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Abstract 

 

A 1-D mathematical model for analysis and prediction of microbial colonization of 

anaerobic multispecies biofilms for methane production is presented. The model 

combines the related processes of hydrolysis, acidogenesis, acetogenesis, methano-

genesis and takes into account phenomena of substrate reaction and diffusion, biomass 

growth, detachment and, in particular, the colonization of new species from bulk liquid 

to biofilm. The colonization phenomenon is initiated by planktonic cells, present in the 

bulk liquid but not initially in the biofilm, which thanks to the characteristic porous 

structure of biofilm matrix, may enter the channels and establish where they find 

favorable growth conditions. The model consists of a free boundary value problem 

where the biofilm growth process is governed by nonlinear hyperbolic PDEs and 

substrate dynamics are dominated by semilinear parabolic PDEs. The transport of 

colonizing bacteria from the bulk liquid to the biofilm is modelled by using a diffusion-

reaction equation, where the reaction term represents the loss of planktonic bacteria due 

to their establishment within the biofilm. The method of characteristics is used for nu-

merical purposes. The model is based on the biological framework of ADM1 and has 

been applied to simulate microbial competition and evaluate the influence of substrate 

diffusion on microbial stratification. Specific scenarios have been simulated describing 

the effect of colonization of motile bacteria into an established anaerobic biofilm. 
 

Keywords: anaerobic digestion; biofilms; invasion model; nonlinear PDEs; method of 

characteristics 

 

 

1.  INTRODUCTION 

 

 Anaerobic digestion (AD) process has been used for over a century for the effective 

treatment of organic wastes and it is currently recognized as one of the major treatment 

technologies for solid wastes and wastewaters. The interest in anaerobic treatment is 

increasing over years as it presents some significant advantages, such as the biological 
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production of a methane rich gas flow, when compared to the alternative aerobic 

treatments. Indeed, AD has been effectively recognized as an eco-friendly, cost-efficient 

and low-energy required technology [1-2]. 

 The AD of complex organic substrates is generally achieved through the sequential 

and coordinated activity of various microbial groups, which catalyze three main 

reactions: hydrolysis, acid fermentation and methanogenesis [3]. These microbial 

groups establish syntrophic relationships revealing in many cases in metabolic 

cooperation, with one species utilizing the product of a coexistent species [4]. One of 

the main limitations of the conventional AD reactors relies on the different growth rates 

of such various microbial groups, that influence each other with producing specific 

compounds that can be utilized by other species or can be inhibitory for the process. 

Methanogenesis, for example, involves slow-growing micro-organisms and it is 

generally considered as the limiting reaction in the anaerobic digestion process. The 

failure of full-scale anaerobic digesters is often linked to low activity of methanogenic 

archaea [5]. Moreover, this microbial group is extremely sensitive to any disturbance in 

anaerobic digesters, such as organic overload, leading to inhibitory working pH and 

accumulation of organic acids and H2 [6]. 

 As widely demonstrated by experimental evidence, the microbial community 

interactions are strongly affected by various operating and designing conditions, such as 

the pH value, the operating temperature, the composition of the feedstock, the organic 

loading rate and the hydraulic retention time. For instance, different microbial 

communities develop in digesters operating on different retention times as the choice of 

a shorter value may even lead to the washout of the slow growing methanogens, which 

on their count require more time to ensure complete degradation of organic matter in 

conventional anaerobic digesters [7]. This drawback is usually overcome with 

increasing the reactor volume and the designed hydraulic retention time. 

 Considerable effort has been recently devoted to the development of high rate 

reactors with decreasing reactor volume or retention time to maximize community 

functions and the related methane production [8]. Even though the intensified practice 

of AD has led to many different modifications to the conventional reactor 

configurations, anaerobic biofilm reactors represent one of the most promising 

technologies in the field of high rate digesters [9]. In these systems, microorganisms 

grow attached to an inert solid surface and/or each other forming micro colonies or 

biofilms. The adhesion of microorganisms over solid carriers with large specific surface 

areas, leads to high biomass concentration and high reaction rates, thus reducing the 

reactor volume needed [10]. Moreover, the grow of bacteria in the sessile state makes 

possible decoupling the hydraulic retention time from the residence time of the biomass. 

On the other hand, these systems are characterized by long start-up periods mainly 

related to the slow spontaneous development and maturation of the biofilm [11-12]: 

these might take several months to obtain an active and stable biofilm [13]. 

 According to [14], the development of an anaerobic multispecies biofilm can be 

divided into three stages: an initial attachment phase characterized by random adhesion 

of the cells to the inert surface; a consolidation phase defined by the appearance of 

microcolonies also defined as irreversible attachment and characterized by producing 

extracellular polymeric substances (EPS); and a maturation phase [13-15]. The 

complexity of the microbial ecosystem has been found to increase over time due to 

different abiotic and biotic conditions: hydrodynamic conditions [16], types and nature 
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of carrier material [5], substrate composition [17], source of inoculum [5] and 

availability of trace metals [18-19]. Indeed, the appearance of new community members 

in the structure of the multispecies biofilm is probably due to the accumulation of 

metabolic waste products, such as the acetate for acetogenic bacteria, that can be used as 

growth substrates by the new colonizer microorganisms, i.e. methanogenic bacteria. The 

latter show a reduced capability of colonizing the surface but their establishment within 

the biofilm is strongly affected by the formation of favorable environmental conditions 

for their growth. The presence of relatively large channels and pores within the matrix 

structure might allow the entry of these colonizing cells which may abandon the 

planktonic state and start to grow as biofilm. 

 In parallel to experimental investigations, complex mathematical models and 

numerical simulations have been proposed to investigate development, structures, and 

ecological interactions of anaerobic biofilms. However, little attention has been directed 

towards successional invasion in anaerobic biofilms. Here a mathematical model for 

anaerobic multispecies biofilm formation and development based on the biological 

framework of ADM1 is presented. 

 Numerical simulations demonstrate the capability of the model to predict biomass 

distribution, substrate concentration profiles within the biofilm, and the invasion of new 

bacterial species. In particular, simulation results illustrate the dynamics and evolution 

of archaea colonization of an anaerobic biofilm constituted initially by fermentative 

bacteria. 

 

 

2.  MATHEMATICAL MODEL 

 

 The mathematical model has been formulated as a hyperbolic free boundary value 

problem in the framework of continuum modelling of biofilm growth. It takes into 

account the dynamics of a multispecies biofilm, constituted by n microbial species 

assumed to cover homogeneously the support surfaces of a biofilm reactor. Some 

species are defined as resident and are supposed to initially inhabit the biofilm. 

Conversely, the invading species are not present initially in the biofilm but their growth 

relies on the presence of planktonic cells, which are able to diffuse from the bulk liquid 

to the biofilm and switch their mode of growth from suspended to sessile when 

appropriate environmental conditions are found. The biofilm expansion is regulated by 

some growth limiting nutrients which are dissolved in the bulk liquid, whose dynamics 

have been considered as well. The mathematical problem has been derived by coupling 

the mass balance equations for substrates within the bulk liquid with a full one-

dimensional invasion biofilm model as presented in [17] and [20]. The model is 

formulated for the variables: concentration of microbial species in sessile form, Xi, 

concentration of planktonic colonizing cells, Ψi, concentration of dissolved substrates 

within the biofilm Sj, all expressed as functions of time t and z, which denotes the 

spatial coordinate assumed perpendicular to the substratum. The variable S
*

j denotes the 

concentration of substrate j within the bulk liquid. The model equations take the 

following form: 
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where: 

Xi(z,t)=ρifi denotes the concentration of the microbial species i X=(X1,…,Xn); ρi is the 

constant biofilm density; fi denotes the volume fraction of microbial species; Sj(z,t) is 

the concentration of substrate j; Ψi(z,t) represents the concentration of planktonic cells i 

diffusing from bulk liquid to biofilm, Ψ=(Ψi,…,Ψn); u(z,t) is the velocity of the 

microbial mass displacement with respect to the biofilm support interface; Dj denotes 

the diffusivity coefficient of substrate j; DMi denotes the diffusivity coefficient of 

planktonic species i; rMi(z,t,X,S) is the specific growth rate of the sessile species, 

ri(z,t,Ψ,S) is the specific growth rate due to the colonization process; rΨ i(z,t,Ψ,S) is the 

loss term of planktonic cells due to the colonization phenomenon; rS,j(z,t,X,S) is the 

conversion rate of substrate j; σ(t) is the exchange flux between biofilm and bulk liquid. 

In addition, V, Q and A denote the volume, inlet and outlet flow rate and surface area of 

the biofilm reaction, assumed to be fed with a constant inlet substrate concentration Sj
in

. 

The following initial-boundary conditions are considered for Eqs (1)-(6): 
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 The functions φi(z) represent the initial concentrations of biomass species i, the 

functions S0i(z) represent the initial substrate concentrations within the biofilm, the 

functions ΨiL(t) represent the concentration of the planktonic cells in the bulk liquid. 

Note that n1 denotes the number of resident species. Moreover, the number of 

planktonic species is assumed equal to the number of sessile species n to make the 

model general. 
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 The rate terms rMi(z,t,X,S) describing the growth of sessile cells, are controlled by 

the local availability of nutrients and usually described as standard Monod kinetics. 

They also account for the natural cell death. The terms ri(z,t,Ψ,S), represent the growth 

rates of the microbial species Xi due to the colonization process and are assumed as a 

function of the planktonic cells and substrate concentrations. They both need to be 

defined based on the biological case to be modelled. 

 

3.  NUMERICAL APPLICATION 

 The model has been applied to simulate the invasion of methanogenic archaea in an 

anaerobic biofilm operating in a continuous reactor. The analysed scenario describes the 

dynamics of two microbial species, the fermentative bacteria X1 and the methanogenic 

archaea X2, whose initial concentration within the biofilm has been set to zero. 

 

Table 1. Kinetic-stoichiometric parameters and initial-boundary conditions. 

 

 

 The model takes into consideration three reactive components, dissolved organic 

matter S1, acetate S2 produced by X1 and consumed by X2 and methane S3, which 

represents the final product of the whole metabolic pathway. According to experimental 

evidence, the establishment and proliferation of X2 in sessile form depends on the 

formation of a favourable environmental niche, which corresponds to the accumulation 

of acetate. The corresponding substrate concentrations within the bulk liquid Sj*(t) have 

been taken into account as well. Planktonic cells have been considered for X2. The 

Symbol Definition Value Unit 

Y1 Yield on X1 0.1 - 

Y2 Yield on X2 0.05 - 

μmax,1 Maximum growth rate of X1 30 d
-1

 

μmax,2 Maximum growth rate of X2 5 d
-1

 

Ks1 S1 affinity constant for X1 0.5 gCOD L
-1

 

Ks2 S2 affinity constant for X2 0.15 gCOD L
-1

 

kd1 Decay rate of X1 0.005 d
-1

 

kd2 Decay rate of X1 0.005 d
-1

 

YΨ Yield of X2 on Ψ2 0.01 - 

kcol Maximum colonization rate of Ψ2 0.001 d
-1

 

kΨ Kinetic constant for Ψ2 0.01 mgCOD L
-1

 

φ1 Initial volume fraction of X1 1 - 

φ2 Initial volume fraction of X2 0 - 

S1
in

 Inlet concentration of S1 6 gCOD L
-1

 

S2
in

 Inlet concentration of S2 0 gCOD L
-1

 

L0 Initial biofilm thickness 0.01 mm 



Sustainable Water and Wastewater Managementt and Planning 

Proceedings 247 
of  the Sixth International Conference  
on Environmental Management, Engineering, Planning & Economics 
Thessaloniki, Greece, June 25-30, 2017 
ISBN: 978-618-5271-15-2 

reaction rates in Equations (1), (3) and (4) have been defined according to ADM1. The 

initial biofilm thickness of 0.01 mm has been assumed and the concentration of 

colonizing archaea in the bulk liquid has been set to ψ2(L(t),t)=0.1 mg COD L
−1

. Table 1 

resumes all the kinetic and stoichiometric parameters and the initial and boundary 

conditions adopted, such as the concentrations of soluble substrates in the inlet flow rate 

and the initial biofilm composition used for the specific simulation. Numeric integration 

of the system (1)-(6) has been performed using the software tool MATLAB
®

. The 

numerical method has been based on the method of characteristics. 

 

4.  RESULTS AND DISCUSSION 

 The simulation reproduces the archaea colonization phenomenon and tracks the 

dynamics of the bacterial species and the evolution of substrate profiles within the 

biofilm. The simulation is reported in Figure 1 to Figure 3. In particular, the results are 

expressed in terms of bacterial volume fractions (A), substrate concentration profiles 

(B) and methane production (C) at different simulation time (note that biofilm is 

growing from left to right in all the Figures). The methane production is expressed as 

the percentage of the maximum theoretical production. 

 

 
 

Figure 4 Bacteria volume fractions, substrate concentration trends and 

substrate to methane conversion efficiency, after 1 (A1, B1, C1), 2 

(A2, B2, C2) and 5 (A3, B3, C3) days. 
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Figure 5 Bacteria volume fractions, substrate concentration trends and 

substrate to methane conversion efficiency, after 10 (A1, B1, C1), 

20 (A2, B2, C2) and 30 (A3, B3, C3) days. 

 

 The numerical results show that colonizing bacteria diffuse into the biofilm and 

grow only where there are favorable environmental conditions for their development 

(Figure 2 (A1, A2, A3)), as determined by substrates trends (Figure 1 (B3) and Figure 2 

(B1, B2, B3)). According to experimental evidence, the archaea cells colonize the inner 

part of the biofilm, where they found favourable environmental conditions, that is high 

acetate and low dissolved organic matter concentrations. Under these conditions, 

archaea can effectually prevail on the fermentative bacteria. During the first days of si-

mulation time, the production of methane is equal to zero due to the absence of me-

thanogenic biomass within the biofilm. As expected, acetic acid shows a constant pro-

file when archaea are not present within the biofilm (Figure 1 (B1, B2)). As soon as ar-

chaea start to grow (Figure 1 (A3)), the acetate concentration sharply decreases, (Figure 

1 (B3)). The colonization phenomenon completely evolves in Figures 2 and 3. Specifi-

cally, the acetate concentration reduces significantly all over the biofilm and a residual 

dissolved organic matter is found in the bulk liquid (Figure 3 (B1, B2, B3)). Con-

textually, the maximum methane yield is definitely achieved (Figure 3 (C1, C2, C3)). 
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Figure 6 Bacteria volume fractions (A), substrate concentration trends (B) 

and substrate to methane conversion efficiency, after 50 (A1, B1, 

C1), 90 (A2, B2, C2) and 120 (A3, B3, C3) days. 

 

 Finally, it is important to notice that the diffusion of mobile colonizing archaea into 

the biofilm allows the colonization of a new species as determined by substrate (i.e. 

acetic acid) profiles. More precisely, as shown in Figure 4, the biofilm results fully 

penetrated by ψ1, which never reaches zero, indicating that merely the contemporary 

presence of substrates and colonizing motile species can lead to the growth of sessile 

bacteria. Despite, the concentration of the invading species is higher in the external part 

of the biofilm, the archaea growth occurs in the inner part of the biofilm where the 

environmental conditions are more favorable. This fact is consistent with observations 

that substrate concentrations have a regulatory effect on the dynamics of biofilm 

structure since the colony size can be directly correlated with the substrate concentration 

profiles into the biofilm [17]. 

 

 

Figure 4 ψ profile within biofilm after 1 (A), and 120 (B) days. 
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5.  CONCLUSIONS 

 A mathematical model describing the invasion of methanogenic archaea into an 

already constituted anaerobic biofilm has been presented. The mathematical modeling 

of the invasion phenomenon applied to anaerobic digestion systems results extremely 

important to clarify the community functions of these complex systems and the 

mechanisms regulating the methane production in anaerobic biofilm reactors. In the 

numerical simulation, a well-known example has been developed. The results show that 

the model is able to predict the colonizing process in a reasonable way. The model 

predictions will help engineers or operators to have a better insight into biofilm 

dynamics allowing the optimization of process designing or practical operation. 
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