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ABSTRACT 

 
ANDREW B. WATKINS: Discovery of Resistance-Reversing Agents in Antibiotic 

Resistant Strains of Escherichia coli and Klebsiella pneumoniae from Natural Product 
Libraries 

(Under the direction of Dr. Melissa Jacob) 
 

Objective: The objective of this exploratory research is to discover compounds, 

particularly from natural products, that inhibit ESBL, KPC, and NDM-1 mechanisms of 

antibiotic resistance in the Gram negative bacteria Escherichia coli and Klebsiella 

pneumoniae. 

Methods: This objective will be accomplished utilizing a high-volume bioassay testing 

natural product samples from the National Center for Natural Products Research. This 

assay tests samples against 6 different strains of bacteria known to express β-lactamases 

in the presence and absence of sub-inhibitory concentrations of the test antibiotic. By 

structuring the assay in this way, differentiation may be made between the inherent 

antibacterial activity of samples and the synergistic effects between the sample and the 

antibiotic. Optical density (OD) readings will be used to determine bacterial growth or 

the lack thereof. Samples showing pronounced activity only in the presence of the 

antibiotics will be considered active and will be tested in a checkerboard assay to confirm 

activity. 

Results: Of over 5,000 samples tested, 35 samples showed synergistic activity, giving a 

hit rate of 0.7%. Of these 35, the most promising three hits were tested in follow-up 

checkerboard assays. These three samples all demonstrated synergistic effects with 

fractional inhibitory concentrations (FIC) of <0.5. Of the samples tested in the 
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checkerboard assays, one was a plant extract, one was a pure compound, and one was a 

fungal soil isolate obtained from the National Cancer Institute. 

Conclusions: This study showed the benefits of using a high-volume screen to test 

samples against resistant bacterial strains. Continued research in this field could prove to 

be beneficial to the discovery of new drugs for clinically relevant therapeutic 

applications. 
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CHAPTER I 
 

INTRODUCTION 
 
 

History of Antibiotics 

 Antibiotics are arguably one of the most important and impactful discoveries in 

the field of medicine; however, due to repeated and prolonged antibiotic misuse and 

complex genetic mechanisms within bacteria, resistance to these antibiotics has emerged, 

spread, and become a serious problem worldwide in many different settings.1 According 

to the Center for Disease Control and Prevention’s (CDC) Antibiotic Resistance Threats 

in the United States, 2013, over 2 million people per year develop serious infections with 

bacteria that are resistant to the antibiotics usually used to treat such infections. At least 

23,000 people die directly from these infections, and many more die from other 

conditions or complications brought about by these infections. It is estimated that 

infections with resistant bacteria cost the United States as much as $20 billion per year in 

direct costs, as well as $35 billion per year (2008 economy dollars) in productivity loss 

and additional costs.2 It is possible that these numbers have risen even more in the years 

since this report. Therefore, there is an urgent need for the discovery and development of 

new antibiotics to address the threat of resistant bacteria.1 

 Although antibiotics and their uses are viewed predominately as a “recent” 

occurrence, evidence has suggested that they have been used in some capacity for 

thousands of years. Researchers actually found traces of tetracycline, a 20th century 
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antibiotic produced by Streptomyces bacteria, in the soil and in bones and enamel of 

skeletons from ancient Sudanese Nudia from the years 350-550 AD as well as in 

skeletons from Dakhleh Oasis, Egypt, dating back to the late Roman period. These 

findings indicate that it is possible that tetracycline may have been consumed in its 

natural form from soil. Moreover, it is interesting to note that there was a low rate of 

infectious disease documentation in the Sudanese Nubian records, and there were no 

signs of bone infection in the remains from Dakhleh Oasis, which points to the possibility 

of a protective effect of tetracycline, or other natural remedies, on these ancient peoples. 

More evidence of the ancient use of antibiotics is the discovery of antibiotic substances 

found in soils and herbs from folk stories and from Traditional Chinese Medicine 

therapies.3 

 Ancient peoples may have used plants and other natural substances as a type of 

antibiotic, but the actual “antibiotic era” did not begin until the early to mid 1900’s. 

Crucial discoveries such as Paul Ehrlich’s method of testing numerous compounds 

against a common microbe or target in a screen or bioassay laid the foundation for 

antibiotic development, including the discovery of Salvarsan used to treat syphilis.3  

Subsequent screening programs by chemists of the Bayer company, leading to the 

discovery of Pronotsil, and the quintessential serendipitous discovery of penicillin in 

1928 by Royal Army Medical Corps veteran Alexander Fleming ushered in the age of 

antibiotics.4 Fleming was one of the first people to warn about the dangers of antibiotic 

resistance in penicillin if the drug was used in quantities too small or for time periods too 

short.3 
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Emergence of Antibiotic Resistance 

 Although the aforementioned antibiotics may be different and carry different 

stories of their discoveries, there lies an underlying factor that connects them to each 

other as well as to all other used antibiotics: resistance. According to the World Health 

Organization (WHO), antimicrobial resistance refers to the resistance to antimicrobial 

drugs by the common microorganisms that would usually be treated with the drug. 

Antibiotic resistance is simply a more specific subtype of antimicrobial resistance in 

which bacteria become resistant to antibiotics.5 Although antibiotic resistance has been 

hastened in recent years due to widespread misuse, it has been found that it is a naturally 

occurring phenomenon present even before the commercial use of penicillin.1,5 In a study 

in 2006, a group of scientists sampled bacteria from different soils in different 

environments, and found that many of the collected strains were resistant to multiple 

classes of antibiotics, both synthetic and natural, including new antibiotic drugs. This 

study showed the wide variety of antibiotic resistance mechanisms present naturally in 

soil microbes. These resistance mechanisms most likely evolved as competitive defense 

mechanisms against naturally produced antibiotics, but now they could further develop 

into clinically significant resistance problems.6  

A factor that makes antibiotic resistance even more of a problem is the ability of 

bacteria to exchange genes that code for mechanisms that cause resistance. Resistance is 

usually present in certain bacterial strains in the form of an endogenous protein able to 

inhibit the mechanism of action of an antibiotic compound. This protein is produced via 

translation of an mRNA transcript transcribed from a resistance gene. Resistance genes 

such as these are usually brought into the cell from the outside environment or from 
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another bacterium in the form of a plasmid.7 A plasmid is a circular piece of DNA that 

exists separately from normal chromosomal DNA, is replicated separately, and can be 

passed horizontally to other bacteria through the process of conjugation. In this process of 

conjugation, a projection called a sex pilus extends from one bacterium to another and 

connects the two cells. A DNA pore is then formed, and a plasmid is replicated and 

transferred to the new cell, giving each cell a copy of the plasmid. When such a plasmid 

contains a gene that encodes resistance, it is called a “resistance plasmid,” and the 

transfer of such a plasmid can be an efficient way to spread antibiotic resistance to 

different strains of bacteria. Another mechanism for the acquisition of resistance is 

through random genetic mutations in the host bacterium. These random insertions, 

deletions, or inversions of DNA nitrogenous bases can result in serious mutations in 

genes, and if these mutations happen to impart resistance and an advantage in survival, 

they will be passed to all subsequent generations. This method of resistance acquisition 

follows Darwin’s theory of natural selection, and is a major driving force behind 

antibiotic resistance.8 

 

Factors Affecting Resistance in Today’s Society 

 The occurrence of natural selection in resistant microbes can be problematic even 

when it is left to act alone, but it can become even more of a problem with the addition of 

man-made selective pressures such as antibiotic misuse and abuse. In cases like these, the 

incorrect use of antibiotic drugs can increase the spread of resistance. When an antibiotic 

attacks a group of bacteria, the susceptible bacteria are killed, leaving only those bacteria 

that are resistant to the drug. These resistant bacteria, with no competitors present, are 
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able to thrive and reproduce to form a new colony consisting solely of resistant bacteria. 

This problem is even more prevalent when antibiotics are administered in too low of a 

dose or when patients do not take a full course of antibiotic treatment, as correctly 

predicted by Fleming.9 According to a large meta analysis conducted by Kardas et al., the 

overall antibiotic therapy compliance rate of patients was 62.2%. The same study found 

that 28.6% of the included patients used “leftover” antibiotics from previous infections.10 

Low compliance rates such as these provide ample opportunities for resistant bacterial 

communities to develop and thrive by the mechanism previously discussed. The problem 

of resistance can also be worsened by the incorrect prescription of antibiotic drugs by 

physicians. The CDC estimates that 50-150 million antibiotic prescriptions per year are 

unneeded, and a seminar conducted by Levy found that over 80% of physicians had 

prescribed antibiotics on demand against better judgment.9 This flooding of the 

population with antibiotics also helps develop and spread resistance.  

Two other factors that contribute to resistance are agricultural applications of 

antibiotics and overuse of antibacterial cleaning supplies. Antibiotics are used extensively 

in agriculture to promote the growth and development of livestock that are to be used for 

food. The use of these antibiotics, even in low quantities, puts selective pressure on 

populations of bacteria, leading to the development of resistance. Through the excretions 

of livestock, these bacteria can enter the water source where they can be spread directly 

or indirectly to humans through ingestion or irrigation of other edible plants.11 The spread 

of resistant strains combined with the capabilities of bacteria to transfer resistance 

plasmids creates a situation that can lead to clinically relevant types of resistance. As the 

desire to keep surfaces and bodies clean and free from bacteria has risen, so too has the 
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use of antibiotic-containing cleaning supplies.12 Many of these supplies include triclosan, 

an antibacterial compound with broad spectrum activity that many believe may contribute 

to antibacterial resistance. Triclosan was found to be one of the most common 

pharmaceutical chemicals present in water samples from 139 rivers in the United States 

in 1999-2000, which testifies to the extent of its use.13 Research has suggested that it has 

some non-specific activity, but also works on a specific target, giving it the possibility of 

promoting resistance to other antibiotics. The potential for this cross-resistance in 

clinically relevant strains of bacteria is rather small, but it is still a possibility and should 

be taken seriously. Because of triclosan’s widespread use and its possibility of conferring 

cross-resistance, research is being conducted to determine the benefits and detriments of 

its use, and caution should be taken when using large quantities of substances containing 

triclosan.12 
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Chapter II 
 

Literature Review 
 
 

Clinically Relevant Mechanisms of Resistance 

 There are many different bacterial mechanisms that confer antibiotic resistance; 

because of this, the CDC organized the known mechanisms into a hierarchy of clinical 

significance in a report from 2013. In this report, they listed resistant strains of bacteria as 

“urgent,” “serious,” or “concerning” threats.2 Mechanisms relevant both clinically and to 

this project include carbapenem-resistant Enterobacteriaceae [CRE] (urgent threat) and 

extended-spectrum β-lactamase producing Enterobacteriaceae [ESBL’s] (serious threat). 

A subtype of the CRE’s, called NDM-1, is emerging as a dangerous and clinically 

significant mechanism. All of these mechanisms are present in Enterobacteriaceae, a 

family of gram-negative bacteria including Escherichia coli, Klebsiella pneumonia, and 

many other strains of bacteria.14 Strains from this family are able to cause pneumonia, 

blood and wound infections, and meningitis.15 All of these mechanisms also involve the 

production of an enzyme known as β-lactamase. β-lactamase is an enzyme that is able to 

disable β-lactam antibiotics (e.g. penicillins) by hydrolyzing the β-lactam ring within the 

compound and is responsible for a large number of resistance mechanisms. These β-

lactamase enzymes are classified in different ways, the simplest of which is the Ambler 

system, established in 1980. This system categorizes enzymes into four classes (A, B, C, 

D) based on their amino acid sequences. Class A β-lactamases include broad spectra, 
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extended-spectra, and carbapenemase enzymes from both plasmids and chromosomal 

DNA; Class B enzymes are metallo-β-lactamases such as NDM-1; Class C enzymes are 

cephalosporinases coded for in chromosomal DNA; and Class D enzymes are 

oxacillinases.16 The classes most relevant to the CDC report are Class A and Class B β-

lactamases. 

 Among the “urgent threat” strains of bacteria exist the carbapenem-resistant 

Enterobacteriaceae (CRE).2 Carbapenems are very important and effective broad-

spectrum antibiotics that historically have had no problems with resistance; however, the 

recent development of carbapenem-hydrolyzing β-lactamases has increased the 

occurrence of resistance.14,16 The most common carbapenemase now is the Klebsiella 

pneumoniae carbapenemase (KPC), a Class A enzyme that is very capable of inactivating 

β-lactam antibiotics. KPC-producing bacteria were first seen in North Carolina in 2001 

and in the following years were seen throughout the Northeastern United States. As of 

2010, KPC-producing microbes have been reported or received from 36 states, 

Washington DC, and Puerto Rico. Beginning in 2006, reports from foreign countries also 

showed the presence of KPC-producing bacteria. Studies and sample analyses have 

shown that in the United States, approximately 70% of KPC-producing bacteria belong to 

the same dominant strain.14 

 As mentioned previously, Class B enzymes are called metallo-β-lactamases 

(MBL’s). These enzymes are different from Class A enzymes because of their use of zinc 

to hydrolyze the β-lactam ring.14 A unique MBL, the New Delhi Metallo-β-Lactamase 

(NDM-1), has arisen from this class and is proving to be a problematic mechanism 

because of its ability to inactivate all β-lactam antibiotics except for aztreonam.14,17 The 
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first known case of NDM-1-producing bacteria was found in 2007 in a Swedish patient 

that had been treated in a hospital in New Delhi, India; soon thereafter, NDM-1 producers 

were seen in the United Kingdom, India, and Pakistan.17 Many of the UK patients 

infected with NDM-1-producing bacteria were previously treated in India or Pakistan, 

demonstrating the speed with which resistant microbes can be transferred from one 

country to another.14,17 One of the factors that distinguishes NDM-1 from other resistance 

mechanisms is its tendency to spread to numerous unrelated bacterial strains. It has been 

seen in E. coli and K. pneumoniae, as well as other species of the same family. Another 

clinical problem presented by NDM-1 is its tendency to occur in bacterial strains that 

possess resistance to many other antibiotics, making these strains resistant to many, and 

possibly all, clinically used antibiotic therapies. Many strains carrying the NDM-1 gene 

are vulnerable only to colistin and tigecycline. There have been only small numbers of 

cases in multiple countries around the world, but the potential to spread is very high.17 

This potential for international travel mixed with the extent of resistance provided by 

NDM-1 makes bacterial strains containing this mechanism of resistance extremely 

dangerous and an urgent threat. 

 A third distinct clinical threat is the spread and emergence of extended-spectrum 

β-lactamase (ESBL)-producing Enterobacteriaceae strains. These strains produce β-

lactamases that are able to inactivate a variety of newer β-lactam antibiotics, including 

third-generation cephalosporins (such as cefotaxime) and monobactams (such as 

aztreonam).18 Many of these strains are also able to obtain resistance genes that confer 

resistance to other classes of antibiotics while still keeping the resistance to older 

antibiotics. Because of their ability to become more resistant and their frequent presence 
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in human infections, ESBL-producing K. pneumoniae and E. coli were listed by the 

Infectious Diseases Society of America as microbes that need new treatment options as 

soon as possible.19 Most ESBL’s are separated into three groups (TEM, SHV, and CTX-

M) based on the gene in which there is a mutation.18,20 Bacteria displaying CTX-M-

mediated resistance are not limited to hospital infections, and the epidemiology of such 

bacteria is very different than that of bacteria with TEM or SHV resistance.18 TEM and 

SHV derived ESBL’s both arise from one or more amino acid substitution(s) on their 

respective genes. TEM ESBL’s are very common in E. coli and are one of the most 

common mechanisms of resistance against β-lactam antibiotics in gram-negative bacilli 

worldwide. The SHV family of β-lactamases is widespread in K. pneumonia, and actually 

originated in the chromosomes of species of the Klebsiella genus before being 

incorporated into a plasmid and spread to other Enterobacteriaceae.20 The three genes 

cannot be differentiated by phenotypic measures and therefore must be genotyped for 

identification.18,20 These three different types of ESBL-producing genes vary in their 

degree of resistance and susceptibility to certain antibiotics, but all convey resistance and 

are proving to be clinically-relevant threats.20 

 

Reversing Resistance and Current Research Methodologies 

 Although antibiotic resistance is a growing problem, there is a sense of hope in 

the form of resistance-reversing compounds. Currently, these compounds are relatively 

rare, but research is being conducted to discover new agents that could be marketed for 

use in infections caused by resistant strains of bacteria.16 Some of the most prominent 

types of resistance-reversing agents in ESBL-producing bacteria are the β-lactamase 
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inhibitors. As their names imply, these compounds work by preventing the activity of β-

lactamases, thereby restoring the activity of β-lactam antibiotics.21 Currently, there are 

three commercially available β-lactamase inhibitors: clavulanic acid (clavulanate), 

sulbactam, and tazobactam.16 As seen in Figure 2-1, these compounds all contain a β-

lactam ring similar to that present in β-lactam antibiotics, but have little inherent 

antibacterial activity.16,21  

 
Figure 2-1: Commercially Available β-Lactamase Inhibitors 

 
Source: Watkins R, Papp-Wallace K, Drawz S, Bonomo R. Novel β-lactamase inhibitors: A therapeutic 

hope against the scourge of multidrug resistance. Front Microbiol. 2013 24 December 2013;4 
 

When in the presence of β-lactamases, these compounds irreversibly bind to the 

enzymes (using their inherent β-lactam structure), thereby permanently disabling the β-

lactamases and “protecting” the antibiotics. This mechanism is responsible for the 

restored activity of antibiotics against resistant bacteria when in the presence of these 

compounds. There are different combinations of antibiotics and β-lactamase inhibitors, 

the most popular of which is clavulanate/amoxicillin, available orally under the name 

Augmentin as well as under various other trade names. These compounds are effective 

against Class A ESBL’s except for the carbapenemases, but are ineffective against Class 

C and most Class B and Class D β-lactamases.21 Because of its resistance-reversing 

activity, a β-lactamase inhibitor such as clavulanate can be used in combination with a β-
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lactam antibiotic such as cefotaxime to phenotypically identify ESBL-producing bacteria 

or to inhibit bacterial colony growth.22 This application could be useful as a positive 

control in screens detecting resistance-reversing compounds. 

While the previous compounds work well with many Class A ESBL’s, they lack 

effectiveness against carbapenemase-resistant Enterobacteriaceae (CRE); however, 

boronic acids are a group of compounds known to reverse carbapenem resistance.16 

Boronic acid (BA) compounds have been known to reversibly bind to and inactivate β-

lactamases; however, recent studies have shown that this mechanism can lead to the 

inactivation of carbapenemases such as KPC.23 A specific boronic compound, 3-

aminophenylboronic acid (APB), has been found to be very successful in phenotypically 

determining KPC-producing bacteria through the use of disk-based assays by adding an 

antibiotic to a small disc and placing it on a petri dish with bacteria and comparing the 

zone of inhibition to that of a disk with the same antibiotic plus APB. According to one 

study, this works very well when the carbapenem used is meropenem; zones of inhibition 

were increased by more than 5mm in all KPC-producing strains when APB was 

combined with meropenem. The increase in zone of inhibition in the combination of 

meropenem and APB versus meropenem alone shows that the APB is able to work 

synergistically to restore or increase the activity of meropenem.24 The CDC has also seen 

similar results in combinations of APB with carbapenems in their research efforts. In one 

study, the MIC of meropenem in a KPC-producing strain of K. pneumoniae was reduced 

16.67-fold upon addition of APB (meropenem alone = 2 µg/mL; meropenem+APB = 

0.12 µg/mL).25 The ability of boronic acid compounds, especially APB, to synergistically 

work to restore activity to carbapenems, especially meropenem, provides a desirable 
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positive control for screens testing for resistance-reversing effects. However, as yet, BA 

is only effective in the laboratory and development of clinically used BA compounds is in 

its early stages, with only one product approaching clinical trials.16 

One of the more difficult mechanisms of resistance to overcome is NDM-1 

mediated resistance. The NDM-1 lactamase is a metallo-β-lactamase, meaning that it 

requires zinc to hydrolyze β-lactam antibiotics. This makes MBL’s such as NDM-1 very 

problematic for chemists, which is shown by the few numbers of inhibitors present today. 

Few in vivo clinical inhibitors have been described over the years, but there are some 

promising in vitro possibilities, one of which is ethylenediamine-N,N,N’,N’-tetraacetic 

acid (EDTA). EDTA has well-known chelating properties, meaning that it can bind and 

remove metal ions, such as the zinc required for NDM-1 cleavage of β-lactams. Although 

this chelating effect makes EDTA useful in inhibiting NDM-1 and other MBL’s, it also 

causes major concerns about toxicity when used clinically. Because of the large number 

of human metalloproteins, non-specific chelation by an agent such as EDTA could cause 

serious biological harm.26 One in vitro use is the phenotypic detection of MBL-producing 

bacteria via disk assays and observation of zones of inhibition. Studies have shown that 

EDTA can work synergistically with imipenem, a type of carbapenem drug, to inhibit 

growth of MBL-producing bacteria.27 The synergistic effect of EDTA with carbapenem 

drugs could prove to be very useful as a positive control in future resistance-reversing 

assays. 
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Chapter III 
 

Methods 
 

 
Preparation of Samples 

 Plant samples were delivered to the National Center for Natural Products 

Research (NCNPR) from various sources, including the Missouri Botanical Garden in St. 

Louis, MO, freeze-dried, ground, and stored in the sample repository. Ground material 

was extracted using the Accelerated Solvent Extraction System (ASE, Dionex) with 95% 

ethanol three times under 1500 psi at 40°C for 10 minutes. The ethanol extracts were 

evaporated using a Rocket evaporation system (SP Scientific) with final drying in the 

HT-12 evaporator (SP Scientific). Extracts were stored in dimethyl sulfoxide (DMSO) at 

20mg/mL at -80°C in 96-well plates for testing. A portion of this extract (~150-200mg) 

was sent to St. Jude Children’s Research Hospital in Memphis, Tennessee, while the rest 

was kept in the repository for future use.  

At St. Jude, the delivered plant extracts were fractionated as described by Tu et al. 

Briefly, samples had polyphenols removed using a 700 mg polyamide-filled cartridge 

(Sigma-Aldrich, St. Louis, MO) and a 48-place positive pressure SPE manifold (SPEware 

Corporation, Baldwin Park, CA). Approximately 100 mg of extract were dissolved and 

added to the cartridge. The column was washed with five column values of methanol, and 

the effluent was dried using a stream of nitrogen from a Zymark TurboVap LV 

Concentration Workstation. After this prefractionation step, fractions were dissolved in 2 
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mL of DMSO. Samples were separated into 24 fractions using High-performance liquid 

chromatography (HPLC) and collected in preweighed 16 X 100 mm glass tubes. HPLC 

was performed on a Gemini 5 µm C18 110A column, and a Shimadzu LC-8A binary 

preparative pump with a Shimadzu SCL-10A VP Controller was connected to the Gilson 

215 auto sampler and Gilson 215 fraction connector. A Shimadzu SPD-M20A diode-

array detector and a Shimadzu ELSD-LT II evaporative light scattering detector were 

used to perform detections. The fractions were sent to the NCNPR in deep 96-well plates 

at 2 mg/mL in DMSO. These samples are referred to as COMBI’s and were later tested 

as such.28 

In addition to NCNPR plant extracts and COMBIs, other samples tested in this 

project include microbial extracts from the National Cancer Institute (NCI), a collection 

of pure compounds isolated at NCNPR, and the FDA Approved Drug collection 

(SelleckChem). 

 

Selection and Preparation of Bacterial Strains 

 Before a bioassay was designed, a preliminary literature review was conducted to 

determine the best possible strains to include in the study. After reviewing the available 

literature, it was determined that strains of Klebsiella pneumoniae and Escherichia coli 

were high priority research targets because of their clinical relevance in infections. It was 

also determined that the most important mechanisms of resistance were attributed to the 

β-lactamases (ESBL, KPC, and NDM-1). Bacterial strains were acquired from the 

American Type Culture Collection (ATCC) and include Klebsiella pneumoniae 700603, 

Klebsiella pneumoniae BAA-1705, Klebsiella pneumoniae BAA-2146, Escherichia coli 
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BAA-201, Escherichia coli BAA-2340, and Escherichia coli BAA-2452. These strains, 

their mechanisms of resistance, and the positive controls used in the screens can be found 

in Table 3-1. The strains were suspended in broth, spread on a Eugon agar plate, and 

allowed to incubate for 24 hours. The plates were then stored at 4°C until needed for 

assays. Fresh agar plates were prepared each week from frozen bacterial stocks. These 

bacteria were tested using Clinical and Laboratory Standards Institute (CLSI) methods. 

Briefly, bacterial strains were diluted and their optical densities (OD) were recorded 

using a Biotek Powerhouse XS Plate Reader. These diluted solutions were then added to 

agar plates in such a way that individual colonies could be counted. These recordings 

were done in triplicate to create a calibration curve to which all OD measurements could 

be compared to yield a colony-forming unit (CFU)/mL value. This procedure was done to 

ensure that in theory, every well in every assay contained a similar number of CFU’s (5.0 

X 105/mL), which provides consistency in testing. 

 
 

Table 3-1: Tested Strains, Mechanisms of Resistance, and Positive Controls 

Bacterial Strain Mechanism of 
Resistance Test Antibiotic Positive Control  

Klebsiella 
pneumoniae 700603 SHV-18 ESBL Cefotaxime Clavulanate 

Klebsiella 
pneumoniae BAA-

1705 
KPC-1 Meropenem 3-Aminophenyl 

boronic acid 

Klebsiella 
pneumoniae BAA-

2146 
NDM-1 Meropenem EDTA 

Escherichia coli  
BAA-201 TEM-3 ESBL Cefotaxime Clavulanate 

Escherichia coli  
BAA-2340 KPC Meropenem 3-aminophenyl 

boronic acid 
Escherichia coli  

BAA-2452 NDM-1 Meropenem EDTA 
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Developing and Conducting the Bioassay 

 To determine the ideal sample and antibiotic concentration combinations for the 

primary screen, preliminary checkerboard assays were performed. These tests were run in 

all six strains of bacteria with twofold serial dilutions of the appropriate test antibiotic 

and positive control compound. Different concentrations of antibiotic and positive control 

were used in different strains based on information obtained during a literature review. 

Graphs of the results of these optimizing checkerboards can be found in the Appendices.  

The assay was designed to test samples against bacteria in the presence and 

absence of a sub-inhibitory concentration of the test antibiotic. By doing this, inherent 

antibacterial activity of the test sample could be separated from synergistic resistance-

reversing effects of the sample in combination with the antibiotic.  

 Test samples from stored plates were diluted in saline at the same concentration 

and 4 µL of the samples and controls were transferred in duplicate to a 384-well plate by 

the Tecan Evo liquid automated handler to afford final test concentrations of 20-40 

µg/mL for fractions and pure compounds and 80-200 µg/mL for extracts. These 384-well 

plates were stored in a 4°C cold room overnight in preparation for the assay. The next 

morning, inoculum was prepared in cation-adjusted Mueller-Hinton to afford 5 X 105 

CFU/mL and supplemented with either the target concentration of antibiotic or an 

equivalent volume of DMSO. These antibiotic concentrations were chosen based on 

optimized results from checkerboard studies (shown in appendices) and can be found in 

Table 3-2. 
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Table 3-2: Antibiotic Concentrations in Bacterial Inocula 

Bacterial Strain Test Antibiotic Antibiotic 
Concentration (µg/mL) 

Klebsiella pneumoniae 
700603 Cefotaxime 1.0 

Klebsiella pneumoniae 
BAA-1705 Meropenem 2.5 

Klebsiella pneumoniae 
BAA-2146 Meropenem 5.0 

Escherichia coli  
BAA-201 Cefotaxime 5.0 

Escherichia coli  
BAA-2340 Meropenem 1.0 

Escherichia coli  
BAA-2452 Meropenem 1.5 

 
 

Once the inocula (with antibiotic and without antibiotic) were prepared, 50 µL 

were added to their designated 384-well plates using a Thermo Scientific Multidrop 

Combi. The plates were read at 530 nm prior to and after incubation at 35°C for 24 hours. 

Using Microsoft Excel, the percent inhibitions of the samples (compared to blank and 

negative controls) were calculated. Samples showing synergizing activity were 

considered to have little to no inherent activity alone, but pronounced activity in the 

presence of the test antibiotic. These hits were further analyzed in checkerboard assays, 

where samples were diluted vertically (down columns), while antibiotic was diluted 

horizontally (across rows). Fractional inhibitory concentrations (FIC), which show the 

extent of compound synergy, were calculated as described by Li and Rinaldi. FIC’s were 

calculated from the IC50s (using XLFit, model 201, Alameda, CA) of the two compounds 

alone and in combination using the following formula: FIC = (IC50 of compound A in 

combination/IC50 of compound A alone) + (IC50 of compound B in combination/ IC50 of 

compound B alone).29 A drug was considered synergistic if its FIC was ≤0.5. 
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Chapter IV 
 

Results 
 

 
 Over the course of this research, over 5,000 samples were tested in this bioassay. 

A breakdown of the sample types tested can be found in Table 4-1. From these samples, 

35 showed activity in the primary assay, giving a hit rate of 0.7%. Table 4-2 shows the 

most promising hits from the screens, as well as the strain in which they were active and 

the extent of their activity.  

 
Table 4-1: Types of Samples Tested in Primary Assays 

Sample Type Number of Samples 
Tested in Primary Assay 

St. Jude COMBI’s 2451 

NCNPR Plant Extracts 1048 

NCNPR Pure Compounds 264 

FDA Collection 88 

NCI Microbial Extracts 1232 
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Table 4-2: Select Primary Hits with Promising Results 

Sample ID Strain Extent of Activity 

NPID 68322  
(fungal soil isolate) 

Escherichia coli           
BAA-2452 

100% growth reduction in 
combination with 

meropenem 

NPID 143149  
Bleomycin sulfate 

Escherichia coli           
BAA-2452 

73% growth reduction in 
combination with 

meropenem 

NPID 127055  
Combretum collinum 

Escherichia coli           
BAA-2452 

48% growth reduction in 
combination with 

meropenem 

NPID 57605  
Oenothera drummondii 

Klebsiella pneumoniae 
BAA-2146 

47% growth reduction in 
combination with 

meropenem 

NPID 57599  
Tamarix chinensis 

Klebsiella pneumoniae 
BAA-2146 

40% growth reduction in 
combination with 

meropenem 

NPID 81943  
Sanguisorba officinalis 

Klebsiella pneumoniae 
BAA-2146 

35% growth reduction in 
combination with 

meropenem 
	  
	  

Three samples displayed potent synergizing activity in checkerboard assays. As 

seen in Figure 4-1, all samples tested showed varying degrees of synergistic growth 

inhibition, verifying their activities in the primary assay. In this figure, each cell 

represents the differences in OD values of “after” readings and “before” readings. 

Smaller values (red) represent small increases in OD values and little bacterial growth, 

while larger values (green) represent greater differences in OD values and increased 

bacterial growth. Well H12 on each plate contained a DMSO control to represent 

uninhibited bacterial growth. All compounds tested in checkerboard assays had FIC’s 

<0.5, confirming synergism. Since bleomycin sulfate was the only pure compound tested 

in the checkerboard assay, it is the only sample with a known structure, seen in Figure 4-

2.	  
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Figure 4-1: Checkerboard Assay of Select Hits 

	  
	  
	  

Figure 4-2: Bleomycin Sulfate Molecular Structure 

	  
Source: http://www.chemicalbook.com/ProductChemicalPropertiesCB8391148_EN.htm 
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Chapter V 
 

Discussion 
 

 
Data Discussion 

The primary purpose of this exploratory research was to discover new compounds 

capable of reversing bacterial mechanisms of resistance (β-lactamases in particular) and 

therefore restoring the activity of clinically used antibiotics. This was accomplished 

through the implementation of a new primary screen and subsequent checkerboard assays 

of promising hits. While the hit rate for the primary assay was only 0.7%, it seems to be 

effective in finding potent hits. This low hit rate is understandable because of the rarity of 

resistance-reversing compounds, and may be favorable moving forward with a high-

volume screening approach, especially because the NCNPR has over 50,000 samples that 

can be tested. The lower percentage of hits will allow reasonable and sustainable 

chemical purification and fractionation that could potentially result in therapeutically 

effective compounds to be tested in vivo. 

One of the most interesting hits was that of a fungal soil isolate obtained from the 

National Cancer Institute (NCI). The isolate was unidentified, and contact has been made 

to obtain a culture for future assays and identification. Based on these results, the NCI 

has elevated this sample for identification studies. Once the culture is received, it will be 

grown, extracted, and tested to confirm activity. If activity is confirmed, isolation studies 
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will be performed on this sample. Its potent activity and natural source make this sample 

a high priority for future research. 

 Another interesting hit was that of bleomycin sulfate. Bleomycin is a glycopeptide 

antibiotic produced by Streptomyces verticillus that is used as an anticancer agent to 

cause DNA strand breaks in cancerous cells. Bleomycin resistance genes are usually 

found in bleomycin-producing strains, but through genetic exchange they have been 

transferred to other bacterial strains, including Enterobacteriaceae. Interestingly, analysis 

of NDM-1-containing strains of E. coli has shown a bleomycin resistance gene 

downstream of the NDM-1 gene, and it is likely that these genes are coexpressed under a 

common promoter.30 The implications of this gene and the bleomycin hits in this bioassay 

are unknown, and further research should be conducted to determine the possible 

mechanism of action. 

 The final sample that was tested in a checkerboard assay was a plant extract from 

the fruits of Combretum collinum, commonly known as the bushwillow plant. This plant 

sample was collected in Kenya, Africa. Studies have shown some antibacterial activity in 

this genus, but no studies were found linking this genus or species to NDM-1.31 This lack 

of information demands further research on this plant species and its role in antibiotic 

resistance reversal. 

 

Limitations 

 There are over 50,000 samples in the NCNPR repository, but only ~5,000 could 

be tested due to time constraints. A majority of the time for this project was dedicated to 

multiple troubleshooting experiments towards the development of a robust assay to detect 
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resistance-reversing samples. Once conditions (bacterial strain selections, antibiotic test 

concentrations, positive control selections) were determined, little time was available for 

testing NCNPR samples. Therefore, little comprehensive follow-up studies, 

fractionations, and identifications could be performed on the confirmed hits. Because of 

the number of hits that were extracts, it would have been very beneficial to fractionate 

and retest to find a single compound or a small group of compounds that confer the 

resistance-reversing effects of the sample. This will be done in the next stages of the 

project. Also, once the NCI fungal isolate was identified as a hit, the NCI was notified to 

provide a culture, for which they have to prepare for shipping, and the sample has not yet 

been received for confirmation studies. This isolate could be very promising, and its 

purification and identification could have greatly added to this study. The lack of time 

also limited the number of St. Jude COMBI’s that could be tested. While a large number 

of COMBIs were tested, there still remain 35,000. These COMBI’s are very interesting 

samples that could result in promising hits. Moreover, the COMBIs have already been 

chemically analyzed via UV, ELSD and mass spectrometry, and therefore this data can 

serve to facilitate compound identity. Future studies will focus heavily on testing these 

COMBI’s for activity. 

 Another limitation could be the utilization and interpretation of the bioassay used. 

This bioassay was designed and the cutoff values and concentrations were recently 

developed by the research group. While the initial sub-inhibitory concentrations of the 

test antibiotics have been initially determined, it may be necessary to alter these 

concentrations if the hit rate is too low (not enough antibiotic is present to achieve 

synergy). The antibiotic test concentrations were chosen based on the positive control’s 
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ability to reverse resistance. Since in many cases there are complex mixtures of 

compounds in the form of crude extracts, and synergizing compounds may be diluted by 

inherently active antibacterial compounds, changes to the test antibiotic concentration 

may be necessary. As well, the differences in the inhibition of the sample in the presence 

and absence of antibiotic (ideally a delta of 100) will be continually evaluated as more 

primary data becomes available. Smaller deltas, especially when the sample is unique or 

little is known about the extract, may be considered as a hit, and subsequent confirmation 

assays will be used to justify if this smaller difference was valid. 

 A final limitation to this study could be the in vitro approach the bioassay used. 

Although very helpful in preliminary drug discovery studies, in vitro techniques provide 

no insight into how compounds will work in the body or how safe they may be when 

used in humans. Caution must be taken when analyzing these results, as they do not 

reflect accurate in vivo results. 

 

Implications 

 As previously discussed, antibiotic resistance is a growing problem worldwide 

that is only getting worse. With the decrease in new antibiotic development, it is crucial 

that researchers discover new methods of reversing resistance to ensure positive patient 

outcomes and increased patient survival. By implementing high volume screens such as 

the one developed for this study, scientists can test large numbers of samples, both 

synthetic and natural, with different antibiotics and different strains of bacteria containing 

different mechanisms of resistance. While ESBL, KPC, and NDM-1 mechanisms of 

resistance are very dangerous and clinically relevant in today’s society, there are also 
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numerous other mechanisms that could be tested with similar screens. There are also 

many pathogenic strains of bacteria other than K. pneumoniae and E. coli that could be 

tested in a similar fashion. This screening format is convenient because of its ease and 

efficiency, as well as the large number of samples it can test per assay. Tests such as 

these run in multiple laboratories worldwide will result in a large breadth of samples to 

be tested, identified, and purified.  

 Questions still remaining after the completion of this study are the identities of 

active compounds within samples. Compounds need to be isolated using a bioassay-

guided fractionation method, a common bottleneck in natural product research, and these 

isolated compounds should be tested to determine their mechanisms of action. These 

issues will be addressed in future studies, as this is an ongoing research project. 

 Future research in the field may hope to expand this study to include more 

realistic health models and to optimize the screen. Future tests should also include in vivo 

testing to discover toxicity issues and possible therapeutic uses for active compounds. By 

focusing efforts on testing active compounds in vivo, researchers can move closer to 

discovering clinically significant therapeutic compounds. Future research should also 

focus on different strains of bacteria and different mechanisms of resistance to ensure 

diverse and comprehensive discoveries. The arms race against bacterial resistance 

mechanisms is ever changing, and only through innovative thinking and research 

strategies can researchers and clinicians hope to overcome the clinical challenges 

presented by antibiotic resistance. 
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Appendix A: Checkerboard Assay of Klebsiella pneumoniae 700603 (ESBL) using 
Cefotaxime (Cefo) and Clavulanate (Clav) [FIC = 0.06] 
 
 
 
 

Figure AA-1: Relative Optical Densities at 530 nm  

 
Axes values represent concentration in µg/mL 

 
 
 
 

Figure AA-2: Graph of Checkerboard Results 
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Appendix B: Checkerboard Assay of Escherichia coli BAA-201 (ESBL) using 
Cefotaxime (Cefo) and Clavulanate (Clav) [FIC = 0.05] 
 
 
 
 

Figure AB-1: Relative Optical Densities at 530 nm

  
Axes values represent concentration in µg/mL 

 
 
 
 

Figure AB-2: Graph of Checkerboard Results 
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Appendix C: Checkerboard Assay of Klebsiella pneumoniae BAA-1705 (KPC) using 
Meropenem (Mero) and 3-Aminophenyl boronic acid (BA) [FIC = 0.35] 
 
 
 
 

Figure AC-1: Relative Optical densities at 530 nm 

 
Axes values represent concentration in µg/mL 

 
 
 
 

Figure AC-2: Graph of Checkerboard Results 
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Appendix D: Checkerboard Assay of Escherichia coli BAA-2340 (KPC) using 
Meropenem (Mero) and 3-Aminophenyl boronic acid (BA) [FIC = 0.2] 
 
 
 
 

Figure AD-1: Optical Densities at 530 nm 

 
Axes values represent concentration in µg/mL 

 
 
 
 

Figure AD-2: Graph of Checkerboard Results	  
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Appendix	  E: Checkerboard Assay of Klebsiella pneumoniae BAA-2146 (NDM) using 
Meropenem (Mero) and EDTA [FIC = 0.07] 
 
 
 
 

Figure AE-1: Optical Densities at 530 nm 

 
Axes values represent concentration in µg/mL 

 
 
 
 

Figure AE-2: Graph of Checkerboard Results	  
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Appendix	  F:	  Checkerboard Assay of Escherichia coli BAA-2452 (NDM) using 
Meropenem (Mero) and EDTA [FIC = 0.02] 
 
 
 
 

Figure AF-1: Relative Optical Densities at 530 nm	  

	  
Axes values represent concentration in µg/mL 

 
 
 
 

Figure AF-2: Graph of Checkerboard Results	  
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