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Abstract

Ordinal classification considers those classification problems where the labels of
the variable to predict follow a given order. Naturally, labelled data is scarce
or difficult to obtain in this type of problems because, in many cases, ordinal
labels are given by an user or expert (e.g. in recommendation systems). Firstly,
this paper develops a new strategy for ordinal classification where both labelled
and unlabelled data are used in the model construction step (a scheme which
is referred to as semi-supervised learning). More specifically, the ordinal ver-
sion of kernel discriminant learning is extended for this setting considering the
neighbourhood information of unlabelled data, which is proposed to be com-
puted in the feature space induced by the kernel function. Secondly, a new
method for semi-supervised kernel learning is devised in the context of ordinal
classification, which is combined with our developed classification strategy to
optimise the kernel parameters. The experiments conducted compare 6 different
approaches for semi-supervised learning in the context of ordinal classification
in a battery of 30 datasets, showing 1) the good synergy of the ordinal version
of discriminant analysis and the use of unlabelled data and 2) the advantage of
computing distances in the feature space induced by the kernel function.

Keywords: ordinal regression, discriminant analysis, semi-supervised learning,
classification, kernel learning

1. Introduction

With the advent of the big data era and the increased popularity of ma-
chine learning, the number of scientific data-driven applications is growing at
an abrupt pace. Because of this increased necessity, new related research av-
enues are explored every year. In this sense, the recently coined term weak5
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supervision [1] refers to those classification machine learning problems where
the labelling information is not as accessible as in the fully-supervised problem
(where a label is associated to each pattern). The problem of semi-supervised
learning (i.e. learning from both labelled and unlabelled observations) is an ex-
ample that has been the focus of many machine learning researchers in the past10

years. In many real-world applications, obtaining labelled patterns could be a
challenging task, however, unlabelled examples might be available with little or
no cost. The main idea behind semi-supervised learning is to take advantage
from unlabelled data when constructing the machine classifier (and this is done
using different assumptions on the unlabelled data: smoothness, clustering or15

manifold assumptions [2, 3, 4]). These learning approaches have been empiri-
cally and theoretically studied in the literature and represent a suitable solution
for such circumstances, where the use of unlabelled data has been seen to im-
prove the performance of the model and stabilise it. Semi-supervised learning
has being mainly studied for binary classification [5, 6] and regression [2], al-20

though recently the main focus has shifted to multi-class problems [7, 8, 9] (and
even multi-dimensional ones [10]). This paper tackles the use of unlabelled data
in the context of ordinal classification [11], a learning paradigm which shares
properties of both classification and regression.

Ordinal regression (also known as ordinal classification) can be defined as25

a relatively new learning paradigm whose aim is to learn a prediction rule for
ordered categories. In contrast to multinomial classification, there exists some
ordering among the elements of Y (the labelling space) and both standard clas-
sifiers and the zero-one loss function do not capture and reflect this ordering
appropriately [11] (leading to worse models in terms of errors in the ordinal30

scale). Concerning regression, Y is a non-metric space.
An explanatory example of order among categories is the Likert scale [12],

a well-known methodology used for questionnaires, where the categories cor-
respond to the level of agreement or disagreement for a series of statements.
The scheme of a typical five-point Likert scale could be: {Strongly disagree,35

Disagree, Neither agree or disagree, Agree, Strongly Agree}, where the natural
order among categories can be appreciated. The major problem within this kind
of classification is that the misclassification errors should not be treated equally,
e.g., misclassifying a Strongly disagree pattern as Strongly agree should be more
penalised than a misclassification with the Disagree category.40

Several issues must be highlighted when developing new ordinal classifiers in
order to exploit the presence of this order among categories. Firstly, this implicit
data structure should be learned by the classifier in order to minimise the differ-
ent ordinal classification errors [11], and, secondly, different evaluation measures
or metrics should be developed in this context. The most popular approach for45

this type of problems are threshold models [13, 14, 15, 16]. These methods are
based on the idea that, to model ordinal ranking problems from a regression
perspective, one can assume that some underlying real-valued outcomes exist
(also known as latent variable), which are, in practice, unobservable.

Recently, a version of the well-known Kernel Discriminant Analysis algo-50

rithm has been proposed for ordinal regression [13], showing different advantages

2

https://www.researchgate.net/publication/280245851_Ordinal_Regression_Methods_Survey_and_Experimental_Study?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/280245851_Ordinal_Regression_Methods_Survey_and_Experimental_Study?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/280245851_Ordinal_Regression_Methods_Survey_and_Experimental_Study?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/283338113_Weak_supervision_and_other_non-standard_classification_problems_A_taxonomy?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/233754121_Approaching_Sentiment_Analysis_by_Using_Semi-supervised_Learning_of_Multidimensional_Classifiers?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/6528168_Multiclass_Cancer_Classification_Using_Semisupervised_Ellipsoid_ARTMAP_and_Particle_Swarm_Optimization_with_Gene_Expression_Data?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/224569314_Kernel_Discriminant_Learning_for_Ordinal_Regression?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/224569314_Kernel_Discriminant_Learning_for_Ordinal_Regression?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/220320151_On_Efficient_Large_Margin_Semisupervised_Learning_Method_and_Theory?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/260354210_Semisupervised_Classification_With_Cluster_Regularization?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/284570419_Semisupervised_Multiclass_Classification_Problems_With_Scarcity_of_Labeled_Data_A_Theoretical_Study?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/220320873_Gaussian_Processes_for_Ordinal_Regression?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/8153453_Semisupervised_Learning_of_Classifiers_Theory_Algorithms_and_Their_Application_to_Human-Computer_Interaction?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/284531151_Generalized_Linear_Models?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/200688680_Semi-Supervised_Learning_Literature_Survey?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/200688680_Semi-Supervised_Learning_Literature_Survey?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/4301658_Semi-supervised_Discriminant_Analysis?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==


with respect to other ordinal classification methods, i.e. a lower computational
complexity and the ability to capture the associated class distributions. In
essence, the formulation seeks for the projection that allows the greater sep-
aration for the classes, but maintaining the classes ordered in the projection55

(to avoid serious misclassification errors). This algorithm, Kernel Discriminant
Learning for Ordinal Regression (KDLOR), has shown great potential and com-
petitiveness against other specially designed ordinal classifiers.

However, supervised ordinal regression approaches present limitations when
there are few data [17, 18], which is a common situation in this setting, where60

most ordinal classification problems are labelled by an user or expert (a process
that could be expensive or time-consuming), and the number of classes is usu-
ally relatively high (which hinders the class discrimination to a great extent).
Consider, for example, the case of a film recommendation system, where most
users might not have interest in labelling data, therefore unlabelled data exist65

and are easily available. In this sense, the paradigm of semi-supervised learn-
ing would use the unlabelled data along with the labelled data to learn more
precise models. The development and analysis of semi-supervised ordinal regres-
sion algorithms is, therefore, of great interest. However, the number of works in
the literature approaching this problem is very low [17, 18, 19, 20], where only70

two of them focus on developing ordinal and semi-supervised classifiers [17, 18]
(the remainder focuses on related frameworks, such as the transductive problem
[19, 20] or clustering [21], which are out of the scope of this paper).

We propose and test different approaches to deal with semi-supervised ordi-
nal classification problems. Firstly, we extend the KDLOR algorithm to make75

use of unlabelled data via the smoothness and manifold assumptions, (i.e. (1)
points nearby are likely to share the same label, and (2) the projection should
not only match the classification task but also respect the geometric structure
inferred from labelled and unlabelled data points). Secondly, this paper pro-
poses to compute the graph Laplacian (used for the previous objective) in the80

feature space induced by the kernel function, as opposed to computing it in
the input space. Since the final objective function is computed in the feature
space, this is a crucial consideration for the proposed technique. Finally, we
also propose a new method for semi-supervised kernel learning based on kernel-
target alignment to use in conjunction with (ordinal) kernel methods. Kernel85

learning techniques are a common choice to optimise the kernel parameters and
adequately fit the data using a kernel function [22, 23]. We test our proposals in
a set of 30 ordinal classification datasets and compare them to other strategies,
the results showing the good synergy of combining labelled and unlabelled data
in the context of ordinal regression.90

The rest of the paper is organised as follows: Section II shows a description
of previous concepts; Section III presents the proposal of this work and Section
IV describes the specific characteristics of the datasets and the experimental
study; Section V analyses the results obtained; and finally, Section VI outlines
some conclusions and future work.95
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2. Previous notions

This section introduces some of the previous work in the area of the paper.
Consider a training sample D = {xi, yi}Ni=1 ⊆ X ×Y generated i.i.d. from a

(unknown) joint distribution P (x, y), where X ⊆ Rd and Y = {C1, C2, . . . , CQ}.
In the ordinal regression setup, the labelling space is ordered due to the data100

ranking structure (C1 ≺ C2 ≺ · · · ≺ CQ, where ≺ denotes this order information).
Let N be the number of patterns in the training sample, Nq the number of
samples for the q-th class and Xq the set of patterns belonging to class Cq.

Furthermore, let H denote a high-dimensional Hilbert space. Then, for any
mapping of patterns Φ : X → H, the inner product k(xi,xj) = 〈Φ(xi),Φ(xj)〉H105

of the mapped inputs is known as a kernel function, giving rise to a positive
semidefinite (PSD) matrix K for a given input set {xi}Ni=1.

2.1. Discriminant Learning

This learning paradigm is one of the pioneers and leading techniques in
the machine learning area, being currently used for supervised dimensionality110

reduction and classification. The main goal of this technique can be described
as finding the optimal linear projection for the data (from which different classes
can be well separated). To do so, the algorithm analyses two objectives: the
maximisation of the between-class distance and the minimisation of the within-
class distance, by using variance-covariance matrices (Sb and Sw, respectively)115

and the so-called Rayleigh coefficient (J(w) = wTSbw
wTSww , where w is the projection

for the data). To achieve these objectives, the Q− 1 eigenvectors associated to
the highest eigenvalues of S−1

w · Sb are computed.
The between-class and within-class scatter matrices (Sb and Sw, respec-

tively) are defined as follows (when considering the kernel version):

Sw =
1

N

Q∑
q=1

∑
xi∈Xq

(Φ(xi)−MΦ
q )(Φ(xi)−MΦ

q )T, (1)

Sb =
1

N

Q∑
q=1

Nq(M
Φ
q −MΦ)(MΦ

q −MΦ)T, (2)

where MΦ
q = 1

Nq

∑
xi∈Xq

Φ(xi), and MΦ = 1
N

∑N
i=1 Φ(xi). The objectives pre-

sented can be achieved by the maximisation of the so called Rayleigh coefficient.
Note that, when dealing with kernel functions, w will have an expansion of the
form:

w =

N∑
i=1

βiΦ(xi), βi ∈ R, (3)

where βi represents the contribution of xi to the projection w. Then, the
Rayleigh coefficient can be formulated as follows:

J(β) =
βTHβ

βTNβ
, (4)

4



where N =
∑Q
q=1 Rq(I − 1Nq)R

T
q , I is the identity matrix, 1Nq is a matrix

with a value of 1
Nq

for all entries, Rq is an N × Nq matrix with (Rq)i,j =120

〈Φ(xi) · Φ(xj)〉 where < ·, · > is the scalar product and xj ∈ Xq. Moreover,

H =
∑Q
q=1Nq(Mq −M)(Mq −M)T, where (Mq)j = 1

Nq

∑
xh∈Xq

k(xj ,xh) and

Mj = 1
N

∑N
h=1 k(xj ,xh).

Usually, a diagonal term t is added to the N matrix, so that very small
eigenvalues are bounded away from zero to improve numerical stability.125

2.2. Semi-supervised Discriminant Learning

Kernel Discriminant Analysis (KDA) seeks the optimal projection for the
labelled data. This algorithm has been extended to semi-supervised learning by
incorporating the manifold structure suggested by unlabelled data [5]. It is well-
known that when training data are scarce, machine learning algorithms tend to130

overfit. To solve this, a widely used approach is to complement the sample with
unlabelled data by imposing a regulariser, that controls the learning complexity
of the hypothesis family and balances the model complexity and the empirical
loss. In semi-supervised learning, this regulariser is used to incorporate prior
knowledge about the data, i.e., the manifold structured imbued by unlabelled135

data. The key to semi-supervised learning is the consistency assumption [24],
which for classification is the notion that nearby patterns are likely to have the
same label. This regulariser is precisely what differentiates the supervised and
semi-supervised versions of KDA.

Let us explain how this assumption can be included in the KDA algorithm.
Given a set of examples X , we can construct a n-nearest neighbour graph G to
model the relationship of patterns in the input space. To do so, a weight matrix
is defined as follows:

Sij =

{
1, if xi ∈ Nn(xj) or xj ∈ Nn(xi),

0, otherwise,
(5)

where Nn(xi) denotes the set of n-nearest neighbours of xi. Using this formu-
lation, two data points that are linked by an edge are likely to be in the same
class. One of the regularisers that have been used in spectral dimensionality
reduction [25] is the following:

R(β) =

N∑
i=1

N∑
j=1

(wTΦ(xi)−wTΦ(xj))
2 · Sij = 2βTKLKTβ, (6)

where L = D− S is the Laplacian matrix [26] and D is defined as the diagonal140

matrix Dii =
∑N
j=1 Sij .

With this regulariser, the semi-supervised version of KDA has been formu-
lated as follows:

max
β

βTHβ

βT(N + µKLKT)β
, (7)

5

https://www.researchgate.net/publication/306177766_Learning_with_local_and_global_consistency?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/2538795_Laplacian_Eigenmaps_and_Spectral_Techniques_for_Embedding_and_Clustering?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/233407299_Spectral_Graph_Theory?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/4301658_Semi-supervised_Discriminant_Analysis?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==


where µ is a parameter to control the balance between the model complexity
and the empirical loss. Note that the difference between the supervised and
semi-supervised approaches lies in the inclusion of the regulariser (compare Eq.
4 and Eq. 7 to see this). This problem can also be solved by an eigenvalue145

formulation.

2.3. Kernel Discriminant Learning for Ordinal Regression

The idea of Kernel Discriminant Learning has also been successfully applied
in the context of Ordinal Regression (KDLOR) [13]. Roughly speaking, this
method searches for the optimal projection of the data that preserves the or-150

dinal class ranking. As in the standard KDA, the objectives presented can be
achieved by the maximisation of the Rayleigh coefficient, but including an extra
constraint, which will force the projected classes to be ordered according to their
ranks. More specifically, the original optimisation problem of KDA (exposed in
Eq. 4) is transformed into the following one:155

min JO(β, ρ) = βTNβ− Cρ,
s.t. βT(Mq+1 −Mq) ≥ ρ, q = {1, . . . , Q− 1}, (8)

where C is a penalty coefficient. When the value of C is appropriately set,
ρ > 0 is satisfied, forcing the classes to be ordered in the projection (by the use
of the constraint βT(Mq+1−Mq) ≥ ρ which relates the projected class means to
their rank). Moreover, the distance between these means contributes positively
to the optimisation, which implies that the between-class covariance matrix is160

not needed for, as this information is already included. This formulation is
maintained in this paper for all the ordinal classification based techniques (even
semi-supervised approaches).

To solve it, Lagrange multipliers can be applied, a method for optimising
functions of several variables subject to constraints. The initial function and
the constraints are combined in the following unique function:

LO(β, ρ,α) = βTHβ− Cρ−
Q−1∑
q=1

αq

{
βT(Mq+1 −Mq)− ρ

}
.

This technique has been emphasized in the literature for two reasons: 1) its
ability to handle nonlinear decision regions at a low computational cost [13] and165

2) the fact that it computes the separating hyperplane considering the whole
class distribution, whereas SVM-based methods obtain the decision hyperplane
in a local way, i.e. using support vectors, which could lead to undesirable
solutions in some cases [13]. For more information about this method see [13, 27].

2.4. Kernel matrix learning170

Kernel matrices contain information about the similarity among patterns,
and this similarity can be used to find the best mapping function Φ associated
to a kernel function. The empirical ideal kernel [22], K∗, (i.e., the matrix

6
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that would represent perfect similarity information) will submit the following
structure:

k∗(xi,xj) =

{
+1, if yi = yj ,
−1, otherwise,

(9)

where K∗ij = k∗(xi,xj). K∗ provides information about which patterns in the
dataset should be considered as similar when performing a learning task. As we
are dealing with a classification problem, patterns from the same class should
be considered similar, while patterns from different classes should be considered
as dissimilar as possible.175

Suppose an ideal kernel matrix K∗ and a given real kernel matrix K. The
underlying idea for kernel-target alignment (KTA) [22, 23], the strategy chosen
in this paper for kernel learning, is to choose the kernel matrix K (among a set
of different matrices) closest to the ideal matrix K∗.

The KTA between two kernel matrices K and K∗ is defined as:

A(K,K∗) =
〈K,K∗〉F√

〈K∗,K∗〉F 〈K,K〉F
, (10)

where 〈·, ·〉F represents the Frobenius inner product. This quantity is maximised180

when the kernel function is capable to reflect the properties of the training
dataset used to define the ideal kernel matrix.

2.5. Weighted ordinal discriminant learning

A label propagation method [24] has been used before in the literature to
estimate the class memberships of unlabelled data and complement the KDLOR185

method [18].
Denote the membership matrix by U = (ujq)N×Q, where ujq is the mem-

bership of pattern xj to class Cq. Note that the memberships of labelled data
are obtained by the given labels. The main contribution of [18] (apart from
the evolutionary algorithm) is the use of unlabelled data to complement the
representation of the class distributions (mean and covariance matrices) in the
following manner:

MΦ
q =

∑N
j=1 ujqΦ(xj)∑N

j=1 ujq
, (11)

Sw =
1

u

Q∑
q=1

N∑
j=1

ujq(Φ(xj)−MΦ
q )(Φ(xj)−MΦ

q )T, (12)

where u =
∑Q
q=1

∑N
j=1 ujq and ujq represents the membership grade of xj to

class Cq. This idea is tested and compared to our proposal in the experimen-
tal section of this paper (referred as Weighted Semi-supervised Discriminant
Learning for ordinal regression, WS-DL).190

However, the authors argue that the proposal does not work efficiently (spe-
cially with few data), and therefore they devise an evolutionary approach that
evolves the class memberships and improves the performance of the base kernel
discriminant learning [18].
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3. Proposals for Semi-supervised Ordinal Discriminant Learning195

This section describes the different proposals presented in this paper:

• Firstly, a new objective function is proposed for kernel discriminant learn-
ing in the context of semi-supervised ordinal classification. More specif-
ically, this new ordinal and semi-supervised classification method uses
labelled and unlabelled data to construct a neighbourhood graph of the200

dataset, which provides a discrete approximation to the local geometry
of the data manifold, and which is thereafter introduced into the original
optimisation problem of kernel discriminant analysis for ordinal regression
[13]. To do so, the notion of graph Laplacian is used and a smoothness
penalty is introduced into the graph of the objective function in such a way205

that the algorithm can optimally preserve the manifold structure. This
first approach considers the construction of the neighbourhood graph in
the input space (as proposed in previous research [5]).

• As stated before, this previously mentioned neighbourhood graph is used
to introduce non-supervised knowledge into the algorithm formulation.210

Because of this, secondly, we propose the construction of this neighbour-
hood graph in the empirical feature space induced by the kernel function
[28], given that the developed method makes use of the kernel trick.

• Finally, we also introduce a new technique for ordinal semi-supervised
kernel learning via kernel-target alignment. This method optimises the215

kernel parameters taking into account the ordinal and unlabelled nature
of the data, so that it could be used in conjunction with any ordinal
kernel method when unlabelled data is available (such as the classification
strategy proposed in this paper).

Different versions of these proposals are tested in the experimental part of220

this paper.

3.1. Ordinal semi-supervised learning

This section describes a new formulation for kernel discriminant analysis in
the context of ordinal and semi-supervised classification.

To include the manifold structure in the ordinal case, the same approach than225

in section 2.2 can be followed, including the regulariser into the optimisation
formulation. In this sense, the objective function JO in Equation 8 can be
reformulated as follows:

min JOS(β, ρ, σ) = βTNβ− Cρ+ µR(β),

s.t. βT(Mq+1 −Mq) ≥ ρ, (13)

where µ is a parameter associated to the contribution of unlabelled data to the
model.230
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To solve it, Lagrange multipliers can be applied. The initial function and
the constraints are combined as:

L(β, ρ, µ,α) = βTNβ− Cρ+ µβTKLKTβ (14)

−
Q−1∑
q=1

αq

{
βT(Mq+1 −Mq)− ρ

}
.

The αq coefficients are the Lagrange multipliers (αq ≥ 0). To find the
minimum or maximum of this function, L must be derived with respect to β, ρ
and µ:

∂L

∂β
= 0 =⇒ β =

1

2
Z−1

Q−1∑
q=1

αq(Mq+1 −Mq), (15)

∂L

∂ρ
= 0 =⇒

Q−1∑
q=1

αq = C, (16)

∂L

∂µ
= 0 =⇒ βTKLKTβ = 0. (17)

After joining (15), (16), (17) and (13), the final function to optimise is as
follows:

minF (α) =

Q−1∑
q=1

αq(Mq+1 −Mq)
T(Z−1)T ·N · Z−1

Q−1∑
q=1

αq(Mq+1 −Mq) (18)

s.t. αq ≥ 0, q ∈ {1, . . . , Q− 1} and

Q−1∑
q=1

αq = C,

being Z = H + µKLKT.
This optimisation problem is a convex Quadratic Programming (QP) with

linear constraints. For the optimisation of the function, we reformulate it in the
following canonical form of the QP problems:

minF (α) =
1

2
αTQα + cTα,

with the constraints Aα ≤ b and Eα = d.
The equation problem (18) can be solved by using the following Q matrix:

Qij = 2(Mi+1 −Mi)
T(Z−1)TNZ−1(Mj+1 −Mj).

Since it is not necessary to use the vector c, we can fill it with zeros. The
constraints will be:

(−1) ·α ≤ 0,

1T ·α = C,

9



where α = {α1, . . . , αK−1}, A ≡ −1, b ≡ 0, E ≡ 1T, d ≡ C and 1 and 0235

represent a vector filled with ones and zeros, respectively.
To solve ill-posed systems, we add a scalar t > 0 to the diagonal elements of

(Z−1)TNZ−1, in the same way than in section 2.3.
After obtaining β by substituting αq into (15), the label for the input vector

x set can be predicted by the following decision rule:240

f(x) =

{
Q, if β · Φ(x)− bQ−1 > 0,

maxq{β · Φ(x)− bq < 0}, otherwise.

where bq =
β(Mq+1+Mq)

2 with q = 1, ..., Q− 1.
This approach is referred in the experiments to as Semi-supervised Discrim-

inant Learning for ordinal regression (S-DL).
Note that the proposed algorithm involves solving the inversion of a matrix Z

(of size N×N) and a QP problem with a Hessian matrix of size (K−1)×(K−1).245

The additional complexity of our algorithm with respect to the original kernel
discriminant learning for ordinal regression is then determined by the number of
unlabelled patterns (being then both problems of size N). The linear version of
this algorithm can also be used, which is a common approach in semi-supervised
learning in the presence of abundant data [29].250

3.2. Neighbourhood analysis in the Empirical Feature Space

Given that the decision boundary in the approach described in the previous
subsection is constructed in the feature space induced by the kernel function,
we consider that the distances used for constructing the similarity graph should
be computed in this space as well (instead of computing them in the input255

space). Note that unlabelled knowledge is introduced into our problem via the
smoothness and manifold assumptions, which mainly translate to the idea that
points nearby are likely to share the same label. Therefore, it is, in this case,
safer to assume a relationship between close patterns in the feature space (rather
than in the input space) when computing a nonlinear classifier as the one used.260

In this sense, the computation of distances using the information of a kernel
matrix has been used in different approaches [30]. However, in this paper, we
propose a slightly different idea, in order to be able to apply more complex
approaches for computing the similarity matrix S. More specifically, we make
use of a concept known as the Empirical Feature Space (EFS) [28], which is265

isomorphic to the original feature space but Euclidean, thus being more easily
tractable. Note that, although distances in the feature space can be computed
via the kernel matrix, this approach (the use of the empirical feature space) will
allow to change the way of performing the neighbourhood analysis (e.g. more
sophisticated clustering algorithms can be used).270

By definition, a kernel matrix K can be diagonalised as follows:

K(m×m) = V(m×r) ·Λ(r×r) ·V>(r×m), (19)

where r is the rank of K, Λ is a diagonal matrix containing the r non-zero eigen-
values of K in decreasing order (i.e., λ1, . . . , λr), and V is a matrix consisting
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of the eigenvectors associated to those r eigenvalues (i.e., v1, . . . ,vr) in such a
way that K =

∑r
i=1 λiviv

T
i . The EFS can be defined as an Euclidean space

preserving the dot product information about H contained in K (i.e., this space
is isomorphic to the embedded feature space H). Since distances and angles of
the vectors in the feature space are uniquely determined by dot products, the
training data have the same geometrical structure in both the EFS and the fea-
ture space. The map from the input space to this r-dimensional EFS is defined
as Φer : X → Rr, where:

Φer : xi → Λ−1/2 ·V> · (k(xi,x1), . . . , k(xi,xm))>. (20)

It can be checked that the kernel matrix of training images obtained by this
transformation corresponds to K [28].

Furthermore, the EFS provides us with the opportunity to limit the dimen-
sionality of the space by choosing the j ≤ r dominant eigenvalues (and their as-
sociated eigenvectors) to project the data, while maintaining the most important275

part of the structure of H. One motivation for performing the neighbourhood
analysis in the reduced dimensionality EFS is that distances have been proven to
be misleading as the data dimensionality increases, making more probable that
neighbours are chosen in a random fashion (this is known as the spectral prop-
erties phenomenon [31]). In this sense, distances may bear less neighbourhood280

information as the EFS dimensionality increases [32].
Our proposal for computing the similarity matrix S is the following:

Sij =

{
1, if Φer(xi) ∈ Nn(Φer(xj)) or Φer(xj) ∈ Nn(Φer(xi)),

0, otherwise.
(21)

To test the influence of the dimensionality of the empirical feature space we
consider two approaches of this idea in the experiments: 1) the approach con-
sidering the full-rank EFS (using all dimensions), which is named as Complete
Empirical feature space Semi-supervised kernel Discriminant Learning for ordi-285

nal regression (CES-DL); and 2) the reduced-rank EFS version (selecting only a
subset of the dimensionality of the EFS), which is referred to as: reduced Em-
pirical feature space Semi-supervised kernel Discriminant Learning for ordinal
regression (ES-DL).

3.3. Semi-supervised ordinal kernel learning290

The method presented in this section considers the optimisation of a given
kernel function (and its parameters) to better fit the data. Therefore, it is not
a method for classification on its own, but an approach that can be combined
with different kernel-based classification strategies. Because of this and given
the promising results of our proposed classification algorithm, this method is295

tested in combination with the approach in 3.1 and using the neighbourhood
graph computed in the reduced-rank empirical feature space (which resulted in
the best results in the experiments).
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As stated before, both the ordinal structure of the data and its unlabelled
nature can be taken into account when constructing a suitable kernel that fits300

our problem. In this sense, different kernel learning approaches can be con-
sidered for this purpose (such as kernel-target alignment, previously defined in
section 2.4). This section presents a new approach for optimising kernel func-
tions in the presence of both an ordinal structure and unlabelled data. This
technique complements the approach in section 3.1 in the sense that it can be305

used to optimise the kernel parameters (even considering more complex kernel
functions) and avoid cross-validation.

In the same vein that a previous work [33], we propose to consider ordinal
cost matrices when computing kernel-target alignment, in order to penalise dif-
ferently misalignment errors. That is, a weighting matrix W is defined in such a
way that K∗ ◦W imposes a weighting for the different similarity or dissimilarity
errors committed, where A ◦B represents the hadamard or entrywise product
between matrices A and B. A common choice in ordinal classification for this
cost matrix is to use the absolute errors, i.e.:

wij =

{
1, if yi = yj ,

|r(yi)− r(yj)|, otherwise,
(22)

where r(yj) represents the ranking of target yj associated to pattern xj (i.e.
r(Cq) = q, q ∈ 1, . . . , Q).

The algorithm proposed in this section for semi-supervised ordinal kernel310

learning is based on two different steps:

1. The former is the alignment of the kernel matrix KL associated to the
labelled patterns with their corresponding ideal kernel K∗L. This step
is used to initialise our algorithm to a viable solution adjusted to the
known information. In this case, a viable solution would be a set of kernel315

parameters that fit the training labelled data. This alignment step is
represented by AL.

2. The latter is based on the adjustment of the kernel parameters using both
labelled and unlabelled data. This step is referred to as AU and starts
using the solution from the previous step. In this case, the ideal kernel
K∗U is constructed using a different approach:

K∗U =

[
K∗L ◦W SLU

(SLU)T SUU

]
, (23)

where SLU is the similarity matrix between labelled and unlabelled pat-
terns (computed using (5)) and SUU is the similarity matrix between un-
labelled patterns. In this case, we set the parameter n associated to the320

number of nearest neighbours to minQq=1Nq, as it resulted experimentally
in a relatively good performance.

The algorithmic approach followed for optimising the kernel parameters in each
step is the one proposed in [34], where the concept of kernel-target alignment

12

https://www.researchgate.net/publication/277579196_Kernelising_the_Proportional_Odds_Model_through_kernel_learning_techniques?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/283200661_A_Study_on_Multi-Scale_Kernel_Optimisation_via_Centered_Kernel-Target_Alignment?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==


is used, optimising it through a gradient-descent strategy. In this case, the325

gradient-descent approach is used twice for optimising the kernel: firstly using
the ideal supervised knowledge (to set an appropriate initial solution) and sec-
ondly using labelled and unlabelled data (to refine the previous solution). A
Gaussian multi-scale kernel is used for this purpose, i.e. considering one kernel
width per feature to better fit the data. Note again that this proposal is consid-330

ered in conjunction with the reduced Empirical feature space Semi-supervised
kernel Discriminant Learning for ordinal regression (ES-DL), as it was proved
experimentally as the best proposal. This approach is referred to as Kernel-
target alignment using the Empirical feature space for Semi-supervised ordinal
Discriminant Learning (KES-DL).335

4. Experiments

In this subsection, we describe the different experiments conducted, includ-
ing the datasets and algorithms considered, the parameters to optimise, the
performance measures and the statistical tests used for assessing the perfor-
mance differences.340

4.1. Datasets

The most widely used ordinal classification dataset repository is the one
provided by Chu et al. [16], including different regression benchmark datasets.
These datasets are not real ordinal classification ones but regression problems,
which are turned into ordinal classification, the target variable being discretised345

into Q different bins with equal frequency. These datasets do not exhibit some
characteristics of typical complex classification tasks, such as class imbalance,
given that all classes are assigned the same number of patterns. Because of
this, we also compare our proposals with other benchmark ordinal classification
datasets.350

Table 1 shows the characteristics of the 30 datasets used, including the num-
ber of patterns, attributes and classes, and also the number of patterns per class.
The real ordinal classification datasets were extracted from benchmark repos-
itories (UCI [35] and mldata.org [36]), and the regression ones were obtained
from the website of Chu1. For the discretised datasets, we considered Q = 5355

and Q = 10 bins to evaluate the response of the classifiers to the increase in
the complexity of the problem. All nominal attributes were transformed into
binary attributes and all the datasets were properly standardised.

Multiple random splits of the datasets were considered. For discretised re-
gression datasets, 20 random splits were done and the number of training and360

test patterns were those suggested in [16]. For real ordinal regression problems,
30 random stratified splits with 75% and 25% of the patterns in the training and
test sets were considered, respectively. All the partitions were the same for all

1http://www.gatsby.ucl.ac.uk/~chuwei/ordinalregression.html

13

http://www.gatsby.ucl.ac.uk/~chuwei/ordinalregression.html
https://www.researchgate.net/publication/220320873_Gaussian_Processes_for_Ordinal_Regression?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==
https://www.researchgate.net/publication/220320873_Gaussian_Processes_for_Ordinal_Regression?el=1_x_8&enrichId=rgreq-7d457fc5e5303118154e2ed46f45ba03-XXX&enrichSource=Y292ZXJQYWdlOzMwNzUyNDgxOTtBUzo0MDIxNTczOTMyMDMyMDBAMTQ3Mjg5MzIwMjkyNg==


Table 1: Characteristics of the benchmark datasets

Discretised regression datasets
Dataset #Pat. #Attr. #Classes Class distribution

machine5 (M5) 209 7 5 ≈ 42 per class
housing5 (H5) 506 14 5 ≈ 101 per class

stock5 (S5) 700 9 5 140 per class
abalone5 (A5) 4177 11 5 ≈ 836 per class

computer5 (C5) 8192 12 5 ≈ 1639 per class
computer5’ (CC5) 8192 21 5 ≈ 1639 per class
cal.housing5 (CH5) 20640 8 5 4128 per class

census5 (CE5) 22784 8 5 ≈ 4557 per class
machine10 (M10) 209 7 10 ≈ 21 per class
housing10 (H10) 506 14 10 ≈ 51 per class

stock10 (S10) 700 9 10 70 per class
abalone10 (A10) 4177 11 10 ≈ 418 per class

cal.housing (CH10) 20640 8 10 2064 per class
census10 (CE10) 22784 8 10 ≈ 2279 per class

Real ordinal regression datasets
Dataset #Pat. #Attr. #Classes Class distribution

contact-lenses (CL) 24 6 3 (15, 5, 4)
pasture (PA) 36 25 3 (12, 12, 12)

squash-stored (SS) 52 51 3 (23, 21, 8)
squash-unstored (SU) 52 52 3 (24, 24, 4)

tae (TA) 151 54 3 (49, 50, 52)
newthyroid (NT) 215 5 3 (30, 150, 35)

balance-scale (BS) 625 4 3 (288, 49, 288)
SWD (SW) 1000 10 4 (32, 352, 399, 217)
car (CA) 1728 21 4 (1210, 384, 69, 65)

bondrate (BO) 57 37 5 (6, 33, 12, 5, 1)
toy (TO) 300 2 5 (35, 87, 79, 68, 31)

eucalyptus (EU) 736 91 5 (180, 107, 130, 214, 105)
LEV (LE) 1000 4 5 (93, 280, 403, 197, 27)

winequality-red (WR) 1599 11 6 (10, 53, 681, 638, 199, 18)
ESL (ES) 488 4 9 (2, 12, 38, 100,

116, 135, 62, 19, 4)
ERA (ER) 1000 4 9 (92, 142, 181, 172,

158, 118, 88, 31, 18)

the methods, and one model was trained and evaluated for each split. For every
dataset, the percentage considered as unlabelled data corresponds to a strati-365

fied 80% of the training patterns, and the remaining 20% correspond to training
itself (note that this is a conservative approach compared to other experimen-
tal settings in the literature where 5% of the data was considered as labelled
[17]). This ratio of labelled and unlabelled data has been chosen given the low
amount of patterns for some classes in the datasets considered, where we restrict370

the selection so that at least one pattern per class is always labelled. Previous
literature has shown that only one labelled pattern was needed for perform-
ing semi-supervised learning in binary classification problems [37]. However, in
multi-class environments the number of needed patterns grows linearly with the
number of classes [7].375

4.1.1. Performance evaluation and model selection

Different measures can be considered for evaluating ordinal regression models
[38]. However, the most common one is the Mean Absolute Error (MAE) [11].
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MAE is the average deviation in absolute value of the predicted rank (O(y∗i ))
from the true one (O(yi)) [38]:

MAE =
1

N

N∑
i=1

|O(yi)−O(y∗i )|.

MAE values range from 0 to Q − 1 (maximum deviation in number of cate-
gories). In this way, the well-known metric MZE considers a zero-one loss for
misclassification, while MAE uses an absolute cost. We consider these costs
for evaluating the datasets because they are the most common ones (e.g., see380

[16, 39, 13, 11]).

4.2. Methodologies tested

Different methodologies are tested in the experimental part of this paper.
Firstly, we consider a supervised approach to analyse the difference between the
supervised and semi-supervised framework. Secondly, we also take into account385

one of the proposals for semi-supervised ordinal learning in the literature [18],
which is also based on kernel discriminant analysis. Other methods in the
literature have not been included in the experiments because they are based on
other classification paradigms (such as Gaussian processes [17]) or focused on
other slightly different settings such as the transductive one [19, 20] or ordinal390

clustering [21]. Note that the ordinal version of Gaussian processes has been
already compared to the ordinal version of kernel discriminant analysis, resulting
in worst performance for real ordinal datasets with a much higher computational
cost [11]. Finally, we include four different versions of our proposals (S-DL,
CES-DL, ES-DL and KES-DL), where the main differences revolve around the395

space in which the neighbourhood information is computed for the inclusion of
unlabelled data and the use of a kernel learning strategy to optimise the kernel
parameters. More specifically, the methodologies tested are the following:

• Standard kernel Discriminant Learning for ordinal regression (referred in
the experiments to as DL). Unlabelled data is ignored in this case.400

• Weighted Semi-supervised kernel Discriminant Learning for ordinal regres-
sion (named as WS-DL). Unlabelled data is introduced in the model using
the approach in section 2.5 [18].

• Semi-supervised Discriminant Learning for ordinal regression (referred to
as S-DL). Unlabelled data is included in the model using the proposal in405

section 3.1. In this case, the neighbourhood information is computed in
the input space, as proposed in [5].

• Complete Empirical feature space Semi-supervised ordinal Discriminant
Learning (named as CES-DL). In this case, the neighbourhood graph is
constructed in the full-rank empirical feature space induced by the kernel410

function (see section 3.2 for more information). The rest is optimised
using the formulation in 3.1 (i.e. the proposed ordinal and semi-supervised
classification framework).
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• Reduced Empirical feature space Semi-supervised kernel Discriminant Lear-
ning for ordinal regression (named as ES-DL). In this case, the neighbour-415

hood graph is constructed in the reduced-rank empirical feature space,
i.e. removing noise when computing distances (see section 3.2 for more
information). The rest is optimised using the formulation in section 3.1.

• Kernel-target alignment using the Empirical feature space for Semi-supervi-
sed Discriminant Learning in ordinal regression (KES-DL). The new strat-420

egy devised for kernel learning and presented in section 3.3 is used in this
case and combined with the approach in section 3.1 using the reduced-rank
empirical feature space.

All model hyperparameters were selected using a nested five-fold cross-
validation over the training set. Once the lowest cross-validation error alter-425

native was obtained, it was applied to the complete training set and test results
were extracted. The criteria for selecting the best configuration was MAE. The
parameter configurations explored are now specified. The Gaussian kernel func-
tion was considered for all the methods. The following values were considered
for the width of the kernel, σ ∈ {10−1, 100, 101} (this hyperparameter was also430

cross-validated for the case of the label propagation method [24], i.e. WS-DL
and MS-DL). The cost parameter C of all methods was fixed to 1. An additional
parameter t was also considered to avoid ill-posed matrices. The value consid-
ered was 10−8. The parameter a associated to the label propagation method
is fixed to 0.99 as done in [24]. The k parameter for the k-nearest neighbour435

analysis is cross-validated using the values {3,5,7}. The parameter µ associated
to the contribution of unlabelled data to the model was cross-validated within
the values {0.5, 0.25, 0.1, 0.01}. Finally, the parameter r was fixed to 0.5m
in the case of ES-DL (as suggested in [32], although this parameter could be
cross-validated as well for greater improvement).440

4.2.1. Results

Table 2 presents the results obtained for all the methodologies tested. From
this table, several conclusions can be extracted: Firstly, that the combination
of labelled and unlabelled data results in a more precise and robust model
(compare the results for example of S-DL and DL, where S-DL wins a total of445

21 out of 30 times compared to DL). Secondly, that the computation of distances
in the reduced-rank EFS is satisfactory and leads to better performance. To see
this, compare ES-DL against CES-DL (ES-DL wins a total of 28 times with
respect to CES-DL), where the full-rank EFS is used, or to S-DL, where the
similarity matrix is computed in the input space (ES-DL winning 20 times).450

Thirdly, it is important to note that our proposal works better than the weight-
based proposal in [18] (compare ES-DL against WS-DL, where ES-DL wins in
27 cases). Note however, that the authors of [18] also propose to include an
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evolutionary approach which we did not use in this paper2. Furthermore, recall
that the label propagation method used in [18] is not advisable when there455

are very few training data, which is the case of some of the datasets used in
this paper. Concerning the kernel learning approach (KES-DL), the results are
similar to the ES-DL algorithm in most cases, showing this the feasibility of
optimising the kernel parameters using both labelled and unlabelled sources of
information. Finally, it could be noted that there are a few exceptions, e.g. car460

and contact-lenses, where the sole use of labelled data is enough to construct
an accurate model.

Table 2: MAE mean and standard deviations (Mean ± SD) obtained by all the methodologies
compared.

Dataset DL WS-DL S-DL CES-DL ES-DL KES-DL

ERA 1.859 ± 0.138 2.01 ± 0.196 1.845 ± 0.146 1.847 ± 0.146 1.843 ± 0.147 1.765 ± 0.147
ESL 0.577 ± 0.107 0.633 ± 0.056 0.449 ± 0.068 0.465 ± 0.068 0.452 ± 0.064 0.429 ± 0.178
LEV 0.57 ± 0.06 0.543 ± 0.051 0.555 ± 0.05 0.564 ± 0.049 0.556 ± 0.05 0.511 ± 0.046
SWD 0.591 ± 0.052 0.548 ± 0.054 0.585 ± 0.061 0.589 ± 0.048 0.586 ± 0.047 0.547 ± 0.057

abalone 0.994 ± 0.053 0.93 ± 0.052 0.798 ± 0.037 0.946 ± 0.047 0.797 ± 0.044 0.796 ± 0.041
abalone10 2.033 ± 0.082 2.084 ± 0.148 2.05 ± 0.121 1.768 ± 0.152 1.750 ± 0.144 1.767 ± 0.163

balance-scale 0.278 ± 0.037 0.335 ± 0.054 0.244 ± 0.038 0.243 ± 0.035 0.239 ± 0.037 0.156 ± 0.045
bondrate 0.678 ± 0.164 0.744 ± 0.076 0.671 ± 0.14 0.769 ± 0.293 0.662 ± 0.115 0.638 ± 0.160

calhousing-10 2.193 ± 0.234 2.536 ± 0.233 2.306 ± 0.27 2.046 ± 0.21 2.005 ± 0.207 2.018 ± 0.313
calhousing-5 1.085 ± 0.119 1.136 ± 0.125 1.099 ± 0.103 0.966 ± 0.078 0.965 ± 0.091 0.992 ± 0.112

car 0.137 ± 0.026 0.421 ± 0.019 0.233 ± 0.021 0.316 ± 0.035 0.271 ± 0.032 0.223 ± 0.031
census1-10 2.302 ± 0.278 2.461 ± 0.256 2.341 ± 0.237 2.147 ± 0.239 2.017 ± 0.187 2.142 ± 0.341
census1-5 1.101 ± 0.084 1.127 ± 0.113 1.096 ± 0.074 1.004 ± 0.110 0.937 ± 0.149 1.02 ± 0.112

computer1-5 0.972 ± 0.211 1.018 ± 0.159 0.937 ± 0.146 0.882 ± 0.146 0.855 ± 0.137 0.862 ± 0.192
computer2-5 0.896 ± 0.325 1.099 ± 0.118 1.007 ± 0.171 0.956 ± 0.199 0.834 ± 0.158 0.885 ± 0.303
contact-lenses 0.689 ± 0.213 0.806 ± 0.334 0.767 ± 0.308 0.739 ± 0.222 0.694 ± 0.304 0.717 ± 0.33
eucalyptus 0.932 ± 0.058 1.059 ± 0.142 0.883 ± 0.09 0.966 ± 0.131 1.005 ± 0.081 0.907 ± 0.098
housing 0.793 ± 0.152 0.821 ± 0.094 0.705 ± 0.127 0.623 ± 0.082 0.615 ± 0.082 0.622 ± 0.081

housing10 1.508 ± 0.408 1.942 ± 0.181 1.494 ± 0.153 1.388 ± 0.185 1.224 ± 0.179 1.359 ± 0.290
machine 0.949 ± 0.177 0.948 ± 0.14 0.621 ± 0.132 0.635 ± 0.151 0.576 ± 0.140 0.642 ± 0.293

machine10 1.938 ± 0.382 2.364 ± 0.333 1.542 ± 0.291 1.543 ± 0.436 1.314 ± 0.436 1.795 ± 0.579
newthyroid 0.198 ± 0.088 0.241 ± 0.044 0.100 ± 0.041 0.112 ± 0.069 0.078 ± 0.057 0.121 ± 0.075

pasture 0.659 ± 0.028 0.596 ± 0.181 0.581 ± 0.129 0.604 ± 0.174 0.556 ± 0.226 0.485 ± 0.161
squash-stored 0.538 ± 0.064 0.523 ± 0.124 0.515 ± 0.126 0.503 ± 0.140 0.536 ± 0.127 0.495 ± 0.132

squash-unstored 0.523 ± 0.042 0.521 ± 0.144 0.436 ± 0.130 0.477 ± 0.145 0.474 ± 0.123 0.464 ± 0.127
stock 0.27 ± 0.035 0.291 ± 0.033 0.190 ± 0.022 0.206 ± 0.029 0.199 ± 0.031 0.218 ± 0.021

stock10 0.603 ± 0.085 0.646 ± 0.06 0.413 ± 0.032 0.425 ± 0.038 0.415 ± 0.038 0.557 ± 0.066
tae 0.673 ± 0.096 0.725 ± 0.128 0.702 ± 0.113 0.675 ± 0.111 0.660 ± 0.091 0.636 ± 0.084
toy 0.181 ± 0.059 0.544 ± 0.141 0.312 ± 0.047 0.154 ± 0.049 0.152 ± 0.043 0.157 ± 0.084

winequality-red 0.562 ± 0.029 0.567 ± 0.042 0.536 ± 0.057 0.574 ± 0.062 0.544 ± 0.036 0.524 ± 0.074

Average 0.909 1.007 0.867 0.838 0.794 0.815

Ranking 4.533 5.400 3.267 3.633 2.067 2.100

Friedman’s test Confidence interval C0 = (0, F(α=0.05) = 2.28). F-val.MAE : 29.10 /∈ C0.

The best performing method is in bold face and the second one in italics.

To quantify whether a statistical difference exists among the algorithms
compared, a procedure is employed to compare multiple classifiers in multi-
ple datasets [40]. Table 2 also shows the result of applying the non-parametric465

statistical Friedman’s test (for a significance level of α = 0.05) to the mean
MAE rankings. It can be seen that the test rejects the null-hypothesis that all
of the algorithms perform similarly in mean ranking for this metric.

On the basis of this rejection and following the guidelines in [40], we consider
the best performing methods in MAE (i.e., S-DL, ES-DL and KES-DL) as
control methods for the following tests. We compare these three methods to
the rest according to their rankings. It has been noted that the approach of
comparing all classifiers to each other in a post-hoc test is not as sensitive as

2We consider that using an evolutionary algorithm might not be a fair comparison given
the nature and the very high computational cost associated to such a method.
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the approach of comparing all classifiers to a given classifier (a control method).
One approach to this latter type of comparison is the Holm’s test. The test
statistics for comparing the i-th and j-th method using this procedure is:

z =
Ri −Rj√
J(J+1)

6T

,

where J is the number of algorithms, T is the number of datasets and Ri is the
mean ranking of the i-th method. The z value is used to find the corresponding470

probability from the table of the normal distribution, which is then compared
with an appropriate level of significance α. Holm’s test adjusts the value for
α in order to compensate for multiple comparisons. This is done in a step-up
procedure that sequentially tests the hypotheses ordered by their significance.
We will denote the ordered p-values by p1, p2, . . . , pq so that p1 ≤ p2 ≤ . . . ≤ pq.475

Holm’s test compares each pi with α∗Holm = α/(J − i), starting from the most
significant p value. If p1 is below α/(J − 1), the corresponding hypothesis is
rejected and we allow to compare p2 with α/(J − 2). If the second hypothesis
is rejected, the test proceeds with the third, and so on.

Table 3 presents the results of applying the Holm’s test, where different480

conclusions can be drawn. First, the base proposal (i.e., the S-DL algorithm)
significantly improves the result of DL (the sole use of labelled data) and other
algorithms in the ordinal semi-supervised literature (e.g. WS-DL). However, it
also presents a significant lower performance than other proposals of this paper
(more specifically, KES-DL and ES-DL). The computation of pattern similarities485

in the input space might be, in general, beneficial but it can also be improved
by the use of the EFS (analyse the results obtained for ES-DL and KES-DL).
When comparing ES-DL and KES-DL no differences are found. In this case, our
recommendation would be to use ES-DL for large-scale data instead of KES-DL,
as the kernel optimisation phase is time-consuming (or limiting the number of490

parameters to optimise via kernel-target alignment).
Previous research has shown that the performance gap between semi-supervised

approaches and standard ones grows as the number of unlabelled patterns in-
creases and the number of labelled ones decreases [17]. To test this, we analyse
the performance gap obtained under two circumstances: 1) 20% labelled and495

80% unlabelled data (i.e. the results included in Table 2) and 2) 10% labelled
and 90% unlabelled data. The methods chosen for this comparison are the su-
pervised approach DL (which ignores unlabelled data) and ES-DL (the best per-
forming method of the ones tested, which makes use of unlabelled data to com-
plement the model). For the sake of simplicity, we only consider the performance500

gap in mean for the 30 datasets considered, i.e.
∑30
i=1MAEDLi −MAEES−DLi ,

where the subscript i refers to the dataset. The results of these experiments are
the following: When using a 20%-80% labelled-unlabelled ratio the performance
gap is 0.119, whereas using the ratio 10%-90% it is 0.240, which indicates that
greater improvement could be expected from our proposal with respect to the505

supervised approach in circumstances where the ratio of unlabelled patterns
grows with respect to labelled ones.
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Table 3: Results of the Holm test using S-DL, ES-DL and KES-DL as control methods:
corrected α values, compared method and resulting p-values, ordered by number of comparison
(i).

Control alg.: S-DL MAE
i α∗0.05 α∗0.10 Method pi
1 0.01000 0.02000 WS-DL 0.00001++

2 0.01250 0.02500 DL 0.00874++

3 0.01667 0.03333 ES-DL 0.01298−−
4 0.02500 0.05000 KES-DL 0.01573−−
5 0.05000 0.10000 CES-DL 0.44782

Control alg.: ES-DL MAE
i α∗0.05 α∗0.10 Method pi
1 0.01000 0.02000 WS-DL 0.00000++

2 0.01250 0.02500 DL 0.00000++

3 0.01667 0.03333 CES-DL 0.00118−−
4 0.02500 0.05000 S-DL 0.01298−−
5 0.05000 0.10000 KES-DL 0.94499

Control alg.: KES-DL MAE
i α∗0.05 α∗0.10 Method pi
1 0.01000 0.02000 WS-DL 0.00000++

2 0.01250 0.02500 DL 0.00000++

3 0.01667 0.03333 CES-DL 0.00150−−
4 0.02500 0.05000 S-DL 0.01573−−
5 0.05000 0.10000 ES-DL 0.94499

Statistically significant win (++) or lose (−−) for α = 0.05

5. Conclusions

This paper presents a new classification strategy for incorporating semi-
supervised information into the ordinal version of discriminant learning. This510

source of knowledge is included via the smoothness and manifold assumptions,
commonly used for semi-supervised learning. To do so, a neighbourhood analysis
of the data is conducted, via distances in the input space and the feature space
induced by a kernel function. Finally, a kernel learning strategy is also proposed
for optimising the kernel parameters using both labelled and unlabelled sources515

of information in the context of ordinal classification problems. Our experiments
show (1) that in the presence of unlabelled data, a semi-supervised approach
is usually preferred over the fully-supervised one (even when very few data is
available), (2) that the ordinal version of discriminant learning can be success-
fully adapted to deal with unlabelled data, (3) that the analysis of distances520

in the feature space is usually preferred for semi-supervised kernel algorithms
when performing a neighbourhood analysis and (4) that a kernel function (or in
this case, the kernel parameters) can be easily optimised using supervised and
unsupervised knowledge.

As future work, we plan to explore more options for the construction of the525

neighbourhood graph (e.g. density-based clustering algorithms for detecting
outliers) and adapt the label propagation strategy for the specific case of ordinal
classification.
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[1] J. Hernández-González, I. Inza, J. A. Lozano, Weak supervision and other535

non-standard classification problems: a taxonomy, Pattern Recognition
Letters 69 (2016) 49 – 55.

[2] X. Zhu, Semi-supervised learning literature survey, Tech. Rep. 1530, Com-
puter Sciences, University of Wisconsin-Madison (2005).
URL http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf540

[3] O. Chapelle, B. Schölkopf, A. Zien, Semi-Supervised Learning, 1st Edition,
The MIT Press, 2010.

[4] J. Wang, X. Shen, W. Pan, On efficient large margin semisupervised learn-
ing: Method and theory, Journal of Machine Learning Research 10 (2009)
719–742.545

[5] D. Cai, X. He, J. Han, Semi-supervised discriminant analysis, in: IEEE
11th International Conference on Computer Vision, 2007, pp. 1–7.

[6] I. Cohen, F. G. Cozman, N. Sebe, M. C. Cirelo, T. S. Huang, Semisuper-
vised learning of classifiers: theory, algorithms, and their application to
human-computer interaction, IEEE Transactions on Pattern Analysis and550

Machine Intelligence 26 (2004) 1553– 1566.

[7] J. Ortigosa-Hernández, I. Inza, J. A. Lozano, Semisupervised multi-
class classification problems with scarcity of labeled data: A theoretical
study, IEEE Transactions on Neural Networks and Learning Systems Ac-
cepted (99) (2016) 1–13. doi:10.1109/TNNLS.2015.2498525.555

[8] R. Xu, G. C. Anagnostopoulos, D. C. Wunsch, Multiclass cancer classifi-
cation using semisupervised ellipsoid ARTMAP and particle swarm opti-
mization with gene expression data, IEEE/ACM Trans. Comput. Biology
Bioinform. 4 (1) (2007) 65–77.

[9] R. G. Soares, H. Chen, X. Yao, Semisupervised classification with clus-560

ter regularization, IEEE Transactions on Neural Networks and Learning
Systems 23 (11) (2012) 1779–1792.

[10] J. Ortigosa-Hernández, J. D. Rodŕıguez, L. Alzate, M. Lucania, I. Inza,
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