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Abstract: 

 

 The leaf surface, or phylloplane, is a dynamic environment for its microbial 

inhabitants, which can be subjected to many environmental factors. Existing phylloplane 

studies have focused on differences in bacterial community structure between trees of the 

same species, in different geographical locations, or between trees of different species. 

Few studies have examined the spatial distribution of bacterial communities on the leaves 

of a single tree. In this study, leaf samples from different areas of the canopy were 

obtained from a single Magnolia grandiflora tree. Samples were taken from the high 

(3.5-4.0 m above the ground), middle (1.5 m), inner middle (1.5 m but close to the trunk), 

and low (0.5 m) portions of the tree canopy, following cardinal directions (north, south, 

east, west). Following DNA extraction procedures, dual index barcoding was used to 

sequence the V4 region of the 16S ribosomal RNA gene. Phylloplane communities were 

dominated by Alphaproteobacteria, Actinobacteria, and Bacteroidetes, which are 

common inhabitants of plants. Patterns in alpha and beta diversity suggested that the 

height from which the sample was taken had a strong influence on the shaping of 

communities, while cardinal direction was not a significant predictor of diversity. 

Interestingly, the inner leaves of the canopy had higher species abundance than the leaves 

on the outside of the canopy, which could suggest that the surrounding canopy protects 

the inner leaves from ultraviolent light, desiccation, or other factors that may limit 

bacterial growth. 
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Introduction:  

 

 Microorganisms are ubiquitous on plants, where many exist as pathogens or 

symbionts, and others are grazers feeding on other microbes. Studies of the phyllosphere 

as a habitat for microorganisms began in the 1950s and have been an important area of 

microbiological research since the 1970s (Morris, 2001). Since then, thousands of 

bacteria, mycelial fungi, yeasts, and protozoa have been detected in the phyllosphere 

(Chernov et al., 2013). While there are different types of microorganisms found on 

plants, bacteria are by far the most abundant inhabitants of the phyllosphere, the aerial 

portion of the plant (Turner et al., 2013). While phyllosphere is the more common term, 

many studies on microorganisms associated with plants really focus on the phylloplane, 

the surface of the leaf, as a habitat for microorganisms (Levetin & Dorsey, 2006). Given 

that plants cover a significant portion of the global land area and that each plant has 

several leaves, until we consider the millions of bacteria that each leaf harbors, we cannot 

fully appreciate the enormity and importance of leaf-microbe interactions (Hirano & 

Upper, 2000). In terms of total area, it is estimated that the terrestrial leaf surface area 

colonized by microbes is about 6.4 × 10
8
 km

2
 (Morris & Kinkel, 2002).  

 To understand the ecology and evolution of microorganisms, it is critical for 

microbiologists to study microorganisms in different environments. The phyllosphere as a 

habitat for microorganisms is of particular interest as it is much more dynamic than the 

rhizosphere (the microbial community in soil around the roots) because of variation in 
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temperature, wind, insects, moisture, and radiation (Turner et al., 2013). The 

microorganisms in the phyllosphere or phylloplane are important, and the plant 

microbiome is a key determinant of plant health and productivity (Berendsen et al., 2012) 

that can influence plant fitness through mechanisms such as plant hormone production 

and protection against pathogens (Innerebner et al., 2011; Ritpitakphong et al., 2016). 

Evidence has shown that microbes can alter plant phenotypic plasticity in response to 

changing environmental conditions by alleviating stress and increasing plant fitness (Goh 

et al., 2013). During periods of rapid change in the environment, it is possible that 

microorganisms can aid the holobiont (the host and its microbial symbionts) in surviving 

(Zilber-Rosenberg & Rosenberg, 2008). A testament to the importance of plant-microbe 

interactions is mycorrhizal fungi; molecular evidence suggests that their association with 

green algae was fundamental to the evolution of land plants 700 million years ago 

(Turner et al., 2013). While mycorrhizal symbioses take place in the rhizosphere, it is not 

unreasonable to expect that microbial inhabitants of the phyllosphere could be as 

important to plant fitness. More broadly, Zilber-Rosenberg (2008) developed the 

hologenome theory of evolution based on four generalizations: 1) All animals and plants 

form symbiotic relationships with microorganisms. 2) Symbiotic microorganisms are 

transmitted between generations. 3) The association between host and symbionts affects 

the fitness of the holobionts. 4) Variation in the hologenome can be brought about by 

changes in either host or microbiota genomes.   

 In recent years, the phyllosphere of plants has received substantial attention, 

however we still have a limited understanding of the diversity and biogeography of 

phyllosphere bacterial communities, especially at fine scales (Redford et al., 2010; 

https://doi.org/10.1128%2FAEM.00133-11
https://doi.org/10.1111%2Fnph.13808
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Turner et al., 2013). The problem lies in the fact that a large number of bacterial species 

are not easily cultivated; therefore, many bacterial taxa associated with plants have not 

been captured in culture-based surveys (Yang et al., 2001; Yashiro et al., 2011). Recent 

studies, however, such as one on Arabidopsis thaliana (Bulgarelli et al., 2012), have 

yielded a better understanding of the diversity and spatial distribution of bacterial 

communities. The importance of phyllosphere ecology was recognized as early as 1961, 

when J. Ruinen published a paper entitled "The Phyllosphere - an Ecologically Neglected 

Milieu" (Ruinen, 1961). Until then, interest in the phylloplane tended to focus on 

distribution and population dynamics of single microbial species and their relation to 

foliar diseases (Hirano & Upper, 2000; Stone & Jackson, 2016). Studies on spatial 

patterns of microbial activity in the phyllosphere have also tended to focus on patterns of 

disease; thus, autoregressive-moving average (ARMA) models are commonly used 

(Clayton & Hudelson, 1995). However, Stone & Jackson (2016) state that these models 

are best when applied unidirectionally, while distance methods are probably more 

appropriate to compare plants not distributed regularly. Based on research on plant and 

animal biogeography, it is expected that communities within close proximity will be 

more similar to each other than communities that are geographically distant (Lomolino et 

al., 2006), a concept that was generally supported in studies of phyllosphere bacterial 

communities of magnolia trees on scales of meters to hundreds of meters apart (Stone & 

Jackson, 2016). 

 In a recent study, Laforest-Lapointe et al. (2016), investigated intra- and inter-

individual variation of phyllosphere communities among host tree species. They 

demonstrated that 65% of the intra-individual variation in bacterial community structure 
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was attributed to inter-individual and inter-specific differences, while canopy location 

was not significant. In comparison, host tree species explained 47% of inter-individual 

and inter-specific variation followed by individual identity (32%) and canopy location 

(6%) (Laforest-Lapointe et al., 2016). However no other studies have examined variation 

in the composition of bacterial phyllosphere community on leaves of the same tree. In 

this study, I will investigate intra-individual variation in the bacterial phyllosphere within 

a single tree in order to see how a smaller geographic distance may influence community 

structure, with a particular focus on the diversity and spatial distribution of bacterial 

populations.  
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Methods: 

 

 In September 2016, leaves were sampled from a M. grandiflora tree in a garden in 

Oxford, Mississippi. Leaf samples were obtained from the high (3.5-4.0 m above the 

ground), middle (1.5 m), inner middle (1.5 m but close to the trunk), and low (0.5 m) 

portions of the tree canopy, and following cardinal directions (north, south, east, west) 

whenever possible given the orientation of the tree. Collected leaves were immediately 

placed in sterile plastic bags and frozen within 30 minutes for subsequent DNA 

extraction. The samples were labeled based upon their location on the tree in a two-

character system. The first character reflects the height of where the sample was taken. 

For example, "H" is an abbreviation for "high". The second character represents the 

cardinal direction of the sample. While four samples from each height of the tree were 

desirable, accessibility to one part of the tree was restricted so that the HS (high, south) 

sample could not be collected. An additional sample, HE, was later removed from the 

analysis because it yielded a low number of sequences (<2,000). Thus, the final study 

focused on 14 samples, representing four samples (each direction) from the low, inner, 

and middle parts of the canopy, and two samples (north, west) from the highest part of 

the canopy. 

 The phyllosphere community was recovered from each sample by brushing the 

leaf on both sides for 1 minute with a sterile toothbrush in 4 mL Tris-EDTA (TE) pH 8.0 

buffer. The resulting suspension was centrifuged (10,000xg) for 2 minutes and the 
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resulting pellet was frozen (-20
° 

C) until DNA extraction. DNA was extracted using a 

PowerSoil extraction kit (MoBio, Carlsbad, CA) following the manufacturer's standard 

procedures. Agarose gel electrophoresis was used to confirm the presence of DNA.  

 A dual index barcoding strategy was used to target the V4 region of the 16S 

ribosomal RNA (rRNA) gene (Kozich et al., 2013). Primers (1 μL each) and AccuPrime 

Pfx Supermix (Invitrogen, Grand Island, NY) (17 μL) were mixed with 1 μL DNA. DNA 

was then amplified for 30 cycles at 95 °C for 20 s, 55 °C for 15 s, and 72 °C for 2 min 

after an initial denaturation step at 95 °C for 2 min and with a final elongation step of 72 

°C for 10 min. The amplification products were standardized with SequalPrep 

Normalization Plates (Life Technologies, Grand Island, NY) and pooled before 

sequencing with Illumina MiSeq platform at the Molecular and Genomics Core Facility 

at the University of Mississippi Medical Center (UMMC). 

 Raw data files (FASTQ) were processed using Mothur software following 

procedures recommended by Schloss, et al. (2011) and Kozich, et al. (2013). The 

sequences were aligned with the Silva V4 reference database, and non-informative or 

erroneous data, chimeras, and mitochondrial or chloroplast DNA were removed.  The 

Greengenes database was used to establish sequences into operational taxonomic units 

(OTUs) with 97% sequence similarity. Diversity analysis was conducted after classifying 

the OTUs and by subsampling (1000 iterations) the number of reads to the lowest 

remaining sample (2,030). Alpha diversity was determined as the number of OTUs, 

coverage, inverse Simpson index, SChao index, Shannon index, and SACE index. The 

abundance-based theta index was used for analysis of molecular variance (AMOVA) 

which was used to test for differences in phyllosphere community composition based 
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on height and cardinal direction. In addition, analysis of similarities (ANOSIM) was 

used to compare species abundance based on the same criteria. 

  



 

8 
 

 

 

Results: 

 

 After removal of sequences identified as Archaea, Eukarya, chloroplast, or 

mitochondria, the total number of sequences across all leaf samples was 128,625 

consisting of 3,090 unique sequences. The number of sequences obtained from each leaf 

was highly variable and unrelated to its location on the tree (Figure 1). The medium 

height northern direction sample (MN) had the fewest sequences at 2,030, while the 

western sample at this height (MW) had the greatest number of sequences at 18,531. In 

terms of community composition, Proteobacteria was the dominant phylum (Figure 2) in 

the dataset and accounted for 82,140 of the sequences (63.9%), with class 

Alphaproteobacteria accounting for 53,145 of those sequences (64.7%). Acidobacteria 

accounted for 7,326 of the bacterial sequences (5.7%), Actinobacteria accounted for 

10,598 of the sequences (8.2%), Bacteroidetes accounted for 11,780 of the sequences 

(9.2%), Cyanobacteria accounted for 3,899 of the sequences (3.0%), Firmicutes 

accounted for 1,647 of the sequences (1.3%), Planctomycetes accounted for 3,615 of the 

sequences (2.8%), and Verrucomicrobia accounted for 1,679 of the sequences (1.3%). 

Other phyla found at <1% were Armatimonadetes with 945 sequences (0.7%), 

Chlamydiae with 24 sequences (0.01%), Chlorobi with 6 sequences (0.004%), 

Chloroflexi with 413 sequences (0.3%), Deinococcus-Thermus with 261 sequences 

(0.2%), Elusimicrobia with 16 sequences (0.01%), Gemmatimonadetes with 416 

sequences (0.3%), Nitrospirae with 54 sequences (0.04%), and Tenericutes with 35 

sequences (0.03%). 
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Figure 1: Numbers of 16S rRNA sequence reads obtained from next generation 

sequencing of phyllosphere bacterial communities on an individual magnolia (M. 

grandiflora) leaves sampled from a single tree. Leaves were collected from high (H) in 

the canopy, internal in the canopy (I), low in the canopy (L), and of medium (M) height 

in the canopy, at each of the cardinal directions (second letter designating N, E, S, W). 

Samples corresponding to HE and HS were not analyzed, and therefore were not shown. 
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Figure 2: Percentages of major bacterial phyla occupying a single M. grandiflora tree. 

Any phyla accounting for >1% of total sequences (128,625) are shown. Proteobacteria 

accounted for most of the sequences (64%), while Bacteroidetes (9%), Actinobacteria 

(8%), and Acidobacteria (6%) also represented a significant amount of the sequences. 

Phyla that accounted for <1% were grouped into the "other" category.  
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 At a finer taxonomic level, 17 OTUs had >1000 reads and accounted for 66,870 

sequences or 52.0% of the total (Table 1). A member of the Alphaproteobacteria, order 

Rhizobiales, contained the most reads out of all the OTUs and accounted for 12,800 

sequences out of the total 128,625 sequences (10.0%). Other members of 

Alphaproteobacteria in the 17 most prominent OTUs were identified as being members of 

the genus Methylobacterium with 5,529 sequences (4.3%), order Rhizobiales with 2,457 

sequences (1.9%), genus Sphingomonas (99) with 7,387 sequences (5.7%), genus 

Sphingomonas (100) with 3,722 sequences (2.9%), and genus Wittichii with 3,233 

sequences (2.5%). Betaproteobacteria, genus Massilia, contained 5,844 sequences 

(4.5%); Deltaproteobacteria, genus Cystobacter contained 2,557 sequences (2.0%), and 

family Cystobacterinea contained 2,655 sequences (2.1%). A member of the 

Gammaproteobacteria, species identified as E. coli, contained 5,259 sequences (4.1%), 

but of all the major OTUs, this was the only one identified without much certainty (68% 

match; Table 1). Acidobacteria, family Acidobacteriaceae, contained 3,423 sequences 

(2.6%), and genus Terriglobus contained 1,059 sequences (0.8%). Actinobacteria, family 

Microbacteriaceae, contained 3,575 sequences (2.8%) and genus Actinomycetospora had 

1,732 sequences (1.3%). Bacteroidetes, genus Hymenobacter, contained 2,850 sequences 

(2.2%). Cyanobacteria contained 2,788 sequences (2.2%).   
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Table 1: Ranking of the 17 most abundant OTUs with the number in parenthesis 

representing the confidence interval of whether the phylum, class, order, family, genus or 

species was properly identified. Each of these OTUs was comprised of >1,000 sequence 

reads. 

Ranking of Most 

Abundant OTUs 

Number of OTUs 

obtained 

Taxonomy 

1 12,800 p__Proteobacteria(100); 

c__Alphaproteobacteria(100); 

o__Rhizobiales(100); 

o__Rhizobiales_unclassified(100) 

2 7,387 p__Proteobacteria(100); 

c__Alphaproteobacteria(100); 

o__Sphingomonadales(100); 

f__Sphingomonadaceae(100); 

g__Sphingomonas(99) 

3 5,844 p__Proteobacteria(100);  

c__Betaproteobacteria(100); 

o__Burkholderiales(100); 

f__Oxalobacteraceae(100); 

g__Massilia(98) 

4 5,529 p__Proteobacteria(100); 

c__Alphaproteobacteria(100); 

o__Rhizobiales(100); 

f__Methylobacteriaceae(100); 

g__Methylobacterium(100); 

5 5,259 p__Proteobacteria(100); 

c__Gammaproteobacteria(100); 

o__Enterobacteriales(100); 

f__Enterobacteriaceae(100); 

g__Escherichia(68);s__coli(68); 

6 3,722 p__Proteobacteria(100); 

c__Alphaproteobacteria(100); 

o__Sphingomonadales(100); 

f__Sphingomonadaceae(100); 

g__Sphingomonas(100); 

7 3,575 p__Actinobacteria(100); 

c__Actinobacteria(100); 

o__Actinomycetales(100); 

f__Microbacteriaceae(100); 

f__Microbacteriaceae_unclassified(100) 

8 3,233 p__Proteobacteria(100); 
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c__Alphaproteobacteria(100); 

o__Sphingomonadales(100); 

f__Sphingomonadaceae(100); 

g__Sphingomonas(100); 

s__wittichii(97) 

9 2,850 p__Bacteroidetes(100); 

c__Cytophagia(100); 

o__Cytophagales(100); 

f__Cytophagaceae(100); 

g__Hymenobacter(100) 

10 2,788 p__Cyanobacteria_unclassified(100) 

 

11 2,655 p__Proteobacteria(100); 

c__Deltaproteobacteria(100); 

o__Myxococcales(100); 

f__Cystobacterineae(100); 

f__Cystobacterineae_unclassified(100) 

12 2,557 p__Proteobacteria(100); 

c__Deltaproteobacteria(100); 

o__Myxococcales(100); 

f__Cystobacteraceae(100); 

g__Cystobacter(100); 

s__fuscus(90) 

13 2,457 p__Proteobacteria(100); 

c__Alphaproteobacteria(100); 

o__Rhizobiales(100) 

14 2,128 p__Acidobacteria(100); 

c__Acidobacteriia(100); 

o__Acidobacteriales(100); 

f__Acidobacteriaceae(100); 

f__Acidobacteriaceae_unclassified(100); 

15 1,732 p__Actinobacteria(100); 

c__Actinobacteria(100); 

o__Actinomycetales(100); 

f__Pseudonocardiaceae(100); 

g__Actinomycetospora(100); 

16 1,295 p__Acidobacteria(100); 

c__Acidobacteriia(100); 

o__Acidobacteriales(100); 

f__Acidobacteriaceae(100); 

f__Acidobacteriaceae_unclassified(100); 

17 1,059 p__Acidobacteria(100); 

c__Acidobacteriia(100); 

o__Acidobacteriales(100); 

f__Acidobacteriaceae(100); 

g__Terriglobus(100); 
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 In addition to the dominant OTUs, the number of unique sequences in each 

phylum was determined out of a total of 3,090 unique sequences, as well as the number 

of unique sequences of that phyla found per sample. Below, I included phylum listed 

within the 17 most abundant OTUs without taking into account the number of times each 

unique sequence appears (it is only counted once) to emphasize the concentration of 

bacterial species in the inner leaves of the tree:  

 Acidobacteria accounted for 165 unique sequences with 19 in HN, 20 in HW, 58 

in IE, 59 in IN, 35 in IS, 40 in IW, 30 in LE, 44 in LN, 31 in LS, 7 in LW, 55 in 

ME, 14 in MN, 25 in MS, and 22 in MW.  

 Actinobacteria accounted for 258 unique sequences with 16 in HN, 67 in HW, 

108 in IE, 84 in IN, 50 in IS, 60 in IW, 75 in LE, 99 in LN, 57 in LS, 31 in LW, 

70 in ME, 40 in MN, 53 in MS, and 46 in MW. 

 Alphaproteobacteria accounted for 487 unique sequences with 85 in HN, 102 in 

HW, 187 in IE, 133 in IN, 119 in IS, 172 in IW, 133 in LE, 146 in LN, 103 in LS, 

58 in LW, 117 in ME, 78 in MN, 151 in MS, and 132 in MW. 

 Bacteroidetes accounted for 388 unique sequences with 32 in HN, 38 in HW, 87 

in IE, 87 in IN, 59 in IS, 122 in IW, 57 in LE, 86 in LN, 65 in LS, 16 in LW, 50 in 

ME, 30 in MN, 92 in MS, and 125 in MW. 

 Betaproteobacteria accounted for 79 unique sequences with 10 in HN, 15 in HW, 

27 in IE, 23 in IN, 20 in IS, 20 in IW, 19 in LE, 19 in LN, 10 in LW, 22 in ME, 13 

in MN, 14 in MS, and 13 in MW.  
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 Cyanobacteria accounted for 72 unique sequences with 10 in HN, 16 in HW, 21 in 

IE, 18 in IN, 13 in IS, 17 in IW, 12 in LE, 18 in LN, 11 in LS, 5 in LW, 16 in ME, 

9 in MN, 15 in MS, and 14 in MW.  

 Deltaproteobacteria accounted for 159 unique sequences with 20 in HN, 20 in 

HW, 49 in IE, 40 in IN, 28 in IS, 44 in IW, 29 in LE, 30 in LN, 22 in LS, 15 in 

LW, 20 in ME, 9 in MN, 39 in MS, and 47 in MW. 

 Gammaproteobacteria accounted for 89 unique sequences with 14 in HN, 23 in 

HW, 29 in IE, 20 in IN, 16 in IS, 25 in IW, 16 in LE, 24 in LN, 21 in LS, 12 in 

LW, 23 in ME, 11 in MN, 13 in MS, and 18 in MW. 

 

Patterns in Alpha and Beta Diversity 

 Alpha diversity and beta diversity were determined after subsampling each 

sample to 2,030 sequences (the number of sequences in the lowest remaining sample). 

Coverage (how well the community was sampled) was generally good with >0.9 being 

ideal (Table 2). At a basic level, the number of OTUs observed in each sample is a simple 

assessment of alpha diversity, and the most OTUs (475) were found in the western 

focused inner canopy sample (IW) and the least (161) in the western lower canopy (LW) 

(Figure 3).  
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Figure 3: Comparison of Sobs, Schao, and Sace indices for M. grandiflora after subsampling 

to 2,030 sequences. The Schao and Sace indices estimated that the actual number of OTUs 

was greater than what Sobs revealed. Schao and Sace are nonparametric indexes that estimate 

species richness by adding a correlation factor to the number of observed species, where 

rare OTUs may be found more frequently. Schao accounts for singletons and doubletons, 

while SACE incorporates data from species with <10 reads (Chao, 1984). 

  

0 200 400 600 800 1000 

IW 

IS 

IE 

IN 

LW 

LS 

LE 

LN 

MW 

MS 

ME 

MN 

HW 

HN 

ace 

chao 

OTUs 



 

17 
 

 Species diversity and richness varied across different locations on the tree but did 

show noticeable patterns (Table 2). Sample IW had the highest observed OTUs, species 

richness, and diversity. LW showed the least observed OTUs, species richness, and 

diversity out of all samples. The ranking of samples was IW > HW > IE > MW > MN > 

MS > IN > HN > ME > LN > LE > LS > IS > LW for inverse Simpson, and IW > IE > 

IN > LN > IS > HW > MW > ME > MS > LE > LS > HN > MN > LW for Schao. The 

height of where the sample was taken seemed to indicate more differentiation between 

bacterial communities than cardinal direction, as it generally did not affect the inverse 

Simpson or Schao index.  

 The samples with the highest inverse Simpson were IW (70.8), HW (46.4), and IE 

(39.1), while the samples with the highest Schao index were IW (750.4), IE (693.9), and IN 

(638.5). Inverse Simpson indexes were generally higher in samples categorized by "W" 

as the top four samples with the highest index included IW, HW, and MW. This is the 

only incidence where cardinal direction seemed to affect bacterial community structure. 

LW had the lowest inverse Simpson index and Schao index but this may be because of the 

height of where the sample was taken. Samples in the inner, high, and middle parts of the 

tree tended to have higher diversity and richness than samples in the low parts of the tree. 

Sample IS was an exception to this as it had the second lowest inverse Simpson index. 

Including sample LN, the inner samples had the highest Schao indexes. MW, ME, and MS 

tended to have higher Schao indexes than the samples from the lower part of the tree, with 

the exception of MN, which had a Schao index of 358.1 (second lowest Schao). Overall, 

patterns in alpha diversity suggested that: 1) the height of where the sample was taken 

seemed to shape bacterial communities more than cardinal direction, 2) the inner leaves 
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of the tree had the highest species richness and diversity, and 3) samples on the lower 

leaves of the tree tended to have lower diversity and richness. 
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Table 2: Alpha diversity indices Sobs, coverage, inverse Simpson, Shannon, Schao, and Sace 

were used to estimate species diversity and richness. The coverage determines sampling 

effort with 1.0 being perfect and ~0.9 acceptable. Sobs (number of observed OTUs) was 

used by Schao and Sace calculators to obtain a closer estimate to species richness (also see 

Figure 3). Inverse Simpson and Shannon diversity indexes simultaneously took into 

account the different species in the dataset and how evenly they were distributed to 

generate a "score" of diversity with the higher scores indicating higher diversity.  

Group OTUs Coverage I. 

Simpson 

Shannon Schao Sace 

IW 475 0.89 70.8 5.18 750 845 

IE 399 0.90 39.1 4.69 694 935 

IN 381 0.91 30.3 4.55 638 786 

HW 370 0.93 46.4 4.84 536 560 

LN 344 0.91 26.6 4.35 614 879 

IS 337 0.92 22.8 4.30 563 726 

ME 336 0.93 27.2 4.39 500 517 

MW 306 0.93 37.9 4.48 503 655 

LE 292 0.94 24.3 4.16 445 484 

MN 283 0.95 35.7 4.42 358 378 

MS 272 0.94 33.6 4.27 468 602 

LS 272 0.94 24.2 4.12 408 454 

HN 228 0.95 29.3 4.05 394 534 

LW 161 0.98 17.0 3.79 209 202 
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 Examining patterns of beta diversity, it was highly suggestive that canopy height 

or position influenced community composition when analyzed by AMOVA (p=0.08) and 

significant when analyzed by ANOSIM (p=0.016). In contrast, cardinal direction did not 

influence community composition, an outcome validated by both AMOVA (p=0.778) 

and ANOSIM (p=0.868).  
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Discussion: 

 

 Microbial inhabitants of the phyllosphere have the potential to influence plant 

biogeography and ecosystem function by improving a plant's performance in response to 

its environment (Fürnkranz et al., 2008; Friesen et al., 2011; Meyer & Leveau, 2012). 

However, most studies of phyllosphere communities have assumed within-plant variation 

in the bacterial community to be negligible, an exception being a study focused within 

the canopy of a single Ginkgo biloba tree (Leff et al., 2015). Typically for tree 

phyllosphere studies, samples are taken from leaves at the bottom of the canopy or at 

mid-canopy height near the trunk (Laforest-Lapointe et al., 2016), likely because of easy 

access by researchers. Samples can also be taken from specific canopy locations (e.g. 

Kembel et al. 2014; Kembel & Mueller, 2014) or from multiple leaves around the canopy 

at the same height (e.g. Redford & Fierer, 2009; Redford et al., 2010; Jackson & Denney, 

2011). The aim of this study was to compare phyllosphere bacterial communities within a 

single M. grandiflora tree by taking samples from different heights, while also gathering 

samples from each cardinal direction (North, West, East, and South) at each height.  

 Certain bacterial groups re-establish themselves on plants from year to year, such 

that it has been argued that plants harbor local reservoirs of bacteria (Feil et al., 2005). 

Analysis of phyllosphere bacterial communities on pine trees found that species 

variability was lower within a plant species than between different plant species, even 

over large geographical distances (Redford et al., 2010). Similar results have been found 
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for A. thaliana but geographical site is also important factor (Knief et al., 2010). 

Variability in dominant bacterial communities found in the phyllosphere, soil (Lauber et 

al., 2009), and air (Bowers et al., 2009) suggests that phyllosphere bacteria are not 

simply transient inhabitants but are closely associated with host tree species (Redford et 

al., 2010).  

 Many of the bacterial phyla identified in this study have also been found in other 

M. grandiflora studies. These include the Proteobacteria (dominant class: 

Alphaproteobacteria), Bacteroidetes, and Actinobacteria (Jackson & Denney, 2011; Stone 

& Jackson, 2016). Alphaproteobacteria are common inhabitants of plants and include 

extracellular or intracellular plant mutualists (Delmotte et al., 2009). Bacteroidetes and 

Actinobacteria are also commonly represented in the phyllosphere of many plants 

including A. thaliana, soybean, clover, and rice (Vorholt, 2012). Acidobacteria, 

Armatimonadetes, Chloroflexi, Cyanobacteria, Firmicutes, Planctomycetes, and 

Verrucomicrobia were represented at smaller quantities but have also been previously 

identified in the M. grandiflora phylloplane during various seasons (Jackson & Denney, 

2011; Stone & Jackson, 2016). 

  The most prominent OTU identified in this study was classified as a member of 

order Rhizobiales (Alphaproteobacteria), a group of nitrogen fixing bacteria commonly 

found in soil that must colonize a host plant for survival (Prell & Poole, 2006). This 

suggests that leaf-associated communities can contain more typically soil bacteria. Less 

abundant OTUs are most likely transient species introduced by the atmosphere, 

precipitation, and contact with animal and plant dispersal vectors (Kembel et al., 2014). 

Interestingly, a member of Enterobacteriaceae was the fifth most prominent OTU. This 
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was identified as being E. coli but with only a 68% certainty, the lowest percentage of 

any major OTU. While the presence of E. coli could suggest contamination during 

sample processing, the low percentage match more likely reflects another enteric 

bacterium of birds and mammals, and the likelihood of fecal contamination of the 

phyllosphere by such species. 

 Of the 17 most prominent OTUs, there were many unique sequences among the 

inner leaves of the canopy, especially in the innermost eastern part of the canopy (IE). 

For example, Acidobacteria accounted for 165 unique sequences with the most abundant 

sequences (58) being in IE. The pattern of IE containing the most sequences continues 

with Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Cyanobacteria, 

Deltaproteobacteria, and Gammaproteobacteria. Alpha diversity results indicated that the 

innermost western sample (IW) had the overall most OTUs and highest inverse Simpson, 

Shannon, and Schao indexes. The only major phyla from the 17 most prominent OTUs that 

did not have the most reads in the inner leaf samples was Bacteroidetes, which was 

concentrated in the middle leaves of the tree. The lower western (LW) part of the tree 

also consistently showed the least diversity as shown with Actinobacteria, 

Alphaproteobacteria, Bacteroidetes, Betaproteobacteria, and Cyanobacteria. ANOSIM 

and AMOVA did not detect cardinal direction as significant drivers of community 

composition but detected the sample height (H-I-M-L) as significant. While AMOVA 

was suggestive of population differentiation depending on height, ANOSIM was shown 

to be more significant in terms of sample height influencing species abundance. Results 

from alpha and beta diversity analyses suggested overall patterns in species diversity and 

richness (high in inner leaves, low in lower leaves), however there were many exceptions 
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to the general pattern. The phylloplane is a highly dynamic environment, unlike the 

rhizosphere which is surrounded by soil in which microorganisms can survive in a 

dormant state for many years or even decades. The  microorganisms of the phyllosphere 

must adjust to fluctuations in the season and the day/night cycle and developmental, 

morphological, and anatomical dynamics of the plant from the bud, to the senescing leaf, 

to the flower, and to the fruit (Bringel & Couée, 2015). Variation in community 

composition within the canopy is therefore likely, and more than the sample height is 

necessary to explain why differences occur in bacterial community structure.  

 A multitude of factors could influence phyllosphere bacterial communities on 

leaves including wind (Laforest-Lapointe et al., 2016), ultraviolet (UV) light (Laforest-

Lapointe et al., 2016; Bringel & Couée, 2015), radiation (Kadiver & Stapleton, 2003; 

Bringel & Couée, 2015), pollution (Vorholt, 2012), temperature (Bringel & Couée, 

2015), desiccation (Beattie, 2011; Bringel & Couée, 2015), leaf age, limitation in 

nutrients such as carbon and nitrogen (Bringel & Couée, 2015), and the presence of other 

microorganisms (Vorholt, 2012). In addition, host genetic factors (Bodenhausen et al., 

2014; Horton et al., 2014) and taxonomic identity (Redford et al., 2010; Kembel et al., 

2014) seem to be important drivers of phyllosphere bacterial community structure. 

Numerous studies of host-microbe interactions have found that microbial biodiversity is a 

trait that forms as part of the extended phenotype of the host organism (Benson et al., 

2010). Plant genetics determines leaf texture and types of metabolites released to the 

surface of the leaf, which may promote or inhibit bacterial growth (Rastogi et al., 2013).   

 Because of the many chemical and physical factors that influence the growth of 

bacteria, there must be selection for bacterial phenotypes that can overcome these 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bringel%20F%5BAuthor%5D&cauthor=true&cauthor_uid=26052316
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cou%26%23x000e9%3Be%20I%5BAuthor%5D&cauthor=true&cauthor_uid=26052316
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limitations, such as phenotypes that can modify the microhabitat in order to increase 

nutrient availability (Lindow & Brandl, 2003). Physical factors that may influence what 

types of bacteria colonize a specific leaf include the size, texture, and thickness of the 

leaf. Photosynthetic activity and water content are also important attributes of the leaf 

that should be considered (Lichtenthaler et al., 1981), although the extent that these vary 

between leaves of a single tree is generally unknown. Comparisons between plant species 

are much more common in phyllosphere studies; for example, the number of culturable 

bacteria from broad-leaf succulent herbaceous plants such as cucumber, lettuce, and bean 

is significantly higher than that of grasses or waxy broad-leaf plants such as cabbage and 

citrus (O’Brien & Lindow, 1989; Lindow & Andersen 1996; Kinkel et al. 2000).  

 Before bacteria can colonize a leaf surface, they must first encounter the waxy 

surface of the leaf (cuticle) which serves as a diffusion barrier to minimize water and 

solute loss, minimize temperature fluctuations, confer water repellence, and provide 

protection against pathogens (Beattie, 2002). M. grandiflora has leaves with a waxy 

coating that makes them resistant to damages from salt and air pollution (Sternberg et al., 

2004). As the leaves grow older, the cuticle erodes and wettability increases, allowing for 

microorganisms to inhabit the leaf easier (Beattie, 2002). Phyllosphere bacteria produce 

polysaccharides that form cell aggregates that protect against desiccation (Lindow & 

Brandl, 2003; Delmotte et al., 2009; Rastogi et al., 2013), as well as potential 

biosurfactants that increase wettability (Bunster et al., 1989; Schreiber et al., 2005).  

 Bacterial abundance on leaves has been correlated with leaf position, as 

influenced by wind and local leaf humidity (Medina-Martínez et al., 2015). Wind 

exposure can reduce leaf moisture and induce stomata closure (Grace et al., 1975), which 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2008.03906.x/full#b80
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2008.03906.x/full#b60
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2008.03906.x/full#b46
https://doi.org/10.1016%2Fj.foodres.2014.06.009
https://scholar.google.com/scholar_lookup?title=The%20effect%20of%20wind%20and%20humidity%20on%20leaf%20diffusive%20resistance%20in%20Sitka%20spruce%20seedlings&author=Grace&publication_year=1975
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could impact the diffusion of nutrients and reduce the size of microbial aggregates 

(Leveau & Lindow, 2001; Miller et al., 2001). The characteristics of the upper and lower 

phylloplane (Eglinton & Hamilton, 1967; Schreiber et al., 2004; Reisberg et al., 2013) 

are able to affect the interactions between microorganisms by modulating access to 

nutrients (Ruinen, 1961; Bulgarelli et al., 2013), providing more or less protection from 

sunlight (Atamna-Ismaeel et al., 2012), or presenting gateways for penetration into the 

plant (Hirano & Upper, 2000; Schreiber et al., 2004; Bringel & Couée, 2015). Because 

the inner leaves of the canopy are more shielded from harmful UV light, partial shade and 

protection provided by the outside leaves could result in higher species diversity and 

richness on inside leaves, as seen in this study.  

 Phyllosphere-associated microorganisms live in a sunlight-exposed habitat. 

Culture-independent analyses indicate that tolerance or intolerance to UV radiation is an 

important selection pressure for survival and growth of bacteria (Kadivar and Stapleton 

2006; Stapleton and Simmons 2006), and most phyllosphere bacteria on the leaf are 

capable of withstanding high UV radiation though the formation of pigments (Sundin, 

2002). Some phyllosphere bacteria are photosynthetic, so they can benefit from light and 

use light energy to fix carbon (Atamna-Ismaeel et al., 2012; Stiefel et al., 2013).  

 Leaf morphology and age could also be considered in the sense of factors that 

may allow for successful colonization of a leaf. Further work must involve colonization 

and growth of bacterial communities on leaves in order to understand the drivers of 

phyllosphere bacterial community structure (Stone & Jackson, 2016). In addition, random 

colonization via atmospheric air flow (Barbeán et al., 2015) or animals (Scheffers et al., 

2013), competition between bacterial populations (Vorholt, 2012); or intra-individual 

https://doi.org/10.1073%2Fpnas.061629598
https://doi.org/10.1128%2FAEM.67.3.1308-1317.2001
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bringel%20F%5BAuthor%5D&cauthor=true&cauthor_uid=26052316
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cou%26%23x000e9%3Be%20I%5BAuthor%5D&cauthor=true&cauthor_uid=26052316
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2008.03906.x/full#b42
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2008.03906.x/full#b42
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2008.03906.x/full#b98
https://doi.org/10.1073%2Fpnas.1420815112
https://doi.org/10.1098%2Frspb.2013.1581
https://doi.org/10.1098%2Frspb.2013.1581
https://doi.org/10.1038%2Fnrmicro2910
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variation in leaf functional traits (Hunter et al., 2010; Reisberg et al., 2012) are needed to 

understand the dynamics driving intra-individual variability in bacterial community 

structure. 

  

https://doi.org/10.1128%2FAEM.01321-10
https://doi.org/10.1007%2Fs10482-011-9669-8
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