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Abstract

The light bending effects around cosmic strings in universes with varying rates

of expansion are investigated. A relationship between the angular deflection and the

expansion rate is found. This is made possible by the Blue Cheese model, which is a

generalization to a cylindrical realm of the Swiss Cheese model.
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1 Introduction

First theorized by Tom Kibble, cosmic strings are one-dimensional topological defects that

are believed to have been formed in the early universe during phase transitions [6]. They

are also believed to be on the order of a femtometer in diameter, which is why we, in this

model, treat the cosmic string as a line source with zero thickness. The cosmic string is

particularly interesting in spacetime because it behaves like flat space locally, and has a

conical shape globally [10]. As I will show later, this conical metric looks almost identi-

cal to Minkowski spacetime, except that it has a range on the azimuthal coordinate that is

not from 0 to 2π. This scaled down range is what creates the conical space and gives the

manifold a characteristic deficit angle. The discovery of cosmic strings would allow us to

better understand the link between small scale particle physics and large scale cosmology.

The discovery would give insight into numerous processes throughout the universe, in par-

ticular the physics of the early universe and galaxy formation [10].

Phase transitions can be typically seen in everyday thermodynamics. When water

freezes, ice is formed and this is known as a phase transition. Phase transitions are also

seen in cosmology, especially in the early universe. The universe rapidly cooling after the

big bang is a phase transition, and from this cosmic strings may have formed. Cosmic

strings are like cracks, or defects, that could have formed in the universe and as their name

implies, they may span cosmological distances, perhaps even the size of the universe. The

“great attractor” could also have some link to cosmic strings [9].

Cosmic strings may allow us to understand how galaxies are formed. The galaxies

could have possibly been formed after the formation of cosmic strings. Because of the
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immense density of these objects, they could have attracted the matter in the universe, and

caused them to form along the cosmic string’s axis.

In 2003, a galaxy image pair, Capodimonte-Sternberg-Lens Candidate number 1 or

CSL-1, was considered to be a great candidate for a cosmic string. This image pair was

initially observed by Mikhail Sazhin in the Capodimonte Deep Field. The twin galaxy

images were identical in shape, spectrum, luminosity, and redshift. The images were first

thought to have been produced by a straight cosmic string acting as a gravitational lens for

the galaxy. Later in 2005, new data from high quality imaging arose from the Hubble Space

Telescope asserting that these images were actually two separate galaxies and not a double

image produced by a cosmic string lens [1].

In addition to their unique lensing effects, cosmic strings may be observed in another

manner. Cosmic strings, as I’ve stated before, are incredibly dense and thus could produce

observable gravitational wave signals. These strings are not the straight, static strings I

will use in my simulation, however they contain “wiggles” or loops and move around in

spacetime. Due to the recent discovery of gravitational waves from a binary black hole sys-

tem by the Laser Interferometer Gravitational Wave Observatory, a new field of astronomy

is rising, and cosmic strings may be one of the more exotic objects to be detected in this

manner [9].

Cosmic strings are incredibly dense, and thus could be the source of gravitational

waves, however this paper focuses on another method of observation: gravitational lens-

ing. Gravitational lensing occurs when a massive object is between a source of light and

the light’s observer, and the object is able to bend the light significantly as it passes the

object. The lensing effects, as we will explore, are also thought to produce double images
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of the lensed object.

The “Swiss Cheese” Model is a model used to investigate the lensing effects of Black

Holes. The general idea is to carve a vacuum sphere out of a dust-filled Friedmann-

Lemaı̂tre-Robertson-Walker (FLRW) spacetime, which is an exact solution of the Einstein

equation, describing a homogenous and isotropic universe and place a Schwarzschild black

hole inside this region [5]. In a spacetime of this type, there are three regions: the interior

Schwarzschild, the spherical vacuum, and FLRW exterior. I will pursue a modified version

of this method for the case of a cosmic string, in which a long cylindrical region is carved

out of a FLRW spacetime with a cosmic string along its axis.

Later in Chapter 2, I will outline the formalism and units used, and describe more ef-

forts that have been previously made to characterize cosmic strings that are relevant to this

work. In Chapter 3, I will characterize the cosmic string’s gravitational effects, and derive

its effect on spacetime, i.e., its conical deficit angle. I will also derive the angular separation

between the double images. After that in Chapter 4, I will derive the boundary conditions

of the system to ensure continuity, and smoothness of the light ray’s trajectory. Chapter 5

shows the details of the simulation used to model this system, and Chapter 6 brings this

simulation into the expanding spacetime realm.
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2 Formalism and the model

Before I describe the nitty-gritty details, I’ll set out the formalism to be used in this work. I

use the standard –,+,+,+ spacetime metric signature. For most of the calculations cylindri-

cal coordinates (t, r, φ, z) are used. Generally, the z coordinate is ignored in calculations,

and the problem can effectively be seen as a (2 + 1)–dimensional polar coordinate space

problem. I do this because I can model the cosmic string as infinitely along the z-axis, and

thus has no effect on the motion in the polar plane. If the z axis is completely uniform, all

effects concerning this axis are equivalent, and, thus can be ignored.

The units in this paper are not the fundamental units (c = G = 1), however, we use

3× 108 m
s

(1)

to be the speed of light. This is done, so that we may find results in space to be in the “mks”

units, and not spacetime units. Newton’s constant is the standard

G = 6.67× 10−11 N×m2

kg2 . (2)

Astronomical units of distance are used because much of the literature, historically, uses

these units, however, the units are convenient because one can easily relate the measure-

ments to typical cosmological scales. I frequently use the Megaparsec,

1 Mpc = 3.1× 1024 cm. (3)
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Figure 1: This figure shows the system in which I will perform my simulations. The light
ray starts on the boundary, simulating a ray that has arrived from infinity. It then propagates
through the cosmic string region where the string is located at the origin. The light ray exits
the region and the deflection is investigated. Ψ2 is defined with the exiting vectors in the
same way as Ψ1 is defined by the entering vectors

This problem is shown in figure 1, which describes the model. Comoving coordinates

are used in the FLRW region, however the metric of the cosmic string is described more

carefully in the next chapter.

To continue with this situation, we must establish some mathematical way to propa-

gate our light rays through the cosmic string region, while exhibiting the light bending

effects from the cosmic string. We can borrow the same line of thinking expressed in

the Swiss Cheese model outlined by Kantowski, Chen, and Dai, used to understand the

light bending effects around Schwarzschild black holes [10]. The Swiss Cheese model
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allowed for a spherically symmetric Schwarzschild metric to be embedded into external

FLRW spacetime. A spherical cavity was taken out of the external FLRW spacetime, and

a Schwarzschild black hole was placed in the cavity. Unlike the Swiss Cheese model, I’m

going to carve out a cylindrical space in FLRW spacetime and place the cylindrical metric

of a cosmic string inside this cavity. In Chapter 4, the matching conditions between the two

regions will be considered.

The cosmic string is static, straight and contains no loops and has an upper bound on

its linear mass density µ = 6.73× 1027 g cm−1 [4]. This upper bound is due to the match-

ing conditions of the string’s spacetime and the exterior flat spacetime. Gott shows that

the string’s linear mass density approaches an asymptotic limit for which the spacetimes

cannot be matched [4].

In the case of a cosmic string, this gives 3 regions: the cosmic string conical metric, a

cylinder vacuum characterized by the cosmic string, and the exterior FLRW spacetime. In

our scenario, we will later characterize the cosmic string as a line source, so we’re really

left with two regions: the exterior FLRW, and the interior cylindrical metric characterized

by the cosmic string. This model allows us to characterize this phenomenon and accurately

represent the trajectory of light. The next chapter will be primarily focused with matching

of the boundaries so that we have an accurate depiction of how the curve behaves at these

boundaries. I’m then going to shoot light rays starting on the boundary between FLRW and

the conical region. Each ray will leave the source with some angle, Ψ1, as designated in

figure 1 and propagate through the expanding spacetime. In this region careful considera-

tion of the system is required, and as stated before, these boundary matching is looked at in

more detail in the next chapter. In this region, we choose to use non comoving coordinates.
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(a) This figure shows the
conical metric of the cosmic
string, with conical deficit an-
gle ∆. When the angle ∆ is
cut out, we’re left with a cone.

(b) The conical metric cre-
ated with the deficit angle is
cut out. This metric, as we
will later see, is simply the
Minkowski metric with a re-
defined azimuthal coordinate.

This is done because the spacetime metric for a cosmic string is static, unlike the FLRW

spacetime metric. Comoving coordinates are commonly used in cosmology, and represent

coordinates assigned to observers that move with the Hubble flow, i.e., the expansion of

the universe. This spacetime is not expanding, however the external spacetime still is. The

result is that the boundary expands a bit. The light ray will, then, hit the expanded boundary

at Ψ2. The deflection will be determined based on the difference between these angles. We

can then see the dependence upon the scale factor, and Ψ1, the deflection has.
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3 Cosmic String Gravity

This chapter quantitatively describes the gravitational effects of the cosmic string, and the

derivation of the conical deficit angle. Double images are more closely examined.

The conical deficit angle can be visualized as a small portion cut out from a disk sur-

rounding the cosmic string, so the light ray’s deflection is caused by this rescaling of the

azimuthal φ coordinate. This can be seen in figure 2.

Following Gott’s work [4], we have the metric

ds2 = −(cdt)2 + dρ2 +

(
1− 4Gµ

c2

)−2

(ρ2dφ2 + dz2). (4)

This line element only applies for solutions for which 0 < µ < c2

4G
, and contains the

characteristic deficit angle ∆ = 8πµG
c2

. This can be seen if we define a new azimuthal

coordinate

φ
′
=

(
1− 4Gµ

c2

)
φ. (5)

Taking the derivative

dφ
′
=

(
1− 4Gµ

c2

)
dφ, (6)

rearranging the terms and squaring, we get

(1− 4Gµ

c2
)−2(dφ

′
)2 = dφ2. (7)
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Substituting this into the line element we see that

ds2 = −(cdt)2 + dr2 +
(1− 4Gµ/c2)2

(1− 4Gµ/c2)2
ρ2(dφ

′
)2 + dz2 (8)

= −(cdt)2 + dρ2 + r2(dφ
′
)2 + dz2. (9)

This is really just Minkowski spacetime with a redefined azimuthal coordinate: 0 <

φ
′
< 2π(1− 4Gµ/c2).

I will now derive the relationship between the deficit angle of the cosmic string and

the cosmic string’s mean density. Looking at the metrics of the region in the two different

coordinate systems:

ds2 = dr2 + r2dφ2 + dz2, (10)

where φ ∈ [0, 2π −∆]

ds2 = dρ2 + (1− 4Gµ

c2
)−2[ρ2dθ2 + dz2], (11)

where θ ∈ [0, 2π].

Looking at the circumferences of these regions at a distance R, which is the radial distance

where the regions meet, we see that:

∫ 2π−∆

0

rdφ = R(2π −∆) (12)∫ 2π

0

1

1− 4Gµ/c2
R dθ =

R

1− 4Gµ/c2
2π (13)
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Setting these equal to each other

2π −∆ =
2π

1− 4Gµ/c2
(14)

∆ =

(
1− 1

1− 4Gµ/c2

)
2π (15)

=

(
2π − 2π

1− 4Gµ/c2

)
(16)

=

(
2π(1− 4Gµ/c2)− 2π

1− 4Gµ/c2

)
(17)

=

(
8πGµ/c2

1− 4Gµ/c2

)
(18)

= (8πGµ/c2) (19)

Where in the last step, the 1� 4Gµ/c2
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4 Boundary matching

The purpose of this chapter is to correctly model our system of the cosmic string, cylindrical

vacuum, and exterior FLRW metric. This matching has been somewhat controversial in the

past. Dyer, Oattes, and Starkman, showed that these surfaces do not match smoothly, and

Lake later, agreed [2]. In 1991, Unruh explained that it is in fact possible to match these

surfaces together, which I will do in this section [9].

Before I set out to match the sections of spacetime, I should first look at the metric for

a cosmic string. As Linet [8] states in his paper, using cylindrical coordinates (t, ρ, φ, z),

where ρ is the radial coordinate, the general solution for the stress-energy tensor of the

form

T tt = T zz = µ
δ(ρ)

ρ
(20)

gives the general solution line element:

ds2 = −(cρCdt)2 + A2ρ2C2−2C(ρ2−2Cdφ2 + dz2) + dρ2. (21)

Linet shows that by taking C = 0, the line element correctly models a cosmic string, which

is taken to be a line source at ρ = 0, as

ds2 = −(c dt)2 +

(
1− 4Gµ

c2

)−2

(ρ2dφ2 + dz2) + dρ2. (22)

From here, we can now do the matching of the cosmic string, characterized by the linear

mass density, to FLRW. This will give us an idea of how the deficit angle is related to the
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FRLW geometry,

ds2 = −(c dt)2 + (βtα)2(dr2 + r2dθ + dz2), (23)

where β is a constant. If I set the line elements in equations 19 and 21 equal, we have the

following conditions:

The time components give:

1 = 1, (24)

the angular components give

(βtα)r = ρ2

(
1− 4Gµ

c2

)−1

, (25)

the z components give:

(βtα) =

(
1− 4Gµ

c2

)−1

, (26)

We must also derive the coordinate transformations between the two regions. Taking

our basis to be

et =
∂

∂t
(27)

er =
∂

∂r
(28)

eθ =
∂

∂θ
(29)

We will want to establish a correspondence between tangent vectors defined in the FLRW

region and those defined in the cylindrical vacuum region. One way to do this is to find

orthonormal frames for vectors in both regions with a natural correspondence between
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basis elements in the two frames, so we start by using the basis eµ in the FLRW region to

construct an orthonormal basis eµ̂ We impose

U = Uµeµ = U µ̂eµ̂ (30)

Expanding this for the radial coordinate:

U r ∂

∂r
= U r̂ 1

βtα
∂

∂r
(31)

It is obvious to see

U r = U r̂ 1

βtα
(32)

βtαU r = U r̂ (33)

The same is true for the azimuthal coordinate

U θ ∂

∂θ
= U θ̂ 1

βtα
∂

∂θ
(34)

U θ =
U θ̂

βtα
(35)

U θ̂ = βtαU θ (36)

We can take these normalized vectors in the orthonormal basis and use this basis to trans-
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form to the new set coordinates inside the region. Looking at the inside metric

ds2 = −(c dt)2 +

(
1− 4Gµ

c2

)−2

(ρ2dφ2 + dz2) + dρ2 (37)

So the orthonormal basis here is

∂

∂t
= et̂ (38)

∂

∂ρ
= eρ̂ (39)(

1− 4Gµ

c2

)
1

ρ

∂

∂φ
= eφ̂ (40)

On the boundary between the regions, we identify the two orthonormal bases

U t̂ = U t̂ (41)

U r̂ = U ρ̂ (42)

U θ̂ = U φ̂ (43)

So the complete transformation between vector components is

U t
i = U t

o (44)

Uρ = βtαU r (45)

Uφ =

(
1− 4Gµ

c2

)
U θ (46)
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The region of the cosmic string also expands as time increases

ρ = βtαrboundary (47)

Now that we have successfully characterized the model, we can simulate the results of the

light deflection.

18



Jared Wofford Blue Cheese Cosmology: Lensing by Cosmic Strings May 5th, 2016

5 Algorithm

We will begin the light ray with these initial conditions:

t0 = 3.1688× 109 years (48)

U t = dt/ds =

√
grr(U r)2 + gφφ(Uφ)2

gtt
s/step (49)

r0 = radius of the boundary Mpc (50)

U r = dr/ds = .1 Mpc/step (51)

θ0 = π radians (52)

U θ = dφ/ds = .1 radians/step (53)

z0 = 0 Mpc (54)

U z = dz/ds = 0. Mpc/step (55)

Where Uµ is the tangent vector to the null geodesic representing the light ray. Notice U t is

calculated, which is done so that the null condition is satisfied.

gµνU
µUν = 0. (56)

We can come to this relation using the fact that for null paths the norm of the vector should

be zero, i.e., the dot product of Uµ with itself is zero. This is met as the U t is calculated

based on the specified values for U r and Uφ that are given. I will use these initial conditions

to propagate the light ray, while α will vary from 0.5 to 0.66.

To solve these equations (second order, non-linear, coupled ODE’s), I used the Fourth
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Order Runge-Kutta method. Fortunately, Matlab has a built-in function, ODE45, which

uses the Fourth Order Runge-Kutta method to solve differential equations. Passing the

initial conditions, and the equations to ODE45 gives the solution to the equation.

The geodesic equations must be set up now. We can find the Christoffel symbols for

the line element of the cosmic string line source

ds2 = −(c dt)2 +
1

(1− 4Gµ/c2)2
(ρ2dφ2 + dz2) + dρ2, (57)

and we find that the only non-vanishing, relevant ones are

Γrφφ = −r
(

1− 4Gµ

c2

)2

(58)

Γφrφ =
1

r
. (59)

Thus, the geodesic equation is

d2r

ds2
= r

(
1− 4Gµ

c2

)2

(Uφ)2 (60)

d2φ

ds2
= −2U rUφ

r
. (61)

When µ goes to zero, the Christoffel symbols, and thus the geodesic equation become

identical to the Minkowski case.
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(a) This figure shows the bending
around a cosmic string of a light ray
starting on the boundary of the region.
The dotted line shows the trajectory of
the light ray, while the circle represents
the region of the cosmic string.

(b) This figure shows the bending
around a cosmic string. Notice that the
bending only occurs in the cylindrical
metric. The dotted line shows the tra-
jectory of the light ray, while the cir-
cle represents the region of the cosmic
string.

Using those initial conditions listed in equations 50 – 57, allowing our algorithm to

iterate through the geodesic equations, providing the trajectory of light. Figure 4 shows the

result of this calculation using α = 0.5. The calculated deficit angle, using ∆ = 8πGµ
c2

, is

0.0186 radians or 1.07o.

The line element ds2 = −c2dt2 + R(t)2dσ2 where dσ2 = dr2
1−kr2 + r2(dφ2 + dz2),

and k is the curvature of space is examined. For the k = 0 or flat case, we’re left with

ds2 = −c2dt2 +R(t)2(dr2 + r2(dφ2 + dz2). We can write R(t) = βtα, where α determines

the composition of the universe obtained by the Friedmann equation. The table below

shows the values for α

α Universe

2/3 Matter Dominated

1/2 Radiation Dominated

Passing the initial conditions from equations 50 –57 to the solver, I can vary the intitial

Uφ from 0 to larger values, until the light reaches the arrival point on the other side of the
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string. I do this for every α from 0.5 to 0.66.

I cannot just place a cosmic string at the center because unlike Minkowski space,

FLRW contains some matter spread uniformly throughout the universe. The area of the

cosmic string I must carve out must contain an equal amount of mass as the cosmic string.

The universe is fairly close to the critical density, so I will choose this to be the density

used in the calculation. The value for the critical density will change depending on α. The

following calculation shows how large of a cylindrical region should be carved out. To

keep the density of the entire spacetime to uniform, we must carve out some region, whose

size is determined by the linear mass density of the cosmic string. If we have a cosmic

string with a linear mass density µ = 1024 kg/cm, which is a typical value for a cosmic

string’s linear mass density [4], being placed in a carved out cylindrical region of FLRW,

we must be sure that the amount of mass cut out of FLRW be equivalent to the mass of the

cosmic string, so that the density of the entire space, cosmic string region and FLRW, have

the uniform density of FLRW. We are close to the critical density, so we will use that in our

calculation. The critical density is

ρcrit =
3H2

8πG
. (62)

Where H = Ṙ/R. Thus the critical density depends on the scale factor, and thus α. Using

R = βtα,

Ṙ

R
=
α

t
, (63)

22
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We can then use the critical density to determine how much of FLRW we should carve out.

ρcritical =
M

V
. (64)

For a cylinder, the density can be written as

ρcritical =
M

πR2h
. (65)

If the linear mass density is defined as µ = M/h, we can rewrite the critical density as:

ρcritical =
µ

πR2
. (66)

Setting µ = 1024 kg/m, and solving for the values ofR, we get the values in the table below.
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α Radius(Mpc)

.50 86.16

.51 84.47

.52 82.85

.53 81.29

.54 79.78

.55 78.33

.56 76.93

.57 75.58

.58 74.28

.59 73.02

.60 71.80

.61 70.63

.62 69.49

.63 68.38

.64 67.31

.65 66.28

.66 65.27

Using these values as the size of the region for the cosmic string and the initial conditions,

I simulate this system and make a plot a of ∆Ψ versus α, keeping Ψ1 fixed at 0.1 radians.

I also make a plot of Ψ2 versus Ψ1 keeping α fixed to 0.50.

24
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Figure 4: This figure shows the relationship between the “deflection” , ∆Ψ = Ψ2 − Ψ1,
and α for Ψ1 fixed at 0.1 radians.

Figure 5: This figure shows the linear relationship between Ψ1 and Ψ2 having a slope of 1
and offset 0.018.
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6 Conclusions and Future Work

Figure 5 shows the interesting result that the deflection does not depend on Ψ1, which

means that no matter where along the boundary the light ray enters the region, ∆Ψ is

always the same. This is seen in the linear relationship between Ψ1 and Ψ2.

The deflection does however depend on α. The curve shows a decrease from – 0.0179

to – 0.0187. The negative value is due to Ψ1 always being greater than Ψ2, when making

Ψ1 positive. The values are of the same order as the calculated deficit angle. These results

are promising for trying to determine the value of α as Ψ1 is one less parameter to be

determined before α can be found.

The next step of this project is to determine precisely the distance to the cosmic string,

and be able to determine the linear mass density of the string. If these values are known, a

curve like the one in figure 5 can be produced. From this curve, the type of universe at this

time can be discovered.

The code should be further optimized, in addition to decreasing run time, such that

rounding errors, and other numerical errors are minimized. The code should also be ex-

panded to include the string’s linear mass density chaning with time. An analytical solution

should be pursed as well. This solution, if it exists, should be matched to the numerical

solutions in this work.

Not only would the discovery of cosmic strings be monumental, but it is promising to

learn that cosmic strings could allow us to determine the type of universe that exists today.
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