. Usefulness of the
191	Geno Type MTBC assay for differentiating species of the Mycobacterium
192	tuberculosis complex in cultures obtained from clinical specimens. Journal of
193	Clinical Microbiology 42, 4303-4306.
194	
195	Santos, N., Geraldes, M., Afonso, A., Almeida, V., Correia-Neves, M., 2010. Diagnosis
196	of tuberculosis in the wild boar (Sus scrofa): A comparison of methods
197	applicable to hunter-harvested animals. PLoS One 5, e12663.

198 **Table 1**

- 199 Estimates of sensitivity and specificity with 95% confidence intervals (95% CI) and concordance
- values for each diagnostic test with criteria for positive cases based on gross lesions, bacterial culture
- and PCR.
- 202

		Sensitivity		Specificity		Concordance	
Diagnostic tests	Positive/tested samples ^a	%	95% CI	%	95% CI	к	Agreement
ELISA	41/73	73.9	61.2-86.6	74.1	57.5-90.6	0.46	Moderate
Histopathology I ^b	38/73	73.9	61.2-86.6	85.2	71.8-98.6	0.56	Moderate
Histopathology II ^c	43/73	80.4	69-91.9	77.8	62.1-93.5	0.57	Moderate
qPCR ^d	40/73	77.3	66.3-90.2	85.2	71.8-98.6	0.67	Good
qPCR + Histopathology I	49/73	97.8	93.6-100	85.2	71.8-98.6	0.87	Very good
qPCR + Histopathology II	51/73	97.9	93.7-100	77.8	62.1-93.5	0.78	Good

203

^a Tuberculosis positive cases, pigs with compatible gross lesions at post-mortem inspection and *Mycobacterium tuberculosis*

205 complex (MTC) identification by bacterial culture and PCR confirmation.

206 ^b Histopathology I, animals with granulomas, with presence of epithelioid cells or multinucleated giant (MNG) cells, in the

absence of foreign bodies or fungal structures.

208 ^c Histopathology II, animals with acid-fast bacilli (AFB) detected by Ziehl-Neelsen (ZN) staining.

ACCOR

^d qPCR, quantitative (real-time) PCR.

210 Table 2

- Estimates of sensitivity and specificity with 95% confidence intervals (95% CI) and concordance
- values for each diagnostic test with criteria for positive cases based on gross lesions, bacterial culture
- and PCR or qPCR.
- 214

	Sensitivity		Specificity		Concordance	
Positive/tested samples ^a	%	95% CI	%	95% CI	к	Agreement
41/73	72	59.6-84.4	78.3	61.4-95.1	0.46	Moderate
38/73	74	61.8-86.2	95.7	87.3-100	0.61	Good
43/73	82	71.4-92.6	91.3	79.8-100	0.68	Good
40/73	80	68.9-91.1	100	.C	0.72	Good
50/73	98	94.1-100	95.7	87.3-100	0.94	Very good
52/73	100	-	91.3	79.8-100	0.93	Very good
-	41/73 38/73 43/73 40/73 50/73	41/73 72 38/73 74 43/73 82 40/73 80 50/73 98	41/73 72 59.6-84.4 38/73 74 61.8-86.2 43/73 82 71.4-92.6 40/73 80 68.9-91.1 50/73 98 94.1-100	41/73 72 59.6-84.4 78.3 38/73 74 61.8-86.2 95.7 43/73 82 71.4-92.6 91.3 40/73 80 68.9-91.1 100 50/73 98 94.1-100 95.7	41/73 72 59.6-84.4 78.3 61.4-95.1 38/73 74 61.8-86.2 95.7 87.3-100 43/73 82 71.4-92.6 91.3 79.8-100 40/73 80 68.9-91.1 100 - 50/73 98 94.1-100 95.7 87.3-100	41/73 72 59.6-84.4 78.3 61.4-95.1 0.46 38/73 74 61.8-86.2 95.7 87.3-100 0.61 43/73 82 71.4-92.6 91.3 79.8-100 0.68 40/73 80 68.9-91.1 100 - 0.72 50/73 98 94.1-100 95.7 87.3-100 0.94

215

^a Tuberculosis positive cases, pigs with compatible gross lesions at post-mortem inspection and *Mycobacterium tuberculosis*

217 complex (MTC) identification by bacterial culture and PCR confirmation or qPCR genome amplification from tissue.

218 ^b Histopathology I, animals with granulomas, with presence of epithelioid cells or multinucleated giant (MNG) cells, in the

absence of foreign bodies or fungal structures.

220 ^c Histopathology II, animals with acid-fast bacilli (AFB) detected by Ziehl-Neelsen (ZN) staining.

221 ^d qPCR, quantitative (real-time) PCR.

222 Appendix A

223 Supplementary figure legend

224

- 225 Supplementary Fig. 1. Submandibular lymph node. (A) Granulomatous inflammation of the
- submandibular lymph node of an affected pig. Bar = 1.3 cm. (B) Submandibular lymph node.
- 227 Typical tuberculous granuloma made up of numerous epithelioid cells, multinucleated giant
- cells (*), interspersed lymphocytes and a thin, poorly defined, connective tissue capsule.
- Haematoxylin and eosin staining. Bar = $30 \mu m$. (C) Submandibular lymph node. Extensive
- area of necrosis with multifocal areas of mineralisation. Haematoxylin and eosin staining. Bar
- $= 300 \,\mu\text{m}$. Inset: Acid-fast bacilli (arrow) identified within a focus of necrosis. Ziehl-Neelsen
- staining. Bar = $10 \mu m$.
- 233 Appendix A

234 Supplementary Table 1

- 235 Diagnostic tests profiles for animals with uncertain results in some of the diagnostic tests.
- 236

Gross lesions + Bacteriology	Histopathology I ^a	Histopathology II ^b	qPCR ^c	ELISA
	+	+	+	+
	-	+	+	-
Y~	+	+	+	+
-	+	+	+	-
	Gross lesions + Bacteriology			+ + + + +

237

- ^a Histopathology I, animals with granulomas, with presence of epithelioid cells or multinucleated giant (MNG) cells, in the
- absence of foreign bodies or fungal structures.
- 240 ^b Histopathology II, animals with acid-fast bacilli (AFB) detected by Ziehl-Neelsen (ZN) staining.
- 241 ^c qPCR, quantitative (real-time) PCR.

242

Accepted Manuscript