
A HARDWARE ALGORITHM FOR SELF-BALANCING BINARY SEARCH TREES

by
Joseph Deiermann

A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of
the requirements of the Sally McDonnell Barksdale Honors College.

Oxford
December 2017

Approved by

Advisor: Assistant Professor Matthew Morrison

Reader: Associate Professor Elliot Hutchcraft

Reader: Professor Ramanarayanan Viswanathan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Mississippi

https://core.ac.uk/display/148696266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

© 2017
Joseph Deiermann

ALL RIGHTS RESERVED

iii

Acknowledgements

 I first would like to thank the Honors’ College and Department of Electrical

Engineering for helping me prepare for a career in the field. I would like to thank Dr.

Matthew Morrison for supporting me for two years on this project. I could not have

finished this without him constantly making me focus on finishing my work. I would

finally like to thank my parents for dealing with me all these years and teaching me the

value of hard work.

iv

Abstract

 Binary search trees are binary trees with an ordering mechanism that makes the

time to search for any given item within the tree greatly reduced compared to an

unordered array of numbers. More specifically, a balanced binary search tree is faster at

finding a specific item in the tree than an unbalanced tree. There are several algorithms

that can automatically balance a binary search tree. Most of them do this through

rotations directly in their respective insert functions. These algorithms are mostly

implemented in software. This paper will present a hardware-based algorithm to

balance binary search trees. This algorithm manipulates the ordering of a string

representing a binary tree through swapping its elements in certain ways. It can then be

used in software and hardware applications where sorting is used, such as in

transducers, and where priority queues are needed, such as in bandwidth management

on transmission lines.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iii

ABSTRACT..iv

LIST OF FIGURES……vi

SECTION 1: INTRODUCTION……………………………………………………………………………………………………….1

SECTION 2: BSTs AND PREVIOUS WORK……………………………………………………………………………………..4

SECTION 3: PREVIOUS READINGS………………………………………………………………………………………………..9

SECTION 4: PROPOSED ALGORITHM…………………………………………………………………………………………15

SECTION 5: IMPLEMENTATION…………………………………………………………………………………………………25

SECTION 6: CONCLUSION……29

REFERENCES………..30

vi

LIST OF FIGURES

Figure 1 Example of a 3-element binary search tree

Figure 2 Example of a degenerate binary search tree

Figure 3 Example of a balanced binary search tree

Figure 4 Example of an unbalanced binary search tree

Figure 5 Example of an unbalanced binary search tree

Figure 6 Example of an unbalanced binary search tree

Figure 7 Example of a balanced binary search tree after algorithm

Figure 8 Example of how the algorithm in Adaptive and Pipelined VLSI

Designs for Tree – based Codes works

Figure 9 Example of a balanced binary search tree

Figures 10-14 Waveforms from simulation of proposed algorithm

1

Section 1: Introduction

 Binary search trees are binary trees with the condition that the left children are

smaller than the root node and the right children are greater than the root node [7].

With this ordering mechanism in binary search trees, the time to search for any given

item within the tree is greatly reduced compared to an unordered array of numbers.

When this binary search tree is balanced, the time to search for the given element is

faster than an unbalanced tree. There are several algorithms that can automatically

balance a binary search tree. Most of them do this through rotations directly in their

respective insert functions [7]. These algorithms are mostly implemented in software.

This paper will present a hardware-based algorithm to balance binary search trees. This

algorithm manipulates the ordering of a string representing a binary tree through

swapping numbers in certain ways.

There are a few reasons to do this algorithm in hardware. One of the main

reasons is that hardware is a lot faster than software [3]. When software is used, it has

to go through layers in the operating system to get the result to the user. It generally

involves moving lots of things around in physical memory [13]. Then eventually this data

is passed to the CPU. Every time the CPU calculates things, it goes through the same

general procedures to get things done [13]. It then moves back through the layers to the

end user. Instead of going through all these physical and virtual layers, one can use

2

dedicated hardware to get the job done by bypassing all of those layers. This saves a lot

of time and computing power. There is also a lot less overhead because of less workings.

This algorithm can be used in software and hardware applications where sorting

is used, such as in transducers, and where priority queues are needed, such as in

bandwidth management on transmission lines. For a transducer to work properly, one

has to set up equations to find the gain and offset [14]. This is used to figure out the

range of voltages we want the transducer to give us. Then we figure out how many

steps are in between the maximum and minimum range. We then form a binary search

tree of voltages [14]. Whenever a certain voltage comes in contact with a transducer, it

maps that voltage with one inside the binary tree and sends that to wherever its

needed.

A priority queue is a queue with each element having a priority [15]. When a

network router sends out too much outgoing traffic for its bandwidth, the queue with

the highest priority gets to pass through while others are halted [16]. This ensures that

higher priority traffic gets through with the least delay and a low likelihood of the

packets being rejected due to overflow [16]. A binary search tree can be used to

construct and maintain a priority queue because of the ordering mechanism within the

tree [15].

This paper will present a hardware algorithm to automatically balance binary

search trees. In Section 2, the author presents what a balanced binary search tree is and

one algorithm of automatically balancing one. Section 3 deals with previous readings

3

related to this paper. In Section 4, the author presents the proposed hardware

algorithm and example. In Section 5, the author presents the implementation of the

proposed algorithm in VHDL and some examples of this implementation.

4

Section 2: BSTs and previous work

 An n-tuple tree is a tree data structure that consists of a root and n children. A

binary tree is a 2-tuple tree, which means it consists of a root and 2 children [7].

Figure 1

A binary search tree (BST) is a binary tree in which the child on the left (left child) is

smaller than the root and the child on the right (right child) is greater than the root [7].

Relevant terms are: node, height, leaf and depth. A node is a generic term for a child or

root. A leaf is a node with no children. The depth refers to the number of edges, or lines

connecting each node, from the root to a selected node. The height is the depth of the

deepest node [7]. Since one can put any number of ordered items in any order, there

are different classifications of BSTs. These classifications describe the structure of the

BST. Classifications relevant are: a degenerate BST, a balanced BST, an unbalanced BST,

and a perfect BST [7]. A degenerate BST is a BST in which each node only has one child

associated with it. A balanced BST is a BST in which has the minimum maximum depth.

An unbalanced BST is any BST that is not balanced. A perfect BST is a BST in which all

5

children not at the last level have two children and all leaf nodes have the same depth

[7].

Figure 2. Degenerate Tree

Figure 3. Balanced Tree

Figure 2 is an example of a degenerate BST, in which searching for an element in

it would take a long time as the number of items approaches infinity. Let N be the total

number of items. For some number n within N, it would take on the order of O(n2)

units of time to search for n [7]. This is the worst-case scenario. Figure 3 is an example

of a balanced BST. For a structure in that form, the time it would take to find n in N

6

elements would be on the order of O(log2 𝑛) [7]. This is the best-case scenario.

Searching for an element in figure 3 would always be much faster and efficient than in

figure 2. So, it is certainly advantageous to try and “balance” figure 2 to look like figure

3. A self-balancing BST is a BST that keeps its depth minimal when there are arbitrary

insertions and deletions [7]. There are algorithms to automatically balance such a tree,

such as making figure 2 to look like figure 3.

 Most self-balancing algorithms have time proportional to the height of the tree.

It is, thereby, desirable to keep the tree height small. Let n be the number of nodes and

h the tree height. The most nodes a BST could have is ∑ 2ℎℎ , which from the geometric

series formula yields: 2h+1-1 nodes for some given height h. We have the relation n ≤

2h+1-1. This implies that h ≥ floor(log2 𝑛), where the floor function is used [7]. The floor

function rounds values down to the nearest integer. This means that the minimum

height of the tree is at least log2 𝑛 rounded down. This height will play a critical role in

self-balancing algorithms. They work by transforming the tree using tree rotations at

insertion to keep height proportional to log2 𝑛 [7]. Since maintaining the height at its

minimum would cause great overhead, most self-balancing algorithms keep the height

to within a constant of this bound. There are several different implementations of this.

 The first such implementation is known as an Adelson-Velsky Landis (AVL) tree,

named after its inventors [8]. This algorithm rotates a BST based on a balance factor b: b

= height of right subtree – height of left subtree, the subtree referring to all of the

children on the right and left side of the root [8]. The values for b can only be -1, 0, and

1. For example, in figure 5, b = 1 – 2 = -1, and in figure 4, b = 2 – 1 = 1. This balance

7

factor determines whether there should be a rotation or not. When an element is

inserted, it is initially inserted like a BST without any self-balancing algorithm. But since

arbitrary insertions can make a degenerate tree, it is necessary to check the balance

factor [8]. Depending on the situation, a number of different rotations between the

local parents, root and children will vary. The balancing occurs during insertion. The goal

is to get b to be -1, 0 or 1 [8]. This is illustrated in an example.

Figure 4

Figure 5

Figure 6

Consider figure 6. The balance factor b = 1 – 3 = -2. We want to change b to be -1, 0 or 1

while keeping the data structure a BST. Assume that 2 is just added. In order to do this,

8

we have to do two rotations: one rotating 4 to be the right child of 3 and another

rotating 3 to be the left child of 5, the root. This is illustrated in figure 7. Now we check

b: b = 1 – 2 = -1. Therefore, the algorithm balanced the tree.

Figure 7

Since the algorithm presented in this paper is more based on this algorithm, we will limit

the scope of detail to the AVL tree. Other algorithms include: AA tree, red-black tree,

Splay tree, Scapegoat tree, and Treap. Each has advantages and disadvantages

compared to AVL, but the AVL implementation is more stringently balanced than the

rest [9].

9

Section 3: Previous readings

 This section contains the readings that are related to my thesis.

CASM: A VLSI chip for approximate string matching:

 This paper describes an alternate design of an algorithm for string matching. A

common dynamic programming algorithm for string matching is using inserts, deletes,

and substitutions. Insertions insert a character, deletions delete a character, and

substitutions substitutes a character from another in the same position [1]. When

comparing two strings, it is handy to put this in a matrix and calculate edit distance. Edit

distance is the minimum cost associated with transforming a character or string to

another [1]. This cost is a way of quantifying insertions, deletions, and substitutions. The

edit distance is a way of quantifying how much to transform a given string to another.

One way of calculating edit distance is finding the transformation costs, which is given,

and calculate the total cost directly. This takes lots of space if the strings are large,

which is the case for many applications [2]. This calls for a more efficient algorithm to

help. This paper introduces a new algorithm that splits up the calculations and adds the

calculations in an accumulator. The paper proves a way to calculate edit distance from

the left and top elements with respect to a given matrix element. All we need is the first

two elements for the left and top to calculate the rest. The authors have processing

elements (PEs) representing one element in the matrix. They put these PEs in a matrix

and accumulate the total cost from each of them [2]. This is proven against other

algorithms to be much more efficient. They also show the execution time formula.

10

 The PEs have two strings as inputs. These PEs perform computations along a -45

degree angle and are in a fixed position in a matrix [2]. This only works if the combined

string length is N + 1, where N is the number of PEs. This also means that the number of

PEs required is N – 1. The first computation is at D(1,1), which is the position in the top

left corner of the matrix. This will be where our first elements will be compared [2].

After that, there is a chain reaction in which the subsequent comparisons depend on the

first one only. When two strings enter from opposite sides of a PE, the comparison is

performed. The next clock cycle the values move out and the next inputs enter. The PE

modifies these values based on the comparison before. The PE actually computes the

difference between the element and its top and left neighbors. Each of these results are

then passed on the to their respective PE. A multiplexer is used to select the source.

When strings are shifted out of the array, they take with them the last row and column

of the edit distance matrix. From this, we can calculate the edit distance. This calculation

is performed using an accumulator [2].

 For an example, we’ll let insertion = 1 = deletion and substitution = 2. We’ll have

oboe transform into bbo. We will remove the first o, sub in the second o for a b, and sub

the e for an o. The edit distance is then 1 + 2 + 2 = 5.

 Adaptive and Pipelined VLSI Designs for Tree – based Codes

This paper designs a hardware algorithm to implement data compression. It can

be generalized to more data transformations, but the example in the paper is data

compression. Data compression is compressing data by removing unnecessary data,

11

which is lossy, or removing statistical redundancy, which is lossless [4]. The paper deals

with lossless compression. Software compression is the most common method of

compression. But this hardware design aims to be much more efficient by handling

much more data for less time. This paper uses Huffman code as an example of

implementation. Huffman code was designed for lossless compression [6]. We use a

tree to illustrate how it works. We have to use a reverse tree in order to generate the

bits in the correct order. The actual architecture design assigns a token at the start of a

character. When the character is done being encoded, the token initiates a feedback

token that starts from the beginning of the next character. This action occurs in pipeline.

A memory management unit keeps track of the tokens and the decoded bits [3]. For

adaptive Huffman coding, the length of code varies with time. The hardware

architecture has the inputs of data put into a Weave sort stack and adds the next input

with the current input and stores it in a buffer along with any special symbols in a

register. The buffer puts the data in content addressable memory. This data is then put

in shift registers to receive the next set of data [3].

12

For an example, we have a tree.

Figure 8

If we wanted the characters B5, then we go up the tree and reset to get 0110. The

numbers in the circles are the probabilities.

 On Software and Hardware Techniques of Data Engineering

 This paper discusses ways of enhancing the speed of data compression in

database management systems. In particular, it modifies the arithmetic coding

algorithm to allow more characters be represented in an interval by widening the

interval. This algorithm maps characters to real numbers within (0, 1). The unmodified

algorithm assigns probability intervals between zero and one of probabilities that

certain characters will be present. These are put in the interval (0, 1). These are

subintervals of the greater interval (0, 1) [4]. In order to put an interval of when a

13

message, or combination of characters, we take an interval of a character, then multiply

the probability of the next character to the ending point of the interval to get a

narrower interval. They also add an end of message character, which further narrows

the interval [4]. When there are large groups of characters, the interval gets smaller and

smaller. That means there are fewer characters that can be represented to be encoded.

This paper modifies this such that the interval is larger and can represent more

characters which improve efficiency. The authors add another character to signal when

the locality changes, such as letters to numbers, and groups different localities together

with higher probabilities including the end of message and change of locality symbols.

The interval becomes orders of magnitude larger than before, making this algorithm

more efficient and fast [5]. The authors then discuss the hardware implementation of

such a circuit, and it is pipelined. They use Huffman coding [6]. They first assign

characters to Huffman code. They then add dummy variables if necessary to make all of

the variables the same length. An implementation of Huffman code involves a reverse

binary tree [5]. Their hardware implementation has a token move up the reverse binary

tree until it reaches the root. If the Huffman code is nothing but dummy variables, then

the control signal is 0. Otherwise it is 1. When the token is done with one character it

resets to go to the next and the Huffman code appears on a code buffer register and the

code length is found. Every time that the control signal at the output is 1, it is counted

and put in a memory management unit. This design can be generalized for multiple

assignments [5].

14

 For an example, we will have A have probabilities (0,.2), B – (.2, .6), 2 – (.6, .8), @

- (.8, .9), and EOM – (.9, 1). The ranges are .2, .4, .2, .1, and .1 respectively. To find B2,

we first have (.2, .6). Then the @ goes in, (.02, .6). Then the 2, (.02, .12). Then the EOM,

(.02, .012), which is the final probability.

15

Section 4: Proposed algorithm

 In this section, the author presents another algorithm to balance BSTs. In the

following paragraphs, each part is explained. The main algorithm is the proposed

algorithm.

Algorithm 1:

Input: Array of non-repeating integers of length n

Output: G(V,E) representing the Balanced Binary Search Tree

Structure {

Node root, left, right, current = null;

 Int data; Int height = 0; Int depth;

}

Main Algorithm{

Read array of integers and store in array = array;

Int n = size(array); // n is size of array

for(int I = 0; I < n; I ++)

 Insert(array[I]);

While(n is not equal to ∑ 2𝑚
𝑔𝑒𝑡𝐷𝑒𝑝𝑡ℎ
𝑚=0 AND height is not equal to floor(log2(n))){

 For(int I = getDepth; I > 0; I --){

 For(int j = 1; j < getElement(I + 1) + 2; j ++){

 If(array[getElement(I - 1) + 1] > array[getElement(I)])

 Swap(&array[getElement(I - 1) + 1],

&array[getElement(I)]);

 Else if(array[getElement(I) – 2j] > array[getElement(I) - j])

 Swap(&array[getElement(I) -2j], &array[getElement(I)

- j]);

 }

 For(int k = 0; k < getElement(I - 1) + 1; k ++){

16

 Else if(array[getElement(I) – 2k] > array[getElement(I) -

k])

 Swap(&array[getElement(I) -2k], &array[getElement(I)

- k]);

 }

 For(int x = 0; x < getElement(I - 1) + 1; x ++){

 Else if(array[getElement(I - 1) - x] > array[getElement(I) -

x])

 Swap(&array[getElement(I - 1) - x],

&array[getElement(I)- x]);

 Else if(array[getElement(I - 1) - x] < array[getElement(I) –

1 - x])

 Swap(&array[getElement(I - 1) - x],

&array[getElement(I) – 1 - x]);

 }

 }

 Else

 Print(error);

 deleteTree();

 For(int p = 0; p < n; p ++)

 Insert(array[p]);

}

}

getElement{

 int total = 0;

 for(int I = 0; I <= n; I ++)

 total += 2^n;

 return total;

}

// swap came from an assignment in a previous class

17

swap{

 int temp;

 temp = b*;

 b* = a*;

 a* = temp;

}

getDepthUtil{

 if (node is equal to null)

 return 0;

 if (node.data is equal to data)

 return depth;

 int lowerDepth = getDepthUtil(node.left, data, depth+1);

 if (lowerDepth does not equal 0)

 return lowerDepth;

lowerDepth = getDepthUtil(node.right, data, depth+1);

else

 return lowerDepth;

}

getDepth

 return getDepthUtil(node, data, 0);

Height{

if (node = null)

 return 0;

else

 left = height(node.left);

 right = height(node.right);

 return 1 + max(left, right);

}

18

Insert {

 if (root is equal to null)

 root = new node(data);

 else if (data < root.data)

 root.left = insert(data, root.left);

 else if (data > root.data)

 root.right = insert(data, root.right);

 else

 ; //Do nothing

 root.height = max(height(root.left), height(root.right)) + 1;

}

deleteTree {

 if (node equals null) return;

 deleteTree(node.left);

 deleteTree(node.right);

 free(node);

}

We first explain the helper functions. These helper functions come from various sources

and are well known in the community.

 The first helper function described is the deleteTree function. This is a recursive

function that give each node a null value as it traverses down the tree. We need this to

delete the original tree and insert the new tree in its place [10]. If the new element is

greater than the root, it is linked to the right of it. If it is less than the root, it is linked to

the left of it. It also raises the height by 1 to update our tree. The insert function inserts

values in the BST without any balancing, unlike the AVL tree in which the balancing

occurs in the insert function. Our balancing occurs in the main part of the algorithm. The

height function gives us the height, which is necessary to see if the BST is balanced. This

is recursive, adding 1 for each edge as it traverses down the tree [12]. The getDepth and

19

get DepthUtil functions provide us the depth to use in our calculations. This is a recursive

function that traverses down the tree to give us the depth [11]. The swap function swaps

references to elements in memory. The result is the references will reference different

numbers that will be reflected in the array. This is the way we rotate our nodes in our

tree, as we will see in the main algorithm description. The getElement function returns

the total number of elements in the tree. It is represented by ∑ 2𝑛𝑛 . We will need this to

access particular elements in our algorithm [12].

 We now turn our attention to our main algorithm. We first insert our initial

elements to make our tree.

Figure 9

We will use our tree elements as a string. There should not be duplicate element values.

For example, our figure 8 string would look like:

a-b c-d e f g-h I j k l m n o. The first element in the string is the root and the next two are

its children. The relation is the same for the rest of the elements, each element has its two

children on the next level, with each level represented by a dash. We use a while loop

since the algorithm should continue until the tree is balanced. To determine if the tree is

balanced, we have two conditions to continue in the loop: the size of the array is not

20

equal to the calculated number of elements and that the height is not equal to

floor(log2(n)). Since we want the height to be minimized, we continue to iterate through

the algorithm until the calculated height is equal to floor(log2(n)). From the previous

section, we know that the height has to be at least log2(n) rounded down. This establishes

what the minimum height should be. If the height is not equal to the minimum, i.e. is

greater than the minimum, the algorithm should continue. Likewise, if the number of

elements is not equal to what should be the number of elements calculated from the

depth, the algorithm will continue until those conditions are satisfied. For example, in

figure 2, where we have a degenerate tree with 15 elements, the calculated minimum

height would be floor(log2(15)) = 3. But if we traverse the tree, we find the height to be

14. When the tree is balanced, like in figure 3, the height is 3, which equals the calculated

minimum. Similarly, we know we have 15 elements in figures 2 and 3. But if we use the

depth definition of total elements, in figure 2 we would have ∑ 2𝑚15
𝑚=0 = 65535 elements,

which is clearly wrong. For figure 3, we have ∑ 2𝑚3
𝑚=0 = 15, which is the number of

elements in this example. It can be noted that ∑ 2𝑚
𝑔𝑒𝑡𝐷𝑒𝑝𝑡ℎ
𝑚=0 is essentially the getElement

function. I explicitly put in the formula for ease of reading. We now turn to what the

algorithm actually does.

 The way this algorithm works is a three-step process. The first for loop changes

the grouping of elements. The second for loop changes the individual elements. The first

step is swapping two elements if the second element in the particular grouping is less

than the first one in that same grouping. It starts with the second to last element of the

string and compares them. It then compares the previous two elements in the group,

and continues throughout the string. The end elements of each grouping are also

21

compared simultaneously. The first element in the string is left alone since it there is no

element to compare it with. The second step is the same thing as the first except it

starts at the last element. Again, the first element in the string is left alone and is done

throughout the string. The last step is to balance the tree. We take three elements from

the string, starting with the last element of the second to last grouping and pairing it

with the last two elements of the whole string. The goal is to have the local root be the

number whose value is between two other values. If the first element is less than the

second, they are swapped. Then one has to check if the number swapped to the root is

greater than the third number. If it is, they are swapped. The other conditions would be

if the first element is greater than the last element, they are swapped. Then one has to

compare the new first element is less than the second element. If it is, those elements

are swapped. The algorithm keeps going on to the previous groupings until the numbers

run out. We illustrate this with an example.

Figure 2

22

Using figure 2 as an example, repeated for convenience, the string would look

like 1--2 3--4 5 6 7--8 9 10 11 12 13 14 15. Each level is divided by dashes. The first step

is swapping two elements if the second element in the particular grouping is less than

the first one in that same grouping. For our previous string, we have 1--2 3--4 5 6 7--8 9

10 11 12 13 14 15. Since every element doesn’t satisfy the condition, nothing is

swapped. The second step is the same thing as the first except it starts at the last

element. Again, nothing changes since every element doesn’t satisfy the condition. We

have 1--2 3--4 5 6 7--8 9 10 11 12 13 14 15. The last step is to balance the tree. We take

three elements from the string, starting with the last element of the second to last

grouping and pairing it with the last two elements of the whole string. For our example,

the first grouping to undergo this is highlighted and bolded; 1--2 3--4 5 6 7--8 9 10 11 12

13 14 15. We compare 7—14 15. Since 7 is less than 14, we swap them; 14—7 15. Then

we check is 14 is greater than 15, which is false. If it were true, they would be swapped,

but since it is false, our result is the grouping 14—7 15. The next grouping is 6—12 13.

We do the same thing and the new grouping turns to 12—6 13. The algorithm keeps

going on to the previous groupings until the numbers run out.

This three-step process repeats until the desired string is found. The following

tables illustrate what happens in our example. Each table is one iteration. I calculated

there to be 3 iterations of the algorithm. Since this is the worst-case scenario, any other

combination of those numbers has to have a less than or equal number of iterations.

1st step (swap) 1--2 3--4 5 6 7--8 9 10 11 12 13 14 15

23

2nd step (swap) 1--2 3--4 5 6 7--8 9 10 11 12 13 14 15

3rd step (balance) 1--2 3--8 10 12 14--4 9 5 11 6 13 7 15

1--8 12--2 10 3 14--4 9 5 11 6 13 7 15

8--1 12--2 10 3 14--4 9 5 11 6 13 7 15

Iteration 1

1st step 8--1 12--2 3 10 14--4 5 9 6 11 7 13 15

2nd step 8--1 12--2 3 10 14--4 5 6 9 7 11 13 15

3rd step 8--1 12--4 6 10 14--2 5 3 9 7 11 13 15

8--4 12--1 6 10 14--2 5 3 9 7 11 13 15

Iteration 2

1st step 8--4 12--1 6 10 14--2 3 5 7 9 11 13 15

2nd step 8--4 12--1 6 10 14--2 3 5 7 9 11 13 15

3rd step 8--4 12--2 6 10 14--1 3 5 7 9 11 13 15

Iteration 3

24

So, our final string is 8—4 12—2 6 10 14—1 3 5 7 9 11 13 15. Our final tree is illustrated

in figure 3, repeated here for convenience.

Figure 3

25

Section 5: Implementation

 The author simulated Algorithm 1 in VHDL using Xilinx ISE 14.7 with 16 inputs.

Since hardware description languages (HDLs) have a difficult time with while loops, the

author decided to iterate the algorithm three times plus one more for safety. A loop in

an HDL is interpreted as adding more physical hardware. For my while loop, and

generally most while loops, the condition to stop is not known right away. As a result,

ISE doesn’t know how much hardware to make. The author, thereby, had to use a

known number of iterations and calculated by hand that for the worst-case scenario,

three iterations are the maximum it took to balance the tree. Therefore, anything better

than the worst-case scenario will have to take less than or equal to four iterations to

balance. The author shows three examples of the algorithm waveforms. There is a bug

in ISE on my computer in which on input2, if there is a 1 in the hundreds’ place on the

number, it replaces the number with zero and messes up the tree. The author doesn’t

know why it does that. It is most likely a problem with the compiler.

26

 The first example is the example from Section 3, using figures 2 and 3. The

waveform for the inputs is in figure 9. Our inputs are 1-2 3- 4 5 6 7- 8 9 10 11 12 13 14

15.

Figure 9

Figure 10

The output is in figure 10. The output string is 8-4 12- 2 6 10 14-1 3 5 7 9 11 13 15, which

is what we get in our example. The next simulation will have the input string as 1-3 2- 5

4 7 6- 9 8 11 10 13 12 15 14, shown in figure 11.

27

The output, shown in figure 12 is 8-4 12-2 6 10 14-1 3 5 7 9 11 13 15.

Figure 11

Figure 12

28

The next simulation will have the input string as 8-1 3- 4 6 10 14-2 5 9 11 12 13 15 7,

shown in figure 13. The output, shown in figure 14 is 8-4 12-2 6 10 14-1 3 5 7 9 11 13 15.

Figure 13

Figure 14

29

Section 6: Conclusion

 Binary search trees are binary trees with the condition that the left children are

smaller than the root and the right children are greater than the root. With this ordering

mechanism in binary search trees, the time to search for any given item within the tree

is greatly reduced. More specifically, a balanced binary search tree is faster at finding a

specific item in the tree than what is a degenerate binary tree. There are several

algorithms that can automatically balance a binary search tree. Most of them do this

through rotations directly in their respective insert functions. These algorithms are

mostly implemented in software. This paper presented an algorithm to balance binary

search trees based on hardware. The inputs of the tree were mapped to an array in level

order. The algorithm then manipulated this array based on conditions presented in

Section 4. The author then tested this algorithm on three strings and got the correct

resultant tree.

30

References

[1] Влади́мир И. Левенштейн (1965). Двоичные коды с исправлением выпадений, вставок и

замещений символов [Binary codes capable of correcting deletions, insertions, and

reversals].Доклады Академий Наук СCCP (in Russian) 163 (4): 845–8.Appeared in English

as: Levenshtein, Vladimir I. (February 1966). "Binary codes capable of correcting deletions, insertions,

and reversals". Soviet Physics Doklady 10 (8): 707–710.

[2] Sastry, R.; Ranganathan, N.; Remedios, K., "CASM: a VLSI chip for approximate string matching,"

in Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.17, no.8, pp.824-830, Aug

1995

doi: 10.1109/34.400575

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=400575&isnumber=9031

[3] Mukherjee, A.; Ranganathan, N.; Bassiouni, M.A., "Adaptive and pipelined VLSI designs for tree-

based codes," in Computer Design: VLSI in Computers and Processors, 1989. ICCD '89.

Proceedings., 1989 IEEE International Conference on , vol., no., pp.369-372, 2-4 Oct 1989

doi: 10.1109/ICCD.1989.63390

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=63390&isnumber=2316

[4] Langdon, G.G., Jr., "An Introduction to Arithmetic Coding," in IBM Journal of Research and

Development , vol.28, no.2, pp.135-149, March 1984

doi: 10.1147/rd.282.0135

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5390377&isnumber=5390374

[5] Bassiouni, M.A.; Mukherjee, A.; Ranganathan, N., "On software and hardware techniques of data

engineering," in Data Engineering, 1989. Proceedings. Fifth International Conference on , vol., no.,

pp.208-215, 6-10 Feb 1989

doi: 10.1109/ICDE.1989.47216

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=47216&isnumber=1789

[6] Huffman, D.A., "A Method for the Construction of Minimum-Redundancy Codes," in Proceedings of

the IRE , vol.40, no.9, pp.1098-1101, Sept. 1952

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=400575&isnumber=9031
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=63390&isnumber=2316
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5390377&isnumber=5390374
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=47216&isnumber=1789

31

doi: 10.1109/JRPROC.1952.273898

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4051119&isnumber=4051100

[7] Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, Second

Edition. Addison-Wesley, 1998. ISBN 0-201-89685-0. Section 6.2.3: Balanced Trees, pp. 458-481.

[8] Georgy Adelson-Velsky, G.; Evgenii Landis (1962). “An algorithm for the organization of

information. Proceedings of the USSR Academy of Sciences (in Russion). 146: 263-266. English

translation by Myron J. Ricci in Soviet Math. Doklady, 3:1259-1263, 1962.

[9] Pfaff, Ben. “Performance analysis of BSTs in system software”. Proceedings of the joint

international conference on Measurement and modeling of computer systems 32.1 (2004). 410-411.

Print.

URL: https://web.stanford.edu/~blp/papers/libavl.pdf

[10] Write a program to Delete a tree. (n.d.). Retrieved from http://www.geeksforgeeks.org/write-a-c-

program-to-delete-a-tree/

[11] Get Level of a node in a Binary Tree. (n.d.). Retrieved from http://www.geeksforgeeks.org/get-

level-of-a-node-in-a-binary-tree/. Modified to find depth.

[12] Java Program to Implement Self Balancing Binary Search Tree. (n.d.). Retrieved from

http://www.sanfoundry.com/java-program-implement-self-balancing-binary-search-tree/. Modified

helper functions.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4051119&isnumber=4051100
https://web.stanford.edu/~blp/papers/libavl.pdf
http://www.geeksforgeeks.org/write-a-c-program-to-delete-a-tree/
http://www.geeksforgeeks.org/write-a-c-program-to-delete-a-tree/
http://www.geeksforgeeks.org/get-level-of-a-node-in-a-binary-tree/
http://www.geeksforgeeks.org/get-level-of-a-node-in-a-binary-tree/
http://www.sanfoundry.com/java-program-implement-self-balancing-binary-search-tree/

32

[13] Hansen, Per Brinch. Classic Operating Systems: from Batch Processing to Distributed Systems.

Springer New York, 2011.

[14] Fraden, Jacob. “Handbook of Modern Sensors.” Physics, Designs, and Applications | Jacob

Fraden | Springer, Springer-Verlag New York, 2010, www.springer.com/us/book/9781493900404.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 6.5:

Priority queues, pp. 138–142.

[16] Bandwidth Management Introduction. (n.d.). Retrieved from

https://webhelp.radware.com/AppDirector/v214/214Classes%20and%20Bandwidth%20Management.0

6.02.htm

http://www.springer.com/us/book/9781493900404
https://webhelp.radware.com/AppDirector/v214/214Classes%20and%20Bandwidth%20Management.06.02.htm
https://webhelp.radware.com/AppDirector/v214/214Classes%20and%20Bandwidth%20Management.06.02.htm

