HUMAN CAPITAL IN MEXICO: ESTIMATING EXTERNALITIES WITH THE CONSTANT-COMPOSITION APPROACH

©2015 By Lorin D. Dawson

A thesis presented in partial fulfillment of the requirements for completion of the Bachelor of Arts degree in International Studies and the Bachelor of Business Administration degree in Economics Croft Institute for International Studies Sally McDonnell Barksdale Honors College The University of Mississippi

> University, Mississippi May 2015

> > Approved:

Advisor: Dr. Joshua R. Hendrickson

Second Reader: Dr. Kees Gispen

Third Reader: Dr. Natalia A. Kolesnikova

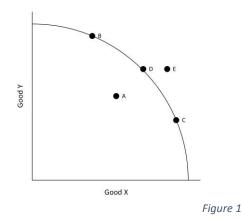
©2015

Lorin Douglas Dawson

ALL RIGHTS RESERVED

Abstract

Understanding a country's human capital externalities is an important part of understanding economic phenomena and implementing national economic policy. However, externalities are difficult to estimate. Measurement error can cause a misinterpretation of economic models and result in misguided policies. The two methods of calculating human capital externalities are the Mincer Equation and Constant-Composition approach. The author estimates human capital externalities in Mexico with the Constant-Composition approach because the Mincer approach often finds externalities where none are present. Using the Constant-Composition method, the author finds no indication of human capital externalities in Mexico.


Contents

INTRODUCTION	2
LITERATURE REVIEW	4
Types of Human Capital	4
Investing in Human Capital	6
Human Capital and Economic Growth	8
Human Capital Externalities	10
Returns on Human Capital Externalities	11
The Importance of Human Capital Externalities	13
Estimating Human Capital Externalities	14
ANALYSIS	16
CONCLUDING REMARKS	23
APPENDIX	25
BIBLIOGRAPHY	28

Introduction

Human capital is defined as the stock of knowledge, habits, and attributes embodied in the ability to perform labor to produce economic value and on an individual level. Human capital measures a person's ability to produce goods and services effectively and efficiently.

The production-possibility frontier (PPF) is a graph representing production trade-offs in an economy with fixed resources. It shows the various combinations of two commodities, or one commodity and all other goods, an economy is able to produce with capital and labor inputs held constant.

Consider the PPF Curve presented in Figure 1. Points B, D, and C represent combinations of Good X and Good Y that efficiently utilize all inputs as indicated by their position on the curve. Point A is within the curve, and inputs are not fully utilized. Since capital inputs, such as machinery, building space, etc., are difficult to change in the short-run, firms reduce labor inputs by laying-off workers or reducing their hours. In point E, the economy is operating outside of the PPF curve. An economy cannot operate outside the PPF curve in the short run because the inputs are fixed at a lower level. Output can only be increased beyond the PPF curve if firms increase or improve inputs. This shifts the PPF curve out and results in higher production capacity for all combinations of Good X and Good Y. Human capital accumulation improves labor inputs, which consequently increases an economy's total output. Therefore, human capital is an important factor of a strong economy.

Acemoglu, Gallego, and Robinson (2014) posit that a larger initial amount of human capital caused high historical economic growth rates. Their argument states that developed countries have grown at a faster rate than currently developing and newly industrialized countries due to their larger initial human capital stock. However, this alone does not fully explain the present gap between developed countries as compared with newly developing and newly industrialized countries.

An externality is the cost or benefit that affects a party who did not choose to incur that cost or benefit (Buchanon and Stubblebine 1962). Externalities can be negative, a cost, or positive, a benefit. Air pollution is a standard example of a negative externality; research and development are examples of a positive externality. Economists measure the value of externalities by individuals' willingness to pay. If one thousand people were willing to pay one hundred dollars for cleaner air, there would be a one hundred thousand dollar air pollution externality.

Externalities are a common argument for government intervention. Externalities create a difference in the marginal social benefit and the marginal private benefit. This leads to either over or under-consumption of a good. In the case of human capital, if the

social benefit is greater than the private benefit, there will be under-investment in human capital because an individual's wage does not capture returns to social benefit. In this example, the government should subsidize education to offset the imbalance in consumption caused by externalities.

Two ways to calculate human capital externalities are the Mincer and Constant-Composition equations. This paper uses the Constant-Composition approach to test for the existence and size of externalities associated with human capital in Mexico. The analysis suggests that there is no evidence of human capital externalities in Mexico. These findings are consistent with those Ciccone and Peri (2005) found in the United States and suggest that human capital investments should not be subsidized in Mexico.

Literature Review

Types of Human Capital

The two main forms of human capital accumulation are schooling and on-the-job training. Both individuals and firms pay for increases in human capital through a combination of direct costs and foregone earnings (Becker 1962). Although individuals tend to emphasize direct costs, foregone earnings are often an important part of the total cost of human capital investment.

On-the-job training refers to human capital accumulation occurring at firms, which train individuals with the goal of increasing their output level. Within on-the-job training, there are two types: general and specific training. "Perfectly" general training and "perfectly" specific training lie on either end of a continuum, and in reality the

majority of on-the-job training lies somewhere on the continuum between the two ends and is thus a combination of both types.

General training is valuable in firms besides the one providing the training, and as a result, individuals pay for general training through reduced earnings. Since general training has potential to increase marginal product in all firms, the marginal product would rise by an equivalent amount in all firms. As a result, wages would rise by the same amount, and firms providing general training become unable to capture any returns. Therefore, firms only provide general training when they do not incur the costs. Individuals pay for general training by accepting wages below their productivity.

Unlike general training, specific training increases productivity only within the firm providing it. If an employee's training is completely specific, then the wage he could receive elsewhere would be independent of his training. Consequently, firms have to pay specific training costs, as no rational employee would pay for training that does not benefit him or her. This results in firms only offering training whenever the return is greater than or equal to the cost. In actuality, the willingness of firms and individuals to pay specific training costs is dependent upon turnover, and are more willing to invest in specific training when turnover is low (Becker 1962).

Schooling refers to institutions that specialize in training itself. Students earn less than if they were not in school, because students are unable to work while in school, except during vacations. Additional schooling increases wages at all firms, similar to general training, but some knowledge obtained at school can be specific in nature. For

example, an individual who studies engineering will generally receive higher wages at an engineering firm than any other type of firm.

General knowledge is another form of human capital. An important form of knowledge is on-the-job-experience (Mincer 1958). An example of knowledge through experience is that a familiarity of prices charged by different suppliers enables an employee to buy material from the cheapest alternative. Another example of general knowledge is that information on wages offered by different firms enables an individual to work at the highest paying firm. Both of these examples show that general knowledge can increase a person's command over their available resources. Moreover, knowledge not directly related to resources, such as information about different political systems or social arrangements could also benefit a person and potentially raise his wages.

Investing in Human Capital

The most important determinant of human capital investment is profitability. No rational person or firm would be willing to invest in human capital unless the return at least equaled the costs of investment. If human capital investment were restricted to a single known period, the cost and rate of return could be determined solely from net earnings. However, investment in human capital is distributed over several periods so the analysis must be generalized to capture distributed income. Consider three distinct human capital investment activities X, Y, and Z. In activity X, the earning stream is flat during all periods, $X_0 = X_1 = ... = X_n$, due to no investment in human capital; in activity

Y, where investment in human capital is random, a person has a real net earnings stream of Y_0 during the first investment period, Y_1 the next, and so on until Y_n during the last period; and in activity Z, learning is unavoidable, which causes human capital to accumulate over time so $Z_0 < Z_n$. This results in the real net earnings stream of Z_0 being less than X_0 , but during the last period Z_n is greater than X_n (Becker 1962). Essentially, activity Z results in an earnings stream similar to activity Y that grows at a slower rate. The different investment activities and combinations thereof will result in unique earnings among occupations and projected earning paths (Mincer 1958). Given the net earnings stream of these separate activities, the cost and return of human capital investments is relatively easy to calculate.

The present value of the net earnings stream in Y would be

$$V(Y) = \sum_{i=0}^{n} \frac{Y_{j}}{(1+i)^{j+1}}$$

where i is the market discount rate, assumed to be the same in each period for simplicity. The difference between net earnings streams Y and X can be used to calculate the cost and returns of investments in activity Y, summarized by the equation

$$d = V(Y) - V(X) = \sum_{i=0}^{n} \frac{Y_j - X_j}{(1+i)^{j+1}}.$$

This equation can be further simplified if activity Y requires an investment only in the initial period and X does not, then the cost of choosing Y rather than X is the difference between their net earnings in the initial period. The total return would be the present value of the differences between net earnings in later periods (Becker 1962). If $C = X_0 - Y_0$, $k_j = Y_j - X_j$, j = 1, ..., n, and R measures the total return, the profitability of Y can be written as

$$d = \sum_{j=1}^{n} \frac{k_j}{(1-i)^j} - C = R - C.$$

In a similar fashion, the profitability of activity Z, "unavoidable" learning can be calculated by substituting Y for Z in the equations above. If this "unavoidable" learning occurs can be an example of human capital externalities if the learning is occurs due to interacting with other individuals and will be discussed in more depth later on.

Another constraint for investing in human capital besides the low rate of return identified by Lucas, is time (1993). While the growth of physical capital depends on saving rate, the growth of human capital depends on the amount of quality-adjusted time devoted to its production. This concept can be summarized as

$$\frac{dh(t)}{dt} = \delta(1-u)h(t) \,,$$

where h is human capital, t is time and u is the fraction of time people spend producing goods. For each unit of additional time an individual dedicates to producing goods, less time remains to invest in human capital.

Human Capital and Economic Growth

On a macroeconomic level, investments in human capital contribute to increases in economic performance, mainly through higher rates of economic growth. Many economists, like Sianesi and Lucas, argue that the main engine of economic growth is human capital accumulation. These economists have adapted new growth economics, which expands the neo-classical model to capture the effects of human capital on growth. The definition of the aggregate production function, where GDP (Y) is modeled as a function of the aggregate stock of the economy's physical capital (K), labor force (L), and time (t), which captures technical progress. The definition can be written in symbols as

$$Y_t = f(K_t, L_t, t) \ .$$

In this definition of the production function, human capital is not included as an input. However, new growth economics emphasize endogenous determination of growth and explicitly bring the role of human capital to the fore (Sianesi 2003). The augmented neo-classical model expands the definition of the aggregate production function to include human capital and can be written as

$$Y(t) = A(t)H(t)^a L(t)^\beta K(t)^{1-a-\beta}$$
 ,

where Y(t) is output at time t, A the level of technology, H the human capital stock in the labor force, L the labor force, and K the physical capital stock. Dividing the augmented neo-classical model by L yields the function

$$y(t) = A(t)h(t)^{a}k(t)^{1-a-\beta}$$

and expresses the model in per capita terms, where in particular $h \equiv \frac{H}{L}$ is the stock of human capital per worker. The augmented neo-classical model shows that increases in human capital (*H*) have a positive correlation with GDP (*Y*) and GDP per capita ($y \equiv \frac{Y}{L}$).

Lucas gives another adaptation of the neo-classical growth model that uses human capital as an input for GDP. It is as follows:

$$y(t) = Ak(t)^{a}[uh(t)]^{1-a}$$
,

where k(t) is physical capital, h(t) is human capital, and u is the fraction of time people spend producing goods (1993).

In new growth economics, there are two schools of thought which respectively focus on the effects of accumulation of human capital and the stock of human capital within the economy that have important implications for the augmented neo-classical model and Lucas' adaptation of the neo-classical model (Sianesi 2003). The first school of thought suggests any increase in human capital will have an effect on the level of output. In the second school of thought, increases in human capital will increase the economic growth rate forever. No consensus has been reached in empirical literature regarding which is the appropriate approach. Another factor that affects human capital in new growth models is the type of goods produced. If one thinks of some activities requiring a high human capital stock in the economy and others requiring a low stock, then the type of goods an economy produces will affect its overall rate of human capital accumulation and growth (Lucas 1993).

Human Capital Externalities

The "unavoidable" learning through interaction described above is a consequence of human capital externalities. An externality is the consequence or spillover of an economic activity experienced by unrelated third parties. Thus, human capital externalities are the benefit or cost of changes in human capital on parties who did not choose to incur said benefit or cost.

Many forms of interaction can create human capital externalities. The theories of nonpecuniary and pecuniary externalities explore the two distinct types of interactions but lead to similar empirical relationships. The theory of nonpecuniary externalities refers to external effects of human capital that do not work through prices, but rather the exchange of ideas, imitation, or learning by doing. Since firms invest in new technology only when there is a sufficient supply of trained workers to replace employees who quit, the theory of pecuniary externalities refers to increasing wages and encouraging investments by raising human capital (Acemoglu and Angrist 2000). Externalities arise in the pecuniary theory because human capital and physical capital are compliments; hence, a more educated work force leads to greater investment in physical capital and higher wages.

Possibly one of the clearest examples of human capital externalities is the Liberty Ship Miracle (Lucas 1993). During World War II, data was collected from fourteen US shipyards that solely produced the Liberty Ship cargo vessel. Between December 1941 and December 1944, the fourteen shipyards produced 2458 Liberty Ships, all to the

same standard design. Lucas recorded the hours of labor per vessel and plotted them against the number of vessels completed. The reductions of labor hours per Liberty Ship with each doubling of cumulative output ranged from 12 to 24 percent (Lucas 1993). Although it is unclear from the evidence who is learning, it is evident that "unavoidable" learning accumulates as cumulative output increases. As individuals discover new ways to increase output, this knowledge spills over to their coworkers, creating externalities. If externalities were not present in this scenario, then only the individuals making the discoveries would increase output, not the shipyard as a whole.

Returns on Human Capital Externalities

Human capital externalities can generate both private and social returns. Private returns to human capital externalities include increased productivity and a higher rate of innovation. Meanwhile, social returns can include better public health, better parenting, lower crime, a better environment, wider political and community participation, and greater social cohesion, which all positively affect economic growth (Sianesi 2003). Although most economists agree that social returns exceed private returns, it is unclear whether they do in reality. For example, if training and schooling have signaling value, social returns to human capital investment can be less than private returns. In the scenario where training and schooling do not increase human capital and serve only as a signal, aggregate income is unchanged when individuals increase their human capital, so social returns are zero (Acemoglu and Angrist 2000). Unfortunately, most analysis is only able to capture private return estimates and is unable to estimate the full returns of human capital investment on society.

The internal rate of return method, a purely accounting approach, evaluates the profitability of any given investment by looking at the investment's discounted flow of benefits and costs. The internal rate of return is the discount rate that makes the net present value of all cash flows from a particular investment equal to zero. The higher an investment's internal rate of return, the more desirable it is to undertake. Sianesi (2003) describes the social rate of return as the internal rate of return of an investment evaluated from a social point of view, or in other words, it is given by that discount rate for which the present discounted value of all social costs. A properly calculated social rate of return should guide a societal decision to finance human capital as a collective.

Social rates of return include all direct costs, not just those borne by the individual, of human capital investment and use pre-tax earnings; as opposed to private rates of return that assume the only cost of human capital investment is opportunity cost and uses post-tax earnings. (Sianesi 2003). Social rates of return should be considered as the lower bound of the full returns to education.

The Importance of Human Capital Externalities

Understanding human capital externalities can help explain several economic phenomena. Human capital externalities help explain cross-country differences in economic development and income. If one assumes that social returns to schooling are around 10%, then top-decile countries in GDP would produce roughly double per worker compared to bottom-decile countries, however, in reality, the output per worker gap is

approximately 15. The existence of human capital externalities around 25% to 30% is sufficient to explain the difference in expected and actual output per worker (Acemoglu and Angrist 2000). In addition, externalities play a critical role in education policy, specifically when deciding to what extent human capital investments should be subsidized (Ciccone and Peri 2005). Strong externalities will result in a higher social return on investment than private return. As a result, individuals will underinvest in human capital. In this case, the government should subsidize human capital investments to encourage private investment.

Externalities might also help explain the lack of capital flows to poor countries and the effects of agglomeration on economic growth (Acemoglu and Angrist 2000). Strong externalities generate higher returns on investment and attract more investment. Poor countries generally exhibit modest human capital externalities, and therefore attract less investment. Rational individuals will not invest in these poor countries in order to obtain a higher return in developed countries, causing a lack of capital flows to poor countries and agglomeration on economic growth in developed countries.

Estimating Human Capital Externalities

Several methods exist to calculate the strength of externalities. Both Sianesi, as well as Acemoglu and Angrist (2003, 2000), uses basic wage regressions to identify externalities by isolating the causal impact on individual wages of the average level of

education in the city or state of residence of the individual (2003, 2000). The equation used is

$$Y_{ijt} = X'_{i\,\mu} + \delta_j + \delta_t + \gamma_1 \bar{S}_{jt} + \gamma_{2i} s_i + u_{jt} + \varepsilon_i ,$$

where *i* denotes the individual, *j* the state or city, and *t* time. Individual log weekly wages Y_{ijt} are regressed on state-of-birth to control for migration and year-of-birth dummies X'_i , state or city of residence δ_i , census-year effects δ_t , state or city average schooling \bar{S}_{it} to measure the social benefit, individual schooling s_i , and a state-year error component u_{it} . The largest technical problem in this equation is the likely endogeneity of \overline{S} and s due to unobserved factors affecting both wages and the amount of schooling an individual invests in, or affecting wages as well as the percentage of educated workers in a state or city (2003). For example, economic growth may increase wages and a desire for human capital, or productivity and tastes for human capital may simultaneously change (Acemoglu and Angrist 2000). Other weaknesses identified relate to the specific definition of externality adopted; in particular, positive effects may accrue at a national or firm level of aggregation. Several economists have identified similar manners to calculate human capital externalities, such as the Mincer earnings regression and the constant-composition regression.

While the concept of externalities is not very controversial in economics, its application is. Better understanding human capital externalities could lead to better understanding several economic phenomena. Externalities are difficult to verify and quantify. Economists agree that there is a relationship between human capital and economic growth. The idea of human capital externalities is well established, and consensus exists that human capital investment generates additional indirect economic benefits. However, the concept of human capital externalities remains largely untested because it is difficult to verify and quantify their returns. Furthermore, it has proven difficult to compare externalities over time and between different geographic areas.

Multiple standards of measurement have resulted in various methods of calculating human capital and human capital externalities, causing further difficulty in comparing existing research. Since human capital is abstract, proxies, such as years of schooling, are used to measure human capital. The use of proxies generates difficulties in comparing works because various unique proxies exist for measuring human capital. Furthermore, the efficiency of proxies is questionable and varies from proxy to proxy (Sianesi 2003).

Another issue in measuring human capital arises in cross-country analysis. To form a common measurement for analysis across various countries, one must constrain education to be homogeneous across those countries or limit the sample size to already homogenous countries, such as OECD countries. A disadvantage to homogenizing human capital and grouping similar countries for analysis is assuming training and schooling is the same, which may distort any results.

Analysis

An individual's accumulated human capital is an important determinant of the wage, but it is not the only factor. The human capital of persons with whom the individual interacts can also affect the individual's wage through externalities. Strong positive externalities increase productivity and wage, while strong negative externalities depress productivity and wage. Modest externalities result in negligible differences in both productivity and wage.

Most economists use the Mincer Regression to measure the strength of human capital externalities, which can be described as:

$$\log y = \log y_0 + rS + \beta_1 X + \beta_2 X^2 + C + \varepsilon,$$

where y is earnings (y_0 is the earnings of an individual with no education or experience), log y_0 is a constant, S is years of schooling, r is an externally determined return on an additional year of schooling, X is years of work experience, C captures exogenous influences to ensure the coefficient estimates on the relevant variables are unbiased, and ε is the error term. The equation shown is a standard Mincer earnings function. To estimate externalities, economists add a term for the average level of education and test if the coefficient of average level of education is statistically different from zero.

The Mincer Regression has become one of the most common methods to estimate wage determination for several reasons. First, the equation is based on a formal model of human capital investment. The portion of the equation that calculates the determinant of schooling on wage is an equilibrium condition where rational persons invest in human capital to maximize the present value of future earnings.¹ The model is completed by adding post-schooling work experience as a second determinant to wage. Another reason is the Mincer Regression fits data well in most contexts. The equation conforms to the notion that earnings grow as a concave function of age and that earning profile is steeper for workers with more schooling. Log earnings are not an entirely separable function of education and age; there is a different rate of return to education for each age group, rather than a universal return (Lemieux 2003). Introducing potential experience into the model, in place of age, allows the model to capture the shape and slope of the age-earnings profile.

The Mincer earnings function was an attempt to explain wage equilibrium and was later adapted to estimate human capital externalities. In order to determine externalities with the Mincer equation, it is necessary to add average education in the geographic area to the regression as an independent variable. Acemoglu and Angrist use this approach in "How Large Are Human-Capital Externalities? Evidence from Compulsory Schooling Laws" (2000).

Despite the many benefits of the Mincer Regression, it potentially produces biased results when estimating externalities due to ignoring distributional effects of human capital. Consider a segmented working market with no externalities, where one group of workers has masters' degrees and the other group has a high school education.

 $^{1 \}log y = \log y_0 + rS$ captures the effect of schooling on wage.

These two groups do not interact in the same labor market. If the workers with high school education leave the city, the supply of high school-educated workers falls, reducing the supply of labor in that market, and increasing wage of workers with a high school education. By assumption, the market for workers with masters' degrees is unaffected. In this example, the average level of education and wages is increasing in the city and this increase is associated with higher wages, on average. Nonetheless, this is not a result of externalities. Yet the Mincer Regression would identify this as evidence of a positive externality, since the equation only picks up the change in average wage, not the change in distribution of human capital caused by the individuals with high-school diplomas exiting the labor market.

A different approach to determining wage and human capital externalities is the Constant-Composition method outlined by Ciccone and Peri (2005). This method captures the changes in average wage, while holding the composition of labor constant over time. Essentially, the constant-composition equation is a basic wage regression equation with the addition of demographic variables to control for changes in the composition of labor. The equation estimated in this paper is given as:

 $\widehat{wage} = \widehat{\alpha} + \widehat{\beta}_{1}educ + \widehat{\beta}_{2}city + \widehat{\beta}_{3}age + \widehat{\beta}_{4}sex + \widehat{\beta}_{5}maritulstatus + \widehat{\beta}_{6}timesinterviewed + \widehat{\beta}_{7}period + \widehat{\beta}_{8}city \# period + \varepsilon$ (1)

The dependent variable of the analysis is *wage*, or income per hour. The independent variables are *educ*, *city*, *age*, *male*, *maritalstatus*, *Timesinterviewed*, *period*, and *city#period*. *Educ* is the level of educational attainment. *Period* represents the time-

period in which the data was collected. Although the workforce composition cannot be held constant over time to prevent individuals from entering or exiting the labor market, one can focus on one demographic group to make comparison over time easier. *City* controls for differences in human capital between metropolitan areas in Mexico.² *Timesinterviewed* is a control to negate bias created by individuals who have participated in the survey more than once, and city#period is an interaction term between the city and time period to prevent time period variables from picking up the average effect across all cities, and ε is the error term.

The author collected data for the above variables from the Encuesta Nacional de Empleo³ (ENE) commissioned by the Instituto Nacional de Estadística y Geografía⁴ (INEGI) of Mexico. The data spans from 1995 to 2004 and was collected quarterly, except for the years 1995 to 2000.⁵ The INEGI only published the ENE and associated literature in Spanish. This presented a unique challenge since the author needed to translate the dataset and large portions of the literature before continuing the analysis. Furthermore, many of the variables in the ENE were vaguely defined. As a result, the author contacted several individuals at the INEGI to clarify variable definitions. A third problem with the ENE was the data's format. The order of variables was not consistent

² 1 Mexico City, 2 Guadalajara, 3 Monterrey, 4 Puebla, 5 León, 6 San Luís Potosí, 7 Mérida, 8 Chihuahua, 9 Tampico, 10 Veracruz, 12 Acapulco, 13 Aguascalientes, 14 Morelia, 15 Toluca, 16 Saltillo, 17 Villahermosa, 18 Tuxtla, 19 Gutiérrez, 21 Tijuana, 24 Culiacán, 25 Hermosillo, 26 Durango, 27 Tepic, 28 Campeche, 29 Cuernavaca, 31 Oaxaca, 32 Zacatecas, 33 Colima, 36 Querétaro, 39 Tlaxcala, 40 La Paz, 41 Cancún, and 43 Pachuca

³ National Employment Survey

⁽http://www.inegi.org.mx/est/contenidos/proyectos/encuestas/hogares/historicas/ene/) ⁴ National Institute of Statistics and Geography

⁵ The INEGI collected data for the ENE tri-annually in the year 2000 and annually for the years 1999 through 1995.

in different survey periods. In addition, variables were often switched between string and numeric formatting in different periods. Once the author translated the ENE, clarified the variables, and formatted and appended the datasets, the author proceeded to analyze the data for evidence of human capital externalities.

The purpose of equation (1) is to generate a prediction of the average wage for workers with the same level of education and the same demographics in each city over time. Using the coefficients estimated in the regression above, the equation calculated the average wage for the first and last period of the ENE survey. The author controls for married male individuals with a high school education, because this group exhibits less variation in the labor market⁶. Subsequently, regressing the change in the wage for the average worker on the change in the average level of education in the particular city allows one to see whether the average level of education can explain the change in the average wage in a that city over time, while holding the composition of labor constant.

⁶ In the data, "secundaria completa" is represented by the variable educ3, and translates to secondary studies completed, or in other words the equivalent of a high school diploma or GED in Mexico

Using equation (1) and data gathered from the ENE, the author produced the

results in the following table:

Table 1: Equation (1) Results
Number of obs. = 3577546
F(141, 3577404) = 10346.52
Prob > F = 0.0000
R-squared = 0.2897
Adj R-squared = 0.2896

Variable	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Constant	1.727099	0.0029972	576.23	0.000	1.721225	1.732974
educ ⁷						
1					-	-
2	.3142462	.0013094	239.98	0.000	.3116797	.3168126
3	.5219998	.0013411	389.24	0.000	.5193713	.5246282
4	1.031627	.0013323	774.35	0.000	1.029015	1.034238
Firstperiod	.020425	332.1875	0.00	1.000	-651.0553	651.0962
Lastperiod	.0096003	.0066721	1.44	0.150	0034767	.0226773
male	.0622944	.0008649	72.03	0.000	.0605992	.0639896
married	.1715245	.0008746	196.11	0.000	.1698103	.1732388
timesinteviewed	.016113	.0002729	59.05	0.000	.0155782	.0166478
Age	.0075687	.0000342	221.40	0.000	.0075017	.0076357
*Table 3 in the A	ppendix incl	udes the city	and citv#	period varia	ables.	

Table 3 in the Appendix includes the city and city#period variables.

With the results from the regression equation, the author calculated the average wage for each metropolitan area in the first and last period; then, tabulated the mean for yrsofschool, the total number of years an individual enrolled in school, and *employment*, the number of employed individuals in the labor market, in both the first and last period. With the average wage, years of schooling, and number of employed individuals, the author calculated the change in the variables between 1995 and 2004. The change in wage for each metropolitan area was calculated by the equation:

$$\Delta \widehat{wage} = \widehat{wage}_{2004} - \widehat{wage}_{1995} \,. \tag{2}$$

⁷ Education is presented by a set of dummy variables where 1–incomplete primary education, 2–primary education completed, 3-secondary education completed, 4-tertiary or superior education completed

The author then performed a similar calculations for the variables *yrsofschool* and *employment*. This created the variables $\Delta wage$, $\Delta yrsofschool$, and $\Delta employment$, which represent the change in average wage, the average number of years an individual enrolled in school, and the average number of employed individuals in the labor market for each metropolitan area. The author then regressed $\Delta wage$ on $\Delta yrsofschool$ and $\Delta employment$ to test for human capital externalities, expressed as:

$$\Delta \widehat{wage} = \widehat{\beta}_1 \Delta yrsofschool + \widehat{\beta}_2 \Delta employment.$$
(3)

The results of equation (3) are listed in the following table: Table 2.

Table 2: Equation (3) Results
Number of obs. = 31
F(2, 28) = 1.22
Prob > F = 0.3096
R-squared = 0.0803
Adj R -squared = 0.0146

Variable	Coef.	Std. Err.	Т	P> t	[95% Conf.	Interval]
Constant	1.15713	.0265966	43.51	0.000	1.102649	1.211611
			-			
yrsofschool	.0583427	.0385946	1.51	0.142	0207149	.1374003
Employment	-1.464684	.9864597	-1.48	0.149	-3.485355	.5559872

Substituting the coefficient values for $\Delta yrsofschool$ and $\Delta employment$ into the regression equation produces the following equation:

$$\Delta \widehat{wage} = 1.16 + .06 * \Delta yrsofschool - 1.46 * \Delta employment.$$
(4)

The p-value for the regression equation on $\Delta yrsofschool$ is 0.142. Thus, it is not statistically significant with all other variables held constant, indicating there is no evidence of human capital externalities present in Mexico.

Concluding Remarks

Past literature on human capital has used the Mincer Regression to estimate human capital externalities. In "Identifying Human-Capital Externalities: Theory with Application", Ciccone and Peri test for externalities in the United States using both the Mincer Regression and Constant-Composition approaches. Ciccone and Peri demonstrated bias in the Mincerian approach with new empirical work and formulated another method, the Constant-Composition approach, to estimate human capital externalities without the bias potentially created by the Mincer Regression. In their paper, the Mincer equation indicated the presence of human capital externalities in the United States. Analysis of human capital externalities with the Constant-Composition approach failed to indicate the existence of any externalities.

Since Ciccone and Peri only applied the Constant-Composition approach to the United States and no other empirical work has applied the approach to different economies, this raises questions as to the effectiveness of the Constant-Composition approach to estimate human capital externalities in an economy that is distinct from the United States. For example, economic differences, such as poverty rates, between the United States and Mexico could influence the data and produce distinct results in each country. Furthermore, one could argue Ciccone and Peri's results are unique to their dataset. In other words, empirical work emulating Ciccone and Peri's method with different data could produce different results. For example, a larger sample with a different geographic distribution could produce contrary results.

Using the Constant-composition approach, the author did not find any evidence of human capital externalities in Mexico. These findings, which are consistent with those of Ciccone and Peri, confirm the results are not unique to the United States or to Ciccone and Peri's data (2005). The fact the author reached a similar conclusion for Mexico suggests the

Constant-Composition approach functions for economies regardless of their position on the growth curve, although additional empirical work to include a wider array of countries at different levels of economic development is needed to further confirm this theory.

Appendix

Table	3:	Equat	tion	(1)	Results
Manuala			_ 25		10

Number of obs =	3577546
F(141, 3577404)	=10346.52
Prob > F =	0.0000
R-squared =	0.2897
Adj R-squared =	0.2896

Variable	Coef.	Std. Err.	Т	P> t	[95% Conf.	Interval]
Constant	1.727099	0.0029972	576.23	0.000	1.721225	1.732974
	•			•		
educ						
1					-	
2	.3142462	.0013094	239.98	0.000	.3116797	.3168126
3	.5219998	.0013411	389.24	0.000	.5193713	.5246282
4	1.031627	.0013323	774.35	0.000	1.029015	1.034238
firstperiod	.020425	332.1875	0.00	1.000	-651.0553	651.0962
lastperiod	.0096003	.0066721	1.44	0.150	0034767	.0226773
male	.0622944	.0008649	72.03	0.000	.0605992	.0639896
	1515015	0000746	100.11		1 6001 00	1200000
married	.1715245	.0008746	196.11	0.000	.1698103	.1732388
	01 (11)	0000700	50.05	0.000	0155700	0166470
timesinteviewed	.016113	.0002729	59.05	0.000	.0155782	.0166478
2.00	.0075687	.0000342	221.40	0.000	.0075017	.0076357
age	.0075087	.0000342	221.40	0.000	.00/301/	.0070337
a met						
1					T .	
2	.1404326	.0035755	39.28	0.000	.1334248	.1474403
3	.2157291	.0033933	63.57	0.000	.2090783	.2223799
4	1086746	.0036059	-30.14	0.000	1157421	1016071
5	.150345	.0032839	45.78	0.000	.1439085	.1567814
6	.0136299	.0036334	3.75	0.000	.0065086	.0207511
7	059932	.0038121	-15.72	0.000	0674036	0524603
8	2077996	.0038311	-54.24	0.000	2153085	2002907
9	.1608372	.0041208	39.03	0.000	.1527605	.1689139
10	0505233	.0038994	-12.96	0.000	0581661	0428806
11	4251823	.0041563	-102.30	0.000	4333285	417036
12	1577873	.0039922	-39.52	0.000	1656118	1499627
13	2749289	.003994	-68.83	0.000	2827571	2671007
14	.0014164	.0040215	0.35	0.725	0064657	.0092984
15	0100184	.0039187	-2.56	0.011	017699	0023378
16	0133857	.0039734	-3.37	0.001	0211735	0055979
17	.1302428	.00382	34.09	0.000	.1227557	.137730
18	0150511	.0037976	-3.96	0.000	0224943	0076079
19	2508837	.0038549	-65.08	0.000	2584392	2433281
20	.2115354	.0042115	50.23	0.000	.203281	.2197898
21	.4859825	.0037507	129.57	0.000	.4786312	.4933337
22	.1690402	.0041852	40.39	0.000	.1608374	.1772431
23	.213584	.0041852	50.20	0.000	.2052445	.2219235
24	.0916332	.003737	24.52	0.000	.0843087	.0989577
25	.1363184	.0038769	35.16	0.000	.1287199	.1439169
26	0610862	.0039177	-15.59	0.000	0687647	0534077
27	1148346	.0038825	-29.58	0.000	1224442	107225
28	2820605	.0039186	-71.98	0.000	2897409	2743801
29	1161029	.0043706	-26.56	0.000	1246692	1075366
30	2008633	.004412	-45.53	0.000	2095107	1922159
31	2005613	.003863	-51.92	0.000	2081327	192990
32	0901314	.004098	-21.99	0.000	0981634	0820993
33	0519127	.003931	-13.21	0.000	0596173	0442080
34	.0151757	.0044314	3.42	0.000	.0064903	.0238612

36 .0800851 .0040104 20.19 0.000 .0731248 .088843 37 0419636 .0038263 -11.76 .0.000 04252015 033592 38 0419636 .0038575 -91.93 .0.000 04252170 347049 40 .1277425 .0041175 31.08 0.000 .192822 .0624071 42 .1011307 .0043846 23.49 0.000 .0429522 .0624071 43 .0054791 .0037929 -1.63 0.010 .4289671 .423897 45 .078676 .0043854 18.03 0.000 .267252 .287199 46 .277727 .0049379 55.92 0.000 462202 44911 47 .055387 -03.080 0.000 462202 494911 48 1704247 .005337 -30.80 0.000 4262027 494911 48 1704247 .0057508 274 0.0065 .0026953 .015302<	25	0576055	0040010	10.46	0.000	0.001.70	0.4000000
17 0450021 .0038263 -1.07 0.000 0525015 0335024 38 010636 .0038575 -91.93 0.000 0527105 0335024 39 35461 .0038575 -91.93 0.000 .139790 40 .05418 .0041979 12.91 0.000 .0459522 .0624077 41 .0064791 .0039729 -1.63 0.103 0126597 .003307 44 .4646123 .0037966 11.722 0.000 .0039671 .4338971 45 .0765676 .0043796 5.22 0.000 .0762504 .0639129 46 .277272 .00049379 5.28 0.000 .0142502 .0037186 47 .0545807 .0024979 5.28 0.000 .11527647 .268089 48 .107247 .0027508 -125.65 0.000 .23620287 .23512457 58 .003679 -18.0.26 0.000 .23620287 .23512457	35	0576255	.0042819	-13.46	0.000	0660178	0492332
38 0419658 .003875 -10.87 0.000 049574 034398 40 .1277425 .0041105 31.08 0.000 .119686 .133799 41 .05474 .0043746 23.49 0.000 .025937 .025377 42 .101397 .0043746 23.49 0.000 .025937 .003577 44 .4466123 .0037986 117.52 0.000 .070322 .081387 45 .0758576 .0043354 18.03 0.000 .2675547 .0248997 47 .054807 .0043353 -11.06 0.000 .2675547 .2684991 48 .1764247 .005337 -30.80 0.000 .2646611 .203316 51 .00569 .0037508 -128,55 0.000 .2446671 .351245 63 3766023 .005619 -22.74 0.000 .1323993 .306610 119952 4760154 332,1875 -0.00 0.998 -651,9518							
39 35461 .003875 -91.93 0.000 -1.3621705 347049 40 .027125 .004105 31.008 0.000 .104561 .133704 41 .05418 .0041979 12.31 0.000 .0059522 .052407 42 .001307 .0039786 11.752 0.000 .003971 .013377 43 .0046791 .0.37986 11.752 0.000 .0032547 .288687 46 .0795676 .0043984 18.03 0.000 .0132706 .1397978 47 .0545807 .003837 -30.80 0.000 .0142706 .1397878 51 .009508 .0034739 2.74 0.000 .137278 .404491 52 2366372 .0026937 .10326 .0000 352787 .23807 54 3378971 .0061313 .22.74 0.000 353293 .33070132 54 3366372 9202431 .322.1875 .0.00 .998							
40 .1277425 .0041105 31.08 0.000 .119686 .133799 41 .05418 .0041097 12.31 0.000 .0026927 .002577 42 .1011307 .0043046 23.49 0.000 .0026927 .001377 44 .4464123 .0037866 117.52 0.000 .4389671 .003584 45 .0785766 .0049359 15.32 0.000 .2675547 .238989 46 .277272 .0049335 -11.06 0.000 .2675547 .233316 81 .00508 .0034759 2.74 0.000 .2464671 .331337 81 .036912 .0025137 -22.74 0.000 .4373529 .333316 83 .336612 .0026137 -22.74 0.000 .4373529 .338610 141995 376034 332.1875 -0.00 0.988 -652.0518 650.1951 141995 376034 332.1875 -0.00 0.988 -652.0634							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
42 1011307 .0043046 23.49 0.000 .0926937 .1095677 44 .4646123 .0037926 117.52 0.000 4398671 .4398671 46 .277272 .0043584 18.03 0.006 267252 .287199 46 .277272 .0049335 -11.66 0.000 264252 244911 48 1704247 .005337 -30.80 0.000 1812706 155978 81 .005968 .0021370 -12.965 0.000 246027 404911 82 398717 .00213708 -12.965 0.000 3620287 319245 84 4722185 .0026197 -18.026 0.000 322993 309610 141995 10386717 .0026197 -18.026 0.000 322993 309610 141995 1038643 .322.1875 -0.00 0.989 -652.0147 .650.0197 141995 1070844 332.1875 -0.00 0.989 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
44 .4464123 .003786 117.52 0.000 .4398671 .4538674 45 .078676 .004379 55.92 0.000 .267322 .089109 46 .277772 .004373 55.92 0.000 267322 2644911 48 1704247 .005337 -30.80 0.000 264252 44911 48 338916 .0023957 -22.55 0.000 2446671 233316 81 036632 0026197 480.26 0.000 2446671 233329 84 472185 0026197 480.26 0.000 132292 470084 85 3188023 005643 32.1875 000 933934 233931 86 3188023 005643 32.1875 000 0998 -652.0034 650.1991 141995 2 870333 000 0.998 -652.0034 650.0366 941995 2							
45 .0785676 .0043584 18.03 0.000 .0700252 .0271547 .286899 47 .0545807 .0049370 55.92 .0.000 2675547 .286899 48 .1704247 .0055337 .30.80 .0.000 1812706 195978 51 .009508 .0034759 2.74 0.000 242027 233316 52 356672 .0027586 -123.55 0.000 2420287 312425 84 4722185 .00261513 27.44 0.000 3620287 431245 85 1892171 .032.1875 000 0.998 651.9518 650.1997 241995 2 970484 32.1875 000 0.998 652.0149 650.1961 241995 2 970484 92.1875 000 0.998 652.0149 650.1049 241995 2 970484 92.1875 000 0.998 652.0478 650.1031 641993 2 970484							
i66 .27722 .0049397 55.92 0.000 .2675347 .266491 47 0545807 .0049335 -11.06 0.000 1642502 044911 48 17064247 .0055337 -30.80 0.000 185747 .2664512 41 .005508 .0024593 -32.80 0.000 7846611 23336 42 238916 .0027508 -129.65 0.000 4773529 4670840 85 1388717 .0061313 -22.74 0.000 1379281 127815 86 3366023 .0036692 66.34 0.000 323993 309610' 141995 2 9231711 332.1875 -0.00 0.998 -652.084 650.168' 241995 2 9273933 332.1875 -0.00 0.998 -652.0149' 55.148' 541995 2 9273943 332.1875 -0.00 0.998 -652.0136' 650.045' 641995 2 92720484 332.1875 -0.00							
17 0436807 .0049335 -11.06 0.000 0642502 044911 18 01704247 .0055337 -30.80 0.000 1812706 159578 11 .009508 .0024957 -82.53 0.000 2446671 233316 183 3366372 .00227508 -122.65 0.000 477323 467084 184 4722185 .0026197 -180.26 0.000 1519281 306007 185 1398717 .002513 -22.74 0.000 323993 309610 181995 3168023 .0036692 -86.34 0.000 323993 309610 181995 9720484 332.1875 -0.00 0.998 -652.019 -652.019 971499 9720484 332.1875 -0.00 0.998 -652.0478 650.063 181995 9720484 332.1875 -0.00 0.998 -652.0478 650.045 191952 -1.008046 332.1875 -0.00 0.998 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.0871099</td>							.0871099
148							
1 .009508 .0034759 2.74 0.006 .0026853 .016320 82 3566372 .0027508 -129.65 0.000 2446671 233316 83 3566372 .0027508 -129.65 0.000 473239 467084 84 4722185 .0026197 -180.26 0.000 332393 305610 86 3168023 .0036692 -86.34 0.000 323993 305610 8 3168023 .0036692 -86.34 0.000 323993 305610 119952 8760154 332.1875 -0.00 0.998 -652.0031 650.199 2419952 9273993 332.1875 -0.00 0.998 -652.0031 650.146 5193952 386800 332.1875 -0.00 0.998 -652.0037 650.048 619952 1028977 332.1875 -0.00 0.998 -652.0478 650.103 10419952 9712641 332.1875 -0.00 0							
e2 2389116 .002957 82.53 0.000 2446671 233167 83 3566372 .0027508 129.65 0.000 3620287 312435 84 4722185 .0026197 -180.26 0.000 4773529 4670844 85 1398717 .0061513 -22.74 0.000 1519281 127815 86 3168023 0.036692 86.34 0.000 323993 309610' 1#1995 2 1000594 332.1875 -0.00 0.998 -652.0834 650.1680' 341995 2 9273933 332.1875 -0.00 0.998 -652.0149' 650.168' 641995 2 -1.00244 332.1875 -0.00 0.998 -652.1037' 650.063' 184195 2 -1.102733 332.1875 -0.00 0.998 -652.1076' 650.0238' 84195 2 9716691 332.1875 -0.00 0.998 -652.1027' 650.045' 1141995 2 9725283 332.1875		1704247					
83 3566372 .0027508 -129.65 0.000 473529 4670841 84 4722185 .0026197 -180.26 0.000 473529 4670841 85 316023 .003692 -86.34 0.000 323393 309610 a_met#firstperiod		.009508	.0034759	2.74		.0026953	.0163207
e4 4722185 .0026197 -180.26 0.000 4773229 47670841 85 3186023 .0036692 -86.34 0.000 319383 309610' a_met#firstperiod 8760154 332.1875 -0.00 0.998 -651.9518 650.199' 2#1995.2 009694 332.1875 -0.00 0.998 -652.0854 650.0166' 3#1995.2 9720484 332.1875 -0.00 0.998 -652.0034 650.168' 5#1995.2 9720484 332.1875 -0.00 0.998 -652.0038 650.168' 5#1995.2 -1.002464 332.1875 -0.00 0.998 -652.1036 649.973 8#1995.2 -1.028977 332.1875 -0.00 0.998 -652.10476 650.1037 11#1995.2 9718691 332.1875 -0.00 0.998 -652.0476 650.1037 11#1995.2 9845244 332.1875 -0.00 0.998 -652.042 650.1037 11#1995.2 9845244	82	2389916	.0028957		0.000	2446671	2333161
ist 1398717 .0061513 -22.74 0.000 1519281 137215 ist 3168023 .0036692 -86.34 0.000 323993 309610' ist 8760154 332.1875 -0.00 0.998 -651.9518 650.199' 2#1995_2 8760154 332.1875 -0.00 0.998 -652.0474 650.166' 3#1995_2 9273093 332.1875 -0.00 0.998 -652.0476 650.166' 6#1995_2 92730484 332.1875 -0.00 0.998 -652.0478 650.103' 6#1995_2 -1.002733 332.1875 -0.00 0.998 -652.0478 649.973 3#1995_2 9718691 332.1875 -0.00 0.998 -652.0476 650.1033' 1041995_2 9718691 332.1875 -0.00 0.998 -652.0476 650.0426' 1141995_2 9865194 332.1875 -0.00 0.998 -652.0462 650.0492' 1341995_2 9865243 32.1875	83	3566372	.0027508	-129.65	0.000	3620287	3512457
B6 3168023 .0036692 -86.34 0.000 323993 309610 a met#firstperiod 1#1995 8760154 332.1875 -0.00 0.998 -651.9518 650.199' 2#1995 9373913 332.1875 -0.00 0.998 -652.0149 650.166' 3#1995 9273993 332.1875 -0.00 0.998 -652.003 650.148' 6#1995 9720484 332.1875 -0.00 0.998 -652.0478 650.067' 7#1995 -1.102733 332.1875 -0.00 0.998 -652.0478 650.045' 10#1995 97128601 332.1875 -0.00 0.998 -652.0476 650.045' 11#1995 9712867 332.1875 -0.00 0.998 -652.0476 650.103' 12#1995 928755 332.1875 -0.00 0.998 -652.1042 650.147' 14#1995 928755 332.1875 -0.00 0.998 -652.1027 650.085' 12#1995	84	4722185	.0026197	-180.26	0.000	4773529	4670840
a met#firstperiod 1#1995 2 8760154 332.1875 -0.00 0.998 -651.9518 650.199' 2#1995 2 -1.009694 332.1875 -0.00 0.998 -652.0854 650.0136' 4#1995 2 9239171 332.1875 -0.00 0.998 -652.0034 650.136' 4#1995 2 9272044 332.1875 -0.00 0.998 -652.0031 650.143' 6#1995 2 -1.008046 332.1875 -0.00 0.998 -652.1078 640.973' 8#1995 2 -1.029977 332.1875 -0.00 0.998 -652.1057 650.043' 10#1995 2 9262142 332.1875 -0.00 0.998 -652.047 650.103' 11#1995 2 926755 332.1875 -0.00 0.998 -652.047 650.147' 13#1995 2 928755 332.1875 -0.00 0.998 -652.042 650.147' 141995 2 -1.03622 332.1875 -0.00 0.998 -652.042' 650.039' 1	85	1398717	.0061513	-22.74	0.000	1519281	1278153
141995 2 8760154 332.1875 -0.00 0.998 -651.9518 650.1991 2#1995 2 -1.009694 332.1875 -0.00 0.998 -652.0854 650.0961 3#1995 2 92391711 332.1875 -0.00 0.998 -652.0149 650.1361 4#1995 2 92720484 332.1875 -0.00 0.998 -652.0478 650.1037 6#1995 2 -1.002034 332.1875 -0.00 0.998 -652.0488 650.0677 7#1995 2 -1.102733 332.1875 -0.00 0.998 -651.0125 650.0437 9#1995 2 9268480 332.1875 -0.00 0.998 -652.1047 650.1033 12#1995 2 9662142 332.1875 -0.00 0.998 -652.0476 650.1031 12#1995 2 9267555 332.1875 -0.00 0.998 -652.0456 650.1637 13#1995 2 -1.03622 332.1875 -0.00 0.998 -652.0456 650.1637 14#1995 2 -1.03624	86	3168023	.0036692	-86.34	0.000	323993	3096107
1#1995 2 8760154 332.1875 -0.00 0.998 -651.9518 650.1991 2#1995 2 -1.009694 332.1875 -0.00 0.998 -652.0854 650.0961 3#1995 2 92391711 332.1875 -0.00 0.998 -652.0031 650.1361 6#1995 2 92720484 332.1875 -0.00 0.998 -652.0038 650.0637 6#1995 2 -1.008046 332.1875 -0.00 0.998 -652.0488 650.0677 7#1995 2 -1.02733 332.1875 -0.00 0.998 -652.0478 650.0437 0#1995 2 9262142 332.1875 -0.00 0.998 -652.0476 650.1033 12#1995 2 9662142 332.1875 -0.00 0.998 -652.0476 650.1031 12#1995 2 962742 332.1875 -0.00 0.998 -652.0455 650.1637 13#1995 2 -1.03622 332.1875 -0.00 0.998 -652.0455 650.0487 14#1995 2 -1.03624 <t< td=""><td></td><td>•</td><td></td><td></td><td>•</td><td>•</td><td></td></t<>		•			•	•	
241995 2 -1.09694 332.1875 -0.00 0.998 -652.0854 650.0667 341995 2 9273993 332.1875 -0.00 0.998 -652.0014 650.1367 541995 2 9720484 332.1875 -0.00 0.998 -652.0031 650.1483 541995 2 -1.028046 332.1875 -0.00 0.998 -652.0336 650.067 741995 2 -1.028977 332.1875 -0.00 0.998 -652.1073 650.1637 8#1995 2 8368008 332.1875 -0.00 0.998 -651.9125 650.2381 9#1995 2 9718691 332.1875 -0.00 0.998 -651.8171 650.2045 1141995 2 9287555 332.1875 -0.00 0.998 -652.0426 650.0497 1241995 2 9287554 332.1875 -0.00 0.998 -652.0426 650.0892 1241995 2 -1.03204 332.1875 -0.00 0.998 -652.0265 650.0892 1241995 2 -1.023066 <td< td=""><td>a_met#firstperiod</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	a_met#firstperiod						
2#1995 2 -1.009694 332.1875 -0.00 0.998 -652.0854 650.063 3#1995 2 93391711 332.1875 -0.00 0.998 -652.0149 650.136 4#1995 2 9273993 332.1875 -0.00 0.998 -652.0031 650.148 5#1995 2 -1.028046 332.1875 -0.00 0.998 -652.0838 650.067 7#1995 2 -1.102733 332.1875 -0.00 0.998 -652.1085 649.973 8#1995 2 -1.029977 332.1875 -0.00 0.998 -652.1057 650.0451 10#1995 2 9718691 332.1875 -0.00 0.998 -651.8171 650.2801 11#1995 2 9287555 332.1875 -0.00 0.998 -652.0426 650.0147 14#1995 2 9287554 332.1875 -0.00 0.998 -652.0426 650.0892 12#1995 2 -1.03262 332.1875 -0.00 0.998 -652.0265 650.0892 12#1995 2 -1.02896 3	1#1995 2	8760154	332.1875	-0.00	0.998	-651.9518	650.1997
3+1995 2	2#1995 2					-652.0854	650.0660
141995 2 9273993 332.1875 -0.00 0.998 -652.0031 650.163' 5#1995 2 1008046 332.1875 -0.00 0.998 -652.0838 650.067' 7#1995 2 -1.102733 332.1875 -0.00 0.998 -652.1785 649.973' 8#1995 2 8360008 332.1875 -0.00 0.998 -651.1715 650.043' 10#1995 2 9718691 332.1875 -0.00 0.998 -651.871 650.043' 11#1995 2 9718614 332.1875 -0.00 0.998 -651.871 650.140' 12#1995 2 9867543 332.1875 -0.00 0.998 -652.042 650.140' 14#1995 2 9867544 332.1875 -0.00 0.998 -652.042 650.046' 14#1995 2 -1.028078 332.1875 -0.00 0.998 -652.022 650.045' 14#1995 2 -1.02808 332.1875 -0.00 0.998 -652.022 650.051' 14#1995 2 -1.02806 332.1875 -0.00 0.998 -652.0222' 650.051' 19	3#1995 2	9391711	332.1875	-0.00	0.998	-652.0149	650.1366
5 #1995 2 9720484 332.1875 -0.00 0.998 -652.0478 650.103' 6#1995 2 -1.008046 332.1875 -0.00 0.997 -652.0838 650.067' 7#1995 2 -1.102733 332.1875 -0.00 0.998 -652.1085 649.973 10#1995 2 9718691 332.1875 -0.00 0.998 -652.1057 650.0436 11#1995 2 9718691 332.1875 -0.00 0.998 -652.0476 650.0103 12#1995 2 9662142 332.1875 -0.00 0.998 -652.0426 650.1477 13#1995 2 9897684 332.1875 -0.00 0.998 -652.0456 650.1477 14#1995 2 9897684 332.1875 -0.00 0.998 -652.0423 650.0391 16#1995 2 -1.026098 332.1875 -0.00 0.998 -652.023 650.0181 1741995 2 -1.023806 332.1875 -0.00 0.998 -652.0204 650.0191 1941995 2 -1.053414							650.1483
6 #1995 2 -1.008046 332.1875 -0.00 0.997 -652.0838 650.067 7 #1995 2 -1.308008 332.1875 -0.00 0.997 -652.1785 649.9730 8 #1995 2 -1.029977 332.1875 -0.00 0.998 -652.0476 650.0435 1 #1995 2 9718691 332.1875 -0.00 0.998 -652.0476 650.0428 1 #1995 2 9862142 332.1875 -0.00 0.998 -652.042 650.1477 1 #1995 2 986554 332.1875 -0.00 0.998 -652.0425 650.033 1 #1995 2 -1.026998 332.1875 -0.00 0.998 -652.0398 650.0131 1 #1995 2 -1.023806 332.1875	5#1995 2				0.998		650.1037
T#1995 2 -1.102733 332.1875 -0.00 0.997 -652.1785 649.973 8#1995 2 836008 332.1875 -0.00 0.998 -652.1057 650.038 10#1995 2 9718691 332.1875 -0.00 0.998 -652.0476 650.1033 11#1995 2 9718691 332.1875 -0.00 0.998 -652.0476 650.1033 12#1995 2 9662142 332.1875 -0.00 0.998 -652.042 650.1477 13#1995 2 9897684 332.1875 -0.00 0.998 -652.042 650.0493 15#1995 2 -1.03662 332.1875 -0.00 0.998 -652.0023 650.0893 16#1995 2 -1.026998 332.1875 -0.00 0.998 -652.0023 650.0811 18#1995 2 -1.02698 332.1875 -0.00 0.998 -652.0395 650.0511 19#1995 2 -1.053414 332.1875 -0.00 0.998 -652.0342 650.0227 19#1995 2 9641049 <t< td=""><td></td><td>-1.008046</td><td>332.1875</td><td></td><td></td><td>-652.0838</td><td>650.0677</td></t<>		-1.008046	332.1875			-652.0838	650.0677
8#1995 2 8368008 332.1875 -0.00 0.998 -651.9125 650.288 9#1995 2 102977 332.1875 -0.00 0.998 -652.1057 650.0435 11#1995 2 9718691 332.1875 -0.00 0.998 -651.871 650.2426 12#1995 2 9662142 332.1875 -0.00 0.998 -652.0476 650.1033 13#1995 2 9287555 332.1875 -0.00 0.998 -652.0426 650.1477 14#1995 2 9897684 332.1875 -0.00 0.998 -652.0623 650.0896 15#1995 2 -1.03622 332.1875 -0.00 0.998 -652.01027 650.0489 17#1995 2 -1.026998 332.1875 -0.00 0.998 -652.0398 650.111 20#1995 2 -1.053414 332.1875 -0.00 0.998 -652.0398 650.112 21#1995 2 -1.053414 332.1875 -0.00 0.997 -652.1292 650.022 21#1995 2							
9#1995 2 -1.02977 332.1875 -0.00 0.998 -652.1057 650.0455 11#1995 2 9718691 332.1875 -0.00 0.998 -652.0476 650.103 12#1995 2 9662142 332.1875 -0.00 0.998 -652.042 650.109 13#1995 2 9662142 332.1875 -0.00 0.998 -652.042 650.147 14#1995 2 9287564 332.1875 -0.00 0.998 -652.055 650.086 15#1995 2 9865594 332.1875 -0.00 0.998 -652.017 650.0487 16#1995 2 -1.028908 332.1875 -0.00 0.998 -652.017 650.0481 18#1995 2 -1.023806 332.1875 -0.00 0.998 -652.0398 650.011 20#1995 2 -1.05414 332.1875 -0.00 0.997 -652.2275 649.924 22#1995 2 -1.054764 332.1875 -0.00 0.997 -652.1292 650.022 23#1995 2 9884764 332.							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
13#1995 9287555 332.1875 -0.00 0.998 -652.0045 650.1470 14#1995 9897684 332.1875 -0.00 0.998 -652.0655 650.0860 15#1995 9865594 332.1875 -0.00 0.998 -652.0623 650.0892 17#1995 1.026998 332.1875 -0.00 0.998 -652.027 650.0483 19#1995 9641049 332.1875 -0.00 0.998 -652.0398 650.1212 20#1995 1.053414 332.1875 -0.00 0.997 -652.0398 650.1222 21#1995 -1.151767 332.1875 -0.00 0.997 -652.0227 649.924 22#1995 8666908 332.1875 -0.00 0.998 -652.0342 650.111 24#1995 9884764 332.1875 -0.00 0.998 -652.042 650.111 24#1995 898365 332.1875 -0.00 0.998 -651.9424 650.111 26#1995 8924514 332.1875 -0.00 0.998 -651.9696 650.1819 26#1995							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
20#1995_2 -1.053414 332.1875 -0.00 0.997 -652.1292 650.0223 21#1995_2 -1.151767 332.1875 -0.00 0.997 -652.2275 649.9244 22#1995_2 9584764 332.1875 -0.00 0.998 -651.9424 650.203 23#1995_2 -1.100887 332.1875 -0.00 0.998 -652.1766 649.9244 25#1995_2 -1.100887 332.1875 -0.00 0.998 -652.0342 650.1173 26#1995_2 8938365 332.1875 -0.00 0.998 -651.9696 650.1819 26#1995_2 9224511 332.1875 -0.00 0.998 -651.9982 650.1286 28#1995_2 8495066 332.1875 -0.00 0.998 -651.9982 650.2446 30#1995_2 831143 332.1875 -0.00 0.998 -651.9069 650.2446 31#1995_2 8216468 332.1875 -0.00 0.998 -651.8974 650.2543 31#1995_2 9919741 332.1875 -0.00 0.998 -652.0677 650.01246	_						
21#1995 -1.151767 332.1875 -0.00 0.997 -652.2275 649.9240 22#1995 8666908 332.1875 -0.00 0.998 -651.9424 650.2092 23#1995 9584764 332.1875 -0.00 0.998 -652.0342 650.1173 24#1995 -1.100887 332.1875 -0.00 0.997 -652.1766 649.9744 25#1995 8938365 332.1875 -0.00 0.998 -651.9696 650.1819 26#1995 9224511 332.1875 -0.00 0.998 -651.9696 650.1833 28#1995 8495066 332.1875 -0.00 0.998 -651.9252 650.2266 29#1995 8495066 332.1875 -0.00 0.998 -651.9069 650.2449 30#1995 831143 332.1875 -0.00 0.998 -652.0277 650.0266 31#1995 9539398 332.1875 -0.00 0.998 -652.0297 650.1224 32#1995 9919741 332.1875 -0.00 0.998 -652.0297 650.1224 341995							
22#1995_2 8666908 332.1875 -0.00 0.998 -651.9424 650.2093 23#1995_2 9584764 332.1875 -0.00 0.998 -652.0342 650.1173 24#1995_2 -1.100887 332.1875 -0.00 0.997 -652.1766 649.9744 25#1995_2 8938365 332.1875 -0.00 0.998 -651.966 650.1813 26#1995_2 9224511 332.1875 -0.00 0.998 -651.9982 650.1833 28#1995_2 9224511 332.1875 -0.00 0.998 -651.9982 650.1264 29#1995_2 8495066 332.1875 -0.00 0.998 -651.9069 650.2444 30#195_2 831143 332.1875 -0.00 0.998 -652.0677 650.0244 31#1995_2 9539398 332.1875 -0.00 0.998 -652.0277 650.2244 341995_2 9919741 332.1875 -0.00 0.998 -652.0677 650.0833 34#1995_2 9213175 332.1875 -0.00 0.998 -652.0689 650.0224							
23#1995 2 9584764 332.1875 -0.00 0.998 -652.0342 650.1173 24#1995 2 -1.100887 332.1875 -0.00 0.997 -652.1766 649.9749 25#1995 2 8938365 332.1875 -0.00 0.998 -651.9696 650.1819 26#1995 2 9822154 332.1875 -0.00 0.998 -651.9696 650.1833 28#1995 2 9224511 332.1875 -0.00 0.998 -651.9982 650.2662 29#1995 2 8495066 332.1875 -0.00 0.998 -651.9069 650.22464 30#1995 2 831143 332.1875 -0.00 0.998 -652.0297 650.1246 31#1995 2 9539398 332.1875 -0.00 0.998 -652.0297 650.1216 32#1995 2 9919741 332.1875 -0.00 0.998 -651.8974 650.2542 34#1995 2 9931375 332.1875 -0.00 0.998 -652.0689 650.0826 35#1995 2 9617373 332.1875 -0.00 0.998 -652.0182 650.1226							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
25#1995 2 8938365 332.1875 -0.00 0.998 -651.9696 650.1819 26#1995 2 9224511 332.1875 -0.00 0.998 -652.065 650.0865 27#1995 2 9224511 332.1875 -0.00 0.998 -651.9982 650.1533 28#1995 2 8495066 332.1875 -0.00 0.998 -651.9252 650.2266 29#1995 2 831143 332.1875 -0.00 0.998 -651.9069 650.2446 30#1995 2 83143 332.1875 -0.00 0.998 -652.0297 650.1212 31#1995 2 9539398 332.1875 -0.00 0.998 -652.0677 650.2542 32#1995 2 9919741 332.1875 -0.00 0.998 -652.0677 650.2542 34#1995 2 9913175 332.1875 -0.00 0.998 -652.0089 650.2424 36#1995 2 9913175 332.1875 -0.00 0.998 -652.0089 650.0826 37#1995 2 99531911 332.1875 -0.00 0.998 -652.0182 650.1333							
26#1995_2 9892154 332.1875 -0.00 0.998 -652.065 650.0865 27#1995_2 9224511 332.1875 -0.00 0.998 -651.9982 650.1533 28#1995_2 8495066 332.1875 -0.00 0.998 -651.9252 650.2262 29#1995_2 831143 332.1875 -0.00 0.998 -651.9069 650.2446 30#1995_2 -1.163458 332.1875 -0.00 0.997 -652.0297 650.1216 31#1995_2 9919741 332.1875 -0.00 0.998 -651.8974 650.2542 32#1995_2 8216468 332.1875 -0.00 0.998 -652.0677 650.0833 33#1995_2 8216468 332.1875 -0.00 0.998 -652.0689 650.2542 34#1995_2 99131375 332.1875 -0.00 0.998 -652.0175 659.18974 650.2242 34#1995_2 9917373 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995_2 9917373 332.1875 -0.00 0.998 -652.0182 650.1333 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
27#1995 2 9224511 332.1875 -0.00 0.998 -651.9982 650.1533 28#1995 2 8495066 332.1875 -0.00 0.998 -651.9252 650.2262 29#1995 2 831143 332.1875 -0.00 0.998 -651.9069 650.2446 30#1995 2 831143 332.1875 -0.00 0.998 -652.0297 650.1218 31#1995 2 9539398 332.1875 -0.00 0.998 -652.0297 650.1218 32#1995 2 9919741 332.1875 -0.00 0.998 -652.0677 650.0833 33#1995 2 8216468 332.1875 -0.00 0.998 -652.0689 650.0826 34#1995 2 9617373 332.1875 -0.00 0.998 -652.0289 650.1226 35#1995 2 9617373 332.1875 -0.00 0.998 -652.0289 650.1226 36#1995 2 9531911 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>650.1819</td>							650.1819
28#1995_2 8495066 332.1875 -0.00 0.998 -651.9252 650.2262 29#1995_2 831143 332.1875 -0.00 0.998 -651.9069 650.2446 30#1995_2 -1.163458 332.1875 -0.00 0.997 -652.2392 649.9123 31#1995_2 9539398 332.1875 -0.00 0.998 -652.0297 650.1216 32#1995_2 9919741 332.1875 -0.00 0.998 -652.0677 650.0836 33#1995_2 8216468 332.1875 -0.00 0.998 -652.0689 650.2542 34#1995_2 9931375 332.1875 -0.00 0.998 -652.0689 650.0826 35#1995_2 9917373 332.1875 -0.00 0.998 -652.0289 650.1226 36#1995_2 9617373 332.1875 -0.00 0.998 -652.0289 650.1226 37#1995_2 9424105 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995_2 9255188 332.1875 -0.00 0.997 -652.1575 649.9940							
29#1995 831143 332.1875 -0.00 0.998 -651.9069 650.2446 30#1995 2 -1.163458 332.1875 -0.00 0.997 -652.2392 649.9123 31#1995 2 9539398 332.1875 -0.00 0.998 -652.0297 650.1218 32#1995 2 9919741 332.1875 -0.00 0.998 -652.0677 650.0838 33#1995 2 8216468 332.1875 -0.00 0.998 -652.0689 650.0824 34#1995 2 9931375 332.1875 -0.00 0.998 -652.0689 650.0824 34#1995 2 9931375 332.1875 -0.00 0.998 -652.0182 650.1824 36#1995 2 9617373 332.1875 -0.00 0.998 -652.0182 650.1226 36#1995 2 9531911 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995 2 9255188 332.1875 -0.00 0.998 -652.01013 650.1502 40#1995							
30#1995_2 -1.163458 332.1875 -0.00 0.997 -652.2392 649.9123 31#1995_2 9539398 332.1875 -0.00 0.998 -652.0297 650.1218 32#1995_2 9919741 332.1875 -0.00 0.998 -652.0677 650.0838 33#1995_2 8216468 332.1875 -0.00 0.998 -652.0689 650.0824 34#1995_2 9931375 332.1875 -0.00 0.998 -652.0689 650.0824 34#1995_2 9931375 332.1875 -0.00 0.998 -652.0126 650.1224 34#1995_2 9931375 332.1875 -0.00 0.998 -652.0289 650.1226 35#1995_2 9617373 332.1875 -0.00 0.998 -652.0182 650.1226 37#1995_2 9251811 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995_2 -1.081768 332.1875 -0.00 0.998 -652.0182 650.1502 39#1995_2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502	_						650.2262
31#1995 2 9539398 332.1875 -0.00 0.998 -652.0297 650.1218 32#1995 2 9919741 332.1875 -0.00 0.998 -652.0677 650.0838 33#1995 2 8216468 332.1875 -0.00 0.998 -651.8974 650.2542 34#1995 2 9931375 332.1875 -0.00 0.998 -652.0689 650.0826 35#1995 2 9617373 332.1875 -0.00 0.998 -652.0375 650.1146 36#1995 2 9531911 332.1875 -0.00 0.998 -652.0289 650.1226 37#1995 2 9424105 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995 2 9424105 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995 2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502 40#1995 2 41#1995 2 41#1995 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>650.2446</td></td<>							650.2446
32#1995 2 9919741 332.1875 -0.00 0.998 -652.0677 650.0838 33#1995 2 8216468 332.1875 -0.00 0.998 -651.8974 650.2542 34#1995 2 9931375 332.1875 -0.00 0.998 -652.0689 650.0826 35#1995 2 9617373 332.1875 -0.00 0.998 -652.0375 650.1146 36#1995 2 9531911 332.1875 -0.00 0.998 -652.0289 650.1226 37#1995 2 9424105 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995 2 9424105 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995 2 9424105 332.1875 -0.00 0.997 -652.1575 649.9940 39#1995 2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502 40#1995 2 41#1995 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>649.9123</td></td<>							649.9123
33#1995 2 8216468 332.1875 -0.00 0.998 -651.8974 650.2542 34#1995 2 9931375 332.1875 -0.00 0.998 -652.0689 650.0826 35#1995 2 9617373 332.1875 -0.00 0.998 -652.0375 650.1146 36#1995 2 9531911 332.1875 -0.00 0.998 -652.0289 650.1226 37#1995 2 9424105 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995 2 9424105 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995 2 9255188 332.1875 -0.00 0.997 -652.013 650.1502 39#1995 2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502 40#1995 2 41#1995 2 41#1995 2 44#1995 2							650.1218
34#1995 2 9931375 332.1875 -0.00 0.998 -652.0689 650.0826 35#1995 2 9617373 332.1875 -0.00 0.998 -652.0375 650.1146 36#1995 2 9531911 332.1875 -0.00 0.998 -652.0289 650.1226 37#1995 2 9424105 332.1875 -0.00 0.998 -652.0182 650.1326 38#1995 2 9424105 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995 2 9425188 332.1875 -0.00 0.997 -652.1575 649.9940 39#1995 2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502 40#1995 2 41#1995 2 43#1995 2 44#1995 2							650.0838
35#1995 2 9617373 332.1875 -0.00 0.998 -652.0375 650.1140 36#1995 2 9531911 332.1875 -0.00 0.998 -652.0289 650.1226 37#1995 2 9424105 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995 2 -1.081768 332.1875 -0.00 0.997 -652.1575 649.9940 39#1995 2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502 40#1995 2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502 40#1995 2 41#1995 2 43#1995 2 44#1995 2							650.2541
36#1995_2 9531911 332.1875 -0.00 0.998 -652.0289 650.1226 37#1995_2 9424105 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995_2 -1.081768 332.1875 -0.00 0.997 -652.1575 649.9940 39#1995_2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502 40#1995_2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502 40#1995_2 41#1995_2 43#1995_2 44#1995_2		9931375	332.1875	-0.00	0.998		650.0826
37#1995 2 9424105 332.1875 -0.00 0.998 -652.0182 650.1333 38#1995 2 -1.081768 332.1875 -0.00 0.997 -652.1575 649.9940 39#1995 2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502 40#1995 2 41#1995 2 42#1995 2 43#1995 2 44#1995 2	35#1995 2	9617373	332.1875	-0.00	0.998	-652.0375	650.1140
38#1995 2 -1.081768 332.1875 -0.00 0.997 -652.1575 649.9940 39#1995 2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502 40#1995 2 41#1995 2 42#1995 2 43#1995 2 44#1995 2	36#1995_2	9531911	332.1875	-0.00	0.998	-652.0289	650.1226
39#1995 2 9255188 332.1875 -0.00 0.998 -652.0013 650.1502 40#1995 2 41#1995 2 42#1995 2 43#1995 2 44#1995 2	37#1995_2	9424105	332.1875	-0.00	0.998	-652.0182	650.1333
40#1995_2 41#1995_2 42#1995_2 43#1995_2 44#1995_2	38#1995 2	-1.081768	332.1875	-0.00	0.997	-652.1575	649.9940
40#1995_2 41#1995_2 42#1995_2 43#1995_2 44#1995_2	39#1995 2	9255188	332.1875	-0.00	0.998	-652.0013	650.1502
42#1995_2 43#1995_2 44#1995_2	40#1995 2						
42#1995_2 43#1995_2 44#1995_2	41#1995 2						_
43#1995 2 44#1995 2							_
44#1995_2							-
							_
			1	1			

46#1995 2					
47#1995 2					
48#1995 2					
81#1995 2					
82#1995_2					
83#1995 2					
84#1995 2					
85#1995_2 86#1995_2					
86#1995 2					
a met#lastperiod	171701F	.0134997	10 70	0.000	.1452725 .1981905
	.1717315		12.72		
2#2004_4		.0169179	13.70	0.000	.1986094 .2649262
3#2004_4	.164316	.0150818	10.89	0.000	.1347561 .1938759
4#2004 4	.2056693	.01634	12.59	0.000	.1736434 .2376951
5#2004_4	.1715824	.0146082	11.75	0.000	.1429508 .2002139
6#2004 4					
7#2004_4	.2312544	.0178601	12.95	0.000	.1962493 .2662595
8#2004 4	.2580985	.01773	14.56	0.000	.2233484 .2928487
9#2004_4	.1949263	.0199063	9.79	0.000	.1559108 .2339419
10#2004 4	.2112744	.0192847	10.96	0.000	.1734771 .2490717
11#2004_4					
12#2004 4	.211607	.0212645	9.95	0.000	.1699293 .2532846
13#2004_4	.2089731	.0197165	10.60	0.000	.1703293 .2476168
14#2004 4	.1996418	.0196015	10.19	0.000	.1612236 .2380599
15#2004_4	.2518782	.0182613	13.79	0.000	.2160867 .2876698
16#2004 4	.1343332	.0190785	7.04	0.000	.0969400 .1717264
17#2004_4	.1651394	.0189697	8.71	0.000	.1279595 .2023194
18#2004 4	.2160579	.0179391	12.04	0.000	.1808979 .2512179
19#2004_4	.2149784	.0181383	11.85	0.000	.1794281 .2505288
20#2004 4					
21#2004_4	.1596814	.0180522	8.85	0.000	.1242996 .1950632
22#2004 4					
23#2004 4					
24#2004 4	.2172902	.0172598	12.59	0.000	.1834616 .2511187
25#2004 4	.1574849	.0183007	8.61	0.000	.1216161 .1933536
26#2004 4	.1067267	.0183655	5.81	0.000	.070731 .1427223
27#2004 4	.2506016	.0181158	13.83	0.000	.2150952 .2861079
28#2004 4	.2367771	.0194721	12.16	0.000	.1986125 .2749416
29#2004 4	.2019896	.0231365	8.73	0.000	.1566428 .2473364
30#2004 4					
31#2004 4	.2475613	.0180793	13.69	0.000	.2121264 .2829961
32#2004 4	.2378601	.0203457	11.69	0.000	.1979833 .2777369
33#2004 4	.2274011	.0185915	12.23	0.000	.1909624 .2638397
34#2004 4					
35#2004 4					
36#2004 4	.2009579	.0204218	9.84	0.000	.1609320 .2409838
37#2004 4	.185678	.0190225	9.76	0.000	.1483945 .2229615
38#2004 4	.2191921	.0180534	12.14	0.000	.1838080 .2545762
39#2004 4	.2274126	.0183264	12.41	0.000	.1914935 .2633317
40#2004 4	.2436826	.0201088	12.12	0.000	.2042702 .2830951
41#2004 4	.2183964	.0181468	12.04	0.000	.1828294 .2539634
42#2004_4	.2103704	.0101100			
43#2004 4	.1595795	.0185184	8.62	0.000	.1232841 .1958749
44#2004 4		.0103104	0.02		.1232041 .1930749
45#2004_4 46#2004_4					
47#2004_4					
48#2004 4				0 000	0110000 0500010
48#2004 4 81#2004 4	.2336856	.0115289	20.27	0.000	.2110893 .2562818
48#2004_4 81#2004_4 82#2004_4	.2336856 .3569625	.0115289 .0159205	20.27 22.42	0.000	.3257589 .3881660
48#2004 4 81#2004 4 82#2004 4 83#2004 4	.2336856 .3569625 .4317157	.0115289 .0159205 .0121776	20.27 22.42 35.45	0.000	.3257589 .3881660 .407848 .4555835
48#2004 4 81#2004 4 82#2004 4 83#2004 4 84#2004 4	.2336856 .3569625 .4317157 .4097755	.0115289 .0159205 .0121776 .0120186	20.27 22.42 35.45 34.09	0.000 0.000 0.000	.3257589 .3881660 .407848 .4555835 .3862194 .4333316
48#2004 4 81#2004 4 82#2004 4 83#2004 4	.2336856 .3569625 .4317157	.0115289 .0159205 .0121776	20.27 22.42 35.45	0.000	.3257589 .3881660 .407848 .4555835

Bibliography

- Acemoglu, D., & and Angrist, J. (2000). How Large Are Human-Capital Externalities? Evidence from Compulsory Schooling Laws. *NBER Macroeconomic Annual*, *15*, 9-59.
- Acemoglu, D., Gallego, F. A., & Robinson, J. A. (2014, Jan). Institutions, Human Capital, and Development. *Annual Review of Economics*.
- Atal, Juan Pablo; Ñopo, Hugo; Winder, Natalia. (2009). *New Century, Old Disparities: Gender and Ethnic Wage Gaps in Latin America.* Inter-American Development Bank, Departmen of Research. IDB Working Paper Series.
- Becker, G. S. (1962, Oct). Investment in Human Capital: A Theoretical Analysis. *Journal of Political Economy*, 70(5), 9-49.
- Becker, G. S. (1964). *Human Capital: A Theoretical and Empirical Analysis, with Special Reference to Education.* New York, New York: National Bureau of Economic Research.
- Borjas, G. J. (2013). Labor Economics (6 ed.). (D. C. Bruflodt, Ed.) Irwin/Mcgraw-Hill.
- Buchanon, J. M., & Stubblebine, C. W. (1962, Nov). Externaltiy. Economica, 29(116), 371-384.
- Card, D. (1999). The Causal Effect of Education on Earnings. In O. Ashenfelter, & D. Card (Eds.), Handbook of Labor Economics (Vol. 3, pp. 1801-1863). Elsevier Science B.V.
- Card, D. (2001, Sep). Estimating the Return on Schooling: Progress on Some Persistent Econometric Problems. *Econometrica*, 69(5), 1127-1160.
- Ciccone, A., & Peri, G. (2006). Identifying Human-Capital Externalities: Theory with Applications. *Review of Economic Studies, 73*, 381-412.
- (2009). *Conociendo la base de datos de la ENE con criterio ENOE*. Aguascalientes: Instituto Nacional de Estadistica y Geografia.
- (n.d.). *Descripcion de Archivos ENE con Criterio ENOE*. Aguascalientes: Instituto Nacional de Estadistica y Geograpfia.
- Easterly, W. (2002). Tales of Increasing Returns: Leaks, Matches, and Traps. In W. Easterly, *The Elusive Quest for Growth* (pp. 145-170). USA: MIT Press.
- Encuesta Nacional de Empleo. (1995-2004). Aguascalientes, Mexico: INEGI. Retrieved from http://www3.inegi.org.mx/sistemas/microdatos/encuestas.aspx?c=14649&s=est
- Heckman, J. J., Lochner, L. J., & Todd, P. E. (2003, Mar 31). Fifty Years of Mincer Earning Regressions.
- Klenow, P. J., & Rodriguez-Clare, A. (2005). Externalities and Growth. In P. Aghion, & S. N. Durlauf, *Handbook of Economic Growth* (Vol. 1A, pp. 818-859).
- Kreuger, A. B., & Lindahl, M. (2000, Mar). Education for Growth: Why and for Whom? NBER(7591).

- Lemieux, T. (2003). *The "Mincer Equation" Thirty years after Schooling, Experiences, and Earnings.* University of California, Berkely, Center for Labor Economics.
- Lucas, R. E. (1988). On the Mechanics of Economic Development. *Journal of Monetary Economics*, 22, 3-42.
- Lucas, R. E. (1993, Mar). Making a Miracle. *Econometrica*, 61(2), 251-272.
- Mincer, J. (1958, Aug). Investment in Human Capital and Personal Income Distribution. *Journal* of Political Economy, 66(4), 281-302.
- Mincer, J. (1974). *Schooling, Experience, and Earnings*. New York, New York: National Bureau of Economic Research.
- Pindyck, R. S., & Rubinfield, D. L. (1998). Econometric Models and Econometric Forecasts (4 ed.). (L. H. Sutton, Ed.) Irwin/McGraw-Hill.
- Psacharopoulos, G., & Patrinos, H. A. (2004, Aug). Returns to Investment in Education: A Further Update. *Education Economics*, 12(2), 112-134.
- Rauch, J. E. (1993, Nov). Productivity Gains from Geographic Concentration of Human Capital: Evidence from Cities. *Journal of Urban Economics*, *34*(3), 380-400.
- Romer, P. M. (1986, Oct). Increasing Returns and Long-Run Growth. *The Journal of Politcal Economy*, *94*(5), 1002-1037.
- Schultz, T. W. (1961, Mar). Investment in Human Capital. *The American Economic Review*, 51(1), 1-17.
- Sianesi, B., & Van Reenan, J. (2003). The Returns to Education: Macroeconomics. *Journal of Economic Surveys*, 17(2), 157-200.
- Wilkie, J. A., Aleman, E., & Ortega, J. G. (Eds.). (2002). *Statistical Abstract of Latin America* (Vol. 38). Los Angeles, California: Latin American Center Publications, University of California.