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ABSTRACT 

Jacqueline Morris1, Lisa L. Wilson1, Christopher R. McCurdy1 

1Department of BioMolecular Sciences, Division of Medicinal Chemistry and 
Division of Pharmacology, University of Mississippi, University, MS 38677 

 

Sigma receptors have become a popular subject for research the past few 

decades, but there is still much mystery behind these receptors and how they 

work. Sigma receptors, like cannabinoid-1 (CB1) receptors, have effects on the 

human body including appetite regulation, depression, and analgesia. AZ66 is a 

highly selective sigma receptor ligand that has antagonistic properties.  Sigma 

receptor antagonists have been shown to potentiate the analgesic effects of 

opiates; however, there are no known literature reports about the interaction 

between the sigma receptor system and the endocannabinoid system, including 

CB1 receptors. The purpose of this study is to evaluate AZ66 for potentiation of 

CB1 related analgesic effects. A tetrad assay was performed for AZ66 using 

doses 5, 10, and 20 mg/kg (i.p.). The tetrad battery was performed one hour post 

drug (AZ66) administration. The potentiation study was completed using a 20 

mg/kg dose of AZ66 against a 0.3 mg/kg dose of CP 55940. The AZ66 dose was 

administered one hour before the CP 55940 dose administration, and then the 

analgesic study was performed 15 minutes post CP 55940 dose administration. 

The tetrad assay showed that AZ66 exhibited no analgesic effects on its own 

compared to the control compounds. The potentiation study resulted in significant 

potentiation of the peripheral analgesic effects of CP 55940 with the addition of 
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AZ66 and insignificant potentiation of central analgesic effects.  Future studies 

will be performed to validate the findings of this study and to further examine the 

interaction between the sigma receptor system and the cannabinoid system.   
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I. Background 
 
Marijuana, or cannabis, is not simply just one drug; it is a plant made up of 

numerous different components that all have varying effects on the human body. 

Cannabis has been used recreationally for thousands of years, but little was 

known about the plant and its capabilities up to a few decades ago [1]. Interest 

and research on this plant has skyrocketed due to advances in technology, 

starting in the 1960’s with the isolation and synthesis of one of the major 

compounds: (-)9-tetrahydrocannabinol (THC) [1]. This compound is well-known 

because it is the primary psychoactive component of cannabis that gives the 

most effective “high” feeling sought after by recreational users [2]. Cannabidiol 

(CBD) is another type of cannabinoid that is well known for its positive 

pharmacological effects and lack of psychoactivity [2]. THC and CBD, however, 

are only two of 105 cannabinoids discovered so far in cannabis, all having 

varying psychoactive, analgesic, and behavioral effects [3]. Cannabinoids are 

classes of compounds that are isolated from the plant matrix and have the 

potential to interact with the endocannabinoid system in the body by modulating 

cannabinoid receptors [2]. Cannabis research took a new direction by focusing 

on the endocannabinoid system and the function and manipulation of 

cannabinoid receptors.  

The endocannabinoid system was first realized in the 1980’s when two 

separate cannabinoid receptors were hypothesized based on pharmacological 
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studies [1]. They were termed CB1 and CB2, and research uncovered that they 

are both G-coupled protein receptors (GPCRs) [1]. Research on the 

endocannabinoid system and the effects of endocannabinoids on its receptors 

has grown in popularity because of the system’s effects on physical and 

pathological functions of the body such as motor activity, short-term memory, 

stress response, appetite, anxiety, and analgesia [2,4]. CB1 and CB2 receptors 

are located in different parts of the body and therefore produce varied effects.  

CB1 receptors are found in the spinal cord and the higher brain areas like the 

basal ganglia, cerebellum, hippocampus, and hypothalamus, and they produce 

the typical acute effects of cannabinoids like THC [4]. CB2 receptors, on the 

other hand, are found mainly in immune tissues and elicit analgesic and anti-

inflammatory responses in the body [1]. Knowledge of the physiological 

components of the endocannabinoid system and the pharmacological effects of 

the system has aided the research of medical and therapeutic uses of marijuana.  

There are many accounts of cannabis and its prominent usage in medicine in 

early Indian and Greek literature [5]. It was not until the early 20th century that the 

United States government classified marijuana as a Schedule 1 substance, 

making the usage of marijuana illegal and the research of marijuana incredibly 

difficult [5]. Schedule 1 drugs are identified as having a high potential of addiction 

with no medical benefit [4]. This classification contradicts the majority of 

marijuana research, and this is why the push for marijuana to be taken off of the 

Schedule 1 classification and legalized is gaining momentum in the United 

States. Due to the lack of research, the process is hindered because research 
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and standardization of marijuana are limited due to current policy that is difficult 

to change [4]. Despite the stagnant policies, there are already numerous 

approved medial uses of cannabinoids. The FDA has approved THC treatments 

for cachexia from HIV/AIDS and vomiting resulting from chemotherapy [6]. 

Canada and countries in Europe have also approved marijuana for treatment of 

spasticity from multiple sclerosis [6]. Marijuana use has been further 

recommended for anorexia, glaucoma, arthritis, migraines, and chronic pain [4].  

There are numerous recent studies looking at the treatment of chronic pain by 

the suppression of hyperalgesia and allodynia using endocannabinoids or 

synthetic cannabinoids because the potential for addiction and abuse are vastly 

lower than with the use of narcotics for pain [5]. This study analyzes the 

interaction of the sigma receptor system with the endocannabinoid system to 

suppress pain.  

The sigma receptor system was discovered by accident a decade after the 

endocannabinoid system was discovered, and the sigma receptor was initially 

believed to be an opioid receptor subtype [7]. This is because the first study 

performed used a ligand that allowed a cross reaction between the opioid and 

sigma receptors [7]. Almost ten years later, the two receptors were differentiated 

by using a ligand that did not cross react, and the new receptor was termed the 

sigma receptor [7]. Since then, two subtypes of receptors have been found in this 

system; sigma-1 receptor and sigma-2 receptor. There has been extensive 

research on the biological and physiological roles of sigma-1 since it was cloned 

from a guinea pig in 1996, but sigma-2 has still yet to be cloned or extensively 
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researched [8]. Sigma-1 is a chaperone molecule in the endoplasmic reticulum 

and plasma membrane of cells [9]. Sigma-1 receptors also are known to regulate 

neurotransmitter systems that are involved in numerous neuropsychiatric 

disorders [8]. This receptor plays a role in the addiction processes, depression, 

Alzheimer’s disease, Parkinson’s disease, Schizophrenia, and most notably for 

this experiment, pain [8,9]. Sigma receptors can react with a variety of 

compounds like opiates, neuroleptics, antihistamines, and antidepressants [10].   

There have been numerous studies of sigma receptors and pain using sigma-

1 receptor agonist and antagonists. There has been successful research since 

the 1990’s on the interaction with opioid receptors to mediate opioid analgesics. 

[8]. Sigma-1 agonists have shown attenuation of opioid analgesics while sigma-1 

antagonists show potentiation of opioid analgesia [7]. Sigma-1 receptors actually 

increase the intrinsic activity of opioids by shifting the dose-response curve 

leftward for stimulation yet not affecting the maximum stimulation by the opioid or 

the binding affinity of the opioid to its receptor [11]. The potentiation of opioid 

activity is a potential answer to the age old question of how to separate the pain 

treatment of opioids from the abuse potential and adverse effects such as 

constipation and respiratory depression [11]. This thought process was applied to 

this experiment, except analyzing the prospective potentiation of 

endocannabinoid analgesia by a sigma receptor antagonist without potentiation 

of the adverse psychoactive effects the activation of the endocannabinoid 

system.  
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Opiates and cannabinoids are both potent analgesics, and their receptor 

systems have several similarities. While there are two sigma receptor subtypes, 

sigma-1 and sigma-2, there are four identified opioid receptor subtypes- mu 

(MOP), delta (DOP), kappa (KOP), and nociceptin (NOP) [12,13]. Of the four 

opioid receptors, three are considered to be the classical opioid receptors; MOP, 

DOP, and KOP. The activation of opioid or cannabinoid receptors both cause 

behavioral effects such as anti-nociception, sedation, hypothermia, hypotension, 

and motor depression, which suggests a similar mechanism of action and 

dispersal [12,14]. Both receptor types are also found in central nervous system 

(CNS) regions participating in anti-nociception, most notably localized in the 

superficial dorsal horn of the spinal cord where the nociceptive afferents make 

initial synaptic contact with the central nervous system [12,14]. Both receptor 

types are G-coupled protein receptors (GPCRs), so both have signal 

transduction properties that signal the G-protein alpha subunit to target the cAMP 

pathway [14]. The anti-nociception of both receptors occurs from the inhibition of 

cAMP production which activates MAP kinases by a second messaging system, 

and neurotransmitter release is inhibited by the inhibition of calcium channels 

and stimulation of potassium channels, causing an inhibitory post-synaptic 

potential [12]. This shared transduction pathway is confirmed by the location of 

both receptor types on presynaptic neuron terminals. [12]. Because of these 

anatomical and transduction pathway similarities and the confirmed potentiation 

of opioid analgesia by sigma ligands, the idea of the potentiation of cannabinoid 

analgesia by sigma ligands is examined in this experiment.  
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In this experiment, we examined the role of the synthetic and highly selective 

sigma receptor antagonist ligand AZ66 with CP 55,940, a synthetic agonist of the 

CB1 and CB2 receptors. CP 55,940 mimics the properties of THC, but it is ten 

times more potent than THC and possesses none of the depressive effects of 

THC. AZ66 is a highly selective antagonist to sigma receptors, and it has shown 

anti-convulsion and anti-psychotic effects like other sigma antagonists [10]. 

There will be many windows of opportunity to advance drug development with 

AZ66, but for this experiment the compound’s potentiation of CP 55,940 

analgesia was analyzed [15].   

 

 

II. Methods 
 

Synthesis of AZ66 

The sigma ligand AZ66 was synthesized through a six-step process shown in 

Figure 1. First 4-fluorroaniline (a), hydrochloride was made into compound b 

through reflux with NH4SCN in water for four hours and then recrystallization with 

ethanol. Compound b was refluxed with bromine in chloroform for two hours to 

form compound c.  Compound d was then formed by the mixture of compound c 

with KOH. Compound d was refluxed with carbonyl-1,1’-diimidazole for three 

hours to form compound e, which was then alkylated with 1,4-dibromopentane in 

DMF for three hours to form compound f. Lastly, compound f was mixed with 

cyclohexyl piperazine to form the AZ66 (g). The compound AZ66 was converted 
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to the hydrochloride salt for the following in vivo behavioral studies. 

 

Figure 1. The synthesis of AZ66. 

Subjects 

For this experiment adult, male C57BL/6 mice were used, each having a 

weight range of 18-25 grams. C57BL/6 were optimal subjects because they are 

more susceptible to the effects of drugs of abuse, and male subjects are used 

because the estrus cycle of female mice is known to possibly interfere with 

behavior studies, especially analgesic studies. Eight mice were used per study 

performed for both the tetrad assay and the analgesic study for statistical value; 

less than 6 mice would not work with ANOVA analysis, and over 8 would be 

considered an excess of loss of life. The drugs were delivered by intraperitoneal 

(i.p.) injection proportional to the weight of each mouse.  The mice were 

randomly divided into 10 groups for each the studies: 5 control groups and 5 

challenge groups.  

All methods performed were approved by the Institutional Animal Care and 

Use Committee (IACUC). Morphine was purchased from Sigma Aldrich 
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Procedures involving animals were performed according to the guidelines 

approved by the Institutional Animal Care and Use Committee (IACUC). 

Drug Preparation 

 CP 55,940 was acquired from Tocris Bioscience (Bristol, United Kingdom).  

AZ66 was synthesized by Dr. Christopher McCurdy’s lab (University of 

Mississippi, Oxford). Cremophor and ethanol were obtained from Sigma Aldrich 

(Bellefonte, PA).  All drugs were dissolved according to the methods of Olson et 

al (1973).  A mixture of Ethanol, Cremophor, and Saline was prepared using a 

ratio of (1:1:18).  Drugs were completely dissolved into ETOH before adding 

Cremophor and saline. Drugs were delivered to the animals using an 

intraperitoneal (i.p.) injection. 

Tetrad Assay 

 The tetrad assay was developed by Martin et al. (1994). The purpose of the 

tetrad assay was to determine the sedative and analgesic effects of the sigma 

ligand AZ66 alone by analyzing behavior changes due to the drug in question. 

Four behaviors are analyzed in this assay; mobility, catalepsy, hypothermia, and 

analgesia. Cannabinoids such as THC show changes in all four behavioral 

aspects, so this assay is often used to screen drugs for these cannabinoid-like 

effects. The cannabinoid agonist, CP 55,940 was used as the positive control, 

and the vehicle that AZ66 was dissolved in was used as the negative control. 

Three AZ66 doses of 5mg/kg dose, 10mg/kg dose, and 20mg/kg were used. For 

each trial, the subjects were acclimated to the chamber of the hotplate 24 hours 

in advance for 15 minutes each. The subjects were also acclimated to the testing 



 

 9 

room for 30 minutes on the day of the trial. The baseline readings for the 

hotplate, catalepsy, hypothermia, and tail flick assays were taken for each 

subject. The subjects were then injected i.p. with the drug dose, which took a 

maximum of thirty minutes to take effect. During this wait, the subjects were 

placed in the locomotor chambers for 30 minutes of acclimation. After these thirty 

minutes, the locomotor assay recorded the locomotor activity of each subject for 

thirty minutes. Each locomotor chamber was composed of 16 by 16 beam rays, 

and the computer recorded every time the subject broke a beam. These photo 

beam breaks were quantified as a measure of locomotor activity.  

The subjects then went through the hotplate assay. This assay analyzes the 

perceived analgesic effect of the drug. The subjects are placed on a hotplate at 

52C, and a glass cylinder was placed over them to ensure they stay on the 

hotplate. The latency of pain indicators was then analyzed by manually stopping 

the timer when cues such as licking, tapping, or adjusting the back paw on the 

side of the cylinder were observed. These actions were indicators that the 

subject began feeling pain from the heat of the hotplate. The maximum time the 

mouse was allowed on the hotplate was 45 seconds to prevent heat damage to 

the subject’s paws.  

Next, the subjects were placed in the catalepsy test to analyze the 

psychoactive effect of the drug. The subject was positioned so that its front paws 

rested on a metal bar while its back paws were on the tabletop. The time it took 

the subject to climb on or off the bar was manually recorded. Subjects that stay in 



 

 10 

the initial position for more than five seconds are considered cataleptic, or 

unaware of their surroundings.  

The subjects were then analyzed for hypothermia. The core temperature of 

the subjects was analyzed by a rectal temperature probe. Any changes in core 

body temperature from the baseline reading were recorded.  

The subjects were placed in the tail flick assay to analyze changes in reflex 

analgesia. For this assay, the subjects were placed in plastic restrainers to 

decrease movement that would disrupt the test. The subject was laid upside 

down on the surface of the machine with its tail extended in a ridge. A high-

energy beam of light then hit the distal part of the tail, and the machine measured 

the latency of the tail flick. The beam of light and timer automatically stopped 

when the subject moved its tail away from the beam.  

Potentiation Study 

The potentiation study was conducted to specifically measure the analgesic 

effects of the combination of AZ66 with a low dose of CP 55,940. The goal of this 

study was to see if the sigma receptor antagonist would potentiate the analgesic 

effects of CP 55,940. The hotplate and tail flick assays were used for this study 

with the same procedure as above. The subjects were acclimated to the hotplate 

assay for 15 minutes 24 hours prior to the trial, and on the day of the trial they 

were acclimated to the testing room for 30 minutes. After this acclimation period, 

the baseline readings for the hotplate and tail flick test were taken. Then the mice 

were injected i.p with either the (1:1:18) vehicle or 20 mg/kg AZ66 and then 

placed back in their cage for an hour. The subjects were then dosed with 0.3 
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mg/kg CP 55,940 or 5 mg/kg morphine and placed in their cage again for 15 

minutes. The 0.3 mg/kg CP 55,940 is a low enough dose to not produce any anti-

nociception on its own, so any anti-nociception observed in the trial would directly 

be linked to the potentiation effect of AZ66. The changes in analgesia were 

analyzed by the hotplate and tail flick assays.  

Data Analysis 

Data was shown as mean ± SEM. with each group having an n=8 animals.  

Both hotplate and tail flick were expressed as percent maximum effect 

(%MPE=[(post-drug latency-basal latency)/(cutoff latency-basal)]x 100 (Martin et. 

al, 1994). Statistical analysis was performed using one-way ANOVA preceded by 

the Dunnett’s post hoc test to define significant different against the vehicle 

control at p<0.05.  

 

 

III. Results and Discussion 

Tetrad Assay 

Figures 2-6 below summarize the results of the tetrad assay with the three 

doses of AZ66 compared to the CP 55,940 positive control and the (1:1:18) 

vehicle control. The point of the tetrad assay was to analyze if AZ66 had any 

behavioral effects on its own without the use of CP 55,940. If no effects were 

seen in the tetrad assay, then all analgesic effects seen in the potentiation study 

could be contributed to the potentiation of CP 55,940 only.  Figure 2 shows the 

locomotor activity effects of AZ66 compared to the vehicle and 1 mg/kg dose of 
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CP 55,940. The 1 mg/kg dose of CP 55,940 produced statistical significance with 

a p value <0.001 compared to the vehicle. All three doses of AZ66 showed no 

statistical significance compared to the vehicle. It can be inferred that there was 

much more locomotor activity with the AZ66 compared to the CP 55,940 dose.  

 

 

Figure 2: Locomotor activity post-injection of the three doses of AZ66 compared 
to CP 55,940 and (1:1:18) vehicle. 

 

Figure 3 illustrates the catalepsy effects of AZ66 with the positive 

and negative control. CP 55,940 showed significant latency, while the 

AZ66 doses showed virtually no change in latency. With AZ66 the 

subjects almost always hopped off the bar or changed positions 

immediately, showing no psychoactive effects.  
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Figure 3: The catalepsy latency post-injection of three doses of AZ66 compared 
to the 1 mg/kg dose CP 55,940 and the (1:1:18) vehicle. 

 

The hypothermia results are seen in Figure 4. CP 55,940 shows a 

significant decrease in core body temperature, whereas the AZ66 doses 

showed a slight, while statistically insignificant, increase in body 

temperature post injection compared to the vehicle. The vehicle showed 

mostly no change in body temperature.   
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Figure 4: The hypothermia effect post-injection of three doses of AZ66 compared 
to 1 mg/kg dose CP 55,940 and the (1:1:18) vehicle. 

 

Figures 5 and 6 show the analgesic effects of AZ66 alone 

compared to the vehicle and CP 55,940. Figure 5 shows the results of the 

hotplate assay with the three doses of AZ66, 1 mg/kg CP 55,940, and the 

(1:1:18) vehicle. Again, only the CP 55,940 dose showed significant 

latency, and the doses of AZ66 resembled the vehicle results. The 5 

mg/kg dose of AZ66 showed a decreased latency compared to the 

baseline, which is inconsistent with the results of the other AZ66 doses. 

Therefore, AZ66 does not have a large effect on perceived analgesia as 

compared to CP 55,940.  
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Figure 5: The hotplate latency post-injection of three doses of AZ66 compared to 
1 mg/kg dose CP 55,940 and the (1:1:18) vehicle. 

 

Figure 6 displays the reflex analgesic effects of AZ66 compared to 

CP 55,940 and the vehicle. The CP 55,940 dose showed significantly 

increased latency post injection, and the AZ66 doses showed mostly no 

change compared to the vehicle and baseline readings. AZ66 showed no 

analgesic effects on its own, as seen in Figures 5 and 6. This is important 

because any latency results in the potentiation study can be attributed to 

the potentiation of these effects from CP 55,940 and not from AZ66 itself.  
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Figure 6: The tail flick latency post-injection of three doses of AZ66 compared to 
1 mg/kg dose CP 55,940 and the (1:1:18) vehicle. 

 

Potentiation Study 

Figures 7 and 8 illustrate the results from the analgesic potentiation 

study. A 20 mg/kg dose of AZ66 was used with 0.3 mg/kg dose of CP 

55,940. The 0.3 mg/kg dose of CP 55,940 would itself fail to show 

significant analgesic effects due to the low dosage, so any significant 

results can be attributed to the successful potentiation of CP 55,940 with 

AZ66.  The negative control used was using two doses of the vehicle in 

the same fashion the dosage of CP 55,940 with AZ66. The vehicle was 

also used with CP 55,940 to contrast the effects of CP 55,940 with AZ66 

to the effects of CP 55,940 itself. Results from a previous study done in 
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Dr. McCurdy’s lab that analyzed the potentiation of a 5 mg/kg dose of 

morphine with AZ66 were also included. Since the potentiation of 

morphine with sigma receptor antagonists is already well documented, the 

morphine study was used to compare these potentiation results with the 

CP 55,940 potentiation results.  Figure 7 illustrates the latency results 

from the hotplate assay. The perceived analgesic effect of the 0.3 mg/kg 

dose of CP 55,940 was not significantly higher than the vehicle negative 

control. The latency results of the trial with CP 55,940 and AZ66 revealed 

a p value of <0.01 compared to the vehicle. Although the AZ66/morphine 

combination showed a greater effect with a p value of <0.001, the 

AZ66/CP 55,940 combination’s significant results infer that AZ66 did 

successfully potentiate the perceived analgesic effects of CP 55,940.  
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Figure 7: The hotplate latency shows the potentiation of perceived analgesic 
effects of 0.3 mg/kg CP 55,940 and 5 mg/kg morphine with 20 mg/kg AZ66.  

 

Figure 8 shows the results from the tail flick assay. The reflex analgesic 

effects of CP 55,940 alone were not significantly higher than the vehicle. 

The CP 55,940 potentiated with AZ66 did not show a significant increase 

in tail flick latency compared to the negative control Vh vs CP dosage. The 

AZ66 vs morphine combination showed a p value of <0.001. There was 

not a successful potentiation of the CP 55,940 reflex analgesia with AZ66 

compared to the large potentiation of morphine’s reflex analgesia by 

AZ66.  
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Figure 8: The tail flick latency shows the reflex analgesic effects of 0.3 mg/kg CP 
55,940 and 5 mg/kg morphine with 20 mg/kg AZ66.  
 

 

IV. Conclusion  

Since there was no previous knowledge or literature of any interaction 

between the sigma receptor system and the cannabinoid receptor system, this is 

the first study to indicate that sigma receptor antagonists can directly enhance 

the analgesic effects of cannabinoids. This data can create many new 

opportunities for further study and use of the sigma receptor system.  The use of 

sigma receptor antagonists with morphine is significant because this combination 

increases the analgesic effects of a low dose of morphine without increasing 
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adverse side effects such as constipation, tolerance, and addiction [11]. This 

logic can be applied to sigma receptor antagonists and cannabinoids because of 

the similarities of the opioid and cannabinoid systems. This study revealed an 

interaction between the cannabinoid system and the antagonism of sigma 

receptors, and it further indicated that the sigma receptor antagonist AZ66 

potentiates the analgesic effects of low doses of cannabinoids without increasing 

the psychoactive effects of the drug. Specifically, the analgesic study showed 

that AZ66 significantly potentiated the perceived analgesic effects of CP 55940, 

but it did not significantly increase the reflex analgesic effects. Nevertheless, the 

study supported the idea of interaction between the two systems, and it gives 

way into a potential new field of research for the drug delivery of medical 

marijuana. 

This study lays the groundwork for future research, but there are several 

studies to be performed to better understand the interaction between the 

cannabinoid system and sigma receptor antagonism. Because there are two 

types of sigma receptors, a current study is analyzing whether the analgesic 

potentiation of opiates and cannabinoids is from sigma-1 antagonists, sigma-2 

antagonists, or both. A timed study will be performed to deduce how long the 

potentiated effects last, and potentiation studies using varied doses of AZ66 will 

also be executed to find the optimal AZ66 dose. Lastly, research will also be 

conducted to analyze the modification of other behaviors besides analgesia 

through sigma receptor antagonists. These studies will help researchers better 
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understand the interaction between the sigma receptor system and the 

cannabinoid system for further study and applications.  
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