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Abstract

A graph G is connected if given any two vertices, there is a path between them. A

bond B is a minimal edge set in G such that G � B has more components than

G. We say that a connected graph is dual Hamiltonian if its largest bond has size

|E(G)|�|V (G)|+2. In this thesis we verify the conjecture that any simple 3-connected

graph G has a largest bond with size at least ⌦(nlog32) (Ding, Dziobiak, Wu, 2015

[3]) for a variety of graph classes including planar graphs, complete graphs, ladders,

Möbius ladders and circular ladders, complete bipartite graphs, some unique (3, g)-

cages, the generalized Petersen graph, and some small hypercubes. We will also go

further to prove that a variety of these graph classes not only satisfy the conjecture,

but are also dual Hamiltonian.
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Chapter 1

Introduction and Some
Background on Graph Theory

1.1 Introduction

Graph Theory is a relatively young area of study in mathematics. The first doc-
umented graph theory problem was the Königsberg Bridge problem proposed by
Leonhard Euler in 1736, long before the term “Graph Theory” was coined. This
problem involved seven bridges connecting two islands to the main city of Königsberg
in Prussia, and the question was to devise a path which crossed each bridge only once.
Ultimately, it was proven impossible to obtain such a path. It wasn’t until 1936 that
the first textbook on graph theory was published.

There are many practical applications for graph theory, typically involving relational
modeling in areas such as biology, business and computer science. Graphs have many
real-world applications such as modeling computer network systems and creating
mappings for airline routes.

In this thesis, we will specifically study bond sizes in graphs.

A bond is a minimal edge-cut (a minimal set of edges whose deletion disconnects a
connected graph). We know an upper bound for bond size in a graph is |E(G)| �
|V (G)| + 2, where |E(G)| is the number of edges in the graph and |V (G)| is the
number of vertices in the graph. Additionally, we know that a 3-connected graph will
have a bond of size at least 2

17

p
logn [3]; however, in 2015, Ding, Dziobiak, and Wu

[3] raised the following conjecture:

Conjecture (Ding, Dziobiak, Wu, 2015 [3]). Any simple 3-connected graph G
will have a largest bond with size at least ⌦(nlog32) where n = |V (G)|.

We say that f(n) = ⌦(g(n)) if and only if there exists some constant M > 0 and
some N 2 N, such that f(n) � Mg(n) for all n � N .
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In this thesis, we will verify this conjecture for a variety of graph classes including
planar graphs, complete graphs, ladders, Möbius ladders and circular ladders, com-
plete bipartite graphs, the generalized Petersen graph, a few unique (3, g)-cages and
some small hypercubes.

Furthermore, we will prove that a variety of these graph classes possess bonds which
meet the maximum bound for bond size. These graphs are called dual Hamiltonian.
We will show that graphs that meet this upper bound for bond size will verify our
conjecture on the lower bound.

1.2 What is a graph?

A simple graph G with n vertices and m edges consists of a vertex set V (G) =
{v1, v2, ..., vn} and an edge set E(G) = {e1, e2, ..., em}, where each edge is an unordered
pair of vertices from V (G). We say that G = (V (G), E(G)). A simple graph has no
multiple edges or loops. A graph in which edges are allowed to repeat is called a
multigraph. Unless otherwise stated, the graphs in this thesis are all simple graphs.

The cardinality of a set S is the number of elements in the set, and is denoted |S|.
Subsequently, the number of vertices in a graph (also called the order of the graph)
can be denoted |V (G)| and the number of edges, |E(G)|. Most (but not all) graphs
have many visual representations, often called embeddings.

To illustrate the above definitions, let’s use the following graph:

G = {{A,B,C,D,E}, {{A,B}, {B,C}, {C,D}, {C,E}, {D,E}, {D,A}}}

The edge set of G, E(G) is {{A,B}, {B,C}, {C,D}, {C,E}, {D,E}, {D,A}}.
The vertex set of G, V (G) is {A,B,C,D,E}.
|V (G)| = 5, |E(G)| = 6
Two possible embeddings of G are illustrated in Figure 1:

Figure 1: Example of a Graph
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We may abbreviate the edge {a, b} as ab. We say that a and b are called neighbors
when they are joined by an edge. Any two neighbors are said to be adjacent. When
a and b are neighbors, we say that a and b are each incident to the edge ab. Subse-
quently, the neighborhood of a vertex v, denoted N(v) is the set of all neighbors of v.
Using the example from Figure 1, we can see that N(A) = {B,D}. The size of the
neighborhood of a vertex, |N(v)|, is called the degree of v, frequently denoted d(v).
A graph in which all vertices have degree r is called r-regular. Many of the graphs
we will discuss are cubic, meaning they are 3-regular.

The number of edges in a graph can be determined from the number of vertices and
their degree by the following formula:

The Handshake Lemma. 2|E(G)| =
P

v2V (G) d(v).

1.3 Cycles and Subgraphs

A walk is an alternating sequence of vertices and incident edges. In other words, a
walk is a route that can be traveled within a graph from vertex to vertex along edges.
A trail is a walk in which no edges are repeated, and a path is a walk in which no
vertices are repeated. A walk is said to be closed if it begins and ends with the same
vertex. A closed walk that repeats no vertices or edges is called a cycle.

Figure 2: A Graph Containing Cycles

In Figure 2, {A,B,C,D,A} is an example of a cycle. It follows a path from vertex
A to B, C, D and back to A to complete the cycle. Another example of a cycle is
{D,C,E,D}. We call the size of the largest cycle in a graph the circumference of the
graph, denoted c(G), and the size of the smallest cycle in a graph the girth.

A cycle on a graph G is called Hamiltonian if it contains every vertex from V (G).

A subgraph of a graph G is a graph whose vertex set is a subset of V (G) and whose
edge set is a subset of E(G). We call a subgraph induced if it contains all edges which
have both ends in the vertex set of the subgraph. The subgraph induced by the set
S is denoted G[S].

3



Figure 3: Subgraphs

In Figure 3, both the graphs in the center and on the right are subgraphs of the
leftmost graph. However, only the subgraph on the right is induced, as the edge AD
has both ends in the vertex set of the subgraphs and thus, is required in the central
subgraph in order for it to be induced.

1.4 Graph Connectivity

A graph is called connected if given any two vertices, there exists a path between
them.

The edge connectivity of a graph G, denoted 0(G), is the minimum size of an edge
set F , such that G � F is disconnected, where G � F is the graph G with all edges
included in F removed. We call F an edge-cut. An example is illustrated below.

Figure 4: An Example of an Edge-Cut

In Figure 4, let the edges in red represent an edge-cut F . The graph G on the left
has only one component, but G�F on the right has two. One component is a 4-cycle
and the other is a path consisting of two vertices. Components can also be isolated
vertices. We call an edge e a cut edge if G� e has more components than G.

Similarly, a vertex v is called a cut vertex if G � v has more components than G.
When we remove an edge from a graph, we simply remove it and leave behind any
incident vertices. However, when removing a vertex from a graph, all incident edges
must be removed along with it.

The vertex connectivity of a connected graph G, denoted (G), is the minimum size
of a vertex set S such that G� S is disconnected or has only one vertex. We call S

4



a cut set. We say that G is k-connected where (G) � k. Thus, a k-connected graph
is also t-connected for t  k. We can also specify certain cuts as (u, v)-cuts, which
is to say that such a cut removes any possible paths between vertices u and v in the
graph. An important property of graph connectivity is given by Menger’s Theorem.

Theorem 1 (Menger, 1927 [4]). The minimum size of a (u, v)-cut is equal to
the maximum number of pairwise disjoint paths from u to v.

A bond is a non-empty minimal edge-cut. Figure 5 is a connected graph with an
edge-cut F illustrated in red. F is also a bond as if we remove any edge from F ,
G � F is still connected. If we include the edge e, we create the edge-cut F [ e;
however, e is not required to disconnect the graph, as F does this on its own. Thus,
F [ e is not a minimal edge-cut, and subsequently is not an example of a bond.

Figure 5: An Example of a Bond

1.5 Trees

A tree is an acyclic, connected graph. Any nontrivial tree will contain at least two
vertices of degree 1, called leaves. A tree with only two leaves is a path. Trees are
minimally connected, as they include only one path between any two vertices in the
graph. A tree with n vertices has n� 1 edges.

5



Figure 6: An Example of a Tree

1.6 Planar Graphs

One special class of graphs is the planar graph. A graph is planar if it can be
embedded in the 2-dimensional plane in such a way that no edges cross. A few
examples are illustrated in Figure 7:

Figure 7: A Few Planar Graphs

The following are a few examples of non-planar graphs, or graphs for which all em-
beddings contain edge crossings:

Figure 8: Non-Planar Graphs

Planar graphs can be drawn in a way where edges do cross. In this case, we call the
graph drawn without edge crossings a plane graph. Such is the case in the Figure 9.
Both illustrations represent the same planar graph, but one drawing is a plane graph,
while the other is not.
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Figure 9: Two Possible Drawings of a Planar Graph

An important formula for planar graphs is Euler’s Formula.

Euler’s Formula. If G is a plane graph, then n(G)� e(G) + f(G) = 2.

From this point forward, we will assume that n(G) = |V (G)|, e(G) = |E(G)| and
f(G) is the number of faces in G. A face is a maximal region of the plane that
contains no point used in the embedding of the graph. Every plane graph contains
one unbounded face.

1.6.1 The Planar Dual Graph

An important property of plane graphs is that their dual graph can be drawn in the
2-dimensional plane. The dual graph of a plane graph G, denoted G⇤, is obtained by
placing a vertex in each face of G, and placing an edge anywhere two faces of G are
separated by an edge of G. A simple example is illustrated below. The graph on the
right has the dual graph illustrated in red.

Figure 10: A Graph and its Dual Graph

A bond in G corresponds to a cycle in G⇤, as illustrated by the edges labeled 1, 2, 3.
On the left, we see the bond {1, 2, 3} in the original graph. The corresponding edges
in the dual graph create the cycle {1, 2, 3}. Remember that we call the largest cycle
in a graph its circumference, c(G). A largest cycle in the dual graph c(G⇤) will be
equal in size to the largest bond in the original graph, denoted c⇤(G).

7



If G is a plane graph then n(G⇤) = f(G), e(G⇤) = e(G), f(G⇤) = n(G).

The original graph in Figure 10 is not 3-connected, as the two vertices incident to
edge 2 create a cut set of size 2. As a result, the dual graph is a multigraph. However,
the dual graph of a simple 3-connected plane graph will also be a simple 3-connected
plane graph.

1.7 Dual Hamiltonian Graphs

In Figure 10, the original graph G has bonds of size 2 and 3. We know that {1, 2, 3}
is a bond of size 3. One example of a bond of size two is the two edges incident to
the top right vertex. The largest bond has size 3. Exactly how large can a bond be?

Proposition 1. Let G be a connected graph. Then every bond in G has size
 |E(G)|� |V (G)|+ 2.

Proof. Let G be a connected graph which contains a bond B. The re-
moval ofB will separateG into two components,H1 andH2. B will have
size |E(G)|� |E(H1)|� |E(H2)|. Let n1 be the number of vertices inH1

and n2 be the number of vertices in H2. For H1 and H2 to be connected,
they must contain at least n1 � 1 and n2 � 1 edges, respectively. Thus
|B|  |E(G)|� (n1 � 1)� (n2 � 1) = |E(G)|� (n1 + n2) + 2. Since all
of the vertices in G are contained in either H1 or H2, n1+n2 = |V (G)|.
Then |B|  |E(G)|� |V (G)|+ 2.

A graph G is called dual Hamiltonian if it contains a bond of size |E(G)|� |V (G)|+2.

As previously discussed, a bond in a plane graphG corresponds to a cycle inG⇤. In our
previous example from Figure 10, the bond {1, 2, 3} had size |E(G)|� |V (G)|+2. The
corresponding cycle in the dual graph is a Hamiltonian cycle. Thus, it makes sense
that a graph whose largest bond attains this bound would be called dual Hamiltonian.

8



Chapter 2

The Main Problem

2.1 The Conjecture

There are many known results about a multitude of aspects of graph connectivity;
however, there are very few results about the largest bond size in a general graph. We
know that an upper bound on bond size for a connected graph is |E(G)|� |V (G)|+2.
In 2015, Ding, Dziobiak, and Wu [3] raised the following conjecture about the lower
bound on the largest bond size in a 3-connected graph:

Conjecture 1 (Ding, Dziobiak, Wu, 2015 [3]). Any simple 3-connected graph
G will have a largest bond with size at least ⌦(nlog32) where n = |V (G)|.

In this thesis, we will verify this conjecture for a variety of graph classes including
planar graphs, complete graphs, ladders, Möbius ladders and circular ladders, com-
plete bipartite graphs, the generalized Petersen graph, some unique (3, g)-cages and
some small hypercubes.

2.2 Some Known Results

2.2.1 The Lower Bound on Bond Size in a 3-connected Graph

In 2015, Ding, Dziobiak and Wu [3] proved the following lower bound for 3-connected
graphs:

Theorem 2 (Ding, Dziobiak, Wu, 2015 [3]). Any simple 3-connected graph G
contains a bond of size at least 2

17

p
logn.
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2.2.2 The Largest Cycle in a Planar Graph

In a previous section, we discussed planar graphs and their duals. Recall that a the
dual graph of a simple 3-connected plane graph is also a simple 3-connected plane
graph, and that a cycle in the dual graph will correspond to a bond in the original
graph. While the largest bond size of a planar graph has not been proven, we have
some useful results about the largest cycle.

Theorem 3 (Chen, Yu 2002 [2]). Let G be a simple 3-connected planar graph
on n vertices. Then c(G) � nlog32.

2.2.3 Results About Dual Hamiltonian Graphs

As previously stated, a dual Hamiltonian graph will possess a bond B which satisfies
the condition |B| = |E(G)|� |V (G)|+ 2.

Proposition 2. A connected graph is dual Hamiltonian if and only if its vertex
set can be partitioned into two subsets whose induced subgraphs are trees.

Proof. ()) Let G be a dual Hamiltonian graph. Then G has a maxi-
mum bond B with size |E(G)|�|V (G)|+2. Then G�B has exactly two
connected components G1 and G2 with n1 and n2 vertices, respectively.
Thus, |E(G1)| � n1 � 1 and |E(G2)| � n2 � 1. |E(G)| � |V (G)| + 2 =
|B| = |E(G)| � |E(G1)| � |E(G2)| � |E(G)|� (n1 � 1)� (n2 � 1) =
|E(G)|� (n1 + n2) + 2 = |E(G)|� |V (G)|+ 2. Then |E(G1)| = n1 � 1
and |E(G2)| = n2 � 1. Thus both G1 and G2 are indeed trees.
(() Conversely, if both G1 and G2 are trees, it is easily seen from the
above proof that the corresponding bond has size |E(G)| � |V (G)| +
2.

In addition, Aldred et al. observed the following:

Proposition 3 (Aldred, Van Dyck, Brinkmann, Fack, McKay 2008 [1]). If a
dual Hamiltonian graph is regular with degree � 3, the partition of the vertex
set from the largest bond will result in two sets of equal size.

10



Chapter 3

Main Results

3.1 Introduction

In this section we will verify Conjecture 1 for a number of graph classes. The graphs
discussed will include planar graphs, complete graphs, ladders, Möbius ladders and
circular ladders, complete bipartite graphs, the generalized Petersen graph, a few
unique (3, g)-cages, and some small hypercubes. We will also prove that many of
these graphs are dual Hamiltonian.

3.2 Planar Graphs

As previously discussed, a planar graph has an embedding in the plane with no edge
crossings.

Recall Theorem 3 from Section 2.2.2. We will use this theorem to verify Conjecture
1 for planar graphs as follows:

Theorem 4. Let G be a 3-connected planar graph. Then c⇤(G) = ⌦(nlog32).

Proof. We may assume that G is a 3-connected plane graph. Let G⇤

be the dual graph of G. We know that n(G⇤) = f(G) and, by Euler’s
Formula, n(G)�e(G)+f(G) = 2. Note that 2|E(G)| =

P
v2V (G) d(v) �

3[n(G)] as G is 3-connected. So e(G) � 3
2n(G). Then f(G) = e(G) �

n(G)+2 � 3
2n(G)� n(G) + 2 > 1

2n(G). Hence, by Theorem 3, c⇤(G) =
c(G⇤) � [n(G⇤)]log32 = [f(G)]log32 > [12n(G)]log32 = (12)

log32[n(G)]log32.
Thus c⇤(G) = ⌦(nlog32).

11



3.2.1 Complete Graphs

A complete graph is one where each vertex is adjacent to every other vertex in the
graph. A complete graph on n vertices is denoted K

n

. Subsequently, complete graphs
on n vertices are (n� 1)-regular. A few examples are illustrated below.

Figure 11: K3, K4, K5

Theorem 5. The largest bond in K
n

has size
⌅
n

2

⇧⌃
n

2

⌥

Proof. Deleting any bond from a graph leaves two connected compo-
nents. Since each vertex in a complete graph is adjacent to every other
vertex, the size of a bond will be the product of the sizes of the two
components it creates. The largest possible product results from par-
titioning the vertex set into {X, Y } with |X| � |Y | being minimum.
These sets will have size

⌅
n

2

⇧
and

⌃
n

2

⌥
.

Clearly, this bond size confirms the conjecture.

3.3 Dual Hamiltonian Graphs

As previously discussed, a dual Hamiltonian graph is one whose largest bond meets
the upper bound on bond size, |E(G)| � |V (G)| + 2. The existence of such a bond
can be proven by showing that the vertices of a graph can be partitioned into two
subsets, each of which induces a tree. A 3-connected graph which is dual Hamiltonian
clearly confirms the conjecture that the largest bond size is at least ⌦(nlog32) as
|E(G)| � |V (G)| + 2 � 3

2 |V (G)|� |V (G)|+ 2 = 1
2 |V (G)| + 2 > 1

2 |V (G)|. We will
explore a few di↵erent graph classes for which dual Hamiltonicity can be proven.

3.3.1 Ladders, Möbius Ladders, and Circular Ladders

A ladder is a graph obtained from two paths of length n, and edges joining corre-
sponding vertices in the paths. These edges are called rungs.

12



Figure 12: A Ladder Graph

Theorem 6. Any ladder graph is dual Hamiltonian.

Proof. Let G be a ladder graph with 2n vertices. G will have 3n � 2
edges. We can partition the vertices of G into two sets, each of which
induces a path of length n. Then the rungs of G will create a bond of
size n = (3n� 2)� 2n + 2 = |E(G)|� |V (G)| + 2. Thus, the ladder is
dual Hamiltonian.

Figure 13 illustrates a maximum bond on the ladder graph, shown in blue.

Figure 13: A Maximum Bond in a Ladder Graph

A Möbius ladder is a graph obtained from an n-cycle where n is even, and each
opposite vertex is joined a rung.

The Möbius ladder can also be illustrated with a ladder like structure, where the
opposite vertices on each end of the ladder are adjacent. Figure 14 illustrates this
embedding.

Figure 14: The Möbius Ladder

13



Theorem 7. The Möbius ladder is dual Hamiltonian.

Proof. Let G be a Möbius ladder with 2n vertices. We know that the
maximum possible bond size for any graph is |E(G)|� |V (G)|+2. Since
the Möbius Ladder is cubic, it will have 3

2(2n) = 3n edges. Thus the
largest possible bond in a Möbius Ladder will have size 3n� 2n + 2 =
n + 2. In any Möbius Ladder, a bond can be formed by removing
each of the rungs (of which there are n) and then removing any two
additional non-incident edges, such as those connecting the vertices
at each end of the ladder. Since this always provides a bond of size
|E(G)|� |V (G)|+ 2 = 3n� 2n+ 2 = n+ 2, the Möbius ladder is dual
Hamiltonian.

Such a bond is illustrated in blue in Figure 15.

Figure 15: A Maximum Bond in the Möbius Ladder

The circular ladder graph is a graph obtained from two n-cycles where corresponding
vertices from each cycle are made adjacent by a rung. Such a graph is sometimes
referred to as a prism graph.

Figure 16: A Circular Ladder
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Theorem 8. The circular ladder is dual Hamiltonian.

Proof. Let G be a circular ladder graph with 2n vertices where n � 3.
G will have 3n edges. We can partition of the vertices of G into two sets,
each of which induces a cycle of length n. We can then ensure that the
induced subgraphs of this partition are trees by swapping the first vertex
of one cycle with the last vertex of the other. The resulting bond will
include 2 edges from each of the original cycles and all but 2 rungs. This
bond will have size 4+(n�2) = n+2 = 3n�2n+2 = |E(G)|�|V (G)|+2.
Thus, the circular ladder is dual Hamiltonian.

Figure 17 illustrates the proof of Theorem 8. The induced graphs of the new vertex
sets are shown in red and black and the bond is shown in blue.

Figure 17: A Maximum Bond in a Circular Ladder

3.3.2 The Complete Bipartite Graph

A bipartite graph is a graph whose vertices can be divided into two disjoint sets (S, T )
with s and t vertices, respectively, such that no vertex is adjacent to another vertex
within the same set. The complete bipartite graph, denoted K

s,t

, is a bipartite graph
in which each vertex from the first set is adjacent to every vertex in the second set.
In Figure 18, the graph on the left is bipartite, while the graph on the right is a
complete bipartite graph.
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Figure 18: Examples of Bipartite Graphs

Theorem 9. Any Complete Bipartite Graph is Dual Hamiltonian.

Proof. Let G be a complete bipartite graph K
s,t

with vertex
partitions S and T . Let |S| = s and |T | = t so that s+ t = |V |.
Select one vertex a from S. The vertex a will form an induced
tree when joined with all but one vertex b in T . Moreover, b
will then form an induced tree when joined with every vertex in
S, except a. The first tree contains t � 1 edges, and the second
contains s � 1. There are then |E(G)| � (s � 1) � (t � 1) =
|E(G)|� (s+ t)+ 2 = |E(G)|� |V (G)|+2 edges in the resulting
bond. Thus K

s,t

is dual Hamiltonian.

The proof of Theorem 9 is illustrated in Figure 19. The two trees are shown in red
and black and the bond in blue.

Figure 19: A Maximum Bond in K3,3
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3.3.3 The Generalized Petersen Graph

The graph below is the Petersen graph.

Figure 20: The Petersen Graph

The generalized Petersen graphs are a class of graphs which follow a similar design.
The generalized Petersen graph, denoted P (n, k) for n � 3 and 1  k < n

2 , is defined
as follows:

• The vertex set is {a1, a2, ..., an, b1, b2, ..., bn}.

• The edge set is composed of {a
i

a
i+1, aibi, bibi+k

: i = 1, ..., n} where subscripts
are read modulo n.

The generalized Petersen graphs satisfy the following conditions:

• The graph has 2n total vertices.

• The graph has 3n total edges.

• The graph is 3-regular.

Figure 21: P (7, 3)

As previously stated, a graph is dual Hamiltonian if its vertex set can be partitioned
into two sets whose induced subgraphs are trees. In addition, if the graph is regular
with degree r � 3, then these two parts must be equal in size.
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Since the generalized Petersen graph is 3-regular, it will be dual Hamiltonian if its
vertex set can be separated into two parts of equal size whose induced subgraphs are
trees. Since P (n, k) has 2n total vertices, each of these parts must contain n vertices.

Theorem 10. P (n, k) is dual Hamiltonian and has at least n dual Hamiltonian
cycles.

Proof. Let V (P (n, k)) = {a1, a2, ..., an} [ {b1, b2, ..., bn} where a
i

⇠ b
i

,
a
i

⇠ a
i+1, bi ⇠ b

i+k

where index is read mod n, 1  k < n

2 .

Let L = {a1, a2, ...an�k

, b1, b2, ..., bk},M = {a
n�k+1, ..., an, bk+1, ..., bn}, B =

{b
k+1, bk+2, ..., bn}, B = {b1, b2, ..., bn}. Clearly, G[L] is a tree. We need

only show that G[M ] is also a tree.
In P (n, k), we show that

(i) G[M ] is connected, and

(ii) G[M ] is acyclic.

First, we show that G[M ] is connected. We need only show that
for any i, k + 1  i  n� k, there is a path between b

i

to B1 =
{b

n�k+1, bn�k+2, ..., bn}. B1 ✓ B as k < n

2 . By the definition of P (n, k),
b
i

⇠ b
i+k

, b
i+k

⇠ b
i+2k, etc. We assume that i + tk is the greatest pos-

itive integer  n� k for t � 0. Then, as |B1| = k, we conclude that
n � k + 1  i+ (t+ 1)k  n. Therefore, there is a path from b

i

to
b
i+(t+1)k which is in B1. Thus, we conclude that G[M ] is connected.

Next we show that G[M ] has no cycles.

(a) We show that G[B] consists of the union of some vertex disjoint
cycles and each such cycle meets {b1, b2, ..., bk}. In fact, as each
vertex in G[B] clearly has degree two, G[B] is a vertex disjoint
union of cycles. Now we show that each cycle meets {b1, b2, ..., bk}.
Let C be such a cycle and b

t

2 V (C). We may assume that t > k.
Then by the proof of (i), b

t

is connected by a path to some vertex
b
i

where n � k + 1  i  n. Clearly, b
i

is adjacent to some vertex
in {b1, b2, ..., bk}. Thus, (a) holds.

(b) If both b
i

, b
j

are in a cycle C of G[B] where n� k + 1  i 6= j  n,
then any path in C connecting b

i

and b
j

contains some b
s

where
1  s  k. We may assume that i < j. There are two paths in C
connecting b

i

and b
j

. In the b
i

, b
j

-path, the neighbor of b
i

must be
in {b1, b2, ..., bk} as n � k + 1  i  n; while in the b

j

, b
i

-path, the
neighbor of b

j

must be in {b1, b2, ..., bk} as n� k+1  j  n. Thus
(b) is true.

By (a) and (b), G[B] consists of vertex disjoint paths as all of {b1, b2, ..., bk}
are removed from B. Moreover, as each of b

i

(n � k + 1  i  n) is

18



adjacent to some vertex in {b1, b2, ..., bk}, bi has degree one in G[B] and
there is no b

i

, b
j

-path between any b
i

and b
j

for n� k + 1  i 6= j  n
by (b). We conclude that G[M ] is acyclic, and thus is a tree by (i).

Therefore, P (n, k) is dual Hamiltonian. By symmetry, P (n, k) has at
least n such dual Hamiltonian cycles.

The proof above is demonstrated in Figure 22 on the Petersen graph (P (5, 2)), and
in Figure 23 on P (7, 3). L is shown in red and M is shown in black. The bond is
shown in blue.

Figure 22: A Maximum Bond in the Petersen Graph (P (5, 2))

Figure 23: A Maximum Bond in P (7, 3)

3.3.4 Unique (3, g)-Cages

Given fixed values of r and g, a cage graph is an r-regular graph with the minimum
possible number of vertices to obtain a graph with girth g. Such a graph is denoted
as an (r, g)-cage. While some cages are known and can be satisfied by many possible
graphs, others are known and unique, and many cages are still unknown. The (r, 3)-
cages are complete graphs on r + 1 vertices and (r, 4)-cages are complete bipartite
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graphs K
r,r

. Complete graphs and complete bipartite graphs have already been dis-
cussed in this thesis. In this section, we will discuss results on a few of the known,
unique (3, g)-cages. The (3,3)-cage is the complete graph K4, the (3,4)-cage is the
complete bipartite graph K3,3. The unique (3,5)-cage is the Petersen graph. As such,
we will begin with the (3,6)-cage, also known as the Heawood graph.

Proposition 4. The (3,6)-cage (Heawood graph), (3,7)-cage (McGee graph),
(3,8)-cage (Levi graph or Tutte-Coxeter graph), and the (3,11)-cage (Balaban
11-cage) are all dual Hamiltonian.

The following figures demonstrate partitions of the vertex sets of these cages whose
induced subgraphs are trees, shown in red and black, which give a maximum possible
bond (illustrated in blue). The (3,9)-cages and (3,10)-cages were not studied, as they
are not unique.

The (3,6)-cage, or the Heawood graph, with a maximum possible bond of size |E|�
|V |+ 2 = 21� 14 + 2 = 9:

Figure 24: A Maximum Bond on the (3,6)-Cage

20



The (3,7)-cage, or the McGee graph, with a maximum possible bond of size |E| �
|V |+ 2 = 36� 24 + 2 = 14:

Figure 25: A Maximum Bond on the (3,7)-Cage
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The (3,8)-cage, also known as the Tutte-Coxeter graph or the Levi graph, with a
maximum possible bond of size |E|� |V |+ 2 = 45� 30 + 2 = 17:

Figure 26: A Maximum Bond on the (3,8)-Cage
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The (3,11)-cage, or the Balaban 11-cage, with a maximum possible bond of size
|E|� |V |+ 2 = 168� 112 + 2 = 58:

Figure 27: A Maximum Bond on the (3,11)-Cage
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3.4 A Conjecture on Hypercubes

A hypercube, typically written as an n-cube for n � 2, is a cube in n dimensions. To
illustrate this concept, we will begin with a 2-cube, a cube in two dimensions. Each
vertex in the 2-cube is labeled as follows:

Figure 28: The 2-cube

n-cubes can be created iteratively. To build a 3-cube, we will take two copies of a
2-cube. In the first copy, a “0” will be added to the end of the number sequence
label on each vertex. In the second copy, each vertex label will gain a “1”. Then
corresponding vertices in the first and second copy will be made adjacent. Thus, each
vertex is adjacent to any other vertex whose number sequence label di↵ers from its
own by only one digit.

Figure 29: The 3-cube

This same process can be repeated by using two copies of the 3-cube to obtain the
4-cube, two copies of the 4-cube to obtain the 5-cube, and so on such that two copies
of the (n � 1)-cube are used to obtain the n-cube. As dimensions increase, visual
representations of n-cubes become increasingly di�cult.

Hypercubes are often used in studying computer networks.

As we know from previous sections, a graph is dual Hamiltonian if its vertex set can
be partitioned into two sets, each of which induces a tree. If the graph is regular (as
is the hypercube) these sets will be equal in size. Using this property, we prove the
following results for the n-cube in dimensions 2 through 5.
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Proposition 5. The 2-cube is Dual Hamiltonian.

Proof. There are a few possible bonds which will satisfy that the 2-cube
is Dual Hamiltonian; however, only one bond is necessary to prove this
to be true. In the figure below, the bond is illustrated in blue, while
the induced subgraphs on the vertex subsets S and T are illustrated in
black and red.

Figure 30: A Maximum Bond in the 2-Cube

S = {01, 11}
T = {00, 10}

Proposition 6. The 3-cube is Dual Hamiltonian.

Proof. Like the 2-cube, there are many possible bonds to satisfy that
the 3-cube is Dual Hamiltonian. We will show one example of a working
bond of maximum size that satisfies partitioning the vertices of the 3-
cube into two subsets S and T whose induced subgraphs are trees,
illustrated in black and red. The bond, once more, is shown in blue.

Figure 31: A Maximum Bond in the 3-Cube

S = {011, 001, 111, 100}
T = {010, 110, 111, 101}
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Proposition 7. The 4-cube is Dual Hamiltonain.

Proof. Since visualization becomes di�cult when working with cubes
in higher dimensions, we will provide the two subsets of the vertices
of the 4-cube S and T whose induced subgraphs are trees. Based on
previous theorems, such a partition is satisfactory to prove dual Hamil-
tonicity. Although there are many possible partitions, the following
example satisfies the necessary conditions.

Figure 32: A Maximum Bond in the 4-Cube

S = {0111, 0011, 0001, 0010, 1010, 1110, 1100, 1001}
T = {1000, 0000, 0100, 0110, 0101, 1101, 1111, 1011}

Proposition 8. The 5-cube is Dual Hamiltonain.

Proof. Similarly to the 4-cube, we will provide an example of a partition
of the vertices of the 5-cube into sets S and T , each of which induces a
tree. Thus, by previous theorems, the 5-cube is dual Hamiltonian.

26



Figure 33: A Maximum Bond in the 5-Cube

S = {11000, 11001, 11011, 10011, 10010, 00010, 01001, 00001, 00101,
10101, 10100, 00111, 01111, 01110, 01100, 11110}

T = {11100, 11101, 01101, 11111, 10111, 10110, 00110, 00100, 00000,
10000, 10001, 01000, 01010, 01011, 00011, 11010}

Although it has proven di�cult to provide a proof of dual Hamiltonicity for the general
case of the hypercube, the prior results have led us to raise the following conjecture:

Conjecture 2. All hypercubes are dual Hamiltonian.
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Chapter 4

Further Study

In summary, our results have made strides towards verifying the conjecture raised by
Ding, Dziobiak, and Wu that the largest bond size for any simple 3-connected graph
is at least ⌦(nlog32) [3] and have also proven the existence of even larger bonds for a
variety of classes. We have shown that the conjecture is verified for planar graphs,
complete graphs, ladders, Möbius ladders and circular ladders, complete bipartite
graphs, the generalized Petersen graph, a few known unique (3, g)-cages, and some
small hypercubes. Furthermore, we have proven that the complete bipartite graph,
ladders, Möbius ladders and circular ladders, the generalized Petersen graph, a few
known unique (3, g)-cages, and some small hypercubes are dual Hamiltonian, and
have raised a conjecture that states that all hypercubes are dual Hamiltonian.

For further study, we would like to work to verify the conjecture about maximum bond
size for more classes of graphs, potentially including triangle-free graphs, product
graphs and grids, and eventually verify the conjecture for the general case.

We would also like to further study the hypercube to continue looking for a pattern
or algorithm that may prove dual Hamiltonicity for the general case.
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