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Dynamics of two-photon paired superradiance

M. Yoshimura,1,* N. Sasao,2,† and M. Tanaka3,‡
1Center of Quantum Universe, Faculty of Science, Okayama University, Tsushima-naka 3-1-1 Kita-ku, Okayama 700-8530, Japan

2Research Core for Extreme Quantum World, Okayama University, Tsushima-naka 3-1-1 Kita-ku, Okayama 700-8530, Japan
3Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

(Received 2 April 2012; published 9 July 2012)

We develop for dipole-forbidden transition a dynamical theory of two-photon paired superradiance (PSR). This
is a cooperative process characterized by two photons emitted back to back with equal energies. By irradiating the
trigger laser from two target ends, with its frequency tuned at the half energy between two levels, a macroscopically
coherent state of medium and fields dynamically emerges as time evolves, and a large signal of amplified output
occurs with a time delay. The basic semiclassical equations in 1 + 1 space-time dimensions are derived for the
field-plus-medium system to describe the space-time evolution of the entire system and are numerically solved to
demonstrate the existence of both explosive and weak PSR phenomena in the presence of relaxation terms. The
explosive PSR event terminates accompanying a sudden release of most of the energy stored in the target. Our
numerical simulations are performed using the vibrational transition X1�+

g v = 1 → 0 of a para-H2 molecule
and taking many different excited atom number densities and different initial coherences between the metastable
and the ground states. In an example with a number density close to O(1021 cm−3) and a high initial coherence,
the explosive event terminates several nanoseconds after the trigger irradiation, when the phase relaxation time
larger than O(10 ns) is taken. After PSR events the system is expected to follow a steady-state solution which is
obtained by analytic means and is made of many objects of field condensates endowed with a topological stability.
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I. INTRODUCTION

Since their early suggestion [1] a variety of coherent
two-photon processes have attracted much interest, from both
the theoretical [2–4] and experimental sides [5–9]. Our present
work is focused on a different aspect of coherent two-photon
emission from �-type three-level atoms (or molecules) where
the transition between two lower levels is dipole forbidden
(see Fig. 1 for the level structure). As pointed out in Ref. [10],
a macroscopic target made of metastable atoms in |e〉 in
Fig. 1 may induce a characteristic event of macrocoherent
two-photon emission, two photons emitted exactly back to
back with equal energies. We use for this phenomenon the
terminology of two-photon paired superradiance (PSR). The
term paired is used because two emitted photons are highly
correlated in their momenta and spin orientations (most clearly
seen in the J = 0 → 0 transition). The rate enhancement
factor in the momentum configuration of the back-to-back
emission is expected to be much larger than in the usual
superradiance (SR) case [11] due to the lack of a wavelength
limitation there: the coherent volume for SR is limited with the
wavelength λ by λ2L, where L is the target length for a cylin-
drical configuration, while the macrocoherent PSR has the
coherent volume of the entire cylinder irradiated by the trigger.

The usual single-photon superradiance occurs irrespective
of the absence or presence of a trigger due to the intrinsic
instability of exponential spontaneous decay caused by dipole-
allowed transition. On the other hand, two-photon emission
occurs with a much smaller rate in the higher order of
perturbation beyond the dipole-forbidden transition; hence
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the use of a trigger is essential to assist the macrocoherence
development for the two-photon process and to induce rapid
PSR events with a large signal. Quantum initiation such as
that proposed for SR in Ref. [12] is not needed since PSR is
more akin to the triggered SR [13], which makes the following
semiclassical treatment appropriate.

A basic formalism of two-photon process already exists
for propagation equations [3] and for analytic results [14]
of the propagation problem and PSR emission treated as
perturbation. But this formulation turns out to be insufficient
to dynamically discuss (back to back) two-mode propagation
incorporating PSR, which seems essential for a dense medium.
In the present work we shall be able to derive a fundamental
set of semiclassical equations for the two modes and further
present formulation of a two-color problem. The essential
ingredient in our work is the derivation of a more general
quantum-mechanical equation for both the medium (Bloch
equation) and the electromagnetic field (extension of the quan-
tum Maxwell equation to include the two-photon process).
After elucidating the nature of the quantum state of fields and
the medium, namely, a time-evolving electric-field condensate,
we shall go on to the semiclassical equation. In this way we
determine how back-to-back two modes are precisely coupled
beyond the perturbation theory.

We ignore the granularity and rely on the continuum
limit formulation of the atom distribution, taking one spatial
dimension alone, because the whole event is highly focused
on one direction of the irradiated trigger field taken as the
x direction. The system of semiclassical partial differential
equations thus derived is highly nonlinear and must generally
be analyzed with numerical simulations. In this way we
find explosive and weak PSR phenomena and under what
conditions these may occur.

Despite its complicated nonlinearity the system allows
soliton solutions of two kinds, which are obtained as

013812-11050-2947/2012/86(1)/013812(14) ©2012 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/148707951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.86.013812


M. YOSHIMURA, N. SASAO, AND M. TANAKA PHYSICAL REVIEW A 86, 013812 (2012)

〉

〉

〉
FIG. 1. (Color online) �-type atomic level for PSR. The dipole-

forbidden transition |e〉 → |g〉 + γ + γ may occur via strong E1
couplings to |p〉.

steady-state solutions of this nonlinear system of fields and
medium. Solitons here, in their field part, are an electric-field
condensate which may or may not be moving: there can be
a static-field condensate. The stability (against two-photon
emission) of solitons is ensured by a topological quantum
number, as explained in the text below. Our conjecture, which
is supported by numerical simulations but not established by a
more rigorous method, is that the field condensate formed after
rapid PSR phenomena is made of many topological solitons.
After the formation of field condensates, namely, a stable target
state against two-photon emission, the light may propagate
almost freely. The condensate state of the field plus medium
thus formed may be very useful to detect a much weaker
process, such as radiative neutrino pair emission (RNPE) [15],
because the condensate is not stable against RNPE.

A related propagation and soliton formation problem in
the single-photon case is the phenomena of self-induced
transparency (SIT) [16] and electromagnetically induced
transparency (EIT) [8], presumably related to solitons of the
kind in Ref. [17], both at a resonant frequency. Both of these
transparency phenomena thus appear to be directly related to
the formation of stable solitons of different kinds than ours.

For the numerical computations below, we use parameters
relevant to a good target candidate for PSR detection, the
para-H2 molecule. We have in mind using the para-H2 vibra-
tional transition of X1�+

g v = 1 → 0 (X being the electronic
ground molecular state). Many other atoms and molecules are
conceivable for PSR experiments. The characteristic length
scale for large effects is ∼14 cm, and the time scale is ∼0.5 ns
for para-H2 with a molecule density of n = 1020 cm−3. The
number density dependence of these characteristic parameters
is ∝ 1/n. We include relaxation effects of two time constants
in the range of T2 � 10 ns (a feasible value experimentally)
and T1 � T2 in our analysis. The origin of these relaxation
constants is left unexplained, and in this way one may use
values experimentally measured by other means. We perform
extensive numerical simulations in order to clarify experi-
mentally observable PSR signals and condensate formation in
forthcoming experiments. It is demonstrated that an explosive
PSR emission occurs for long targets even for a weak trigger
when initial coherence between states, |e〉 and |g〉, is present.
We have identified two different types of PSR events caused
by trigger irradiation: (1) explosive PSR, in which most of

the stored energy in the initial metastable state |e〉 is released
as a short pulse of some time structure, and (2) weak PSR,
in which the output energy flux is in linear proportion to the
trigger power. The natural unit h̄ = c = 1 is used throughout
the present paper.

II. DERIVATION OF QUANTUM AND SEMICLASSICAL
EQUATIONS

Consider a three-level atom (or molecule) of energies
εp > εe > εg , as shown in Fig. 1. We assume that the transition
between two lower levels, |e〉 and |g〉, is dipole forbidden.
Suppose that the upper level |p〉 has substantial E1 rates
for both |e〉 and |g〉. (This can be replaced by a weaker M1
transition since the relation we need subsequently is the partial
decay rate ∝ ε3

ij with the energy level difference εij = εi − εj ,
which holds in both the E1 and M1 cases.)

We focus on, and derive an effective Hamiltonian of, the
two lower levels interacting with the oscillating electric field
E. Its Hamiltonian density has been derived in Refs. [3,14] for
a single mode of field, such as a light wave of definite frequency
traveling in one direction. The extension to multimode fields,
such as counterpropagating modes of the same frequency,
is given in Appendix A. Its Hamiltonian has the form of
a 2 × 2 matrix acting on two atomic states, |e〉 and |g〉,
∼ EME. The multimode field E may be decomposed into
positive- and negative-frequency parts, E = ∑

j
1
2 (E∗

j e
iωj t +

Eje
−iωj t ) , where Ej ,E

∗
j are slowly varying envelopes in time.

We shall use the variables E+
j = Eje

−iωj t and E−
j = E∗

j e
iωj t

to simplify the formulas given below. In quantum field theory
Ej and E∗

j represent annihilation and creation operators of the
definite mode. The pertinent Hamiltonian to our discussion of
the single mode is

d

dt

(
ce(x,t)

cg(x,t)

)
= −iHI

(
ce(x,t)

cg(x,t)

)
, (1)

−HI =
(

μeeE
+E− eiεeg tμge(E+)2

e−iεeg tμge(E−)2 μggE
+E−

)
, (2)

μge = 2dpedpg

εpg + εpe

, μaa = 2d2
paεpa

ε2
pa − ω2

0

(a = g,e), (3)

where |ce|2 + |cg|2 = n(x), with n(x) being the number
density of atoms per a unit volume in a linear target region
of 0 � x � L. For simplicity we took an isotropic medium
and linearly polarized fields, taking �E± as scalar functions.
The diagonal part ∝ μaa of this Hamiltonian describes ac
Stark energy shifts, while the off-diagonal parts ∝ μge are
for two-photon emission and absorption.

For a p-H2 target the photon energy ω0 = εeg/2 (∼0.26 eV)
is much smaller than level spacings of the electronically
excited intermediate states; both εpe and εpg are ∼11 eV. Under
this condition we may ignore ω0 compared to εpa,a = e,g in
the formula for μab and identify μab with the polarizability
for which a precision calculation exists [18]. We thus use
numerical values of parameters, μgg ∼ 0.80,μee ∼ 0.87, and
μge ∼ 0.055 , all in units of 10−24 cm3 [19], for the
p-H2 Xv = 1 → Xv = 0 transition.

The density matrix of pure atomic states, ρ =
|ψ(x,t)〉〈ψ(x,t)| [〈ψ(x,t)| = (ce,cg)], obeys the evolution
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equation ∂tρ = −i[HI ,ρ] . This quantum-mechanical equa-
tion is generalized to include dissipation or relaxation. The
needed variable, the density matrix for the mixed state, is
given by a statistical mixture of pure states:

ρ(x,t) =
∑

i

ci |ψi(x,t)〉〈ψi(x,t)|,
(4)∑

i

ci = 1, 0 � ci � 1,

with |ψi(x,t)〉 being a set of orthonormal pure-state vectors.
Dissipation occurs when a subsystem of |e〉,|g〉 interacts with
a reservoir, and we integrate out reservoir variables due to
our basic ignorance of the reservoir. The general form of
mixed-state evolution including dissipation has been derived
by Lindblad [20], assuming the general principle of positivity
and conservation of probability. As a result the time-evolution
equation of the density matrix has an additional operator term,
L[ρ]. The new additional dissipation term in the two-level
atomic system turns out to be equivalent to phenomenological
relaxation terms given by two time constants, T1 and T2 (with
the constraint T1 > T2/2 from consistency with [20]).

It is convenient to write the evolution equations in terms
of components of the Bloch vector defined by �R = tr ρ �σ =
〈ψ |�σ |ψ〉. The basic Bloch equation including relaxation terms
is

∂tR1 = (μee − μgg)E+E−R2

− iμge(eiεeg tE+E+ − e−iεeg tE−E−)R3 − R1

T2
, (5)

∂tR2 = −(μee − μgg)E+E−R1

+μge(eiεeg tE+E+ + e−iεeg tE−E−)R3 − R2

T2
, (6)

∂tR3 = μge[i(eiεeg tE+E+ − e−iεeg tE−E−)R1

− (eiεeg tE+E+ + e−iεeg tE−E−)R2] − R3 + n

T1
. (7)

T1 � T2 usually, and the phase decoherence time T2 is much
smaller and more important than the decay time T1, which may
be taken to be infinitely large for our practical purpose.

Derivation of the quantum field equation follows a similar
line of reasoning. To perform the derivative operation ∂2

t as
in the Maxwell equation, one needs to calculate the double
commutator:

∂2
t

�E± = −[H,[H, �E±]], H =
∫

d3x(Hf + tr ρHI ), (8)

with the field energy density Hf = ( �E2 + �B2)/2. For con-
venience we add less dominant oscillating terms of the field
modes to E± and use the locally well-behaved field E(x,t)
in HI . The fundamental commutation relation in the radiation
gauge QED [Ey(�r,t),Bz(�r ′,t)] = i∂xδ

3(�r − �r ′) [21] is used to
derive the quantum field equation. The result is(

∂2
t − �∇2

) �E± = �∇2D �E±, (9)

−D �E+ =
(

μee + μgg

2
n + μee − μgg

2
R3

)
�E+

+μgee
−iεeg t (R1 − iR2) �E− . (10)

This equation [22] along with the Bloch equations (5)–(7)
is the basis of the following derivation of our master
equation.

A. Slowly varying envelope approximation (SVEA)

Fast oscillating terms do not contribute to global features of
time and spatial evolution when one averages over a few times
of spatial and time oscillation periods. We thus extract terms
that persist over time periods of typical light oscillation of
order 1/ω both in time and space. Envelope functions denoted
by ER,EL are amplitudes of right(R)- and left(L)-moving
components of rapidly oscillating parts ∝ e−iω(t∓x).

The result of SVEA may be summarized using dimension-
less units of space-time coordinates ξ,τ and dimensionless
fields eL,R given by

(ξ,τ ) = (αmx,αmt), αm(ω) = εeg

2
nμge(ω),

(11)

|eL,R|2 = |EL,R|2
εegn

, ri = Ri

n
.

The quantity 1/αm = 2/(μgeεegn) gives a fundamental unit of
target length and time scale of evolution. Since a functional
relation αm(ω) = αm(εeg − ω) holds, the propagation problem
of the trigger irradiation of pair frequencies, ω and εeg − ω, is
described by the same dimensionless quantities of a common
αm. Its value at ω = εeg/2 is ∼14 cm and ∼0.5 ns for para-H2

with a density of 1020 cm−3.
The most general fundamental equations including both

nontrivial propagation and PSR effects are derived in Ap-
pendix A and are given by formulas (A35)–(A42). It is useful
to recall the physical meaning of coupling constants μab

in the interaction Hamiltonian in order to fully appreciate
the following approximation in our numerical simulations.
Consider the extended Hamiltonian including both counter-
propagating modes given by Eq. (A14) in Appendix A. We
first note that annihilation (ai) and creation (a†

i ) operators
of photon modes are related to complex fields by E+

i ∼
ai

√
ω/2V , E−

i ∼ a
†
i

√
ω/2V , where V is the quantization

volume. The important equations are obtained after SVEA
and are given in Appendix A. They are written in terms of
envelope functions:

(∂t + ∂x)ER = iω

2

[(
μee + μgg

2
n + μee − μgg

2
R

(0)
3

)
ER

+ μee − μgg

2
R

(+)
3 EL + μge[(R1 − iR2)(0)E∗

L

+ (R1 − iR2)(+)E∗
R]

]
, (12)

(∂t − ∂x)EL = iω

2

[(
μee + μgg

2
n + μee − μgg

2
R

(0)
3

)
EL

+ μee − μgg

2
R

(−)
3 ER + μge[(R1 − iR2)(0)E∗

R

+ (R1 − iR2)(−)E∗
L]

]
. (13)

The right-hand sides of these equations give the effects,
all in the bulk medium, of forward scattering ∝ μee+μgg

2 n +
μee−μgg

2 R
(0)
3 , backward scattering ∝ μee−μgg

2 R
(±)
3 , right-left(RL)
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pair annihilation ∝ μge(R1 − iR2)(0), and right-right(RR) and
left-left(LL) pair annihilation ∝ μge(R1 − iR2)(±). (The pair
creation amplitudes appear in equations conjugate to those
above.) Quantities R

(±)
i e±2ikx as defined by Eq. (A31) are

what are called spatial grating in the literature. The backward
scattering terms and RR- and LL-pair annihilation and creation
terms are important only in the presence of spatial grating of
polarization. Neglecting spatial grating is thus equivalent to
retaining forward scattering and RL-pair processes and ignor-
ing all other terms. In the simple boundary condition set up
below, the backward Bragg scattering is expected to be a minor
effect and is also neglected in most works on SR. We refer to
Ref. [23] for the backward Bragg scattering effect in usual SR
and, for instance, to Ref. [24] for the backward scattering effect
on SR in low-Q cavity experiments. In a more comprehensive
simulation in the future we wish to quantitatively compute
the effects of the backward scattering and RR- and LL-pair
processes because non-negligible differences of these effects
might arise in PSR, unlike the SR case.

In the rest of the present work we shall focus on PSR effects
and ignore propagation effects, which are much discussed in
Refs. [3,14] and are summarized in Appendix A. The explosive
PSR events discussed below are expected to be insensitive
to the neglected propagation effects. The resulting Maxwell-
Bloch equation for the single mode is

∂τ r1 = 4γ−(|eR|2 + |eL|2)r2 + 8Im(eReL)r3 − r1

τ2
, (14)

∂τ r2 = −4γ−(|eR|2 + |eL|2)r1 + 8Re(eReL)r3 − r2

τ2
, (15)

∂τ r3 = −8[Re(eReL)r2 + Im(eReL)r1] − r3 + 1

τ1
, (16)

(∂τ + ∂ξ )eR = i

2
(γ+ + γ−r3)eR + i

2
(r1 − ir2)e∗

L, (17)

(∂τ − ∂ξ )eL = i

2
(γ+ + γ−r3)eL + i

2
(r1 − ir2)e∗

R, (18)

γ± = μee ± μgg

2μge

. (19)

Here τi = αmTi are the relaxation times in dimensionless
units.

The dimensionless master equation [(14)–(18)] is governed
by two important parameters, the most important of which
is τ2 = αmT2 and the next most important is γ±. Another
experimentally important parameter is the overall length and
time 1/αm ∝ 1/n, which inversely scale with the number
density n. For larger number densities of excited atoms a
smaller-size target and a shorter time measurement on the
order of nanoseconds becomes possible.

In terms of the two-component field ϕ defined below the
equation reads

(∂τ + σ3∂ξ )ϕ − i

2
(γ+ + γ−r3)ϕ − i

2
(r1 − ir2)σ1ϕ

∗ = 0 ,

(20)

ϕ =
(

eR

eL

)
.

Magnitudes of R and L fluxes change via an RL mixing term,
such as

(∂τ ± ∂ξ )|eR,L|2 = r1Im(eReL) + r2Re(eReL) . (21)

An R- or L-moving pulse alone propagates freely because we
ignored in this approximation nontrivial propagation effects.

B. Quantum state of fields

As usual in quantum field theory, we may interpret �ER,L as
annihilation operators and �E †

R,L as creation operators. The
fact that the basic equation, Eqs. (17) and (18) or (20),
simultaneously contains both field annihilation and creation
operators implies that the quantum state satisfying the field
equation is given by a Bogoliubov transformation from the
usual vacuum of the zero-photon state |0〉,

|�〉 =
∞∑

n=0

cn(x,t)(E †
RE

†
L)n|0〉, (22)

where cn(x,t) is to be determined by the condition: [the left
hand side of Eq. (20)] |�〉 = 0. The quantum state |�〉 is a
mixture of infinitely many states of different photon numbers.
We shall not pursue this line of thought any further because
we exploit the semiclassical approximation under the large
quantum number limit of photons (the classical limit). The
semiclassical equation is given by the expectation value of
the quantum equation,

〈�|
(

(∂τ + σ3∂ξ )ϕ − i

2
(γ+ + γ−r3)ϕ − i

2
(r1 − ir2)σ1ϕ

∗
)

× |�〉 = 0, (23)

where |�〉 is the Bogoliubov state given by Eq. (22). The
semiclassical equation turns out to be equivalent to replacing
quantum field operators in the quantum equation by the corre-
sponding c-number functions. Equations (14)–(18), regarded
as the equations for c-number functions, thus constitute the
master equation for the polarization of medium and field.

In our case of a field condensate, medium polarization and
fields are cooperatively involved: the target medium undergoes
coherence oscillation, simultaneous with field oscillation,
while keeping field envelopes slowly varying and finally
almost time independent in a large time limit, as shown below.
The field condensate part is technically equivalent to field state
made of an infinite sum of multiple-photon pair states in the
so-called coherent-state representation.

III. IMPORTANCE OF INITIAL COHERENCE

It is important to clarify in detail the ideal case of numerical
solutions where all quantities in Eqs. (14)–(18) are of order
unity, in the range of O(10–1/10). For a deeper understanding
of numerical outputs and a practical check of the accuracy of
the numerical results, it is useful to know the conservation laws
of our nonlinear system. We list in Appendix B all the exact
and approximate conservation laws that the system possesses.

We have performed numerical simulations assuming non-
pulsed continuous-wave (cw) trigger laser irradiation of the
same power from two target ends (called the symmetric
trigger). This boundary condition is similar, but not identical,
to the one for the cavity mirror. Use of cavity mirrors has
both advantages and complications. Two mirrors in a cavity
automatically generate counterpropagating waves, and they
effectively increase the trigger power (which, however, is not
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FIG. 2. Time-evolving output flux at a target end of length 30 cm
resulting from the symmetric cw trigger irradiation with a power of
1 MW mm−2 (0.9 MW mm−2 in the inset). Note the large difference
of ∼104 in the output power in the two plots. Assumed parameters are
n = 1 × 1021 cm−3 of p-H2, numerical values (see the text) of μab for
the transition Xv = 1 → Xv = 0, relaxation times T2 = 10 ns and
T1 = 103 ns, and initial complete inversion (hence no coherence) of
r3 = 1 with r1, r2 = 0 taken for the initial target state.

critically needed in our case). On the other hand, each atom in
the cavity is affected by the same traveling fields many times,
and this complicates analysis. We use in the present work
the simpler scheme of two cw counterpropagating triggers
independently irradiated.

Numerical results show the symmetric output fluxes from
two ends, and we exhibit in the following Figs. 2, 3, 12, and 13
one of these identical fluxes from one end. The result for the
zero initial coherence r1(ξ,0) = r2(ξ,0) = 0 is shown in Fig. 2.
The clear signature of a delay long after T2 (∼7T2 in this case)
and explosive PSR is observed for strong trigger fields. It is
difficult to obtain a commercially available cw laser with this
power. A reason for this difficulty is that relaxation of order
T2 ∼ 10 ns may take over the coherence development under
the weak trigger usually exploited. Explosive PSR is a highly
nonlinear process having a definite trigger power threshold
and definitely disappears in this example at a trigger power of
0.9 MW mm−2, as shown in the inset of Fig. 2.

In Fig. 2 the complete inversion to level |e〉 has been
assumed as an initial condition, and it would be interesting to
relax this condition and to further clarify the neglected effects
of the presence of initial coherence between two atomic levels,
|e〉 and |g〉. There is an experimental method to imprint an
initial coherence between |e〉 and |g〉 by adopting a clever
excitation scheme. The atomic state right after excitation
can be made a coherent mixture of two pure states, |e〉
and |g〉, namely, ce|e〉 + cg|g〉 with |ce|2 + |cg|2 = 1 at a
single atomic site, by using the stimulated Raman adiabatic
passage (STIRAP) technique [25]. This kind of pure state
may be formed by time-overlapping excitation pulses of two
frequencies, ≈εpe and ≈εpg . The state is a so-called dark state
because no emission from |p〉 is observed despite irradiation
capable of making both transitions, |p〉 → |e〉 and |p〉 → |g〉.

The medium polarization ri in the dark state is given by

r1 = 2
√

p(1 − p) cos θ0, r2 = 2
√

p(1 − p) sin θ0,
(24)

r3 = 2p − 1,

with p the fraction in state |e〉. When this type of initial
polarization of the dark state is formed, one may expect to
expedite the coherence development for PSR, as shown in the
following section. When a cw laser is used for the trigger, two
overlapping pulses may induce PSR at the same time when the
emission from |p〉 disappears: thus it may be called PSR from
the dark.

IV. NUMERICAL SOLUTIONS FOR A HIGH-DENSITY
TARGET WITH INITIAL COHERENCE

We first comment on what the number density n of a target
precisely means. This is the total number of atoms or molecules
per a unit volume participating in PSR phenomena; hence it is
the added sum of the densities in states |e〉 and |g〉. Note also
that state |g〉 may or may not be the ground state of the atoms
or molecules. For instance, in the p-H2 transition X1�+

g v =
2 → 1, the target number density n may be much less than the
ground-state number density since |g〉 = (Xv = 1) is also an
excited state.

The time evolution from a dark state with an initial
polarization value given by Eq. (24) is illustrated for a p-H2

number density of 1 × 1021 cm−3 in Figs. 3–11. We show
dependence of the symmetric output pulse on the trigger
power in the range of 10−12–1 W mm−2 for n = 1 × 1021

cm−3 in Fig. 3, which demonstrates two important features
of explosive PSR with large initial coherence: (1) the highest
peak of PSR output is almost independent of the trigger power,
suggesting a sudden, macroscopic release of energy (its density
is ≈εegn) stored between two levels, |e〉 and |g〉, and (2) the
onset time of explosive events, which may be called the delay
time, depends on the input trigger power very weakly, and a

F
lu

x
(W

m
m

−
2
)

t (ns)

FIG. 3. (Color online) Trigger power dependence of time-
evolving output flux from the symmetric trigger irradiation of the
power range, 10−12 to 1 W mm−2, under the conditions of n =
1 × 1021 cm−3, target length of 30 cm, relaxation times T2 = 10 ns
and T1 = 103 ns, and the initial polarization r1 = 1,r2 = r3 = 0.
Depicted outputs from 1 W mm−2 (solid black line), 10−6 W mm−2

(long-dashed red line), and 10−12 W mm−2 (short-dashed blue line)
trigger power are displaced almost equidistantly in the first peak
positions. Transition Xv = 1 → Xv = 0 of p-H2 is considered.
About 70% of the stored energy in the initial metastable state is
released in these cases.
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|e

R
|2

+
|e

L
|2

t (ns)

x (cm)

FIG. 4. (Color online) Space-time profile of dimensionless field
energy |eR|2 + |eL|2 for the 1 μW mm−2 case of Fig. 3.

linear logarithmic dependence has been confirmed up to 1 pW
mm−2 (instantaneous enhancement factor of ∼8 × 1021 in this
case). A similar logarithmic power dependence of the delay
time has been observed in numerical simulations of the single-
photon superradiance when the system is subjected to the
trigger.

The integrated flux is ∼|Emax|2�t , where �t is the time
width of the explosive event. |Emax|2 = O(εegn), and this
integrated flux is estimated as O(1/μge), a quantity that is
independent of the target number density n, if the explosive
event occurs. These figures, Figs. 3–13 show dramatic effects
of the initial coherence of the dark state. Observation of
explosive events requires a target length �1/αm ∝ 1/n.
The detailed time structure of pulses as observed in Fig. 3
may differ if one adopts different available experimental
parameters, but the output release of the energy flux of order
εegn is universal in explosive PSR events.

The spatial profiles of field fluxes and polarization com-
ponents ri within the target are illustrated in Figs. 4–11. In
this parameter set, about ∼30% of the stored energy εegn [the

x (cm)

|e
R
|2

+
|e

L
|2

(×
10

−
1
4
)

FIG. 5. Spatial profile at the latest time, 10 ns after trigger
irradiation, of Fig. 4. Note the large reduction by O(10−13) in the
power scale.

x (cm)

t (ns)

r1

FIG. 6. (Color online) Space-time profile of r1 for the
1 μW mm−2 case of Fig. 3.

r1

x (cm)

FIG. 7. Spatial profile of r1 at the latest time, 10 ns after trigger
irradiation, of Fig. 6.

r2

t (ns)

x (cm)

FIG. 8. (Color online) Space-time profile of r2 for the
1 μW mm−2 case of Fig. 3.
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x (cm)

r2

FIG. 9. Spatial profile of r2 at the latest time, 10 ns after trigger
irradiation, of Fig. 8.

corresponding flux unit being 1.2 × 109 W mm−2 (n/1021

cm−3)] still remains in the target long after explosive PSR,
and we observe a seemingly stable target state. Note that
dimensionless fields |ei |2 = |Ei |2/(εegn) are plotted in Figs. 4
and 5.

The result for a solid density of n = 2.6 × 1022cm−3 and
a smaller excitation of r3 ≈ −1 is shown in Fig. 12. There is
a threshold of the excitation fraction of |e〉, located between
0.2% and 0.5%, above which dramatic explosive PSRs emerge,
as inferred from comparison of the two plots in Fig. 12.

So far we have mostly showed explosive outputs in which
most of the stored energy between |e〉 and |g〉 is released during
time span <10 ns after the time delay. There is, however, a
linear regime under a large initial coherence ri,i = 1,2, in
which the output flux is amplified in proportion to the trigger
power. For instance, the amplification factor is ∼102 in the
trigger power range of 1 μW mm−2 to 1 W mm−2 for the
three different choices of initial ri values in Fig. 13. In Fig. 13
we show the output fluxes in the linear regime taking as an
example a trigger power of 1 mW mm−2. Although not shown
in Fig. 13, the linearity of the output power to the trigger power
has been checked for this set of parameters.

t (ns)

x (cm)r3

FIG. 10. (Color online) Space-time profile of r3 for the
1 μW mm−2 case of Fig. 3.

x (cm)

r3

FIG. 11. Spatial profile of r3 at the latest time, 10 ns after trigger
irradiation, of Fig. 10.

V. STATIC REMNANT AND SPINORIAL SOLITONS

In addition to the dramatic explosive PSR emission it is
also important to watch the remnants after the PSR emission
since previous Figs. 5, 7, 9, and 11 at the latest times may
be taken to suggest the formation of objects of nontrivial
spatial profiles. Let us derive for this purpose the asymptotic
form of fundamental equations. We anticipate that both the
medium polarization �r and fields eR,eL change little with time
in the time region of t � 1/αm after PSR emission. By taking
vanishing time derivatives, one may eliminate polarizations
ri in favor of field components and write profile equations of
spatial variation for fields,

e′
R = 2igeR + if e∗

L, e′
L = −2igeL − if e∗

R, (25)

g = g(eR,eL)

= γ+ − γ−
16γ 2

−τ 2
2 (|eR|2 + |eL|2)2 + 1

16γ 2−τ 2
2 (|eR|2 + |eL|2)2 + 64τ1τ2|eReL|2 + 1

,

(26)

t (ns)

F
lu

x
(W

m
m

−
2
)

FIG. 12. Output flux for the solid target number density of 2.6 ×
1022 cm−3 with a length of 2 cm, trigger power of 1 μW mm−2,
relaxation times T2 = 10 ns and T1 = 103 ns, and a smaller population
r3 = −0.99 (0.5% excitation) [r3 = −0.996 (0.2% excitation) in the
inset]. The other initial components are taken as r1 =

√
1 − r2

3 , r2 =
0. Note the large flux scale difference of ∼1014 in the two plots.
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t (ns)

F
lu

x
(W

m
m

−
2
)

FIG. 13. (Color online) Output flux of weak p-H2 PSR in
the linear regime in which the output power is O(∼102) times
the trigger power for initial (r3,r1,r2) = (0,1,0) (solid black line),
(1/

√
2,1/

√
2,0) (long-dashed red line), and (−1/

√
2,1/

√
2,0) (short-

dashed blue line), using the same set of other parameters: n =
1 × 1020 cm−3, target length of 1.5 m, relaxation times T2 = 10 ns
and T1 = 103 ns, and trigger power of 1 mW mm−2. The output power
scales with the trigger power, as explicitly checked in the range of
1 μW mm−2 to 1 W mm−2.

f = f (eR,eL)

= 4τ2eReL((4γ−τ2(|eR|2 + |eL|2) − i)

16γ 2−τ 2
2 (|eR|2 + |eL|2)2 + 64τ1τ2|eReL|2 + 1

, (27)

r3 = − 16γ 2
−τ 2

2 (|eR|2 + |eL|2)2 + 1

16γ 2−τ 2
2 (|eR|2 + |eL|2)2 + 64τ1τ2|eReL|2 + 1

, (28)

where a prime indicates the spatial derivative ∂ξ .
Despite the complicated field-dependent coefficient func-

tions that appear in f and g, the structure of profile equation
(25) is rather simple. Oscillatory behavior governed by terms
∝ g can be eliminated by taking three bilinear forms of fields,
|eR|2,|eL|2, and eReL:

(|eR|2 + |eL|2)′ = 0, (|eR|2 − |eL|2)′ = −4Im(f e∗
Re∗

L),
(29)

(eReL)′ = −if (|eR|2 − |eL|2),

where the function f depends effectively on eReL alone since
the total flux is a constant of integration due to the first equation
of Eq. (29); hence with a real constant e0, |eR(ξ )|2 + |eL(ξ )|2 =
e2

0. The set of profile equations, (29), is transformed into two
equations of the phase functions, ϕ(ξ ) and S(ξ ), defined by

eR(ξ ) = e0 cos ϕ(ξ ), eL(ξ ) = e0e
iS(ξ ) sin ϕ(ξ ), (30)

ϕ′ = 2e2
0τ2

1 + 16γ 2−e4
0τ

2
2 + 16e4

0τ1τ2 sin2(2ϕ)
sin(2ϕ), (31)

S ′ = 16γ−e2
0τ

2
2

1 + 16γ 2−e4
0τ

2
2 + 16e4

0τ1τ2 sin2(2ϕ)
cos(2ϕ), (32)

with ϕ(l/2) = π/4,S(l/2) = 0,l = αmL. Since the ei’s con-
tain four real functions, the resulting two equations here reflect
a nontrivial self-consistency of the ansatz (30). A similar
equation with R ↔ L interchanged may be set up, suggesting
another kind of soliton.

The equation for the angle function ϕ(ξ ) [(31)] is self-
contained and has the following analytic solution under the

x (cm)

F
lu

x
(W

m
m

−
2
)

FIG. 14. (Color online) Profile of fields and r3 of the helical
absorber soliton. |ER|2 (solid red line) and |EL|2 (short-dashed blue
line; both in units of W mm−2) and r3 (long-dashed black line; in
arbitrary units) are plotted for the case of n = 2.6 × 1022 cm−3,
T2 = 20 ns, T1 = 103 ns, and r3 ≈ −1 near the edges and r3 ≈ −0.8
in the middle.

boundary condition eR(l/2) = e0/
√

2:

2e2
R − e2

0 + 16γ 2
−τ 2

2 e4
0 + 1

32τ1τ2e
4
0

ln
e2
R

e2
0 − e2

R

= −ξ − l/2

4τ1
. (33)

The field may decrease exponentially in the central region, as
e2
R ∝ exp[−8τ2e

4
0|ξ − l/2|/(16γ 2

−τ 2
2 e4

0 + 1)]. One may define
the soliton size by the e-folding factor as ξs = (16γ 2

−τ 2
2 e4

0 +
1)/(8τ2e

4
0). The actual soliton size is xs = ξs/αm.

The spatial variation of eR ∝ cos ϕ(ξ ) is monotonic, de-
creasing or increasing depending on the ϕ region of either
[0,π/2] or [π/2,π ] (defined modulo π ). These two funda-
mental regions are separated since ϕ′ = 0 at the edges of
these regions because sin(2ϕ) = 0 there. One may identify
these two solutions as different objects. Either of the fields eR

and eL vanishes at the edges of fundamental regions, but not
both. The solution defined by the fundamental region [0,π/2]
corresponds to an absorber soliton in which both R and L fluxes
are absorbed at edges but are not emitted at the other edges,
as illustrated in Figs. 14 and 15. This object may be called the
absorber soliton. The other fundamental region [π/2,π ] gives

FIG. 15. (Color online) Helical structure of the absorber soliton.
The target region is irradiated from both ends by trigger lasers of
different colors. �X(ξ ) = (cos ϕ, cos S sin ϕ, sin S sin ϕ), with ϕ and
S defined by Eq. (30), may wind. In the return trip from the right
edge to the left edge (not shown here), �X(ξ ) further winds and comes
back with �X(π ) = − �X(0) at the left edge, giving a spinor field. This
is an absorber soliton without emission at two ends.
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an emitter soliton which may be realized when the excited
|e〉 state is sufficiently occupied. The existence of two types
of soliton condensates is an important result, indicating the
existence of a new kind of topological soliton whose topology
is discussed in Appendix C.

When the target size L is large and L � ξs/αm, one may
expect a copious production of absorbers and emitters within
the target. When the target size is smaller than ξs/αm, the
target edge effect becomes important (in general, destroying
solitons, or blocking their formation), and it may be difficult
to create a soliton.

The soliton solution obtained by direct numerical inte-
gration of Eq. (31) is illustrated in Fig. 14 along with
the distribution of the population difference r3. Solitons
are characterized by two end points of r3 ≈ −1 and an
intermediate region of r3 ≈ 0. It is important to have a long
enough target to accommodate many solitons within the target.
The soliton size can be made smaller if one can use a larger
target number density close to the solid density.

VI. CONCLUSION

In summary, we derived and numerically solved the master
equation for the time evolution of PSR emission and the
formation of field condensates in long, dense targets. We
have demonstrated (1) numerical identification of two different
types of PSR events, explosive and weak ones, and (2) the
theoretical existence of spinorial solitons that are stable against
PSR emission. Realistic experiments can be designed using
numerical solutions of our master equation.

Note added. Recently, we became aware of a related
work [26] where the time evolution of triggered two-photon
coherence is examined. The authors of Ref. [26] treat the field
differently from the one of our semiclassical approach. Our
approach gives very short coherence development time on the
order of several nanoseconds in dense targets.
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APPENDIX A: TWO-LEVEL EFFECTIVE MODEL
INTERACTING WITH MULTIMODE FIELDS

We extend the results of Appendix A in Ref. [14] to the case
of multimode fields such that the two-color problem including
the propagation effect is properly treated. This is the most
general case of the two-photon problem. Its notation in this
work is slightly changed.

1. Atomic system

The state vector of an atom can be expanded in terms of the
wave function,

|ψ(t)〉 = cg(t)e−iεg t |g〉 + ce(t)e−iεet |e〉 +
∑

p

cp(t)e−iεpt |p〉 .

(A1)

The ca(t)’s are probability amplitudes in an interaction picture
where εa’s are energies of atomic states. The atomic system
may interact with light fields. The electric field E(x,t) that
appears in the Hamiltonian via E1 or M1 transition is assumed
to have one vector component alone; that is, we ignore the
effects of field polarization. This is a valid approach under a
number of circumstances. We then decompose the real field
variable E(x,t) into a Fourier series, e−iωj t times a complex
envelope amplitude Ej (x,t), and its conjugate, where Ej (x,t)
is assumed to be slowly varying in time,

E(x,t) =
∑

j

[E∗
j (x,t)eiωj t + Ej (x,t)e−iωj t ]. (A2)

Each discrete mode j is taken to be independent. The most
interesting cases are those of two modes with ω1 + ω2 = εeg

and the single mode with ω = εeg/2.
The Schrödinger equation for a single atom,

i
∂

∂t
|ψ(t)〉 = (H0 + dE)|ψ(t)〉, (A3)

where H0 is the atomic Hamiltonian, is used to derive the upper
level amplitude cp(t). Using

i
∂

∂t
〈p|ψ(t)〉 = 〈p|(H0 + dE)|ψ(t)〉, (A4)

we have

i
dcp

dt
e−iεpt = (dpecee

−iεet + dpgcge
−iεg t )E, (A5)

where dab are dipole matrix elements. This can formally be
integrated to

cp(t) = −i

∫ t

0
dt ′[dpece(t ′)eiεpet

′ + dpgcg(t ′)eiεpgt
′
]E(x,t ′)

= −i

∫ t

0
dt ′

∑
j

[dpece(t ′)eiεpet
′ + dpgcg(t ′)eiεpgt

′
]

× [E∗
j (x,t ′)eiωj t

′ + Ej (x,t ′)e−iωj t
′
], (A6)

with εab = εa − εb being the atomic level energy difference.
The initial condition cp(0) = 0 is assumed here.

2. Markovian approximation and effective two-level model

The basic strategy of deriving equations for the lower
two-level amplitudes ce and cg in a closed form is to
eliminate atomic variables cp’s related to the upper levels.
This is essentially done by neglecting a long-time memory
effect (the Markovian approximation) and making a slowly
varying envelope approximation (SVEA). The idea of the
Markovian approximation is to replace dynamical variables,
ce(t ′),cg(t ′), and Ej (x,t ′) in the integrand of Eq. (A6), by
their values at time t , neglecting all the past memory effects.
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This gives

cp(t) ≈
∑

j

dpece

(
1 − ei(ωj +εpe)t

ωj + εpe

E∗
j − 1 − e−i(ωj −εpe)t

ωj − εpe

Ej

)
+ dpgcg

(
1 − ei(ωj +εpg)t

ωj + εpg

E∗
j − 1 − e−i(ωj −εpg)t

ωj − εpg

Ej

)
, (A7)

which is inserted into equations for the lower levels,
dce

dt
= −i

∑
p

depE(x,t)cp(t)e−iεpet , (A8)

dcg

dt
= −i

∑
p

dgpE(x,t)cp(t)e−iεpgt . (A9)

Note that dab = dba are real by an appropriate choice of phases.
We ignore rapidly oscillating terms, keeping in mind the two most important cases of the mode choice. The result is

d

dt

(
ce

cg

)
= −iHI

(
ce

cg

)
, (A10)

−HI =
∑
jj ′

(
μee(ωj ,ωj ′ )ei(ωj −ωj ′ )tE∗

j Ej ′ e−i(ωj +ωj ′−εeg )tμeg(ωj ,ωj ′ )EjEj ′

ei(ωj +ωj ′−εeg )tμge(ωj ,ωj ′ )E∗
j E

∗
j ′ μgg(ωj ,ωj ′ )ei(ωj −ωj ′ t)E∗

j Ej ′

)
≡ EjMjj ′Ej ′ , (A11)

μee(ωj ,ωj ′ ) =
∑

p

d2
pe(2εpe + ωj − ωj ′ )

(εpe + ωj )(εpe − ωj ′ )
, μgg(ωj ,ωj ′ ) =

∑
p

d2
pg(2εpg + ωj − ωj ′ )

(εpg + ωj )(εpg − ωj ′ )
, (A12)

μeg(ωj ,ωj ′ ) =
∑

p

dpedpg[εpg − (ωj + ωj ′ )/2]

(εpg − ωj )(εpg − ωj ′)
, μge(ωj ,ωj ′ ) =

∑
p

dpedpg[εpe + (ωj + ωj ′)/2]

(εpe + ωj )(εpe + ωj ′ )
. (A13)

E may contain both Ej and E∗
j . We simplify the notation below such that fields are redefined incorporating oscillating factors

e−iωj t in E+
j and so on.

3. Single-color problem

We apply the result to the problem of counterpropagating fields ER and EL of a single color of ω0 = εeg/2. In the 2 × 2
Hamiltonian, (A11), one may use the complex field E+ ≡ Eje

−iωj t (the positive energy component corresponding to the photon
annihilation operator) and its conjugate E− ≡ E∗

j e
iωj t (the negative energy component corresponding to the photon creation

operator) to eliminate phase factors except e±iεeg t , as done in the main text. Since each mode is independent, it separately satisfies
the field commutation relation, which is necessary to derive the quantum field equation, justifying the result for the case of
ω = ω0 = εeg/2.

More concretely,

−HI =
(

μee(E+
R E−

R + E+
L E−

L + E+
R E−

L + E+
L E−

R ) eiεeg tμge(E+
R E+

R + E+
L E+

L + 2E+
R E+

L )

e−iεeg tμge(E−
R E−

R + E−
L E−

L + 2E−
R E−

L ) μgg(E+
R E−

R + E+
L E−

L + E+
R E−

L + E+
L E−

R )

)
, (A14)

μge = 2dpedpg

εpg + εpe

, μaa = 2d2
paεpa

ε2
pa − ω2

0

. (A15)

(RR) and (LL) terms describe pulse propagation with compression and splitting, while (RL) terms describe backscattering, pair
creation, and pair annihilation.

4. Two-color problem

We may consider for ER and EL envelopes of two different colors of ωi with ω1 + ω2 = εeg . The separation of the cross-mode
terms leads to

HI = Hd,R + Hd,L + H12,R + H12,L + H12,RL, (A16)

−Hd,i =
( ∑

i,a μee(ωa,ωa)E+
i,aE

−
i,a eiεeg t

∑
i,a μeg(ωa,ωa)E+

i,aE
+
i,a

e−iεeg t
∑

i,a μge(ωa,ωa)E−
i,aE

−
i,a

∑
i,a μgg(ωa,ωa)E+

i,aE
−
i,a

)
, (A17)

−H12,i =
(

μee(ω1,ω2)E+
i,1E

−
i,2 + μee(ω2,ω1)E+

i,2E
−
i,1 eiεeg t2μeg(ω1,ω2)E+

i,1E
+
i,2

e−iεeg t2μge(ω1,ω2)E−
i,1E

−
i,2 μgg(ω1,ω2)E+

i,1E
−
i,2 + μgg(ω2,ω1)E+

i,2E
−
i,1

)
, (A18)
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−(H12,RL)aa = μaa(ω1,ω2)E+
R,1E

−
L,2 + μaa(ω2,ω1)E+

R,2E
−
L,1 + μaa(ω1,ω2)E+

L,1E
−
R,2 + μaa(ω2,ω1)E+

L,2E
−
R,1, (A19)

−(H12,RL)eg = eiεeg t2μeg(ω1,ω2)(E+
R,1E

+
L,2 + E+

R,2E
+
L,1), (A20)

μaa(ω1,ω2) = d2
pa(2εpa + ω1 − ω2)

(εpa + ω1)(εpa − ω2)
, (A21)

μge(ω,εeg − ω) = μge(εeg − ω,ω) = μeg(ω,εeg − ω) = μeg(εeg − ω,ω) = dpedpg(εpg + εpe)

(εpe + ω)(εpg − ω)
. (A22)

5. Bloch equation

The Bloch vector defined by

�R = 〈ψ |�σ |ψ〉 = tr �σρ, ρ = |ψ〉〈ψ | =
(

c∗
e ce c∗

e cg

c∗
gce c∗

gcg

)
, (A23)

satisfies the quantum-mechanical equation (disregarding relaxation terms) ∂t
�R = −itr �σ [HI ,ρ] . Explicit calculation using the

Hamiltonian above gives

∂tR1 = (μee − μgg)E+E−R2 − iμge(eiεeg tE+E+ − e−iεeg tE−E−)R3, (A24)

∂tR2 = −(μee − μgg)E+E−R1 + μge(eiεeg tE+E+ + e−iεeg tE−E−)R3, (A25)

∂tR3 = μge[i(eiεeg tE+E+ − e−iεeg tE−E−)R1 − (eiεeg tE+E+ + e−iεeg tE−E−)R2]. (A26)

We suppressed mode index j for simplicity. The conservation law holds: ∂t (R2
1 + R2

2 + R2
3) = 0 .

6. Field equation

The commutation relation of fields necessary to derive the quantum field equation [Ey(�r,t),Bz(�r ′,t)] = i∂xδ
3(�r − �r ′) is valid

for each independent mode. The double commutator,

∂2
t

�E± = −[H,[H, �E± ] ], H =
∫

d3x(Hf + tr ρHI ), (A27)

tr ρHI = 〈ψ |H|ψ〉 = −(μee|ce|2 + μgg|cg|2)E+E− − μge(c∗
e cgE

+E+ + c∗
gceE

−E−), (A28)

with the field energy density Hf = ( �E2 + �B2)/2, is calculated as(
∂2
t − �∇2

) �E±
j = �∇2(Djj ′ �Ej ′ )±, (A29)

−Djj ′ �E+
j ′ =

(
(μee + μgg)jj ′

2
n + (μee − μgg)jj ′

2
R3

)
�E+

j ′ + (μge)jj ′e−iεeg t (R1 − iR2) �E−
j ′ . (A30)

7. SVEA and dimensionless equations for two-color modes

All terms in both the Bloch and field equations must have the same oscillatory behavior for global evolution of polarization and
fields. This gives a phase-matching condition of the form ω1 + ω2 = εeg and momentum balance with ER ∝ eiωx,EL ∝ e−iωx .
For time SVEA one may then eliminate the phase factor e±iεeg t in the Bloch equation. For space SVEA we introduce spatial
variation of polarization of the form

Ri = R
(0)
i + R

(+)
i e2iωx + R

(−)
i e−2iωx . (A31)

The left-hand side of the field equations is −2iω(∂t ± ∂x)ER,L for the counterpropagating modes of the same frequency; hence
(with ∂± ≡ ∂t ± ∂x)

∂+ER = iω

2

[(
μee + μgg

2
n + μee − μgg

2
R

(0)
3

)
ER + μee − μgg

2
R

(+)
3 EL + μge[(R1 − iR2)(0)E∗

L + (R1 − iR2)(+)E∗
R]

]
,

(A32)

∂−EL = iω

2

[(
μee + μgg

2
n + μee − μgg

2
R

(0)
3

)
EL + μee − μgg

2
R

(−)
3 ER + μge[(R1 − iR2)(0)E∗

R + (R1 − iR2)(−)E∗
L]

]
.

(A33)
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We introduce the dimensionless unit:

(ξ,τ ) = (αmx,αmt), αm(ω) = εeg

2
nμge(ω,εeg − ω),

∣∣e(1),(2)
L,R

∣∣2 =
∣∣E(1),(2)

L,R

∣∣2

εegn
, ri = Ri

n
. (A34)

Assume an R mover of frequency ω1 and an L mover of frequency ω2 (but not an R mover of frequency ω2 and an L mover
of frequency ω1). Note the universal parameter μeg(ω1,ω2) = μge(ω1,ω2) for any combination of ω1 + ω2 = εeg . The master
equations for medium polarization and fields are

∂τ r
(0)
1 = 4(γ (1)

− |eR|2 + γ
(2)
− |eL|2)r (0)

2 + 8Im(eReL)r (0)
3 + 4γ

(12)
− eRe∗

Lr
(−)
2 + 4γ

(21)
− eLe∗

Rr
(+)
2

− 2i
[
e2
L − (e∗

R)2
]
r

(+)
3 − 2i

[
e2
R − (e∗

L)2
]
r

(−)
3 − r

(0)
1

τ2
, (A35)

∂τ r
(+)
1 = 4γ

(12)
− eRe∗

Lr
(0)
2 − 2i

[
e2
R − (e∗

L)2
]
r

(0)
3 + 4(γ (1)

− |eR|2 + γ
(2)
− |eL|2)r (+)

2 + 8Im(eReL)r (+)
3 − r

(+)
1

τ2
, (A36)

∂τ r
(0)
2 = −4(γ (1)

− |eR|2 + γ
(2)
− |eL|2)r (0)

1 + 8Re(eReL)r (0)
3 − 4γ

(12)
− eRe∗

Lr
(−)
1 − 4γ

(21)
− eLe∗

Rr
(+)
1 + 2

[
e2
L + (e∗

R)2
]
r

(+)
3

+ 2
[
e2
R + (e∗

L)2
]
r

(−)
3 − r

(0)
2

τ2
, (A37)

∂τ r
(+)
2 = −4γ

(12)
− eRe∗

Lr
(0)
1 + 2

[
e2
R + (e∗

L)2]r (0)
3 − 4(γ (1)

− |eR|2 + γ
(2)
− |eL|2)r (+)

1 + 8Re(eReL)r (+)
3 − r

(+)
2

τ2
, (A38)

∂τ r
(0)
3 = −8

[
Re(eReL)r (0)

2 + Im(eReL)r (0)
1

] + 2i
[
e2
R − (e∗

L)2]r (−)
1 + 2i

[
e2
L − (e∗

R)2]r (+)
1 − 2

[
e2
L + (e∗

R)2]r (+)
2

− 2
[
e2
R + (e∗

L)2
]
r

(−)
2 − r

(0)
3 + 1

τ1
, (A39)

∂τ r
(+)
3 = 2ir

(0)
1

[
e2
R − (e∗

L)2
] − 2r

(0)
2

[
e2
R + (e∗

L)2
] − 8[Re(eReL)r (+)

2 + Im(eReL)r (+)
1 ] − r

(+)
3

τ1
, (A40)

(∂τ + ∂ξ )eR = ia1

2

(
γ

(1)
+ + γ

(1)
− r

(0)
3

)
eR + i

2
γ

(12)
− r

(+)
3 eL + ia12

2

(
r

(0)
1 − ir

(0)
2

)
e∗
L + i

2
(r (+)

1 − ir
(+)
2 )e∗

R, (A41)

(∂τ − ∂ξ )eL = ia2

2

(
γ

(2)
+ + γ

(2)
− r

(0)
3

)
eL + i

2
γ

(21)
− r

(−)
3 eR + ia21

2

(
r

(0)
1 − ir

(0)
2

)
e∗
R + i

2

(
r

(−)
1 − ir

(−)
2

)
e∗
L. (A42)

γ
(a)
± = μee(ωa,ωa) ± μgg(ωa,ωa)

2μge

, γ
(ab)
± = μee(ωa,ωb) ± μgg(ωa,ωb)

2μge

, (A43)

ai = 2ωi

εeg

, aij = 2ω2
j

ωiεeg

, (A44)

with μab defined by Eq. (A15). The single-mode equations in the text are readily derived by taking ωi = εeg/2,ai = 1,aij = 1,
and all γ

(ab)
± a,b independent.

8. Pulse compression factor

We shall estimate pulse propagation effects neglected in
the text. Pulse propagation may be described by ignoring RL
mixing terms in the general master equations. By taking one
mode eR of one color, the basic propagation equations are

∂τ r1 = 4r3Ime2
R + 4γ−r2|eR|2 − r1

τ2
, (A45)

∂τ r2 = 4r3Ree2
R − 4γ−r1|eR|2 − r2

τ2
, (A46)

∂τ r3 = −4
(
r1Ime2

R + r2Ree2
R

) − r3 + 1

τ1
, (A47)

(∂τ + ∂ξ )eR = i

2
[(γ+ + γ−r3)eR + (r1 − ir2)e∗

R] . (A48)

We shall ignore relaxation terms, taking τi → ∞. The
results of Ref. [14] in terms of the area function follow from
the assumption of the reality of the function eR . The relation

r1 = −γ−r3 automatically follows from the consistency of
three Bloch equations. The fundamental equation of the
propagation problem is given by a single nonlinear field
equation in terms of the area function θ (ξ,τ ):

e2
R = ∂τ θ

4
√

1 + γ 2−
, r3 = ± cos θ√

1 + γ 2−
, r2 = ± sin θ,

(A49)

(∂τ + ∂ξ )∂τ θ = ± sin θ∂τ θ . (A50)
Analytic solutions of this nonlinear equation give [14] the

following.
(1) Pulse splitting. The number N of split pulses is given

by the pulse area of the initial flux Fi(t) divided by 2π :

N = 1

2π

√
μ2

ge + (μee − μgg)2/4
∫ ∞

−∞
dyFi(y) . (A51)
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(2) Pulse compression. The pulse of an area <2π is
compressed by an amount E (result obtained for Lorentzian
pulse),

E = 1

[αmx sin(θ̃/2) ± cos(θ̃/2)]2 + sin2(θ̃/2)
, (A52)

θ̃ =
√

μ2
ge + (μee − μgg)2/4

∫ t−x

−∞
dyFi(y), (A53)

+(−) corresponding to amplifier(absorber).
We may estimate the pulse compression factor (A52) for

cw trigger irradiation of duration t in which case θ̃ ∼ βt :

E = 1

(βtαmx ± 1)2 + (βt)2
∼ 1

1 ± 2βtαmx
. (A54)

In all cases of interest βt � βT2 � 1. Thus, unless the target
length is large enough, close to 1/(2βT2αm), the effect of pulse
compression is not large.

APPENDIX B: EXACT AND APPROXIMATE
CONSERVATION LAWS

We focus on the degenerate case of ω1 = ω2 = εeg/2.
There are three different classes of exact and approximate
conservation laws: (1) one exact conservation that holds with
finite Ti , (2) another approximate conservation law that holds
in the T1 → ∞ limit, (3) one last approximate conservation
law that holds in the T2 → ∞ limit (T1 � T2 assumed).

The first exact conservation law is derived directly from
two equations of motion for the field ei , and it reads as

(∂τ + ∂ξ )|eR|2 = (∂τ − ∂ξ )|eL|2 . (B1)

An integral form of this conservation for a finite target of length
L (l = αmL below) is

d

dτ

∫ l

0
dξ (|eR|2 − |eL|2) = −[|eR|2 + |eL|2]lξ=0 . (B2)

The integrated quantity of |eR|2 − |eL|2 stored in the target
balances against its flux outgoing from two target ends. For
the symmetric trigger, the right-hand side of this equation
vanishes, and the integral on the left-hand side is a constant of
motion.

The second conservation law that holds in the T1 → ∞
limit is

∂τ [r3 + 4(|eR|2 + |eL|2) ] + 4∂ξ (|eR|2 − |eL|2) = 0, (B3)

corresponding to the energy conservation. The energy density
inside the target is the sum of the medium and field ener-
gies, r3/2 + 2(|eR|2 + |eL|2), in our dimensionless unit. The
integrated form of this conservation law in the real unit is

d

dt

∫ L

0
dx

(
εeg

2
R3 + 2(|ER|2 + |EL|2)

)
= −2[|ER|2 − |EL|2]Lx=0 . (B4)

The third class of conservation law that holds in the T2 → ∞
limit is

∂τ

(
r2

1 + r2
2 + r2

3

) = 0 . (B5)

APPENDIX C: HELICAL SOLITON

A new type of topological soliton may exist because the
basic equation has two components ϕ(i)(ξ ),i = 1,2, and one
can give a topological quantum number in 1 + 1 dimensions,
as illustrated in Fig. 15. For simplicity assume a field with two
real components (X,Y ) and its periodicity with a period of the
target length l(= αmL) or a few times this length. We may
define the homotopy class [27] of the mapping of a circle x +
iy = leiξ ,0 � ξ � 2π in two-dimensional real space onto the
field space of the unit magnitude, X2 + Y 2 = 1. The winding
number w is defined using the complex field Z = X + iY =
eiϕ(ξ ):

w = −i

∫ 2π

0

dξ

2π
Z∗∂ξZ = ϕ(2π ) − ϕ(0)

2π
. (C1)

When this winding number is quantized, w = n,n =
0,±1,±2, . . ., the winding number is topologically stable and
conserved during time evolution.

The correspondence to static solutions in Sec. V is as
follows. One considers the real three-vector field �X(ξ ) of unit
length, (X,Y,Z) = (cos ϕ, cos S sin ϕ, sin S sin ϕ) with ϕ and
S identified as the phase variables in static solutions, and a
mapping of the unit circle 0 � ξ � 2π onto �X(ξ ) space. Two
solutions of Eqs. (31) and (32) corresponding to two different
fundamental regions, [0,π/2] and [π/2,π ], are connected
together at ξ = π/2. Then, in the return trip of ξ = π/2 → π

from the right edge to the left edge of the soliton, the orientation
of �X(ξ ) is further advanced forward (dictated by the continuity
of solutions) and finally comes back with �X(π ) = − �X(0) at
the left edge. This means that solutions of �X are two-valued
representations, namely, spinors.
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