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ABSTRACT 
SARAH COVINGTON STEELE: Effects of soil environment on abundance, diversity 

and community structure of ectomycorrhizal fungi in Pinus radiata 
(Under the direction of Dr. Jason Hoeksema & Dr. Megan Rúa) !!!

 Balanced and sustained nutrient cycles are critical to the success of the world’s 

forest ecosystems. Research has shown ectomycorrhizal fungi (ECM) play a vital role in 

regulating these systems, as they store and mobilize cycled nutrients for the trees they 

colonize. Not all species of ECM allocate essential nutrients (nitrogen, phosphorous and 

carbon) to their host with the same efficiency. Studies have shown the soil environment is 

important for determining fungal distribution. To better understand the ECM fungal 

community of Pinus radiata, I explored the effects of soil characteristics (percent silt, 

percent clay, percent sand and soil water content) on the abundance, community structure 

and diversity of ECM fungi in P. radiata from Point Lobos State Park. Fungal species 

were identified from five trees using molecular methods and data analyses were 

completed. I found that each of the soil characteristics had an effect on raw fungal 

abundance, and different soil characteristics can be positively or negatively correlated 

with the diversity of a fungal community. Specifically, sand was negatively correlated 

with diversity while silt had a positive impact on diversity. This suggests soil 

environment, specifically soil texture, is an important variable which can alter the ECM 

fungal community and therefore, affect the health of the trees they colonize.  

!!!!!!
 !4



TABLE OF CONTENTS  !!
LIST OF  
FIGURES………………………………………………………………….…..………..6 !
INTRODUCTION……………………………………………………….……..….……8 !
METHODS…………………………………………………………………………….12 !
RESULTS………………………………………………………………………………20 !
DISCUSSION………………………………………………………………………….29 !
LIST OF  
REFERENCES…………………………………………………………………………35 !!!!!!!!!!!!!!!!!!!!!!!!!! !
 !5



LIST OF FIGURES AND TABLES   !
FIG. 1: 1% Agarose gel for amplification of fungal DNA via PCR…………………..…15  

!
FIG. 2: Circle of correlation for environmental soil variables……………………….….20 

!
FIG. 3: Scatterplot visualizing the relationship of environmental variables to one another 

………………………………………………………………………………………..…21 

!
FIG. 4: Abundance for each of the fungal OTUs…………………………………..……23 

!
FIG. 5: Non-metric multidimensional scaling ordination for each of the five trees and the 

three most abundant fungal OTUs …………………………………………………..…..24 

!
FIG. 6: Number of fungal species, Shannon and Simpson Diversity indices for each tree. 

…………………………………………………………………………………….……..26 

!
FIG. 7: Relationship between percent sand and fungal diversity…………………….… 27 

!
FIG. 8: Relationship between percent silt and fungal diversity…………………………28 

!
TABLE 1: Exact location, elevation above sea level and diameter at breast height for the 

five P. radiata trees ………….…………………………………………………………12 

!
TABLE 2: Poisson ANOVA table for the effect of soil characteristics on raw abundance. 

………………………………………………………………………………….……….22 

!
TABLE 3: Quasipoisson ANOVA table for the effect of soil characteristic on colonization 

…….……………………………………………………………………………………23 

 !6



!
TABLE 4: PERMAVOVA table for the effect of soil characteristics on fungal community 

structure …………………………………………………………………………..……..25 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

 !7



Introduction   

 Nutrient cycles are critical to the success of terrestrial ecosystems as they provide 

energy in the form of nutrients and minerals necessary for maintaining growth and 

stability. In particular, the flow of nitrogen, phosphorous and carbon is essential for 

maintaining system stability (Read and Perez-Moreno, 2003). Unfortunately, dramatic 

shifts in the cycling and storage of fundamental forest nutrients have occurred over the 

past two centuries, primarily as a result of human activities. These alterations have caused 

vast nutrient depletions in certain areas of terrestrial ecosystems and toxic accumulations 

in others. Forest ecosystems are particularly vulnerable to such changes, as forests are 

aesthetically, economically and ecologically important on a global scale. Therefore, 

research which provides a better understanding of the natural regulation of nutrients in 

forest ecosystems is important for understanding the full effect of anthropogenic changes 

(Paul, 2014).  

 While early studies of these cycles primarily focused on how plants directly 

obtain and cycle these nutrients from the organic litter in the soil, more research has 

emphasized the critical role of mycorrhizal fungi in sustaining these natural systems 

(Koide, Fernandez & Malcolm, 2014 and Smith and Read, 2008). Ectomycorrhizal fungi 

(ECM) are important to these cycles because they mobilize the soil nutrients nitrogen and 

phosphorus, which are otherwise unavailable to host plants (Averill, Turner & Finzi, 2014 

and Smith and Read, 2008). ECM form mutualistic relationships with their host plant. In 

exchange for providing the plant with these nutrients, the colonized tree allocates 

photosynthetically fixed carbohydrates to ECM fungi (Smith and Read, 2008). This 
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symbiosis is so critical to the success of the host that studies have shown trees allotting as 

much as 85% of their photosynthate to their ECM in exchange for the many specific 

nutrients they receive (Treseder and Allen, 2000).  

 In addition to increasing a host plant’s nutrient uptake through expansion of the 

surface area of the root, ectomycorrhizal fungi also improve the local soil structure, aid in 

seedling establishment, increase the rate of root growth and protect the plant from a range 

of soil pathogens and microbial parasites (Richardson et al., 2009). These mutualisms 

have been documented in nearly every ecosystem in the world and are found in a vast 

range of host species and environments (Horton and Bruns, 2001). It is estimated that 

between 7,000 to 10,000 species of fungi and 8,000 species of plants are capable of 

developing these symbiotic connections (Taylor and Alexander, 2005). Consequently, 

ECM fungi are ubiquitous throughout terrestrial ecosystems and are an important 

component for the regulation of the physical, chemical and biological processes that 

allow forests to grow and survive (Treseder and Allen, 2000).  

 Due to the important role ECM fungi play in altering terrestrial nutrient cycles, it 

is important to understand the environmental variables influencing their global 

dispersion. Fungal richness varies by environment with the greatest global fungal 

diversity located in the temperate regions of America, Europe and Asia (Tedersoo et al., 

2010). Within the United States, the richness of fungal spores is greatest in Mississippi 

while the least diverse communities are found in Alaska (Glassman et al,. 2015). Fungal 

abundance also favors temperate forests (Clemmensen et al., 2006). These patterns of 

mycorrhizal distribution may be influenced by both the soil environment and the host 
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species (Read, 1991). Fungal diversity is altered by the environment due to temperature, 

disturbances, the presence or absence of another organism as well as the resources made 

available by the soil which vary in time and space (Bruns, 1995). Host species can alter 

the distribution of ECM fungi as certain fungal species, such as Suillus and Rhizopogon, 

may preferrentially colonize one host species (Horton and Bruns, 2001). Thus, the 

geographic location where the fungi are found and their relative abundance can be 

dependent on the hosts they colonize (Ishida, Nara & Hogetsu, 2007). 

 Forests dominated by pine trees are widely distributed and are a common feature 

of most countries. In addition to increasing the stability and productivity of forests, pines 

provide commercial value, recreational value and reduce atmospheric carbon dioxide. 

Thus, the continued success of these trees is an important concern worldwide (Moir, 

Geils, Benoit & Scurlock, 1997).  To better understand the fungal communities which are 

vital to this important genus, countless studies have been conducted on the relationship 

between pine hosts and their fungal symbionts (Horton and Bruns, 2001). This research 

has shown that the ECM fungi of pines are also altered by the soil environment. The 

effect of soil environment on ECM fungi ranges from differences in the distribution, to 

changes in the entire nature of the fungal host relationship where mutually beneficial 

associations shift to become parasitic ones (Johnson, Graham, & Smith, 1997). Although 

many of these soil variables have been extensively researched, surprisingly little focus 

has been given to the impact of soil texture on the fungal community of Pinus radiata 

(Monterey Pine). 
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 P. radiata is both an interesting pine species and ECM host due to its extremely 

limited natural range. The range of P. radiata has been restricted to only five populations; 

three populations along the California coast and two isolated populations on islands off 

the coast of Baja California, Mexico (Lavery and Mead, 2000). Previous studies from 

each of these sites have shown mycorrhizal associations are extremely important to the 

successful establishment of P. radiata seedlings and improve the growth and overall 

success of adult hosts; however, mycorrhizal fungal species differ in the degree they are 

able to contribute to their host (Hoeksema et al., 2012). Because some fungal species are 

more effective than others in providing benefits to P. radiata, it is important to 

understand what environmental variables impact the mycorrhizal fungi, as well as how 

they alter the ECM (Duñabeitia et al., 1996). In this study, we examined soil 

characteristics, specifically the percent sand, percent silt, percent clay and water content 

of the soil, to ask three questions; (1) How do these environmental variables alter fungal 

abundance? (2) How do these environmental variables shape the fungal community? (3) 

How do these environmental variables influence fungal diversity?  

  

!
!
!
!
!
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Methods  

!
Site description and soil sampling  !
 Samples were collected as part of a broader project examining ECM fungal 

communities at three sites across the state of California. For my project, research was 

conducted on soil samples collected February 22, 2014 from Point Lobos State Park. 

Point Lobos is located in Monterey County, California, along the north end of the Big Sur 

coastline. At the site, five P.radiata trees were selected within an area of mature forest 

(Table 1). The trees were assigned the follow numbers for identification: 6, 7, 8, 9, and 

10. Trees were chosen to represent similar size classes as determined by their diameter at 

breast height (Table 1).  

Table 1- Exact location, elevation above sea level and diameter at breast height for the 
five P. radiata trees.  !
 Soil was obtained by collecting 20 cores, each 10 cm in diameter and 20 cm deep 

(excluding litter) from four locations around a focal tree. Samples were overnighted back 

Tree ID Latitude Longitude Elevation (feet) Diameter

6 36° 31.003' 121° 56.708' 81 0.85

7 36° 30.953' 121° 56.565' 64 0.71

8 36° 30.939' 121° 56.567' 61 1.13

9 36° 30.942' 121° 56.576' 61 1.21

10 36° 30.914' 121° 56.684' 63 0.59
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to the laboratory at the University of Mississippi then stored at 4° C for processing within 

17 days of collection.  All root samples and surrounding soil were kept intact. 

!
Identification of ectomycorrhizal fungi in soil cores 

 DNA extraction, polymerase chain reaction (PCR), and direct sequencing were 

completed according to the Hoeksema Lab protocol. Within two weeks of harvest, the 

roots of each sample were collected and prepared for visualization and morphotyping 

using a dissecting (Leica) microscope. This was accomplished by separating the roots 

from the soil using a soil sieve, rinsing them with water, and cutting them into shorter 

segments approximately 1mm in length. Root lengths were then placed in a petri dish and 

under the microscope, the composition of each fungal community was recorded. To do 

this, fungal species were identified and assigned temporary names according to visual 

characteristics such as color, texture, branching and shape. The number of fungal tips 

which matched each morphotype were counted and recorded. The following data was 

also collected for each sample: (1) total number of root tips, (2) dry root weight, and (3) 

root length. Root length was approximated according to Equation 1: 

 RL=  π NA / 2h 

Equation 1 

where N is the number of root intersections, A is the area of the petri dish (63.617cm), 

and h is the total length of the grid lines (173.2cm). To obtain the number of root 

intersections, a 1 cm grid paper was placed under the petri dish and the total number of 
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root, grid line intersections was recorded. The dry root weight was measured for each soil 

core using a Mettler Toledo scale.  

 For each observed morphotype, two root tips were extracted and placed into 

individual wells of a 96 well extraction plate for molecular identification. DNA extraction 

was completed on the same day as morphotyping and ectomycorrhizal root tip collection. 

DNA was obtained from each root tip using Extraction Buffer and Neutralization 

Solution from a Sigma Extract-N-Amp Tissue Kit. After 10 µl of the Sigma Extraction 

Buffer was added to each sample, the plate was placed in a Techne Genius thermocycler 

at 65 degrees C for 10 minutes and at 95 degrees C for 10 minutes. Upon completion of 

the cycle, 30 µl of Neutralization Solution was added to each well along with 160 µl of 

PCR-grade water to dilute DNA concentration to 20%. All samples were stored for 

approximately one month at -20º C following DNA extraction.  

 The fungal specific primers ITS1F and ITS4, which correspond to an 800 base 

pair internal transcribed spacer region specific to fungi, were used for DNA amplification 

via PCR (Gardes and Bruns, 1993). A PCR master-mix was created using 2.2 µl water, 4 

µl of 2XRed Taq Premix (Apex, Inc.), and 0.4 µl of each of the two primers per each root 

tip sample. 7 µl of this master-mix was then combined in a new well with a 1 µl sample 

of each tip’s DNA extract. The PCR process consisted of five steps which took place on 

an Applied Biosystems thermocycler. Initial denaturation began with 1 cycle at 94°C for 

3 minutes. Next, there were 30 cycles of denaturing at 94°C for 45 seconds, annealing at 

58°C for 45 seconds, and extension at 72°C for 72 seconds. A final extension took place 

for 1 cycle at 72°C for 10 minutes. PCR amplification was inspected via electrophoresis 
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of a gel made of 1% agarose, a sodium borate buffer and SYBR® Safe DNA gel stain 

(Molecular Probes, Eugene, OR, USA).    2.5 µl of the PCR product was loaded into the 

gel which ran at 200 volts for 18 minutes. Gels were visualized using Quantity One UV 

software (Fig. 1). Excess primer and unincorporated nucleotides were removed 

enzymatically using ExoSAP-IT (USB Corporation Cleveland, OH, USA).   

Figure 1- 1% Agarose gel for amplification of fungal DNA via PCR 

!
5 µl of a master-mix, composed of 0.05 µl ExoI enzyme, 0.2 µl AP enzyme, and 4.75 µl 

of water per reaction, was combined in a new well with 5 µl of each PCR product. The 
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plate was then run on the Applied Biosystems thermocycler at 37°C for 30 minutes, at 

80°C for 20 minutes, and at 4°C for 5 minutes.  

 Following clean-up, the ECM DNA was sequenced using the forward primer ITS5 

(Gardes and Bruns, 1993) and the Big Dye Terminator Sequencing Kit (v3.1, Invitrogen 

Corp.).. A master-mix was created using 0.4 µl Big Dye Reaction Premix, 1.8 µl 5X Big 

Dye Sequencing Buffer, 0.5 µl Primer 5, and 6.3 µl of water per each sample. 9 µl of the 

master-mix was combined with 1 µl of each cleaned PCR product in a sequencing plate. 

This plate was then run on a four part sequencing program of an Applied Biosystems 

thermocycler. Initial denaturation took place for 1 cycle at 96°C for 1 minute. This was 

followed by 45 cycles of denaturation at 95°C for 20 seconds, annealing at 50°C for 20 

seconds, and extension at 50°C for 4 minutes. The reactions were then dried with a 

vacufuge at 45°C for 30 minutes and shipped overnight to the DNA Lab at Arizona State 

University, where Big Dye reactions were purified and read on a capillary genetic 

analyzer.  

 Following sequencing, the raw DNA sequences were visually processed using 

Geneous Software (Biomatter Ltd.). Sequences which were less than 200 base pairs long, 

or had higher than 3% in base pair ambiguity, were eliminated. The remaining sequences 

were then assembled into operational taxonomic units (OTU) at 97% similarity using the 

CAP3 software (Huang & Madan, 1999) via the University of Alaska Bioinformatics 

Pipeline as described previously Taylor et al. 2007 using default settings except the 

following: maximum overhang percent length = 60, match score factor = 6, overlap 

percent identity cut-off = 96, clipping range = 6. The consensus fungal sequences from 
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each OTU were submitted using BLAST (nucleotide) searches on the International 

Nucleotide Sequence Database (INSD) and User-Friendly Nordic ITS Ectomycorrhizal 

(UNITE) databases October 28, 2014 to obtain best matches for taxonomic affiliation of 

OTUs. Sequences >97% similar in composition to database sequences from named, 

cultured fungi were considered the same OTU (hereafter, ‘species’). Sequences with a 

95% > 97% match were assigned a name according to genus. Finally, sequences with a 

90% > 94% match were identified at the family level. No match below 90% was 

accepted. Because the blast identified the root tips at various levels of scientific 

classification, ranging from the species to the family level, a final species name was 

assigned to each of the samples at the most specific level possible. If sequence matches 

among the two sequence repositories showed equal affinity or similarity to multiple 

genera within a family, priority was given to the vouchered specimens residing on the 

UNITE.  Any species known to be strictly non-mycorrhizal was eliminated from the data 

set. 

!
Soil Analysis 

 Each of the soil samples was analyzed for texture and soil water content. Soil 

texture was characterized using a Lamotte soil texture kit. Soil water content was 

determined by assessing the difference in weight of fresh soil compared to the same soil 

which was dried for three days at 65ºC 

!
!
 !17



!
Fungal Analysis 

 All data analyses were completed using R v 3.1.2 (R Core Team, 2015). To 

examine the soil environment, a correlation was run on the soil predictor variables: 

percent silt, percent sand, percent clay and soil water content. This was accomplished 

using the cor function from the Base package (R Core Team, 2015) Variation in fungal 

abundance was analyzed in two ways. First, the impact of the soil environment on tip 

abundance was examined using a Generalized Linear Model (GLM) with family, poisson. 

A GLM was chosen as the raw abundance represented count data which is not normally 

distributed and thus does not meet the assumptions of a Linear Model. Abundance was 

also studied as a function of root length (colonization), which was determined by dividing 

the raw number of root tips by the root length. This allowed the data to be standardized 

with regard to root length. While colonization was also studied using a GLM, the family 

quasipoisson was chosen rather than a poisson due to overdispersion of the data. All 

generalized linear models were created using the glm function from the stats package (R 

Core Team, 2015) Next, the impact of the environmental variables on the shape of the 

fungal community was explored using the adonis function, which is a multi-factor 

permanova, from the vegan package (Oksanen et al., 2015). In this analysis, the Bray 

Curtis method was specifically chosen as it quantifies community data through 

compositional dissimilarity based on counts at each site. For visualization purposes, non 

dimensional scaling was used and the three most abundant species were mapped. To 

consider the effect of particular species in driving community interactions, an indicator 
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species analysis was run using the multipatt function from the indicspecies package and 

999 permutations (De Caceres and Legendre, 2015). Fungal diversity was calculated 

using the diversity function from the vegan package for both Shannon and Simpson 

diversity. The impact of the environmental variables on fungal diversity was studied 

using the lme function of the nlme package (Pinheiro et al., 2015).  

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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Results  

Environmental Variables  

 The correlation analysis for the soil characteristics revealed two important results: 

a strong, negative correlation (-0.91) between percent sand and percent silt and a weak, 

negative correlation (-0.51) between percent sand and percent clay (Fig. 2 and Fig. 3) 

Figure 2- Circle of correlation for environmental soil variables. 

!!
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Figure 3- Scatterplot visualizing the relationship of environmental variables to one 
another.  

!!!!!!!!!!!
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Ectomycorrhizal Fungi  
  

 Fungal abundance significantly increased in response to every environmental 

variable: percent clay, percent silt, percent sand and soil water content (Table 2).  

!
Table 2-  Poisson ANOVA table for the effect of soil characteristics on raw abundance. !
 Although the soil environment had an impact on fungal abundance, fungal 

colonization, which takes into account root length, was not affected by any of the 

environmental variables (Table 3); however, the degree of colonization varied among the 

fungal OTUs, with Cortinarius , Cenococcum and Cortinarius 1 exhibiting the highest 

levels of colonization (Fig. 4). 

!
!
!
!
!
!
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Estimate Std. Error t value Pr(>|z|)

(Intercept) -140.3087 40.3658 -3.476 0.000509 ***

Soil.Water 4.6709 0.9239 5.056 4.29e-07 ***

Perc.Clay  1.3877 0.4110 3.377 0.000734 ***

Perc.Sand 1.3912 0.4073 3.416 0.000636 ***

Perc.Silt 1.3912 0.4060 3.426 0.000612 ***



!
Table 3- Quasipoisson ANOVA table for the effect of soil characteristic on colonization. 

!
Figure 4- Abundance for each of the fungal OTUs. !
!
 !23

Estimate Std. Error t value Pr(>|z|)
(Intercept) 251.210 288.038 0.872 0.386
Soil.Water -2.953 6.575 -0.449 0.655
Perc.Clay  -2.484 2.917 -0.852 0.398
Perc.Sand -2.499 2.894 -0.864 0.391
Perc.Silt -2.489 2.884 -0.863 0.391



 A permanova utilizing Bray Curtis distance measures was used to examine fungal 

community relationships and to determine if communities were shaped by any of the 

environmental variables. Results showed the fungi did not significantly cluster based on 

the soil environment (Fig. 5, Table 4). 

Figure 5- Non-metric multidimensional scaling ordination for each of the five trees and 
the three most abundant fungal OTUs. !!!
!
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!
Table 4- PERMAVOVA table for the effect of soil characteristics on fungal community 
structure. !
 An indicator species analysis was run to determine if any species of fungi was 

associated with a specific soil characteristic. No fungal species was more common with a 

particular soil characteristic.  

 Finally, the diversity of the fungal community was examined as a function of tree 

identity and soil characteristics. Simpson and Shannon Diversity Indices were created for 

each tree. Despite variation in the number of species present at each tree, Shannon and 

Simpson Diversity indicated there was no significant effect on the diversity of the fungal 

community due to tree (F1,3=0.011, p=0.922-Shannon) (F1,3=0.0882, p=0.7859-Simpson). 

Tree 7 had the greatest number of different fungal species and was followed, in 

decreasing order, by the communities of Trees 9, 10, 6 and 8. The number of species 

observed at each tree ranged from 16 species present in the soil of Tree 7 to 10 species 

observed at Tree 8 (Fig. 6).  

!
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 Df SS Mean SS F R2 Pr(>F)

Soil.Water 1 0.31082 0 0 0.20978 1

Perc.Clay 1 0.54950 1 0 0.37087 1

Perc.Sand 1 0.33906 0 0 0.22884 1

Perc.Silt 1 0.28227 0 0 0.19051 1

Residuals 0 0.00000  -Inf 0.00000

Total 4 1.48165 1.00000



 
Figure 6- Number of fungal species, Shannon and Simpson Diversity indices for each 
tree.  !
 Diversity analyses were also against soil characteristics. These analyses revealed 

that soil water content (F1,3=0.438, p=0.556) and percent clay had no significant effect on 

fungal diversity (F1,3=0.388, p=0.578) but percent sand and percent silt significantly 

influenced the diversity of the community. Percent sand exhibited a significant negative 

effect on fungal diversity (F1,3=86.93, p=0.003), such that high soil percent sand had a 

lower fungal richness than low soil percent sand (Fig. 7). The results of sand soil 

composition were very different than those of silt. Increased percent silt exhibited a 
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positive effect on fungal diversity (F1,3=35.81, p= 0.009). Specifically, fungal diversity 

increased with increasing percent silt (Fig. 8). 

!
Figure 7-  Relationship between percent sand and fungal diversity. !!!!!!!!!
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!
Figure 8- Relationship between percent silt and fungal diversity.  !!!!!!!!!!!!!
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Discussion 

 Previous research studies have shown that both abiotic and biotic aspects of the 

soil, from erosion to soil mineral content, can alter the structure and composition of the 

ectomycorrhizal fungal community (Hartley, Cairney, & Meharg, 1997). My results echo 

these results. Specifically, I found that all soil characteristics (soil texture, percent sand, 

percent silt, percent clay and soil water content), significantly increased fungal 

abundance. However, none of the soil variables significantly affected colonization. I also 

found that no soil texture measure significantly shaped the fungal community. Finally, I 

discovered correlations between the texture of the soil and the diversity of the ECM 

community. While percent sand had a negative effect on fungal diversity, percent silt had 

a positive effect. Correlations between these environmental soil variables were also 

independently studied. Results showed a strong, negative correlation between soil percent 

sand and soil percent silt, as well as a weak, negative correlation between percent sand 

and percent clay.  

 Previous research on soil characteristics which influence the community structure 

of ECM fungi indicates these variables can be incredibly important. Examination has 

ranged from large scale studies on the impacts of latitude on fungal communities and 

their associations with host pines (Hoeksema & Thompson, 2007 and Glassman et al,. 

2015) to small scale investigations of  community differences along a specific 

environmental nutrient gradient (Gehring, Theimer, Whitham & Keim, 1998). The data 

from these investigations suggests that fungal distribution is strongly correlated with soil 

characteristics, which may be a result of differences between ECM species in their 
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effectiveness in obtaining and providing hosts with necessary nutrients (Toljander et al., 

2006). Heterogeneous distributions of ECM fungi may also result because of the 

selectivity of ECM fungi for certain environments, with as little as 20% of ECM species 

being able to withstand a vast range of environmental conditions (Kranabetter, Durall, 

and MacKenzie, 2009). In studies which examined the effect of soil moisture on fungal 

distribution, decreasing soil moisture had a significant negative impact on the EM 

composition for most species, with the exception of a few drought-tolerant ECM fungal 

species such as C. geophilum, (Toljander et al., 2006). As a result of these findings, we 

hypothesized that soil texture, which impacts soil water, would affect the community 

structure; however, our Bray-Curtis permanova revealed no significant effect by any of 

the environmental variables on the ECM fungal community. One possible explanation for 

these findings is a lack of adequate sample sizes to detect soil texture’s impact on the 

ECM distribution. Because the mycorhizae of many species are patchily dispersed 

underground (Horton & Bruns, 2001), it is possible that the four soil cores obtained from 

each tree failed to adequately detect shifts in the presence of certain fungal species due to 

the soil texture. Patchy fungal dispersion and limited soil cores may cause certain ECM 

species to be under, or even not, represented in the samples and may also be a reason that 

no indicator species was detected. Therefore, future studies seeking to link environmental 

characteristics with changes in ECM community composition should include more soil 

cores. 

 While soil characteristics did not shape ECM community composition, they did 

shape fungal diversity. Previous studies have demonstrated that soil horizon has a 
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significant effect on fungal diversity as a result of varying levels of available organic 

matter (Buée et al., 2007). Based on this knowledge, we hypothesized that percent sand, 

percent silt and percent clay would each alter fungal diversity with percent sand 

decreasing diversity and percent silt and percent clay increasing fungal diversity. 

Although percent clay surprisingly did not impact diversity, the data showed that percent 

silt and percent sand did influence the diversity of the fungal community. Percent silt has 

a strong, positive correlation with diversity, likely as a result of the fine soil texture 

retaining higher nutrient concentrations (Clemmensen et al., 2006). Percent sand had the 

opposite affect and displayed  a negative relationship with community diversity. Soil with 

a greater proportion of sand is more porous and thus retains lower levels of water and 

nutrients (Pachepsky et al., 2001). Therefore, the dry, sandy soil is a more harsh 

environment than soil with higher percentages of silt and clay, and fewer species of ECM 

fungi can adapt and survive. These results concerning the relationship between percent 

silt and percent sand with regard to the diversity of the fungal community reflect our 

earlier soil texture correlations which identified a strong, negative correlation between silt 

and sand.  

 Previous research also supports the idea that reductions in soil moisture decreases 

fungal richness (Tedersoo et al., 2012). Therefore, we hypothesized that an increase in 

soil water would allow for greater fungal diversity. Instead we found that there was no 

significant effect on fungal diversity due to soil water.  This may be because soil texture 

had a more significant impact on fungal diversity than soil water. It is also possible that 
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all of the soil samples were relatively low water concentrations and thus a significant 

different due to soil moisture was not detected.  

 In pines, soil water content is an important predictor for shaping ECM fungal 

abundance. For example, soil moisture altered fungal abundance in Pinus edulis, such 

that plants with prolonged exposure (roughly a century) to drought incurred a 50% 

decrease in ECM abundance while plants experiencing temporary drought underwent a 

two-fold greater ECM colonization then those plants grown under ambient conditions 

(Swaty et al., 2004). Because ECM abundance will increase in an attempt to access 

greater quantities of water and compensate for drought, we correctly hypothesized that 

each of the soil characteristics, would have a significant positive impact on the abundance 

of fungal root tips in our system since it is likely water limited (Mann and Gleick, 2015). 

Indeed the abundance of fungal tips increased in soil samples with a higher percent sand, 

likely because sand has a lower water retention so increasing the number of colonized 

tips probably improves the symbiont’s access to water  (Walczak, Rovdan & Witkowska-

Walczak, 2002). Furthermore, elevated levels of percent silt and clay significantly 

increased ECM fungal abundance, possibly because fine soil particles have greater 

nutrient capture and retention rates and thus provided a more nutrient rich environment 

which supported greater fungal abundance (Silver et al., 2000). 

 Unfortunately, each of these soil characteristics lost significance when ECM 

fungal abundance was studied as a function of root length (colonization). Similar to ECM 

fungi, pine root growth is positively correlated with the water and nutrient content of the 

local soil environment (Klos et al., 2009). Consequently, although the fungal abundance 
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increased with each of the soil texture measurements, the root growth increased as well, 

and over all contributed more significantly to the fungal abundance than the soil textures. 

Thus, soil water is critical to ECM success in slightly drier environments, even if there 

are not associated changes in ECM fungal diversity.  

 I also found unique results with respect to the relationship soil characteristics have 

with one another. I found both percent clay and percent silt displayed a negative 

correlation with the percent sand found in the soil, possibly indicating differences in 

nutrient storage capabilities of the soil. This is supported by a previous study on soil 

texture which revealed that when the percent silt of one soil sample is equivalent to the 

percent clay of another, the two samples will have similar properties especially with 

regard to their nutrient storage (Hook and Burke, 2000).  Numerous studies have also 

shown a negative correlation between the percent sand and soil water content of a soil 

core (Pachepsky et al., 2001). Thus, we expected a strong, negative correlation to exist 

between the percent sand and water of our samples, however, this correlation was not 

found. A possible reason this relationship was not detected is daily fluctuation in soil 

water content. As these cores were collected on one day, it is possible the water content of 

even the sandy soil on the day of collection was higher than its annual average.   

 My thesis indicates that soil texture plays a critical role in altering the abundance 

and diversity of the ECM fungal community in P. radiata. While these findings are 

important, more studies of the effects of the soil environment on fungi in P. radiata, and 

in other pines, are necessary to provide a more complete understanding of how soil 

variables shape the ECM fungal community. These microbial associations are frequently 

 !33



overlooked due to their below ground location and unassuming physical appearance, but 

their role in enhancing the durability and productivity of forest ecosystems is critical. As 

ECM fungi are vital to the ability of ecosystems to withstand environmental changes a 

clear understanding of what impacts these fungal communities is critical, especially when 

seeking to understand the full impact of global climate change on terrestrial ecosystems.  
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