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Abstract 

 

This thesis details the development and programming of the processor subsystem, 

camera payload, and power subsystem of the Mississippi Imaging Space Satellite 

(MISSat-1). An overview of the hardware and software considerations necessary for the 

processor subsystem is discussed. An explanation of microcontroller uses as well as real 

time operating system fundamentals is also presented as it relates to MISSat-1. The 

subsystem deals with varieties of peripheral integration and communication standards 

among devices. The camera graphical user interface (GUI) was expanded with the 

addition of functions that improve CubeSat image handling. Additionally, image 

processing techniques and algorithms are considered to improve CubeSat images. This 

work continues the camera payload work undertaken by University of Mississippi 

electrical engineering students from previous years. This paper will then discuss the 

design and analysis completed thus far for the power subsystem of the MISSat-1. Such 

topics will include an in-depth solar panel investigation, which will lead to the selection 

of the solar panels that will be used on the MISSat-1. The solar panel selection, along 

with the other chosen subsystem components, will allow for the formation of the power 

budget, which shows the breakdown of power usage for each subsystem. The power 

budget will then be developed into a Matlab GUI. Finally, the power budget will be 

further analyzed by comparing it to other satellite projects. 
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1. Introduction 

 
A CubeSat is a class of small satellites with short development time and low 

production costs. It is designed for students of the undergraduate skill level. The satellite 

is 1000 cm
3
 in size and less than 1.33 kg in weight. The Mississippi Imaging Space 

Satellite is being designed as a CubeSat class satellite and will be launched as a 

secondary payload. Its purpose is to capture terrestrial images. These images will be 

transferred, while the satellite is in orbit, back to the University ground station. In order 

to develop the CubeSat efficiently, the design was divided into its necessary subsystems 

and each subsystem was then assigned to a project member. The subsystems presented 

include the processor, payload, and power. 

 

Figure 1.1.1: Small satellite in low earth orbit. 
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The primary mission of MISSat-1 is to capture images of earth and send those 

images to the ground station at the University of Mississippi while in orbit. In addition, 

the design and implementation provides an opportunity for students to practically apply 

theoretical knowledge. The overall hope is that the project of designing and sending a 

satellite into orbit can be continued in future years, building upon the knowledge obtained 

from the realization of MISSat-1. 
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2. Processor Subsystem 

 

I. Introduction 

 

 

A. Project Description and Purpose 

The processor subsystem is a central component with several responsibilities to 

integrate all the elements of the satellite. Tasks include managing the power states, 

driving communication with the ground station, initiating data collection, and 

maintaining the system state. Within the processor subsystem is the actual 

microcontroller, the motherboard along with integrated peripherals, and the operating 

system. 

Microcontrollers are self-contained systems that are often programmable for 

interfacing with the outside world. Embedded systems make use of microcontrollers 

designed to respond to environmental events by dedicating them to certain tasks such as 

regulating room temperature. As microcontrollers have become more sophisticated, so 

have the systems in which they are embedded. Microcontrollers with higher speed and 

larger memory can even support what can be called an operating system that is driven top 

down by user input and bottom up by environmental events. 
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Figure 2.1.1: A microcontroller in a quad flat package by Texas Instruments. 

 

One of the main objectives of MISSat-1 is to capture terrestrial images. This 

sensing application may employ microcontrollers to acquire data without making 

physical contact with the subject or harsh environment under investigation. As 

microcontrollers have become more complex their usage in remote sensing has increased. 

At remote locations data is now able to be processed and compressed by microcontrollers 

before it is sent back to the observer rather than being sent in bulk. With powerful 

microcontrollers, a plethora of applications are made more available.  
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II. Subsystem Overview 

 

 

A. General Requirements 

The components selected for the processor subsystem must meet certain unique 

conditions to be suitable for space applications. A lightweight, low-power device that 

does not sacrifice computing ability is what is needed for this particular project. With the 

amount of CubeSat development projects increasing, there is a large number of space 

proven microcontrollers from which to choose. Pumpkin, a CubeSat component provider, 

has designed standardized motherboards that allow arbitrary microcontrollers to firmly 

connect to peripherals. 

 

Figure 2.2.1: A single board computer motherboard for harsh environments. 
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Many universities have chosen to use Pumpkin’s CubeSat Kit when developing 

small satellites in an effort to simplify peripheral integration and troubleshooting. The kit 

provides a standard set of connections that many devices made specifically for CubeSats 

follow. Among the pluggable microcontrollers are products from Microchip, Silicon 

Labs, and Texas Instruments that are used frequently in university focused projects. 

 

Figure 2.2.2: This figure shows common CubeSat Kit Pluggable Processor Module for 

Texas Instrument’s MSP430. 
 

Each microprocessor has certain attributes that make it unique on the market; 

however, the basic operation and capabilities from product to product are essentially the 

same. Choosing a suitable microprocessor is based on the goal of the project. For 

example, some products may lack in speed but triumph in durability. MISSat-1 needs a 

microprocessor that is lightweight, power efficient, robust, and can handle a sophisticated 

level of programming. 

B. Hardware Selection 

A space proven device is very important when considering what to select because 

it suggests other groups chose it above other microcontrollers and demonstrates the 

theoretical assumptions of performance may hold true. The Belgian OUFTI-1 CubeSat 
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project uses the TI MSP430 family of microcontrollers for their compatibility with 

different styles of programming [1]. For MISSat-1, this flexibility proves useful 

especially when considering MSP430’s ability to host a real time operating system that 

will be discussed further in a later section. 

The 11 gram TI MSP430F1612 uses between 1.8 V to 3.6 V and 200 µA in active 

mode. It has a 16-bit RISC architecture with highly optimized instructions to reduce time 

spent computing. The TI MSP430F1612 is equipped with built in operating modes such 

as active mode and several levels of low power modes [2]. Depending on what state the 

satellite is in (e.g. high activity or low activity) the software can switch among power 

modes. Toggling through these modes with event driven interrupts is a key feature that 

will allow the satellite to far exceed its power budget allowances. This device interfaces 

with the rest of the subsystems through pins that lead to its many modules. The 

MSP430F1612 has a 12-bit analog-to-digital converter, two modules for universal 

synchronous/asynchronous receiver/transmitter use, and an inter-integrated circuit bus 

that are needed to operate the antenna deployment, communications and camera boards, 

and the electrical power system, respectively. 

 

C. Software Selection 

The style of operating system chosen to manage the hardware of the processor 

subsystem is the real-time operating system (RTOS). A key characteristic of an RTOS is 

its consistency in completing tasks. Salvo is such an operating system that is space 

proven, supports the TI MSP430F1612, and is highly configurable with header files, user 
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hooks, and data types included that are written in ANSI C [3]. Salvo is small and efficient 

allowing more data to be collected. It is also a multitasking RTOS that allows 16 levels of 

priority for tasks that might be as simple as telling the communication system to send out 

a beacon or as crucial as determining if there is enough power to capture an image. Of the 

four supported compilers for the Salvo RTOS, the Rowley Associates: CrossWorks for 

MSP430 has been chosen after gathering information from other satellite projects and 

receiving quotes from each retailer. This particular compiler and IDE set is ideal based on 

its low cost of $300 and a user license that is not limited on time. 

Salvo is a multitasking real time operating system that is event-driven. The code 

executes several tasks sequentially; however, the context is switched at a rate that makes 

each task and corresponding event appear simultaneous. Programs written for Salvo do 

not require the user to keep multitasking in mind as Salvo automatically handles services 

such as task scheduling, access to shared resources, intertask communication, and 

interrupt control [4]. 
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Figure 2.2.3: Real time operating system (Salvo) program execution flow chart. 
 

In addition to running multiple tasks, Salvo allows tasks to have assigned 

priorities that dictate the level of importance one has over another. Suppose there is a 

low-priority task A that is periodically ran along with other tasks of the same importance 

and a high-priority task B that is required to run every ten seconds. During task A’s 

execution Salvo’s scheduler may stop task A to run task B to meet that ten second 

deadline. After B’s execution context is switched back to A where it may continue from 

the point from which it was suspended. Salvo also supports interrupt service routines that 

may suspend any task. However, if a task must fully execute without a context switch 

(e.g. a task that sends a packet to the communication board) interrupts may be disabled 

prior to calling the non-reentrant function. 
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Figure 2.2.4: Context switching among tasks of varying priorities. 
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III. Development Configuration 

 

 

A. Development Board Setup 

The MSP430 Development Kit comes with a few items that allow the 

microcontroller user to easily test and debug programs as well as work out some of the 

issues associated with interfacing with peripherals. The kit includes the development 

board, power supplies, USB wire, and a flash emulation tool. Defects from the 

manufacturer could easily be the cause of issues early on in the development process. 

This can be avoided by first powering on the development board with the +5 V standard 

power supply and probing test points of interest. Below are the results of probing the test 

points of the MISSat-1 development board after the proper jumpers were configured. 

Table 2.3.1: CubeSat Kit development board’s expected and measured test point voltage 

values. 
 

Signal Location Value Measured 

+5V TP9 +5V +5.14V 

VCC TP12 +3.3V +3.31V 

VCC_MCU TP20 TP44 +3.3V +3.28V 

VCC_232 TP21 +3.3V +3.28V 

V+_232 TP19 > +5V +5.49V 

V-_232 TP22 < -5V -5.53V 

+5V_SW TP10 0V 0V 

-RST/NMI TP8 TP51 +3.3V +3.30V 
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Each of the measured values was close enough to what was expected that 

development moved forward. The next step involves installing drivers for the USB 

connection between the PC and development board. This is not the main connection that 

new programs will be loaded from; it is mainly used for I/O in conjunction with a service 

such as HyperTerminal. With the drivers installed, the development board may be 

powered on by simply connecting it via USB with or without a power supply. Test points 

probed without a power supply for MISSat-1 were as follows. 

Table 2.3.2: USB powered CubeSat Kit development board expected and measured test 

point voltage values. 
 

Signal Location Value +5V Power Supply 

+5V_USB TP11 0V/+5V 0V 

VCC_IO TP13 0V/+3.3V 0V 

 

A correctly operating MSP430 development board will have a starter 

programming running each time it is powered on that features a blinking yellow LED. 

Within this test program is a process that checks the ambient temperature of the 

microcontroller. As there is no screen to view this result, a HyperTerminal or other 

program such as TeraTerm must be set up to see the feedback from the running code. 
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B. PC Connection 

Programs running on microprocessors may have the functionality of displaying 

useful information to the user on a monitor and connection software. Regularly gathered 

information or even input from the user may be exchanged via such a program. For 

MISSat-1 the computer communication software chosen for initial use is HyperTerminal. 

The settings that proved successful were as follows. 

Table 2.3.3: HyperTerminal settings for default MSP430 program display. 
 

Bits per Second Data Bits Parity Stop Bits Flow Control 

9600 8 None 1 None 

 

These parameters indicate that the baud rate is 96000 with eight data bits in each 

character. There is no parity used for error detection, but each block of data is specified to 

be complete with just one bit after the 8 bits of information. Upon successful 

configuration of the PC, the starter programming produces an output similar to what is 

shown below. 
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Figure 2.3.1: Default program output viewed in HyperTerminal. 

  

With everything working properly the test program uses the HyperTerminal to 

display the ambient temperature that it has measured repeatedly at a short interval. At this 

point the development board, power supply, and PC connection are verified to be 

working properly. The next step is installing an integrated development environment to 

write and debug new programs created to meet the goals of the satellite mission. 
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C. Integrated Development Environment 

The integrated or interactive development environment allows programmers to 

write, test, and debug software. The environment used in this project is CrossWork’s 

CrossStudio for MSP430. This product provides the usual compiler, macro assembler, 

linker/locator, and Salvo libraries; however, what makes it unique is its core simulator 

and JTAG debugger. The core simulator allows programs to be uploaded to a virtual 

microcontroller for general testing rather than having all the physical equipment that may 

not be needed for troubleshooting a certain part of the program. This feature is useful in 

that it prevents time from being wasted dragging out the components and perhaps being 

damaged from movement or foreign objects. The JTAG debugger has proven essential 

because it allows the software developer run the program line by line on the 

microcontroller. 

Initially CrossStudio would not identify the CubeSat Kit development board as a 

recognized device so a bit of troubleshooting took place to correct the issue and report the 

solution on various forums. To connect to a PC for use with CrossStudio, a supported 

flash emulation tool, MSP-FET430UIF, is used.  
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Figure 2.3.2: TI MSP430 Flash Emulation Tool for PC connections. 

 

From there it is expected that navigating to the “Target” menu and selecting 

which method of connectivity to use will prepare the device for programming, but there 

is a flaw in how Texas Instruments has moved forward with firmware upgrades to their 

devices. CrossStudio initially displays the error message “Can’t connect to target USB: 

Could not find MSP-FET430UIF on specified COM port” which misleads the user into 

thinking the incorrect COM port has been assigned. Under further investigation it was 

determined that this development environment only communicates with the latest 

firmware known at the time of installation. Rather than installing a previous version the 

firmware of the flash emulation tool needed to be updated. 

Texas Instruments endorses an open source command line programmer called 

MSP430 Flasher. It is downloaded and run as an executable that identifies connected 
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Texas Instruments devices via the flash emulation tool. During runtime, the flasher 

detects conflicts and prompts the user to choose a course of action. 

 

Figure 2.3.3: MSP430 Flasher Command Line Programmer Interface. 

 

If an outdated version of firmware is detected the flasher recommends updating 

by entering “Y” as a confirmation. The software then updates the firmware without any 

further assistance. The command line programmer can be useful in other ways as well. If 

there is a voltage outside the desired range when using the flash emulation tool along 

with the development board and PC a security fuse may be blown. This fuse can be reset 

with this executable as well. Another great option supported by the command line 
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programmer is the ability to load programs, read memory, and verify memory without the 

use of a development environment. 

With the firmware updated and drivers installed, custom programs are ready to be 

built and run on the microcontroller. The properties in CrossStudio may vary from user to 

user. The settings that resulted in successful communication after connecting the 

development board can be seen in the figure below. 

 

Figure 2.3.4: Flash Emulation Tool connection properties for CrossStudio.
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IV. Peripheral Integration 

 

 

A. Serial Communication 

Microcontrollers are able to control peripherals by the use of pins that send and 

receive signals among devices. This communication can be as simple as raising the 

voltage on one pin as another pin observes a voltage decrease; however, many standards 

have been established for efficiency. Serial communication protocols such as UART, 

I2C, and SPI are quite common, and many microcontrollers support multiple standards 

[5]. 

UART communication is seen often with CubeSat components because of its 

reconfigurable and asynchronous nature. From a physical standpoint, UART systems 

have four wires; ground reference, 3.3V/5V high reference, transmit line, and receive line 

[6]. When these four wires are connecting the two communicating devices, there is a 

common high and low reference. Two separate receiving and transmitting lines allow the 

devices to transfer information simultaneously as each store the data into buffers until it 

is needed. 

Data sent via a UART connection follows a general character framing scheme but 

can be altered by adjusting control registers in the controlling microprocessor. The 
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character frame begins with a start bit followed by the actual data being sent. A parity bit 

for error detection is optional and is followed by a specified number of stop bits. 

Figure 2.4.1: UART character framing scheme. 

The rate at which devices communicate is referred to as the baud rate, or symbols 

transferred per second. Both devices must have the same baud rate to work together 

which may also be specified via microprocessor control registers. The baud rate is limited 

in speed and accuracy by the available clocks of the controlling microprocessor. 

Programmers divide system clocks of a microcontroller to generate UART baud rate. 

Different baud rates may be selected depending on the particular application. Some uses 

call for faster communication, but higher baud rates have higher error rates. 
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Table 2.4.1: Commonly used baud rates, settings, and errors [7]. 

 

 

The table above demonstrates how certain baud rate clocks (BRCLK) of the 

MSP430 family may be divided to obtain desired baud rates. This information is provided 

by Texas Instruments to help users choose baud rates wisely. It can be seen that for a 

specific clock the baud rate is a factor for the error percentage. 

 

 

B. Payload 

The payload for MISSat-1 consists of terrestrial images captured by an onboard 

camera. It is important that this device is understood so that commands and data can be 

efficiently passed to and from the camera. A JPEG Module handles the compression of 

images captured by the camera and hosts a serial interface featuring a UART core. 
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Figure 2.4.2: On board camera pin layout. 

The figure above shows the pins available for interfacing the camera board. 

Because this camera is widely used and not just for CubeSat projects, it does not feature 

CubeSat Kit bus connectors for simplified interfacing. The four wires of the camera’s 

UART connection are instead directed to where they can connect to the microprocessor’s 

UART module via a protoboard. 
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Figure 2.4.3: Protoboard that converts arbitrary devices to use the CubeSat Kit bus 

connector scheme. 

It is important to rout these wires to pins that lead to one of the UART modules 

designated for general use. Example code from Salvo designates that the communication 

board should use UART module 1 while other peripherals may use UART module 0. The 

pins for UART 0 are specified on the CubeSat Kit motherboard datasheet. 

The camera board initiates communication by listening for a synchronization 

signal. Those working on the camera subsystem have developed a program that sends this 

signal to the camera board until a confirmation signal is received or a set number of 

attempts have been reached for timeout purposes. The synchronization signal in the 

figure below is sent from a laptop to the camera. The signal is five bytes long, and a 

positive confirmation was received from the camera in return. 
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Figure 2.4.4: Synchronization signal sent from a laptop and correctly received by the 

camera board. 

The first step for the processor subsystem to control the camera module is 

ensuring that the transmitted signals are understood by each device. If the processor can 

receive a confirmation from the camera after sending the synchronization signal then a 

positive handshake has occurred. This means the two devices are using the same 

character framing scheme and baud rate. All other commands to and from the camera will 

be understood once effective communication is established. 

To ensure the processor has the ability to send and receive arbitrary signals a 

quick test was conducted. In this setup the transmitting pin of the UART module is 

directly connected to the same module’s receiving pin. With the CrossStudio 

development environment in debug mode the received information can be seen through 

the IDE’s ability to view registers and buffers in real time. 
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Figure 2.4.5: Block diagram to check sending and receiving signals with the 

Development board. 

The block diagram of Figure 4.5 helps to visualize the way this particular test is 

wired. The synchronization signal is sent using CubeSat Kit Salvo commands and the 

incoming characters are received into an array. The user may toggle whether or not the 

wire between the UART TX and RX pins are connected. Receipt of expected signals is 

indicated with an onboard LED. Successful operation results in the LED being on when 

the pins are connected and off otherwise. The task code written for this may be found in 

the appendix section. 
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Figure 2.4.6: CrossStudio interface displaying successful receipt of the synchronization 

signal. 

The figure above demonstrates what is expected when a signal is correctly passed 

from the TX to RX pin. In CrossStudio variables may be displayed in the debugging 

process. Here it can be seen that the “input” array was filled with the 

“0xAA01B00005AA” signal that was transmitted. Because the information now stored in 

the array matches what was sent out, the section of code that illuminates the LED is 

entered. 

As mentioned before, the camera board does not feature CubeSat Kit bus 

connectors so other means of connecting the processor must be used. There are just four 

wires that these two devices must share, but there are many points of failure that can 

occur between them. Loose connections are the main issue with a temporary connection 
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such as this. A solderless breadboard is used to hold the reference for ground and +5V. 

As camera control is further developed an established work station with probing points 

for a multimeter and oscilloscope has been made. 

 

Figure 2.4.7: Camera interfacing work station. 

At all times the developer can read the UART reference voltage (e.g. +5.06V is 

the reference here) and using the Analog Discovery USB oscilloscope the sent signals are 

viewed. No switching connections or change in probe locations is needed with such an 

extensive work station. 
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Figure 2.4.8: Synchronization signal sent from the development board to the camera 

module. 

The signal in the figure above is an attempt at synchronizing with the camera 

module using a custom-made Salvo task. The correct baud rate and character frame 

options were chosen and applied to the control registers of the processor’s UART 

module. In comparison to what a laptop used in developing the payload subsystem sends 

as a synchronization as seen in Figure 4.4, the development board’s signal is sent over a 

longer period of time. Each frame is sent at the correct baud rate, but the spacing between 

characters in Figure 4.8 prevents the camera from properly synchronizing. 

 

C. Electrical Power System 

The power subsystem has been designed in such a way that its components are 

easily incorporated into MISSat-1 via CubeSat Kit bus connectors. The electrical power 
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system board is stacked along with other peripherals to fit neatly within the allowable 

dimensions of the CubeSat [8]. 

 

Figure 2.4.9: Electrical power system CubeSat Kit bus connection pins. 

Communication between the processor and EPS is driven by an I2C bus. No 

adjustments have to be made to the CubeSat Kit bus connector because there are no other 

peripherals in this project that use the serial data line and serial clock line of the I2C bus. 

The only issue with using this specific EPS board is that the microcontroller within the 

device operates on data differently than the processor subsystem microcontroller. The 

difference is the order of storing bytes of a data word in either big or little endianness. 

The EPS is big endian while the microcontroller of the processor subsystem is little 

endian. 
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Figure 2.4.10: Data stored in Big versus Little Endianness. 

The term “endian” is an allusion to a great war in Gulliver’s Travels, but the issue 

is resolved with simple conversion code. Beyond the data transfer between the EPS board 

and processor subsystem is the use of the real time operating system to manage power in 

a safe way. 

D. Communication Board 

The radio has the responsibility of communicating with the ground station while 

the satellite is in orbit. Information such as subsystem statuses must be collected during 

flight and continue to be transmitted throughout the life of MISSat-1. The communication 

board chosen for MISSat-1 is of the AstroDev Helium Radio product line and adheres to 

the CubeSat Kit standards on size and bus connection [9]. Like the payload, the 

communication board will make use of one of the UART modules of the processor to 

send and receive data. Unlike the EPS board, this radio is built around the same 

microcontroller as the processor subsystem so no endianness issues will be found. 
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Figure 2.4.11: AstroDev Helium Radio product line board. 

The communication board relays information between the processor subsystem 

and the ground station as well as broadcasts information periodically to meet satellite 

regulations. The radio sends and receives information in the form of packets. The 

processor subsystem has the option of either having the radio pass entire packets directly 

to the microcontroller or just the payload. To save processing resources, it has been 

decided that the communication board will only pass the important payload information 

to the processor. 



32 
 

 

Figure 2.4.12: Packet structure for commands and data (top) and packet header 

description (bottom). 

With this decision in place, the radio will take on a portion of the responsibilities 

associated with processing incoming and outgoing data. All information exchanged 

between MISSat-1 and the ground station will be in the AX.25 link-layer protocol 

specification because of its widespread use in the small satellite community. 
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V. Conclusion 

The goal of this section has been to lay the initial foundation for further 

development of MISSat-1 as it pertains to the microcontroller that directs all of the 

satellite’s functionality. Both hardware and software considerations have been 

documented as well as the reasons for specific product selection. Using this paper as a 

guide, groups may begin to develop their own processor subsystems without repeating 

some of the troubleshooting issues explored during this project. Programs used regarding 

MISSat-1’s operating system are available through purchasing Pumpkin’s Salvo RTOS.
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3. Payload Subsystem 

 

 

I. Introduction 

 

 

A. Project Description and Purpose 

 

Communication between the camera microcontroller and the satellite processor 

will be explored, with the goal of successful commands sent and received from the 

processor. Communication attempts in the past between camera and processor 

development board have been unsuccessful. Upon successful communication with the 

processor via the UART interface, functionality designed by recent University of 

Mississippi graduates will be implemented with the processor.  

In previous years students have designed a GUI to interface and experiment with 

camera functions and settings through a computer. The final configuration must take the 

camera functionality and camera-computer interactions developed by past students and 

implement it with the processor. Additional functionality was added such as are obtaining 

storage and file information, luminance, and deleting files on the camera. Resolution and 

compression ratio must be able to be adjusted to ensure that the images will be able to be 

transmitted when the satellite passes over the ground station. The satellite will have a 10 
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minute window to transmit images while in low earth orbit. Testing will also be 

conducted to determine the best initial capture settings of the camera before being 

launched into space. Images were captured to test the effects of various lighting and 

distances. 

Prior work on the camera payload included selection of the camera and 

programming of an interface that communicates directly with the camera microcontroller 

from the user’s computer. The C6820 Enhanced JPEG Module manufactured by 

COMedia was selected as the camera subsystem based on weight, size, image 

compression, and power usage considerations. Additionally, an interface was 

programmed in C# to communicate with the camera board directly from the user’s 

computer through a serial connection.  

 

B. Background Information 

 

Often times CubeSats choose a camera as their primary payload system. Camera 

payloads can be used for weather forecasting, space imagining, and surveillance systems. 

These images are usually low resolution due to the mass, power, and bandwidth 

constraints of CubeSats [10].   

In previous years, University of Mississippi students designed a GUI to interface 

and experiment with camera functions and settings through a personal computer. The 

final configuration must take all of the camera functionality and computer interactions 

developed and implement it with the CubeSat processor. Additional functionality was 

added such as obtaining storage and file information, observing luminance, and deleting 
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files on the camera. The old code was also modified to ensure proper exception handling 

and bugs presented were fixed. Functions to adjust image resolution and compression 

ratio were implemented to ensure that the images will be able to be transmitted when the 

satellite passes over the ground station, as the satellite will only have a 10 minute window 

per orbit to transmit images while in low earth orbit.  

Smaller images were taken to ensure that images can be successfully transmitted 

in the window. Testing was conducted to determine the best initial capture settings of the 

camera before being launched into space. Special considerations for space imaging 

(lighting conditions in space, camera orbital speed, etc.) were researched and taken into 

account in the programming of the camera subsystem. Images were captured to test the 

effects of various lighting and distances. 
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II. CubeSat Cameras 

 

 

A. Survey of CubeSat Cameras 

 
 

Due to power, mass, and bandwidth constraints, CubeSat camera payloads 

generally take low resolution images. Most CubeSats use either a charge coupled device 

(CCD) or complementary metal oxide semiconductor (CMOS) image sensor. Generally, 

CCD cameras retrieve data more quickly and consume more power than CMOS cameras. 

However, CMOS cameras are still an evolving technology, whereas CCD is a mature 

technology. The general trend of CubeSat cameras is towards CMOS because it 

consumes less power and lasts longer in space [10].  

The durability of CMOS image sensors is due to the fact that all functions can be 

integrated in the chip, which minimizes leads and solder joints; the leading cause of 

circuit failure in harsh environments. CCD sensors however, have functions integrated on 

the printed circuit board.  

CMOS imagers provide superior integration, power dissipation, and size, at the 

expense of low flexibility and image quality, especially in low light. This makes CMOS 

technology ideal for space-constrained applications where image resolution is of no 

consequence, such as security cameras, PC videoconferencing, and wireless handheld 

devices. 
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CCD imagers offer higher image resolution and flexibility, at the expense of 

device size. Flexibility means that the user can achieve greater system differentiation 

with a CCD sensor than with a CMOS sensor. This makes CCD sensors ideal for 

applications where high quality images are necessary, such as digital photography and 

broadcast television. The cost of these two sensors are comparable [11].  

For our CubeSat, we chose to use a CMOS sensor due to our size and power 

constraints, the details of which will be discussed in the following sections. In the “Space 

Imaging Conditions” section, we determine the luminance of space to better understand 

the conditions our camera will be performing under. This is necessary to determine the 

proper settings to take pictures in space, and to see if the CMOS sensor has poor 

resolution in different lighting situations, as mentioned previously.  

 

B. Camera Specifications 

  
We have chosen to use the C6820 Enhanced JPEG Module in our CubeSat, which 

was also used as payload in the F-1 CubeSat designed at FPT University in Vietnam [12]. 

The C6820 has a CMOS image sensor and has the ability to adjust resolution, 

compression ratio and many other values necessary for space imaging applications. The 

camera specifications can be found in Figure 3.2.1. 
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  Figure 3.2.1: C6820 Module Specifications [13] 
 

Figure 3.2.2: C6820 Dimensions (In Centimeters) [13] 

 

Table 3.2: C6820 Power Consumption 

Voltage Draw 

5V Input 5.27 V 

Current Draw 

Capture Mode .245 A 

Download Mode .235A 

Idle Mode .187A 

Figure 3.2.3: C6820 power measurements [13] 
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III. Previous Work 

 

 

A. Camera Selection 
 

The weight restriction for CubeSats is 1.33 kg for the entire satellite. The frame of 

the satellite takes up a third of the allotted weight, so the camera must weigh less than 

10g to ensure there is enough weight leftover for the components of the other subsystems.  

The volume of the entire CubeSat is restricted to a 10cm x 10cm x 10cm cube. The 

camera should occupy less than 1cm
3
 to ensure there is room for larger components, such 

as batteries and processors. 

The entire satellite runs at a very low power and must be able to recharge itself 

with solar panels attached to the sides of the satellite. At full charge, the batteries hold 

about 10Wh, so an ideal camera would use less than 1W of power. The camera uses the 

most power while capturing an image, and uses nearly no power in while it is in idle 

mode.  

The C6820 Enhanced JPEG Module, manufactured by COMedia, was chosen 

because it met all weight and size requirements of MISSat-1 and can be easily integrated 

into the satellite. An image of the C6820 can be found below in Figure 3.2.3. Integration 

of the C6820 is simpler because it comes with an evaluation kit. The evaluation kit 

complies with the MISSat-1 size constraints and includes an on-board JPEG compressor, 

on-board 
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memory, and the option to attach an external SD memory card. In this way, we no longer 

need a separate microcontroller for the camera. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3.1: COMedia C6820 [14] 

 

 

 

B. Existing Code 

Notable functions completed by former University of Mississippi students 

included on prior iterations of the camera GUI include: Synchronization between camera 

and computer, switching between various camera modes, taking images, downloading 

images, and setting image capture parameters (Exposure Value, Color, etc.) [15]. 

DC/TV 

UART 

SD Card Socket 

Mini USB 

Power On 
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The camera synchronization function is used to open the communication port on 

the computer and send the proper synchronization signal to activate the camera. The 

function repeatedly sends this signal until the camera responds with the proper 

hexadecimal values to indicate the camera has been synchronized or until the function 

times out.  

The “change camera modes” function has also been implemented in past years. 

The camera has three modes: idle, capture, and playback. The latter mode will not be 

used on the MISSat-1, as it is only for video recordings. The idle mode allows users to 

manipulate images currently stored on the camera, while the capture mode allows images 

to be taken. In idle mode, the camera’s capture parameters can be adjusted, such as the 

exposure value and color properties.  

The download image function operates by sending the camera a series of bytes 

indicating a download request and the file to be downloaded. The camera replies with a 

series of bytes that specify the image’s file size, the number of packets the image has 

been broken down to, and the filename. The camera GUI uses this information to loop 

through the packets being sent to process the image and store it as a JPEG file. 

The following section details the improvements added to the previous version of 

the camera GUI. 
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IV. Programming the Camera Interface 

 

 

A. Camera Operation 

 
The camera GUI operates by sending bytes of information to the camera 

microcontroller and waiting for response. Typically, the sent code from the GUI to the 

camera is an array of five hexadecimal bytes, bookended by the bytes “0xAA.” The GUI 

then waits for an array of hexadecimal bytes from the camera. This received array usually 

consists of six hexadecimal bytes, bookended by the bytes “0xAA.” This returned array 

contains valuable information as to the success or failure of the operation. For more 

complex functions such as downloading an image or synchronization with the camera, a 

series of arrays may be returned, all of which contain information regarding the status of 

the camera. One major improvement of the camera GUI discussed in the next section is 

the analysis of the received byte array in order to ensure the stability of the GUI and 

exception handling.  

 

B. Improvements and Modifications 

 
The window to download images from the satellite is approximately 10 minutes 

every day. Thus, communication with the satellite can be quite cumbersome and proper 

file management is needed to ensure that all processes are executed efficiently during the 

10 minute window. The following functions were added to the existing camera GUI to 
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ensure that there would be no confusion when attempting to access camera files. Each of 

these functions rely on low-level exception handling to ensure the program does not 

crash. 

Delete Function  

The delete command deletes files directly from the camera memory. However, 

there is no way to directly observe the contents of the camera memory. As a result, 

testing of the delete function is limited to taking a picture, downloading the picture, 

deleting the picture, then verifying that the deleted picture cannot be downloaded again, 

or, taking a picture, deleting the picture, taking a new picture, and verifying that the old 

picture filename now holds the new picture. The delete function makes use of the ID and 

Parameter commands of the camera. Testing of the delete function revealed various bugs 

in the camera GUI. Attempts to download nonexistent pictures resulted in an 

“IndexOutOfBounds” exception. Handling of these exceptions is done through low level 

checking of bytes returned from the camera microcontroller, instead of higher level 

exception handling such as try-catch blocks. This and other modifications to the code are 

discussed in later sections. 

Memory Management 

In order to allow for greater user control over file management and downloading 

of images, additional functionality was added to the GUI to work in conjunction with the 

delete function.  

A memory function was implemented to display the memory available on the 

camera in megabytes, the number of files on the camera and the number of images that 

can be taken given the current settings. Testing of the function consisted of running the 

function to observe the current memory state, deleting a file, and running the function a 
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second time to confirm that the total number of files has decreased by one, and that the 

available memory has increased. This also verifies the functionality of the Delete 

function implemented last week. Because the memory information is obtained by sending 

a sequence of bytes to the camera microcontroller, the memory update function cannot 

update in real-time. Instead, a button must be pressed to refresh the memory data. 

Low-Level Exception Handling 

Many of the camera functions on the existing GUI had no exception-handling. 

These functions were updated to take advantage of the return bytes from the camera to 

better understand the camera processes. These function now interpret the return bytes and 

can stop the program from crashing if a function is not successful. Most notably, the 

download function implemented in past years can now operate fully without crashing. 

The prior version of the download function would crash the program if an error occurred, 

or if the file could not be found. With low-level exception handling, this can be avoided.  

Resolution and Compression Ratio 

A resolution and compression ratio setting was implemented in order to manage 

the size of the images taken. Because there is a short window of opportunity to transmit 

images from the satellite to the ground station, achieving an appropriate image size is 

imperative. The MISSat-1 can take pictures in 1280x960 and 640x480 resolution and a 

compression ratio between 1 and 45. Many universities choose to take images with 

640x480 resolution. The COMPASS-1 FH Aachen University in Germany used a very 

similar camera as the MISSat-1 and only takes pictures in the lowest resolution to 

improve transmission time. Testing of the compression ratio and resolution setting shows 

that the addition of these operations allow the user to significantly decrease the size of the 
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image to be downloaded. Assuming a 640x480 pixel RGB image will be taken, with three 

bytes per pixel, the image size can be calculated as follows: 

                        

The transmission rates available are: 9600 baud/s, 4800 baud/s, 2400 baud/s, and 

1200 baud/s.  The amount of time needed to transmit an image at each of the transmission 

rates are given in Figure 3.4.1.   

 

Transmission Times 

TX Rate TX Time (1 image) 

 Sec Min 

9600 baud/s 768 12.8 

4800 baud/s 1536 25.6 

2400 baud/s 3072 51.2 

1200 baud/s 1200 102.4 

Figure 3.4.1: Table of transmission times. [15] 
 

 

Optimistically, the satellite pass over time will be around ten minutes. From the 

Figure 3.4.1, it is evident that even the fastest transmission rate cannot transmit an image 

without compression.  Assuming a transmission rate of 2400 baud/s, a pass time of eight 

minutes, and a file size of 921,600 bytes (calculated above), a compression ratio of 1.4:1 

is needed. Further testing must be conducted to determine the optimum compression ratio 

for implementation. An image of the GUI can be found in Appendix II. 
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V. Integration of Camera Interface into MISSat-1 

 

 

A. Space Imaging Conditions 

 
 

While in space, MISSat-1 will be subject to extremely harsh lighting conditions. 

These conditions need to be accounted for and simulated to ensure quality images of the 

Earth are taken. Many of the resources for taking pictures of space are written by 

astrophotographers, who primarily take pictures of Earth from the International Space 

Station. While this information is helpful in understanding the imaging conditions of 

space, the cameras used for these applications are very high quality DSLR cameras with 

highly tunable exposure and aperture values. In order to understand how space affects 

CMOS image sensors, further investigation is needed.  

CubeSats with similar camera payloads have been launched by the University of 

Michigan and VIT University in India. These two universities provide extensive 

documentation of their camera testing and settings. Both universities believe that it is 

important to test the functionality of the camera in the extreme cold temperatures and 

radiation of space. Additionally, both universities believe it is important to protect the 

camera lens from exposure to the sun.  

The University of Michigan CubeSat uses a CMOS camera and a compression ratio 

of about 10 [16]. They tested their camera settings by simulating Earth’s luminosity in 
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lab, taking pictures of modulation transfer function test charts, and testing the necessary 

exposure time for blur free photos. 

VIT University’s VITSAT-1 also uses a CMOS camera manufactured by 

OmniVision. They cite the following as difficulties that arise when attempting to take 

pictures in space: high power density of sunlight, low temperature of space, high 

radiation intensities, directional stability, power consumption, and weight of the camera 

[17]. Because CubeSats have a short pass time, low resolution images must be taken to 

ensure the image can be transmitted in a reasonable amount of time. CubeSat cameras 

also require adjustable exposure settings. Because most camera modules are designed to 

be used for terrestrial applications such as mobile phones and webcams, an adjustable 

exposure is needed to ensure the camera can take quality images of the Earth under the 

harsh luminance conditions of space. Figure 3.5.1 shows images taken in space using the 

same camera module as the VITSAT-1, taken by a University of Tokyo CubeSat at the 

Intelligent Space Systems Laboratory. 

 
Figure 3.5.1: Intelligent Space Systems Laboratory, University of Tokyo 

To illustrate the importance of adjustable camera settings for space imaging, 

Figure 3.5.2 contains images taken from a similar OmniVision CMOS camera taken by 

COMPASS-1 of FH Aachen University of Applied Sciences in Germany. COMPASS-1 

uses a camera module with an automatic exposure setting [18]. Because of the strong 
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illumination in space, the automatic exposure cannot adjust to a proper setting to take 

proper images of Earth. The COMPASS-1 also has a neutral density filter installed. 

Neutral density filters are used to reduce all wavelengths of light equally. In doing so, a 

longer exposure time can be used, without oversaturating the images. The use of the filter 

provided satisfactory images on Earth, but failed when implemented in space. Despite the 

use of a filter, the images are still incredibly saturated, which speaks to the importance of 

properly testing camera settings on Earth.  

 

 

 
Figure 3.5.2: Images taken by the COMPASS-1 CubeSat. The satellite antenna and the 

contour of the Earth can be seen in some of the images.  

 

 

The MISSat-1 camera has an adjustable exposure value with range -2 to 2. The 

camera settings and the testing of the camera is detailed in the following section.  
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B. Testing of Camera Settings 

 
While in orbit, the MISSat-1 payload will be subject to harsh conditions that must 

be accounted for prior to launch. Calculations of the luminance and irradiance 

experienced by a CubeSat in Low Earth Orbit have been conducted by Aalborg 

University [19]. The report gives suggestions for reducing the effects of space on the 

payload. However, communication attempts with the Aalborg satellite have failed and 

there is no way of verifying their considerations for space imaging. These calculations 

can be found in Figure 3.5.3. 

Figure 3.5.3: Calculated light intensity values seen by CubeSats [19]. 

 

Aalborg calculated the luminance seen from the CubeSat to be 16425 lux. In 

comparison, typical indoor luminance is 200-500 lux. Various camera lighting 

configurations were tested in an anechoic chamber. These configurations attempted to 

simulate the high intensity, high contrast scenes that the CubeSat would be capturing. 
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C. Image Processing 

 
 

In order to improve the quality of images taken in space, various image 

processing techniques were explored. Two filtering techniques were considered: 

Laplacian Filtering and Highboost Filtering. Both Laplacian and Highboost filtering are 

spatial filtering techniques.  

 

Laplacian Filtering 

Laplacian filtering is a spatial filtering technique to sharpen images by creating a 

filter mask based on the discrete formulation of the Laplacian operator. The discrete 

formulation of the Laplacian for a function of two variables is: 

                                                     

Where the second order derivative in the x-direction and y-direction is: 

   

   
                           

   

   
                           

The filter mask constructed from these equations is given in Figure 3.5.4. 

0 1 0 

1 -4 1 

0 1 0 

Figure 3.5.4: Laplacian filter mask used for image sharpening. 
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The corresponding filter mask gives the second-order derivative in the horizontal 

and vertical directions. The convolution of the filter mask with the original image yields 

the edges of the original image. The edges can be added to the original image to yield a 

sharpened version of the original image. It is important to note that the above filter mask 

considers only the horizontal and vertical changes in an image. To account for diagonal 

changes in intensity, the center value of the mask is replaced by -8 and the four terms that 

are currently set to 0 are replaced by 1 [20]. The results of Laplacian filtering can be seen 

in Figure 3.5.5. 

      
Figure 3.5.5: Original image, Laplacian mask, and sharpened image 

 

Highboost Filtering 

  Highboost filtering is a spatial filtering technique where the filter mask is 

obtained by subtracting a blurred version of the image from the original image. The mask 

is then scaled by a constant factor and added to the original image. Figure 3.5.6 shows 

two different kernels used to blur the image. The averaging filter blurs the image by 

setting pixel values to the average intensity of its surrounding neighbors. The Gaussian 

filter blurs images in a similar manner, but weights the pixels differently based on a 

Gaussian distribution. The coefficients are necessary to preserve the overall image 

intensity. The effects of the averaging mask can be seen in Figure 3.5.7 and the effects of 

the Gaussian mask can be seen in Figure 3.5.8. 
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Figure 3.5.6: Averaging and Gaussian filter mask used for image blurring, 

respectively. 

 

     
Figure 3.5.7: Original image, image blurred with averaging mask, and sharpened 

image, respectively. 

 

   
Figure 3.5.8: Image blurred with Gaussian mask, and sharpened image, respectively 

 

High Dynamic Range Imaging 

Traditional cameras take photographs with a limited exposure range. This results 

in a loss of detail in bright or dark sections of a photograph. Additionally, the radiance 

values captured by the image sensor are not the “true” values of radiance of the scene. 
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Thus, there exists a nonlinear mapping between radiance values in a scene and pixel 

values in an image. 

High Dynamic Range (HDR) imaging improves detail in images by capturing 

multiple photographs at varying exposure levels and merge them to create a broader tonal 

range. Typically, HDR imaging is used for enhancing images and exaggerating contrast 

for artistic effects. Images taken in space are often subjugated to a larger than normal 

dynamic range, which makes HDR imaging a viable option for images taken by the 

MISSat-1.  

The implementation of HDR imaging is split into three components:  

1. A radiance map must be constructed from multiple images of the same scene 

taken with different exposure values. 

2. The HDR image must be reconstructed from the radiance map.  

3. The image must be converted into a suitable display image through tone 

mapping. 

The last step is necessary to reduce the contrast of the HDR image to ensure 

proper display on devices with lower dynamic range. There exists a number of local tone 

mapping procedures that exist, and the proper tone mapping algorithm must be 

determined.  

We are currently in the process of testing and implementing HDR imaging to see 

if it is a viable option for CubeSat images. In order to recover the response function of the 

imaging process, we propose using the algorithm outlined by Debevec [21], which 

proposes a technique to construct the response function based on a collection of images 

of the same scene captured at different known exposures. With the function in hand, the 
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pixel values of the pictures with varying exposures can be used to construct a radiance 

map, which covers the entire dynamic range of the scene. 

 

Response Function Recovery 

When a digital image is taken, the exposure X is given as the product of E, the 

irradiance of the film and Δt, the exposure time. After digitizing and processing, the 

exposure X becomes a new number, Z, a nonlinear mapping of the exposure at each pixel. 

This transformation is the characteristic curve of the film and encompasses the 

irregularities introduced by processing the image. The above can be expressed as such: 

             

This equation can be rewritten as: 

                             

where i is the pixel index and j is image exposure index. In this equation, Ei and Δt are 

known and the function g and Zij are the desired values. Debevec includes a smoothing 

factor and a weighting term to more accurately fit the data, and solves the overdetermined 

system [21]. With a recovered g, the pixel values can be converted to the appropriate 

radiance values with given Δt for any image taken. Figure 3.5.9 shows the process of 

constructing the mapping between exposure and pixel value given three images. 

Debevec’s code can be found in Appendix III.  
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Figure 3.5.9: Pixel value plotted as a function of log exposure given three images [22]. 
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VI. Conclusion 

 

 

A. Future Work 
 

After successful construction of the radiance map of a series of images, tone 

mapping must be performed in order to properly display the HDR image. There are a 

variety of tone mapping techniques that exist, the simplest of which consists of applying 

a global transfer curve. However, when the image has an unusually high exposure range, 

global tone mapping techniques fail to preserve exposure details. Instead, local tone 

mapping is needed. Durand [23] details a local tone mapping technique to display HDR 

images while preserving edge details. The process works by decomposing the HDR 

image into a base layer and a detail layer. The base layer has contrast reduced, thus 

preserving details in the displayed image. A bilateral filter is used to obtain the detail 

layer due to its edge-preserving properties.  

Because HDR images use multiple images of the same scene with different 

exposures, it is imperative that the camera remain relatively steady during the imaging 

process. A camera function should be implemented that iterates through a series of 

exposure values and takes images automatically at each of them, as manually taking and 

adjusting exposure values is too timely to produce quality images for HDR imaging.  

Additionally, further testing of the behavior of the CubeSat in space conditions 

must be conducted. The possibility of a neutral density filter and other mechanical 
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techniques to improve imaging should be explored. Currently, the camera has a “measure 

luminance” function, which should be implemented to provide insight on image scenes. 

Further investigation must be conducted to determine the best configuration to simulate 

space conditions on Earth. 
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4. Power Subsystem 

 

I. Introduction 

 

 

A. Project Description and Purpose 

Of the subsystems of the MISSat-1, the power subsystem will be the main focus 

of the last few sections of this paper. The power subsystem is responsible for managing 

the power for the entire satellite. The main function of the power subsystem is to collect, 

store and distribute power. Once launched, if the satellite is in the sun, power for the 

satellite is collected through the solar panels surrounding the exterior of the CubeSat 

which is then transferred to the battery and the other subsystems that require it. When the 

satellite is in the dark, the battery will transfer power to the subsystems that require it. 

Therefore, the power subsystem that is selected for the MISSat-1 must be able to 

integrate seamlessly with the other subsystems of the satellite.   
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II. Solar Panels 

 

 

A. Solar Cell Degradation 

One of the initial responsibilities of the power subsystem is the selection of both 

an electrical power system (EPS) and solar panels that will be best suited for the MISSat-

1. With regards to solar panels, in order to make a well-informed decision, it is essential 

to first become familiar with not only how solar panels function but how they are affected 

by a space environment. A space environment is known to negatively impact the lifespan 

of a satellite and, in most cases, the typical lifespan of a CubeSat only ranges from 3 to 9 

months. Maximizing the lifetime of the CubeSat would be a great advantage since it 

would allow the satellite a longer time period in which to collect data. Therefore, some 

time was spent investigating the main causes of solar cell degradation. This topic is of 

particular interest for the MISSat-1 because it not only influences the overall lifespan of 

the satellite but the power intake as well. On this topic, a term to be familiar with is 

beginning of life (BOL). BOL power for a solar panel refers to the amount of power the 

panel can take in before it has been exposed to a space environment, at the start of a 

satellite’s mission [24]. Another important term is solar cell efficiency, which simply 

refers to how much solar power can be converted to power for the satellite.  

After looking into the issue, it was found that solar cells can be degraded in space 

due to three main reasons: exposure to atomic oxygen, thermal cycling and ultraviolet 
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radiation. Atomic oxygen itself is a result of bursts of ultraviolet radiation that cause the 

breakdown of molecular oxygen. According to the European Space Agency, the 

concentration of atomic oxygen in space is dependent upon both the satellite’s altitude 

and the current solar activity that the satellite is exposed to [25]. Atomic oxygen is 

notably a concern for satellites in low earth orbit (LEO), which is where the MISSat-1 

will be orbiting. Prolonged exposure negatively impacts the satellite by eroding the 

satellite’s surfaces including the solar cells. Eroded solar cells result in drastically 

reduced solar cell efficiencies. However, the susceptibility of solar cells to atomic oxygen 

is more of an issue for silicon solar panels. The second cause for solar cell breakdown, 

thermal cycling, is a result of the satellite cycling through two extreme temperatures. The 

temperatures experienced by satellites in LEO can range from -100°C to 120°C [26]. This 

temperature cycling causes damage to both solar cells and their connectors. Finally, 

ultraviolet radiation exposure darkens the solar cells cover glass which in turn reduces the 

amount of solar energy that is transmitted to the cells. These three factors all contribute to 

the eventual degradation of the solar panels and therefore result in a substantial decrease 

in power absorbed for the satellite. Since solar panels are the only source to replenish the 

satellite’s power, it is crucial that they are kept in optimal shape.  

After acquiring this information, the next step was to see to what degree satellites 

are affected by solar cell degradation and to find the best methods to avoid degradation. 

Research was done on past satellite projects, while specifically looking for ones that had 

provided a good timeline of degradation that can be used as a basis for comparison. One 

specific satellite group collected data over a period of 1067 orbits. This mission, known 

as the High Efficiency Solar Panel (HESP) Experiment, was flown as a part of the 
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CRRES (Combined Release and Radiation Effects Satellite) Mission [27]. Since this 

group did not fly in LEO, one orbit for the CRRES Mission lasted for almost 600 minutes 

(versus LEO which is about 90 minutes per orbit). Therefore, their total satellite mission 

lasted for about 440 days. The HESP satellite group focused their time on the degradation 

of solar panels. During these 1067 orbits, the group researched combinations of solar cell 

materials and cover glass thicknesses that would be most beneficial for satellites to use to 

maximize their power intake and to minimize the effects of degradation. The HESP group 

compared two solar cell materials in particular: silicon (Si) and gallium arsenide 

germanium (GaAs/Ge). Additionally, for the Si material, the group tested with two 

different cell efficiencies. From their studies they were able to plot the percentage of 

remaining BOL power over 1067 orbits which can be seen in Fig. 4.2.1. The efficiencies 

and cover glass thicknesses used for the solar cells in Fig. 4.2.1 can be seen in Table 

4.2.1. Upon examination of Fig. 4.2.1, there is a rapid drop in the percent of BOL power 

in both of the Si cell types between orbits 0 and 300. According to the HESP group, this 

initial drop is caused by radiation damage to the solar cells. As stated previously, 

radiation can cause problems for the satellite’s silicon solar panels by reducing their 

power intake. By the end of orbit 1067 the GaAs/Ge cells continue to take in about 87% 

of their initial BOL power. On the other hand, the Si Reference cells take in 84% while 

the thin Si cells only take in 78%. Therefore, it can be concluded that the GaAs/Ge solar 

cells perform better than the Si solar cells over a longer period of time. For this reason, 

the HESP group suggested that GaAs/Ge cells were the best choice for future satellites to 

use. Further research confirmed that Si panels do not work as effectively as GaAs/Ge 

panels do. In fact, the majority of solar panels today are made with GaAs/Ge solar cells 
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whereas Si solar cells are less frequently used. Si panels are used in satellites to reduce 

costs or for low power missions. Another advantage with using GaAs/Ge as opposed to 

Si is the increased cell efficiency that GaAs/Ge provides. It is important for solar cell 

efficiency to be as high as possible so that more light can be eventually converted to 

power for the satellite.  

 
Figure 4.2.1: Comparison of Solar Cell Materials [27] 
 

 

 

Table 4.2.1: Solar Cell Data used in the HESP Experiment [27] 
 

 Si Reference  

K4-3/4 

Thin Si  

K7-3/4 

GaAs/Ge 

Solar Cell 

Efficiency  

12.3% 14.8% 18.25% 

Cover Glass 

Thickness  

12 mils 12 mils 12 mils 
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Figure 4.2.2: Comparison of Solar Cell Thicknesses [27] 

 

B. EPS and Solar Panel Selection 

With these requirements in mind, some research was done to find a dependable 

solar panel provider with an accompanying EPS. There were three main suppliers of 

CubeSat panels that seemed appropriate for the MISSat-1. First, GomSpace has a supply 

of solar panels available for purchase. GomSpace provides panels fitted with solar cells 

from AZUR SPACE which have a 30% cell efficiency [28]. A single GomSpace side 

panel is priced at $2700. GomSpace also sells top and bottom panels, power systems and 

battery boards for CubeSats. Another seller, ISIS, provides panels which also use solar 

cells from AZUR SPACE, but they have a slightly reduced solar cell efficiency of 28% 

[29]. Furthermore, ISIS sells one side panel at a steeper price, $3500. They do provide 

top and bottom panels as well, but they do not provide their own power boards or 
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batteries. Because of this, ISIS products are not only compatible with their other products 

but with some GomSpace products as well. Therefore, it is possible to purchase ISIS 

solar panels and use them in conjunction with a GomSpace EPS. Finally, Clyde Space 

offers solar panels with a 28.3% cell efficiency with each side panel priced at $2600 [30]. 

They use solar cells outfitted from Spectrolab and provide their own EPS and batteries 

for purchase. A summarized form of the solar panel provider information can be seen in 

Table 4.2.2.  

All the panels shown in Table 4.2.2 are space qualified and designed for LEO 

missions. They also all follow the CubeSat standard. The solar cells are all made with the 

same GaAs/Ge material. As for cover glass, the panels sold by GomSpace, ISIS and 

Clyde Space come fitted with it. However, the glass thickness is not customizable. The 

panels also all come with the option of including magnetorquers, for Attitude 

Determination and Control System (ADCS) purposes, embedded in the panel for an 

additional price.  

After comparing these power systems and solar panels, the power system that was 

chosen for the MISSat-1 was the Clyde Space 1U EPS and a 10 Whr battery along with 

the Clyde Space high efficiency solar panel set. The Clyde Space power system has 

sufficient solar cell efficiency while keeping costs and overall weight relatively low. The 

battery is expected to allow ample storage for the power required for the MISSat-1. 

Finally, Clyde Space products have been included in numerous other CubeSat projects 

and have yielded positive results. 
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Table 4.2.2: Comparison of One Side Solar Panel 
 

Company Cell 

Efficiency 

Mass Power Price Image of Side Solar 

Panel 

GomSpace 

[28] 

30% 29 g 2.27 W $2700 

 

ISIS  

[29] 

28% 50 g 2.30 W $3500 

 

Clyde Space 

[30] 

28.3% 42 g 2.08 W $2600 

 

 

 

C. Overview of the EPS 

There are three major components to the power subsystem of the MISSat-1: the 

power board, the battery board and the solar panels. The power board of the Clyde Space 

EPS is in charge of battery management for the satellite. The power board is embedded 

with three battery charge regulator (BCR) modules with built-in maximum power point 

trackers (MPPTs). The MPPTs are designed to check with each of the six solar panels 

every 2.5 seconds and draw power from the three panels that are receiving the most 

sunlight at that time. The three panels chosen will each be from one direction: +x or -x, 

+y or –y, and +z or -z. The power board also has safeguards that provide over-current and 

under-voltage protection. The power board uses I2C serial communication, which is a 
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master-slave type of communication. This form of communication is compatible with the 

selected processor subsystem of the MISSat-1. The board is also compatible with the 

chosen MISSat-1 pumpkin skeleton shell structure. The power board is fairly low weight, 

at about 170 grams which includes the weight of the battery. 

The Clyde Space power board has an integrated 10 Whr battery board with a 

cover. The layout of power and battery board can be seen in Fig. 4.2.3. Additional battery 

packs may be purchased if it is required by the power budget and can simply be stacked 

within the satellite. One benefit of the selected power and battery board is that it has the 

flexibility to be positioned anywhere inside the satellite, which will be helpful when 

adjusting to the proper center of mass. The Clyde Space battery also has a built in heater 

to optimize satellite performance in colder temperatures. The heater works automatically, 

turning on when the temperature of the battery drops below 0°C and shuts off when the 

temperature rises above 5°C. The operations of the heater can be overridden if desired by 

the satellite’s processor. Keeping the battery temperature from getting too cold is crucial 

to maintaining maximum battery capacity.  

Six solar panels will be purchased in total; five of these include three side panels 

and two top/bottom panels all of which are fitted with two large solar cells. In addition, 

one front solar panel equipped with six small solar cells will also be purchased. As 

previously stated, the cells all have an efficiency of 28.3%. The panels themselves are 

covered with cover glass and have insulation that allows the satellite to contain its heat. 

The combined weight of the panels is about 250 grams. The solar panel set also comes 

with a connection harness. 
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Table 4.2.3 lists the components included in the power subsystem and their 

specifications. An effective and efficient power subsystem, along with the other 

subsystems, will help to ensure mission success for the MISSat-1.  

 

 
Figure 4.2.3: Layout of Power Board and Battery [30] 
  
 

 

Table 4.2.3: Power Subsystem Components and Specifications [30] 

 

Component (qty)  Total 

Mass (g)  

Total 

Price ($)  

Specifications  

EPS Board & 

Battery (1)  

169.0  4250.00  EPS with an integrated 10 Whr 

Lithium Ion battery board  

Side Solar Panels 

(3)  

126.0  7800.00  2 large area cells with 28.3% cell 

efficiency  

Top/Bottom Solar 

Panels (2)  

84.0 5200.00  2 large area cells with 28.3% cell 

efficiency  

Front Solar Panel 

(1)  

38.0  2950.00  6 cells with 28.3% cell efficiency  

Total  417.0  20200.00   
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III. Power Budget 

 

 

A. Solar Panel Calculations 

Now that the power subsystem equipment has been selected, it must be verified to 

provide adequate power storage for the MISSat-1. The power budget will therefore be 

one of the most important tools for the CubeSat. It will show how much power each 

subsystem will consume under different circumstances. One of the intentions with the 

power budget is to determine how best the satellite should respond when faced with a 

certain situation while in orbit. For example, if the satellite becomes critically low on 

power, what should the satellite do to continue functioning? The power budget will help 

to foresee and also to avoid these types of problems. It provides the ability to plan ahead 

in case such a situation does arise. The power budget also verifies that the satellite does 

not use more power than is available. The power budget that has been calculated for the 

MISSat-1 includes the activities of the solar panels, transceiver, payload, processor and 

EPS.  

Beginning with the solar panels, the panel calculations that are presented are 

based on similar power budget calculations that were done by the Satellite Solutions 

CubeSat Design Team at the University of Texas at Austin [31]. The power budget was 

calculated while assuming a LEO with 93 minutes per orbit. It was also estimated that the 

satellite will spend 55.8 of those minutes in the sun (or for 60% of an orbit). The full 
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surface area of a 1U CubeSat is known to be 600 cm
2
, but the effective area will vary 

depending on the chosen solar panels. In one orbit, there is a maximum 10 minutes 

available for data transmission from the MISSat-1 to the ground station and vice versa. It 

is also important to note that the power budgets were calculated under a worst case 

scenario.   

For the solar panels, the power produced per orbit was found using Eq. 4.3.1. In 

Eq. 4.3.1, Asc represents the surface area of the CubeSat that the solar cells cover, and ηsc 

is the efficiency of the solar cells. These values were found using Clyde Space solar panel 

datasheets [30]. The coefficient of average area is given by α. This is a value that was 

calculated by the University of Texas at Austin [31]. ϕ is the percentage of the orbital 

period that the CubeSat is in the sun which was previously stated as being 60%. Finally, 

ψ is the solar constant in units of W/cm
2
. Table 4.3.1 summarizes these solar panel 

parameters and provides the values that were used to calculate the power draw per orbit 

from the solar panels of the MISSat-1. 

 

From Eq. 4.3.1 and Table 4.3.1, the solar panels of the MISSat-1 are projected to 

produce 1.944 W of power per orbit. This value is a result of the solar panels producing 

3.24 W of power 60% of the time (when the satellite is in the sun) and 0 W during the 

other 40% of the time (when the satellite is not in the sun). When the satellite is in an 

eclipse, the only source of power is from the batteries. The solar panels need to draw in 

enough power when the satellite is in the sun so that the batteries can sustain the satellite 

during the dark period. Calculating the remaining parts of the power budget can confirm 

whether this is the case. 

4.3.1 Eq.                                                                               αψφηAPower PanelSolar scsc
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Table 4.3.1: Solar Panel Parameters 
 

Parameters  Values  Additional Details 

Asc  338.5 cm
2
  The surface area of the CubeSat that the solar cells 

cover 

ηsc 28.3%  The efficiency of the solar cells 

α 0.25  The coefficient of average area 

ϕ 60%  The percentage of the orbital period that the 

CubeSat is in the sun 

ψ 0.1353 W/cm
2 
 The solar constant 

 

B. Modes of Operation 

For the remaining subsystems of the satellite, their behavior will most likely rely 

on the battery level. Depending on the current state of the battery, the satellite can be in 

three different modes of operation: low power mode, standard mode or transmitting a 

picture mode. Low power mode is defined for the MISSat-1 as when the battery charge 

drops below 40%, whereas either standard power mode or transmitting a picture mode 

can be maintained as long as the battery level is above 40%.  

There are two forms of power consumption for each subsystem: high power and 

low power. High power is used by a subsystem when it is in an active state. Low power is 

used by a subsystem when it is in an idle state. Equation 4.3.2 was used to calculate the 

power consumed by each subsystem per orbit. In Eq. 4.3.2, Hp is the amount of power 

that is used by the subsystem when it is using high power and %H is the percentage per 
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orbit that the subsystem is using high power. Conversely, Lp is the amount of power that 

is used by the subsystem when it is using low power and %L is the percentage per orbit 

that the subsystem is using low power. The summation of %H and %L should be 100% for 

each individual subsystem as shown in Eq. 4.3.3. This essentially means that during one 

orbit, a subsystem can either be using high power or low power.  

 

 

 

Once these equations were derived, the subsystems were then individually 

analyzed, for each of the three possible modes of operation, to calculate the amount of 

power that each subsystem would use. The high power draw (Hp) values and the low 

power draw (Lp) values for each subsystem are found from the user manuals of the 

respective products that the MISSat-1 will use. The percent that each subsystem is in high 

power mode (%H) or in low power mode (%L) will depend on how the subsystem is used 

during an orbit.  

So, the next step is to figure out how often the subsystems will be used during an 

orbit. The transceiver can be used during the 10 minutes that it passes over the ground 

station, which is known as the transmit window period. During this period, images that 

have been taken by the satellite will be sent down to the ground station. The transceiver 

also includes the beacon usage. The beacon sends vital details about the satellite back 

down to Earth. The beacon is a 10 second signal sent out every 110 seconds. Therefore, 

the beacon uses high power for about 7 minutes per orbit of the orbit. So, in total, there is 

high power usage for 18% of the orbit for the transceiver during standard power mode. 

4.3.3 Eq.                                     100%%%OrbitPer   UsedSubsystem of % Total LH 

4.3.2 Eq.                                                     ))(%(L))(%(H DrawPower  Subsystem LpHp 
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For the remaining 82% of the orbit, the transceiver will be using low power. On the other 

hand, in low power mode, there is a need to conserve the battery power, therefore, the 

transmit window period will not be used. In this case, the transceiver will only be used as 

a beacon and thus will be on high power for 8% of the total orbit. During the other 92% 

of the orbit, the transceiver will be using low power. During transmitting a picture mode, 

the transceiver usage will be about 18% for high power, since the transmit window period 

will be used to transfer the photos taken. It was decided that the processor subsystem will 

always be active and will therefore always be using high power, regardless of the mode 

of operation. Although, since the selected processor uses a very small amount of power, 

using high power 100% of the time does not negatively impact the satellite’s total power. 

The EPS will also always be on. However, when the satellite is in the dark, the EPS will 

most likely be using a heater as well. The EPS takes additional battery power to control 

the heater. Therefore, in all three modes of operation, the EPS will use high power (EPS 

power + heater power) for 40% of the time, which coincides with when the satellite is in 

an eclipse. Then, for the remaining 60% of the time, the EPS will use low power (only 

EPS power). During standard power mode, the payload will use high power for the few 

minutes that it takes a picture during an orbit, which roughly comes out to be 5% of the 

orbit. During low power mode, the payload will not be used to save power. During 

transmitting a picture mode, the payload will be used more often. This is because the 

payload is needed to work with the transceiver and processor to send the photos that were 

taken back down to the ground station. 

The final values, used in Eqs. 4.3.2 and 4.3.3, can be seen in Tables 4.3.2, 4.3.3 

and 4.3.4. Table 4.3.2 shows the power budget for the MISSat-1 when it is operating 
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under standard power mode and Table 4.3.3 shows the power budget for the MISSat-1 

when it is operating under low power mode. When the satellite is operating under 

transmitting a picture mode, Table 4.3.4 gives the representation of that power budget. 

 

Table 4.3.2: Standard Power Mode 
 

Subsystem High Power 

Generation/

Usage (Hp) 

% Hp on 

during 

Orbit 

(%H) 

Low Power 

Generation/ 

Usage (Lp) 

% Lp on 

during 

Orbit 

(%L) 

Power 

Generation/ 

Usage per 

Orbit 

Solar Panels  + 3.24 W  60%    + 1.944 W  

Transceiver – 6.0 W 18% – 0.20 W 82% – 1.244 W 

Payload  – 0.12 W  5%  – 0.06 mW  95%  – 6.057 mW  

Processor  – 0.726 mW  100%    – 0.726 mW  

EPS  – 0.30 W 40% – 0.20 W 60% – 0.24 W 

Total      + 0.453 W  

 

 

Table 4.3.3: Low Power Mode 
 

Subsystem High Power 

Generation/ 

Usage (Hp) 

% Hp on 

during 

Orbit 

(%H) 

Low Power 

Generation/ 

Usage (Lp) 

% Lp on 

during 

Orbit 

(%L) 

Power 

Generation/ 

Usage per 

Orbit 

Solar Panels  + 3.24 W  60%    + 1.944 W  

Transceiver – 6.0 W 8% – 0.20 W 92% – 0.664 W 

Payload  – 0.12 W  0%  – 0.06 mW  100%  – 0.06 mW  

Processor  – 0.726 mW  100%    –0.726 mW  

EPS – 0.30 W 40% – 0.20 W  60% – 0.24 W 

Total      + 1.039 W  
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Table 4.3.4: Transmitting a Picture Mode 
 

Subsystem High Power 

Generation/ 

Usage (Hp) 

% Hp on 

during 

Orbit 

(%H) 

Low Power 

Generation/ 

Usage (Lp) 

% Lp on 

during 

Orbit 

(%L) 

Power 

Generation/ 

Usage per 

Orbit 

Solar Panels  + 3.24 W  60%    + 1.944 W  

Transceiver – 6.0 W 18% – 0.20 W  82% – 1.244 W 

Payload  – 0.12 W  11%  – 0.06 mW  89%  – 0.0133 W  

Processor  – 0.726 mW  100%    –0.726 mW  

EPS  – 0.30 W 40% – 0.20 W  60% – 0.24 W 

Total      + 0.446 W  

 
 

It can be seen from Table 4.3.2 that while in standard power mode, the MISSat-1 

produces about 0.453 W of power per orbit. However, as expected, when the satellite is 

acting in low power mode, there is a higher net yield of 1.039 W of power per orbit. 

Since all three of the total values in Tables 4.3.2-4.3.4 are positive, this confirms that the 

solar panels can support the batteries enough to last through an eclipse. Table 4.3.2 also 

shows that even though the subsystems are actively being used at their maximum levels, 

the satellite still manages to produce power.  

 

C. Battery Charging 

If the satellite is in low power mode, the time that it takes to recharge the battery 

back to 100% or at least back to standard power mode (battery level > 40%) can also be 

calculated. Using Table 4.3.3 and Eq. 4.3.4, the values shown in Table 4.3.5 were 
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calculated. In Eq. 4.3.4, PL is the total power produced by the MISSat-1 in low power 

mode (1.039 W) and %B is the percentage of battery that remains to be charged.  

From Table 4.3.5, it can be seen that if the battery level of the satellite is ever at 

0%, then it would take about 6.2 orbits of the satellite running in low power mode for the 

battery level to reach 100%. Likewise, it would take approximately 3.1 orbits to reach 

50% battery capacity when starting at 0%.  

 

 

Table 4.3.5: Battery Charging Times 
 

Battery 

Percentage 

Available  

Number of Orbits 

until Battery has 

reached 50%  

Number of Orbits 

until Battery has 

reached 100%  

0% 3.105 6.209 

10% 2.484 5.589 

20% 1.863 4.968 

30% 1.242 4.347 

40% 0.621 3.726 

3.3.4 Eq.                                 hour) orbit/1.55 )(1)(%(10Whr/P100%  UntilOrbits of # BL
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IV. Power Budget Simulations 

 

 

A. Matlab Programming 

Once the power budget was finalized, a Matlab program was written to form a 

visual representation of the power budget. The program starts by initializing a set of input 

data. The input data includes information such as the maximum battery level, the amount 

of time in an orbit, the high and low power draw of each subsystem, etc. With these 

variables, the subsystem usage for each second of the orbit would be calculated. Then, 

the battery level would be totaled by adding in the solar cell power draw and subtracting 

out the other subsystem’s power usages. This provides an array of battery power values 

for the battery for each second in time, which is then plotted. A full flowchart of this 

program can be seen in Fig. 4.4.1. Additionally, each subsystem has its own Matlab 

function that calculates its total power usage. A flow chart of one of these written Matlab 

functions can be seen for the solar panels in Fig. 4.4.2. From the final program, a partial 

output can be seen in Fig. 4.4.3. Figure 4.4.3 shows an example of how a battery level 

might look for a satellite over one orbit. The fluctuations that are seen are caused by the 

activities of other subsystems. The program is also able to plot each of the subsystem’s 

power levels for an orbit as well. These Matlab graphs allow for analysis of the second by 

second changes in the satellite’s available power. Therefore, this program provides an 
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important tool to help predict the behavior of the satellite’s power which can be used to 

avoid potential complications during orbit.    

 

 
 

Figure 4.4.1: Flowchart of the Matlab Program 



 

79 
 

 
 

Figure 4.4.2: Flowchart of the Matlab Function 
 
 

 
 

Figure 4.4.3: Output of the Matlab Program 
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B. GUI Introduction 

Although the Matlab program was effective, it was not however, very user 

friendly. If other satellite groups wish to replicate the power budget analysis done thus far 

in a short amount of time, they might struggle at first to find the results they desire. 

Changing even the smallest variables requires reading through a lengthy amount of code, 

which might be difficult for someone who is new to the code. Therefore, the Matlab 

program was further developed into a graphical user interface (GUI) using Matlab’s 

Guide. The purpose behind creating a GUI was to create a visual representation of a 

CubeSat’s power budget with the added benefit that it would be easy to modify for 

different situations. The GUI would therefore allow for quick comparison between 

outcomes when some of the variables are changed. Figure 4.4.4 shows the basic layout of 

the developed GUI. It contains two plots, two panels, two pushbuttons and one dropdown 

menu. The top plot will display the battery level of the satellite, while the bottom plot 

will display a specific subsystem’s power usage. Both plots use the number of orbits as 

the x-axis variable and power as the y-axis variable. The bottom plot can actually graph 

more than one subsystem at a time. The specific subsystem graphed in the lower plot area 

can be selected from the checkboxes in the lower panel titled ‘Subsystem Usage Display’. 

With Fig. 4.4.4 shown as is, only the solar cell activity will be plotted in the bottom 

graph, after pushing the ‘PLOT’ pushbutton. However, the ‘Battery Level Display’ plot 

will still include the addition and subtraction of all of the subsystems that have been 

checked in the upper panel titled ‘Parameter Input: Overview’. The dropdown menu, near 

the top left, allows for different variables to be entered into the program and later edited 

as needed. Depending on what is selected from this menu, followed by pushing ‘Go’, a 
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different set of parameters will be displayed for the user to input. Currently in Fig 4.4.4, 

the ‘Overview’ panel is shown. With the ‘Parameter Input: Overview’ panel, users can 

select what subsystems they wish to include when calculating the battery level of the 

satellite. For example, since the MISSat-1 has only one payload (the camera) and uses a 

passive ADCS, Payload 2 and ADCS have been deselected from the top panel, as seen in 

Fig. 4.4.4.  

 
 

Figure 4.4.4: Layout of the Matlab GUI 
 

 

Each subsystem has its own specific options and input variables in the ‘Parameter 

Input’ panel. Figure 4.4.5 shows the options available for Payload 1. These options 

include the high and low power draw, the payload usage time, the offset time and the 

frequency of usage per orbit. Once these parameters are set to their desired values, 

pushing ‘PLOT’ will then reflect the changes in both the battery plot and the subsystem 

plot. For example, the frequency per orbit of Payload 1 in Fig. 4.4.5 is set at four and the 
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‘Payload 1 Usage’ graph confirms this is true. Four spikes can be seen in the ‘Payload 1 

Usage’ plot, each of which last exactly five minutes (equivalent to the usage time). 

Furthermore, when the initial battery level starts at 5 Whr and the ‘Active Power Draw’ 

for the payload is set at 10 W, the four points in the payload graph coincide with the dips 

seen in the battery plot. Also, since the ‘Offset Time’ is set at five minutes, the first peak 

in the ‘Payload 1 Usage’ graph occurs five minutes after the orbit begins.  

 
 

Figure 4.4.5: Payload 1 Output of the Matlab GUI 

 

C. Simulation Results 

Once the GUI was functioning accurately, it was time to test out the power budget 

of the MISSat-1 to see what changes will occur in the battery level after multiple orbits. 

The power budget data for the standard power mode, given in Table 4.3.2, was inputted 
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into the GUI and the outcome is shown in Fig. 4.4.6. Figure 4.4.6 shows the battery level 

and the solar panel production for 5 orbits, when the MISSat-1 is operating in standard 

power mode. As the top left panel shows in Fig. 4.4.6, an orbit is considered to be 93 

minutes with 60% of that time spent in the sun. As the battery level graph indicates, the 

MISSat-1’s battery should remain near full capacity, ranging between 9 and 10 Whr. 

There are some small dips that occur in the battery level however, which are due to two 

reasons. One reason is because the satellite is no longer in the sun, which means that the 

solar cells have stopped taking in solar power to contribute to the battery. This effect can 

be verified when comparing the top graph (battery level) to the bottom one (solar panel 

power production) in Fig. 4.4.6. Another reason for the drops in the battery level is 

caused by the transceiver and beacon using 6 W of power when active, which has a 

significant effect on the battery. The other subsystems are either not used often enough or 

do not have large high power draws to affect the battery level. 

The power budget data for the low power mode, shown in Table 4.3.3, was also 

placed into the GUI. The outcome is shown in Fig. 4.4.7. Compared to Fig 4.4.6, Fig 

4.4.7 has fewer drops in the battery level and maintains almost a 10 Whr battery level 

throughout the five orbits shown. Again, this is due to the fact that the transmit window is 

no longer being used and therefore there is less transceiver high power usage during an 

orbit. Therefore, the dips that occur in Fig. 4.4.7 are only a result of the satellite being 

away from the sun.  
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Figure 4.4.6: MISSat-1 Standard Power Mode GUI Output 
 

 

 

 
 

Figure 4.4.7: MISSat-1 Low Power Mode GUI Output 
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V. Power Budget Comparison to Other Satellites 

 

 

A. Presentation of Power Budgets 

After developing the MISSat-1 power budget and its GUI, it is apparent that the 

next task would be to see how the MISSat-1 power budget compares with other CubeSat 

projects. Therefore, research was done on the power budgets of other universities and 

satellite groups. There are four in particular that have been outlined in this paper: The 

Institute of Space Technology in Pakistan, The Polytechnic University of Catalonia in 

Spain, The University of Adelaide in Australia, and The University of Michigan. These 

universities were selected because they had some shared similarities with the MISSat-1, 

which included a camera acting as their primary payload. For each of these universities, 

the power budget was first laid out, based on the information they had provided. Once 

this was complete, this information was then incorporated into the GUI to see how 

successful these satellite missions would be and to compare with the MISSat-1. The final 

outputs from the Matlab GUI for each satellite group show the battery level of each of the 

four universities over the course of 5 orbits, to match that of Table 4.4.6.  

The Institute of Space Technology in Pakistan is developing a CubeSat called 

ICUBE-1 [32]. The major goals of this group include launching ICUBE-1 successfully 

while subsequently building working communications with their ground station. Their 
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secondary objective, like the MISSat-1, is to take photos of the Earth and then transfer 

them back to Earth. Therefore, the payload of the ICUBE-1 is a camera sold by 

Omnivision. ICUBE-1’s other major subsystems include their solar panels, transceiver, 

processor and EPS. ICUBE-1 uses a passive ADCS which simply makes use of a 

permanent magnet and two hysteresis rods to help align the satellite. The power budget 

for ICUBE-1 is shown in Table 4.5.1. The power budget information was then 

incorporated into the GUI, the output of which is shown in Fig. 4.5.1. 

The Polytechnic University of Catalonia in Spain is also developing a picosatellite 

by the name of UPCSat-1 [33]. Their mission was similar to ICUBE-1’s, in that they 

wanted to observe the Earth through photos taken by their payload camera. UPCSat-1 did 

have an active ADCS, however, which consisted of a gyroscope. Other subsystems that 

are included in their power budget are an EPS, a processor, solar panels and a transceiver. 

The power budget for UPCSat-1 is shown in Table 4.5.2 and the corresponding GUI 

output is shown in Fig. 4.5.2.  

Another researched satellite was the AUSAT which was created by a team at the 

University of Adelaide [34]. They also had a payload that consisted of a camera and an 

active ADCS made up of magnetorquers. In addition to their one payload and ADCS, 

AUSAT also has a transceiver system, processor subsystem, EPS and solar panels. The 

power budget that AUSAT calculated can be seen in Table 4.5.3. The GUI representation 

of their power budget can be seen in Fig. 4.5.3.  
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Table 4.5.1: Power Budget of ICUBE-1 [32] 
 

Subsystem High Power 

Generation/ 

Usage (W)  

Low Power 

Generation/ 

Usage (W)  

Solar Cells  +3.24  0  

Transceiver  -3.0  0  

Payload 1  -0.2  0  

Processor  -0.066  -0.066  

EPS  -0.1  -0.1  

ADCS  0  0  

 

 

 
 

Figure 4.5.1: GUI Output of ICUBE-1 
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Table 4.5.2: Power Budget of UPCSat-1 [33] 
 

Subsystem High Power 

Generation/ 

Usage (W) 

Low Power 

Generation/ 

Usage (W) 

Solar Cells +2.149 0 

Transceiver -4.0 0 

Payload 1 -0.198 0 

Processor -0.066 -0.066 

EPS -0.1 -0.1 

ADCS -0.09 0 

 

 

 
 

Figure 4.5.2: GUI Output of UPCSat-1 
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Table 4.5.3: Power Budget of AUSAT [34] 

 

Subsystem High Power 

Generation/ 

Usage (W) 

Low Power 

Generation/ 

Usage (W) 

Solar Cells +1.0 0 

Transceiver -3.0 -0.08 

Payload 1 -0.485 0 

Processor -1.5 -0.2 

EPS -0.1 -0.1 

ADCS -1.5 0 

 

 

 

 
 

Figure 4.5.3: GUI Output of AUSAT 

 

 

 

Finally, the last researched satellite was M-Cubed by the University of Michigan 

[35]. M-Cubed had two payloads, where their primary payload was a camera. For their 
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secondary payload, they had a CubeSat On-board processing Validation Experiment 

(COVE) board. The COVE board is used to optimize data processing and transfer. 

However, in order to do this, the COVE board requires a sizable amount of battery 

power. For this reason, M-Cubed designed and selected the remaining subsystems 

because of their relatively low power usages. For example, they chose to use passive 

attitude control to conserve battery life. The power budget for M-Cubed has been laid out 

in Table 4.5.4. The GUI plots for M-Cubed can be seen in Fig. 4.5.4.  

Table 4.5.4: Power Budget of M-Cubed [35] 

 

Subsystem High Power 

Generation/ 

Usage (W) 

Low Power 

Generation/ 

Usage (W) 

Solar Cells +2.01 0 

Transceiver -1.0 -0.6165 

Payload 1 -0.25 0 

Payload 2 -5.0885 0 

Processor -0.2925 -0.216 

EPS -1.254 -0.2275 

ADCS 0 0 
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Figure 4.5.4: GUI Output of M-Cubed 

 

B. Comparison 

From Figs 4.5.1-4.5.4, two of the satellites, AUSAT and M-Cubed, showed a 

steadily declining power level. However, this might not be a cause for concern for those 

satellites as some assumptions were made when inputting the parameters into the GUI 

due to a lack of data. Some of these assumptions include the maximum battery capacity, 

duration of some of the subsystems, etc. However, ICUBE-1 and UPCSat-1 both 

maintained a steady and high battery level. ICUBE-1 performed well because it coupled 

high solar panel power production with relatively low power usage subsystems, except, 

of course, for the transceiver.  
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In fact, when examining all the power budgets, the transceiver is consistently the 

most draining subsystem of the satellite. The same can also be said about the MISSat-1. 

Actually, compared to these four satellites, the MISSat-1 has the highest transceiver 

active power draw. Therefore, once in orbit, the usage of the transceiver must be closely 

monitored, since it will be the most likely cause for the battery to hit 0%. On the other 

hand, when comparing solar cell power production values, the MISSat-1 has a higher 

intake than most others. This is most likely due to the efficiency of the chosen solar cells. 

Slightly lower solar cell efficiencies can greatly affect the overall power produced. 

However, it is also important to keep in mind that along with higher cell efficiency there 

comes a larger price tag on the solar panels. For the AUSAT (who has a solar panel 

active power draw of 1.0 W), it is possible that the costs of the panels outweighed the 

benefits. 

When comparing the other subsystems of the MISSat-1 to these four satellites, 

there are more similarities. The chosen MISSat-1 payload high power draw is fairly 

similar to the other satellites. The EPS values are very much alike as well. The processor 

selected for the MISSat-1, however, has a much lower high power draw than the other 

satellites. So, with the exception of the transceiver, the subsystem power usages seem 

fairly consistent between the MISSat-1 and the other satellites. This consistency helps to 

confirm the validity of the MISSat-1’s power budget.  
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VI. Conclusion 

 

 

A. Future Work 

Now that all the calculations for the power subsystem have been completed and 

the power budget has been tested, in the future, the next step would be to purchase the 

EPS and solar panels so that they can be tested with the other components of the MISSat-

1. As for the GUI, one of the original intentions was to make it accessible to any 

CubeSat, not just the MISSat-1. In fact, this is why the Payload 2 subsystem and the 

ADCS were incorporated into the GUI. Therefore, future satellite groups could replicate 

the power budget analysis that has been done for the MISSat-1. The code for the GUI has 

been included in the Appendix for this purpose.   
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5. Appendix 
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I. Salvo RTOS Sending and Receiving String Task 

#include "csk_io.h" 

#include "csk_uart.h" 

// Pumpkin Salvo headers 

#include "salvo.h" 

#include "io.h" 

#include "csk_led.h" 

#define LED_ON_TIME 20    

 

void task_exercise_io(void) { 

   int input[6];   

int i; 

csk_led_status_open(); 

 

  while (1) { 

 usart_uart1_open(USART_UART_115200_N81_SMCLK);// Initialize UART1 

 OS_Delay(20); 

 

 csk_uart1_putchar(0xAA);csk_uart1_putchar(0x01);csk_uart1_putchar

(0xB0); // Fill TX Buffer 

 

 csk_uart1_putchar(0x00);csk_uart1_putchar(0x05);csk_uart1_putchar

(0xAA);  // Fill TX Buffer 

 

 OS_Delay(20); 

 csk_uart1_outchar(); // Output contents of TX Buffer to TX pin 

 OS_Delay(20); 

 

 for (i = 0; i < 6; i++)  // Fill input array with RX bytes 

     input[i] = csk_uart1_getchar();// Retrieve first byte in RX 

buffer 

 

 i = 0;  

 OS_Delay(20); 

 

 if (input[0]==0xAA && input[1]==0x01 && input[2]==0xB0 && 

input[3]==0x00 &&input[4]==0x05 && input[5]==0xAA) {   

// Compare received signal to sync signal 

 

  csk_led_status_on(); // Indicate positive receipt with LED 

flash 

  OS_Delay(40); 

  csk_led_status_off(); 

  } 

 

 csk_uart1_close();  // Shut down UART module 

      } /* while */ 

    } 
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II. Camera GUI Code (C#) 

Delete Function 

private void buttonDelete_Click(object sender, EventArgs e) 
        {             
            byte[] pic_num = new byte[1]; 
            pic_num[0] = Convert.ToByte(textBox3.Text.ToString()); 
            byte[] checksum = new byte[1]; 
            int a = pic_num[0] + 0xaa + 0xaa; 
            checksum = BitConverter.GetBytes(a); 
 
            // id command 
            byte[] DeletePic = new byte[5] { 0xaa, 0x02, 0x7a, 0xd0, 0xaa }; 
            // parameters command  
            byte[] PicID = new byte[5] { 0xaa, 0x00, pic_num[0], checksum[0], 0xaa 
}; 
//--------------------------------------------------------------------------------  
// Note: Program is currently set to download picture number 30. To change the 
//picture the third byte of PicID should be reset to the desired picture number 
//(in hex) and the //checksum byte (fourth byte) must be reset. Instructions for 
//determining the checksum byte value are in the C6820 user manual 
//-------------------------------------------------------------------------------- 
            int sleeptime = 10000; //Change this to increase wait times 
//-------------------------------------------------------------------------------- 
// Now Select File Number and Wait for ACK with file data 
//-------------------------------------------------------------------------------- 
            serialPort1.Write(DeletePic, 0, DeletePic.Length); 
            textBox1.Text += "Sending: " + BitConverter.ToString(DeletePic) + 
"\r\n"; 
            System.Threading.Thread.Sleep(sleeptime / 10); 
            serialPort1.Write(PicID, 0, PicID.Length); 
            textBox1.Text += "Sending: " + BitConverter.ToString(PicID) + "\r\n"; 
            System.Threading.Thread.Sleep(sleeptime / 10); 
 
            int btr = serialPort1.BytesToRead; 
            // No response received 
            if (btr < 1) 
            { 
                textBox1.Text += "Download ACK Error - Exiting Call\r\n"; 
                return; // This should exit out 
            } 
            byte[] receivedData = new byte[btr]; 
            serialPort1.Read(receivedData, 0, receivedData.Length); 
            if (receivedData[3] == 0x09) 
            { 
                textBox1.Text += "File Not Found\r\n"; 
            } 
            buttonStart.Enabled = false; 
            buttonStop.Enabled = true; 
            buttonDownload.Enabled = true; 
            Memory.Enabled = true; 
            comboMode.Enabled = true; 
            Memory.Enabled = true; 
        } 
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Memory Management 

 
private void Memory_Click(object sender, EventArgs e) 
        { 
            byte[] Mem = new byte[5] { 0xaa, 0x00, 0x66, 0xba, 0xaa }; 
            int sleeptime = 10000; //Change this to increase wait times 
 
//-------------------------------------------------------------------------------- 
// Now Select File Number and Wait for ACK with file data 
//-------------------------------------------------------------------------------- 
            serialPort1.Write(Mem, 0, Mem.Length); 
            textBox1.Text += "Sending: " + BitConverter.ToString(Mem) + "\r\n"; 
            System.Threading.Thread.Sleep(sleeptime / 10); 
 
            int btr = serialPort1.BytesToRead; 
            // No response received 
            if (btr < 1) 
            { 
                textBox1.Text += "Download ACK Error - Exiting Call\r\n"; 
                return; // This should exit out 
            } 
 
            // Response received 
            byte[] receivedData = new byte[btr]; 
            serialPort1.Read(receivedData, 0, receivedData.Length); 
            float MemLeft = receivedData[3]*0x1000000 + receivedData[4]*0x10000 + 
receivedData[5]*0x100 + receivedData[6]; 
            int NumFiles = receivedData[7] * 100 + receivedData[8]; 
            float NumPics = receivedData[9] * 100 + receivedData[10]; 
 
            MemInfo.Text += "Memory Available: " + MemLeft/(1024*1024) + " 
Mb\r\n"; 
            MemInfo.Text += "Files in Memory: " + NumFiles + "\r\n"; 
            MemInfo.Text += "Pics left w/current settings: " + NumPics + "\r\n"; 
            MemInfo.Text += "\r\n"; 
 
            buttonStart.Enabled = false; 
            buttonStop.Enabled = true; 
            buttonDownload.Enabled = true; 
            buttonDelete.Enabled = true; 
            comboMode.Enabled = true; 
            Memory.Enabled = true; 
            } 
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Resolution and Compression Ratio 

 
        private void snapshotRes_Click(object sender, EventArgs e) 
        { 
            byte[] res = new byte[1]; 
            byte[] CR = new byte[1]; 
            int checksumNum = 0; 
 
            //-------------- Resolution ------------------------------ 
            // 00 = 1280 x 960, 01 = 640 x 480, CR from 1 to 45 
            res[0] = Convert.ToByte(comboResolution.SelectedIndex.ToString()); 
            CR[0] = Convert.ToByte(CompR.Text.ToString()); 
 
            checksumNum = res[0] + 0xaa + 0xaa + CR[0]; //CHANGE 0x18 for cr!!!! 
            byte[] checksum = BitConverter.GetBytes(checksumNum); 
            //id command 
            byte[] resConfig = new byte[5] { 0xaa, 0x02, 0x32, 0x88, 0xaa }; 
            //parameter command 
            byte[] resParam = new byte[5] { 0xaa, res[0], CR[0], checksum[0], 
0xaa}; 
 
            // Send the id and parameter command 
            serialPort1.Write(resConfig, 0, resConfig.Length); 
            textBox1.Text += "Sending: " + CR[0] + "\r\n"; 
            textBox1.Text += "Sending: " + BitConverter.ToString(resConfig) + 
"\r\n"; 
            System.Threading.Thread.Sleep(100); 
            serialPort1.Write(resParam, 0, resParam.Length); 
            textBox1.Text += "Sending: " + BitConverter.ToString(resParam) + 
"\r\n"; 
            System.Threading.Thread.Sleep(100); 
 
            int btr = serialPort1.BytesToRead; 
            // No response received 
            if (btr < 1) 
            { 
                textBox1.Text += "Download ACK Error - Exiting Call\r\n"; 
                return; // This should exit out 
            } 
 
            // Response received 
            byte[] receivedData = new byte[btr]; 
            serialPort1.Read(receivedData, 0, receivedData.Length); 
            textBox1.Text += "Received: " + BitConverter.ToString(receivedData) + 
"\r\n"; 
 
        } 
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III. Camera GUI Image 

  
             Graphical User Interface for Camera Operation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

100 
 

 

IV. Image Processing Code (Matlab) 

 

Image Sharpening (Laplacian, Highboost Filtering) 

 
image1 = imread('sat1.jpg'); 
image1 = rgb2gray(image1); 

  
%Create Kernels 
laplacian = [0, 1, 0; 
             1,-4, 1; 
             0, 1, 0]; 
gauss = [0, 1, 0; 
         1, 8, 1; 
         0, 1, 0]; 
gauss=gauss./12; 
ave = [1, 1, 1; 
       1, 1, 1; 
       1, 1, 1]; 
ave=ave./9; 

  
%Laplacian sharpening with scaling 
LAP = convolve(laplacian, image1); 

  
for i=1:length(LAP(:,1)) 
    for j=1:length(LAP(1,:)) 
        final_LAP(i,j) = (image1(i,j) - LAP(i,j)); 
    end 
end 
%Highboost Filtering - Average 
HBFa = convolve(ave, image1); 
for i=1:length(HBFa(:,1)) 
    for j=1:length(HBFa(1,:)) 
        final_HBFa(i,j) = image1(i,j)+4*(image1(i,j)-HBFa(i,j)); 
    end 
end 
%Highboost Filtering - Gaussian 
HBFg = convolve(gauss, image1); 
for i=1:length(HBFg(:,1)) 
    for j=1:length(HBFg(1,:)) 
        final_HBFg(i,j) = image1(i,j)+4*(image1(i,j)-HBFg(i,j)); 
    end 
end 

  
figure 
subplot(1,3,1), imshow(image1); 
subplot(1,3,2), imshow(uint8(LAP)); 
subplot(1,3,3), imshow(uint8(final_LAP)); 

  
figure 
subplot(1,3,1), imshow(image1); 
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subplot(1,3,2), imshow(uint8(HBFa)); 
subplot(1,3,3), imshow(uint8(final_HBFa)); 

  
figure 
subplot(1,3,1), imshow(image1); 
subplot(1,3,2), imshow(uint8(HBFg)); 
subplot(1,3,3), imshow(uint8(final_HBFg)); 
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Response Function for HDR Imaging (Debevec ‘97) 

 
% 
% gsolve.m - Solve for imaging system response function 
% 
% Given a set of pixel values observed for several pixels in several 
% images with different exposure times, this function returns the 
% imaging system’s response function g as well as the log film 

irradiance 
% values for the observed pixels. 
% 
% Assumes: 
% 
% Zmin = 0 
% Zmax = 255 
% 
% Arguments: 
% 
% Z(i,j) is the pixel values of pixel location number i in image j 
% B(j) is the log delta t, or log shutter speed, for image j 
% l is lamdba, the constant that determines the amount of smoothness 
% w(z) is the weighting function value for pixel value z 
% 
% Returns: 
% 
% g(z) is the log exposure corresponding to pixel value z 
% lE(i) is the log film irradiance at pixel location i 

 
function [g,lE]=gsolve(Z,B,l,w) 
n = 256; 
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1)); 
b = zeros(size(A,1),1); 
%% Include the data?fitting equations 
k = 1; 
for i=1:size(Z,1) 
for j=1:size(Z,2) 
wij = w(Z(i,j)+1); 
A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j); 
k=k+1; 
end 
end 
%% Fix the curve by setting its middle value to 0 
A(k,129) = 1; 
k=k+1; 
%% Include the smoothness equations 
for i=1:n-2 
A(k,i)=l*w(i+1); A(k,i+1)=-2*l*w(i+1); A(k,i+2)=l*w(i+1); 
k=k+1; 
end 
%% Solve the system using SVD 
x = A\b; 
g = x(1:n); 
lE = x(n+1:size(x,1)); 
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V.  Matlab GUI Code 

function varargout = power_gui(varargin) 
function varargout = power_gui(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @power_gui_OpeningFcn, ... 
                   'gui_OutputFcn',  @power_gui_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 

  
function power_gui_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 

  
function varargout = power_gui_OutputFcn(hObject, eventdata, handles)  
varargout{1} = handles.output; 

  

  
function plot_button_Callback(hObject, eventdata, handles) 

  
p = pow;                                                                     

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    
%%% 
%%%Creates VARIABLES with the DATA from the GUI 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
%%%Orbital Variables 
    orbit1 = str2double(get(handles.orbit_range2,'String')); 
    orbit2 = str2double(get(handles.orbit_range1,'String'));            
    sunlength = str2double(get(handles.suntime,'String')); 
    sunoffset = str2double(get(handles.suntime_offset,'String')); 
    orbitlength = str2double(get(handles.total_time,'String')); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
%%%Battery Variables 
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    bat1 = str2double(get(handles.battery_max,'String')); 
    bat2 = str2double(get(handles.battery_start,'String')); 
    bat_plot1 = str2double(get(handles.bat_range1,'String')); 
    bat_plot2 = str2double(get(handles.bat_range2,'String')); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
%%%Solar Cell Variables 
    sc_test = get(handles.sc_check,'Value'); 
    %%% 
    %%%If UNCHECKED turn off SUBSYSTEM 
    if sc_test == 1 
        solar1 = str2double(get(handles.sc_active,'String')); 
    else 
        solar1 = 0; 
    end 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
%%%Transceiver Variables 
    beacon1 = str2double(get(handles.beacon_on,'String')); 
    beacon2 = str2double(get(handles.beacon_off,'String')); 
    window = str2double(get(handles.transmit_time,'String')); 
    camoffset = str2double(get(handles.transmit_offset,'String')); 
    transceiver_test=get(handles.transceiver_check,'Value'); 
    %%% 
    %%%If UNCHECKED turn off SUBSYSTEM 
    if transceiver_test==1 
        trans1 = str2double(get(handles.transceiver_active,'String')); 
        trans2 = str2double(get(handles.transceiver_low,'String')); 
    else 
        trans1 = 0; 
        trans2 = 0; 
    end 

         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
%%%Payload 1 Variables 
    camlength1 = str2double(get(handles.payload_time,'String')); 
    camoffset1 = str2double(get(handles.payload_offset,'String')); 
    camfreq1 = str2double(get(handles.payload_freq,'String')); 
    payload_test = get(handles.payload_check,'Value'); 
    %%% 
    %%%If UNCHECKED turn off SUBSYSTEM 
    if payload_test == 1 
        cam1 = str2double(get(handles.payload_active,'String')); 
        cam2 = str2double(get(handles.payload_low,'String')); 
    else 
        cam1 = 0; 
        cam2 = 0; 
    end 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
%%%Payload 2 Variables 
    camlength2 = str2double(get(handles.secondary_time,'String')); 
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    camoffset2 = str2double(get(handles.secondary_offset,'String')); 
    camfreq2 = str2double(get(handles.secondary_freq,'String')); 
    secondary_test=get(handles.secondary_check,'Value'); 
    %%% 
    %%%If UNCHECKED turn off SUBSYSTEM 
    if secondary_test==1 
        cam12 = str2double(get(handles.secondary_active,'String')); 
        cam22 = str2double(get(handles.secondary_low,'String')); 
    else 
        cam12 = 0; 
        cam22 = 0; 
    end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
%%%Processor Variables 
    processor_test=get(handles.processor_check,'Value'); 
    %%% 
    %%%If UNCHECKED turn off SUBSYSTEM 
    if processor_test==1 
        processor1 = 

str2double(get(handles.processor_active,'String')); 
        processor2 = str2double(get(handles.processor_low,'String')); 
    else 
        processor1 = 0; 
        processor2 = 0; 
    end 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
%%%EPS Variables 
    eps_test=get(handles.eps_check,'Value'); 
    %%% 
    %%%If UNCHECKED turn off SUBSYSTEM 
    if eps_test==1 
        eps1 = str2double(get(handles.eps_active,'String')); 
        eps2 = str2double(get(handles.eps_heater,'String')); 
    else 
        eps1 = 0; 
        eps2 = 0; 
    end 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
%%%ADCS Variables 
    adcslength = str2double(get(handles.adcs_duration,'String')); 
    adcsoffset = str2double(get(handles.adcs_offset,'String')); 
    adcsfreq = str2double(get(handles.adcs_freq,'String'));     
    adcs_test=get(handles.adcs_check,'Value'); 
    %%% 
    %%%If UNCHECKED turn off SUBSYSTEM 
    if adcs_test==1 
        adcs1 = str2double(get(handles.adcs_active,'String')); 
        adcs2 = str2double(get(handles.adcs_low,'String')); 
    else 
        adcs1 = 0; 
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        adcs2 = 0; 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    
%%% 
%%%CALCULATE the POWER levels for each subsystem 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    

  
p.calculation (p, orbit1, sunlength, sunoffset, orbitlength, bat1, 

bat2, solar1, camlength1, camlength2, camoffset, cam1, cam2, 

camoffset1, camfreq1, beacon1, beacon2, trans1, trans2, processor1, 

processor2, eps1, eps2, adcs1, adcs2, adcslength, adcsoffset, adcsfreq, 

window, cam12, cam22, camoffset2, camfreq2) 

  
tt = (p.time_start-1:p.time_stop)./p.time_orbit; 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    
%%% 
%%%PLOTS the BATTERY 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    

  
%%%Battery Plot 
plot(handles.battery_axes,tt,p.battery, 'LineWidth', 1.5, 'Color', 

'red') 
set(handles.battery_axes,'XGrid','on','YGrid','on','ZGrid','on') 
set(handles.battery_axes,'XLim',[orbit2, orbit1]) 
set(handles.battery_axes,'YLim',[bat_plot1, bat_plot2]) 
set(handles.battery_text,'String','Battery Level') 
grid on 
xlabel(handles.battery_axes, 'Number of Orbits') 
ylabel(handles.battery_axes, 'Power (Whr)') 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    
%%% 
%%%PLOTS the individual SUBSYSTEMS 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    

  
%%%Solar Cell Plot 
    sc_value = get(handles.sc_box, 'Value'); 
    sc_line = plot(handles.subsystem_axes,tt,(3600*p.sc_power), 

'LineWidth', 1.5, 'Color', 'blue'); 



 

107 
 

    grid on 
    xlabel(handles.subsystem_axes, 'Number of Orbits') 
    ylabel(handles.subsystem_axes, 'Power (W)') 
    hold on 

         
        if sc_value == 1 
            set(sc_line,'Visible','on'); 
            set(handles.subsystem_axes,'YLim',[0, (1+solar1)]);  
        else 
            set(sc_line,'Visible','off'); 
        end 

         
%%%Transceiver Plot 
    r_value = get(handles.r_box, 'Value'); 
    r_line = plot(handles.subsystem_axes,tt,(3600*p.r_power), 

'LineWidth', 1.5, 'Color', 'red'); 
    grid on 
    xlabel(handles.subsystem_axes, 'Number of Orbits') 
    ylabel(handles.subsystem_axes, 'Power (W)') 
    hold on       

  
        if r_value == 1 
            set(r_line,'Visible','on'); 
            set(handles.subsystem_axes,'YLim',[0, (1+trans1)]); 
        else 
            set(r_line,'Visible','off'); 
        end 

         
%%%Payload 1 Plot 
    c_value = get(handles.c_box, 'Value'); 
    c_line = plot(handles.subsystem_axes,tt,(3600*p.cam_power), 

'LineWidth', 1.5, 'Color', 'red'); 
    grid on 
    xlabel(handles.subsystem_axes, 'Number of Orbits') 
    ylabel(handles.subsystem_axes, 'Power (W)') 
    hold on 

         
        if c_value == 1 
            set(c_line,'Visible','on'); 
            set(handles.subsystem_axes,'YLim',[0, (0.1+cam1)]); 
        else 
            set(c_line,'Visible','off'); 
        end 

         
%%%Payload 2 Plot 
    c_value2 = get(handles.c_box2, 'Value'); 
    c_line2 = plot(handles.subsystem_axes,tt,(3600*p.cam_power2), 

'LineWidth', 1.5, 'Color', 'red'); 
    grid on 
    xlabel(handles.subsystem_axes, 'Number of Orbits') 
    ylabel(handles.subsystem_axes, 'Power (W)') 
    hold on    

         
        if c_value2 == 1 
            set(c_line2,'Visible','on'); 
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            set(handles.subsystem_axes,'YLim',[0, (0.1+cam12)]); 
        else 
            set(c_line2,'Visible','off'); 
        end 

         
%%%Processor Plot 
    p_value = get(handles.p_box, 'Value'); 
    p_line = plot(handles.subsystem_axes,tt,(3600*p.p_power), 

'LineWidth', 1.5, 'Color', 'red'); 
    grid on 
    xlabel(handles.subsystem_axes, 'Number of Orbits') 
    ylabel(handles.subsystem_axes, 'Power (W)') 
    hold on      

  
        if p_value == 1 
            set(p_line,'Visible','on'); 
            if processor1 >= 1 
                set(handles.subsystem_axes,'YLim',[0, (1+processor1)]); 
            elseif processor1 > 0.1 || processor1 < 1 
                set(handles.subsystem_axes,'YLim',[0, 

(0.5+processor1)]); 
            else 
                set(handles.subsystem_axes,'YLim',[0, 

(0.001+processor1)]); 
            end 
        else 
            set(p_line,'Visible','off'); 
        end 

         
%%%EPS Plot 
    eps_value = get(handles.eps_box, 'Value');     
    eps_line = plot(handles.subsystem_axes,tt,(3600*p.eps_power), 

'LineWidth', 1.5, 'Color', 'red'); 
    grid on 
    xlabel(handles.subsystem_axes, 'Number of Orbits') 
    ylabel(handles.subsystem_axes, 'Power (W)') 
    hold on 

         
        if eps_value == 1 
            set(eps_line,'Visible','on'); 
            set(handles.subsystem_axes,'YLim',[0, (0.1+eps2)]); 
        else 
            set(eps_line,'Visible','off'); 
        end 

         
%%%ADCS Plot 
    adcs_value = get(handles.adcs_box, 'Value');     
    adcs_line = plot(handles.subsystem_axes,tt,(3600*p.adcs_power), 

'LineWidth', 1.5, 'Color', 'red'); 
    grid on 
    xlabel(handles.subsystem_axes, 'Number of Orbits') 
    ylabel(handles.subsystem_axes, 'Power (W)') 
    hold off  

  
        if adcs_value == 1 
            set(adcs_line,'Visible','on'); 
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            set(handles.subsystem_axes,'YLim',[0, (0.5+adcs1)]); 
        else 
            set(adcs_line,'Visible','off'); 
        end 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    
%%% 
%%%Displays the TITLE for the SUBSYSTEM Plot 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%          

         
sc1=get(handles.sc_box,'value'); 
r1=get(handles.r_box,'value'); 
c1=get(handles.c_box,'value'); 
c2=get(handles.c_box2,'value'); 
p1=get(handles.p_box,'value'); 
ep1=get(handles.eps_box,'value'); 
ad1=get(handles.adcs_box,'value'); 

  
%%%Use Solar Cell Title 
    if sc1 == 1  && r1 == 0 && c1 == 0 && c2 == 0 && p1 == 0 && ep1 == 

0 && ad1 == 0 
        set(handles.subsystem_text,'String','Solar Panel Power 

Production') 
%%%Use Transceiver Title 
    elseif sc1 == 0  && r1 == 1 && c1 == 0 && c2 == 0 && p1 == 0 && ep1 

== 0 && ad1 == 0 
        set(handles.subsystem_text,'String','Transceiver Usage') 
%%%Use Payload 1 Title         
    elseif sc1 == 0  && r1 == 0 && c1 == 1 && c2 == 0 && p1 == 0 && ep1 

== 0 && ad1 == 0 
        set(handles.subsystem_text,'String','Payload 1 Usage') 
%%%Use Payload 2 Title 
    elseif sc1 == 0  && r1 == 0 && c1 == 0 && c2 == 1 && p1 == 0 && ep1 

== 0 && ad1 == 0 
        set(handles.subsystem_text,'String','Payload 2 Usage') 
%%%Use Processor Title 
    elseif sc1 == 0  && r1 == 0 && c1 == 0 && c2 == 0 && p1 == 1 && ep1 

== 0 && ad1 == 0 
        set(handles.subsystem_text,'String','Processor Usage') 
%%%Use EPS Title         
    elseif sc1 == 0  && r1 == 0 && c1 == 0 && c2 == 0 && p1 == 0 && ep1 

== 1 && ad1 == 0 
        set(handles.subsystem_text,'String','EPS Usage') 
%%%Use ADCS Title 
    elseif sc1 == 0  && r1 == 0 && c1 == 0 && c2 == 0 && p1 == 0 && ep1 

== 0 && ad1 == 1 
        set(handles.subsystem_text,'String','ADCS Usage') 
%%%Use Generic Title 
    else 
        set(handles.subsystem_text,'String','Subsystem Usages') 
    end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    
%%% 
%%%Calculates the Y-AXIS LIMITS for the SUBSYSTEM Plot 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    

     
%%%Get Y-Max Values 
y_values = [(1+solar1) sc_value; (1+trans1) r_value; 
           (0.1+cam1) c_value; (0.1+cam12) c_value2;  
           (0.001+processor2) p_value; (0.1+eps2) eps_value;  
           (0.5+adcs1) adcs_value]; 

  
%%%Sort based on checkbox AND max Y value        
ysort = sortrows(y_values, [2 1]); 

  
%%%Use Solar Cell Y-lim 
    if (ysort(7) == 1+solar1) && (sc_value == 1) 
        if solar1 >= 1 
            set(handles.subsystem_axes,'YLim',[0, 1+ceil(solar1)]); 
        else 
            set(handles.subsystem_axes,'YLim',[0, 1]); 
        end 
%%%Use Transceiver Y-lim 
    elseif (ysort(7) == 1+trans1) && (r_value == 1) 
        if trans1 >= 1 
            set(handles.subsystem_axes,'YLim',[0, 1+ceil(trans1)]); 
        else 
            set(handles.subsystem_axes,'YLim',[0, 1]); 
        end         
%%%Use Payload 1 Y-lim 
    elseif (ysort(7) == 0.1+cam1) && (c_value == 1) 
        if cam1 >= 1 
            set(handles.subsystem_axes,'YLim',[0, 1+ceil(cam1)]); 
        elseif (cam1 < 1 && cam1 >= 0.5) 
            set(handles.subsystem_axes,'YLim',[0, 1]); 
        elseif (cam1 < 0.5 && cam1 > 0.1) 
            set(handles.subsystem_axes,'YLim',[0, 0.5]);     
        else 
            set(handles.subsystem_axes,'YLim',[0, 0.1+cam1]); 
        end 
%%%Use Payload 2 Y-lim 
    elseif (ysort(7) == 0.1+cam12) && (c_value2 == 1)  
        if cam12 >= 1 
            set(handles.subsystem_axes,'YLim',[0, 1+ceil(cam12)]); 
        elseif (cam12 < 1 && cam12 >= 0.5) 
            set(handles.subsystem_axes,'YLim',[0, 1]); 
        elseif (cam12 < 0.5 && cam12 > 0.1) 
            set(handles.subsystem_axes,'YLim',[0, 0.5]);     
        else 
            set(handles.subsystem_axes,'YLim',[0, 0.1+cam12]); 
        end 
%%%Use Processor Y-lim 
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    elseif (ysort(7) == 0.001+processor2) && (p_value == 1) 
        if processor1 >= 1 
            set(handles.subsystem_axes,'YLim',[0, 1+ceil(processor1)]); 
        elseif (processor1 < 1 && processor1 >= 0.5) 
            set(handles.subsystem_axes,'YLim',[0, 1]); 
        elseif (processor1 < 0.5 && processor1 >= 0.1) 
            set(handles.subsystem_axes,'YLim',[0, 0.5]); 
        elseif (processor1 < 0.1 && processor1 >= 0.01) 
            set(handles.subsystem_axes,'YLim',[0, 0.1]);               
        else 
            set(handles.subsystem_axes,'YLim',[0, 8e-4]); 
        end 
%%%Use EPS Y-lim 
    elseif (ysort(7) == 0.1+eps2) && (eps_value == 1) 
        if eps2 >= 1 
            set(handles.subsystem_axes,'YLim',[0, 1+ceil(eps2)]); 
        elseif (eps2 < 1 && eps2 >= 0.5) 
            set(handles.subsystem_axes,'YLim',[0, 1]); 
        elseif (eps2 < 0.5 && eps2 > 0.1) 
            set(handles.subsystem_axes,'YLim',[0, 0.5]);     
        else 
            set(handles.subsystem_axes,'YLim',[0, 0.1+eps2]); 
        end         
%%%Use ADCS 1 Y-lim 
    elseif (ysort(7) == 0.5+adcs1) && (adcs_value == 1) 
        if adcs1 >= 1 
            set(handles.subsystem_axes,'YLim',[0, 1+ceil(adcs1)]); 
        elseif (adcs1 < 1 && adcs1 >= 0.5) 
            set(handles.subsystem_axes,'YLim',[0, 1]); 
        elseif (adcs1 < 0.5 && adcs1 > 0.1) 
            set(handles.subsystem_axes,'YLim',[0, 0.5]);     
        else 
            set(handles.subsystem_axes,'YLim',[0, 0.1+adcs1]); 
        end 
    end    

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    
%%% 
%%%The DROPDOWN List Controlled by the 'GO BUTTON' 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%    

  
X=get(handles.menu,'string');               %menu string in it entirety 
Y=get(handles.menu,'value');                %chosen value 
Z=X(Y,:);                                   %chosen string 

  
%%%Overview Panel 
if strcmp(Z,'Overview') == 1                                                 
    set(handles.overview_panel,'Visible','on') 
    set(handles.orbital_panel,'Visible','off') 
    set(handles.bat_panel,'Visible','off') 
    set(handles.sc_panel,'Visible','off') 
    set(handles.t_panel,'Visible','off') 
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    set(handles.beacon_panel,'Visible','off') 
    set(handles.cam_panel,'Visible','off') 
    set(handles.secondary_panel,'Visible','off') 
    set(handles.processor_panel,'Visible','off') 
    set(handles.eps_panel,'Visible','off') 
    set(handles.adcs_panel,'Visible','off') 
    set(handles.parameter_text,'String','Parameter Input: Overview') 

  
%%%Orbital Panel     
elseif strcmp(Z,'Orbital') == 1 
    set(handles.overview_panel,'Visible','off') 
    set(handles.orbital_panel,'Visible','on')   
    set(handles.bat_panel,'Visible','off')   
    set(handles.sc_panel,'Visible','off') 
    set(handles.t_panel,'Visible','off') 
    set(handles.beacon_panel,'Visible','off') 
    set(handles.cam_panel,'Visible','off') 
    set(handles.secondary_panel,'Visible','off') 
    set(handles.processor_panel,'Visible','off') 
    set(handles.eps_panel,'Visible','off') 
    set(handles.adcs_panel,'Visible','off') 
    set(handles.parameter_text,'String','Parameter Input: Orbital') 

  
%%%Battery Panel 
elseif strcmp(Z,'Battery') == 1 
    set(handles.overview_panel,'Visible','off') 
    set(handles.orbital_panel,'Visible','off') 
    set(handles.bat_panel,'Visible','on') 
    set(handles.sc_panel,'Visible','off') 
    set(handles.t_panel,'Visible','off') 
    set(handles.beacon_panel,'Visible','off') 
    set(handles.cam_panel,'Visible','off') 
    set(handles.secondary_panel,'Visible','off') 
    set(handles.processor_panel,'Visible','off') 
    set(handles.eps_panel,'Visible','off') 
    set(handles.adcs_panel,'Visible','off') 
    set(handles.parameter_text,'String','Parameter Input: Battery') 

  
%%%Solar Cells Panel 
elseif strcmp(Z,'Solar Cells') == 1 
    set(handles.overview_panel,'Visible','off') 
    set(handles.orbital_panel,'Visible','off') 
    set(handles.bat_panel,'Visible','off') 
    set(handles.sc_panel,'Visible','on') 
    set(handles.t_panel,'Visible','off') 
    set(handles.beacon_panel,'Visible','off') 
    set(handles.cam_panel,'Visible','off') 
    set(handles.secondary_panel,'Visible','off') 
    set(handles.processor_panel,'Visible','off') 
    set(handles.eps_panel,'Visible','off') 
    set(handles.adcs_panel,'Visible','off') 
    set(handles.parameter_text,'String','Parameter Input: Solar Cells') 

  
%%%Transceiver Panel 
elseif strcmp(Z,'Transceiver') == 1 
    set(handles.overview_panel,'Visible','off') 
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    set(handles.orbital_panel,'Visible','off') 
    set(handles.bat_panel,'Visible','off') 
    set(handles.sc_panel,'Visible','off') 
    set(handles.t_panel,'Visible','on') 
    set(handles.beacon_panel,'Visible','off') 
    set(handles.cam_panel,'Visible','off') 
    set(handles.secondary_panel,'Visible','off') 
    set(handles.processor_panel,'Visible','off') 
    set(handles.eps_panel,'Visible','off') 
    set(handles.adcs_panel,'Visible','off') 
    set(handles.parameter_text,'String','Parameter Input: Transceiver') 

  
%%%Beacon Panel 
elseif strcmp(Z,'Beacon') == 1 
    set(handles.overview_panel,'Visible','off') 
    set(handles.orbital_panel,'Visible','off') 
    set(handles.bat_panel,'Visible','off') 
    set(handles.sc_panel,'Visible','off') 
    set(handles.t_panel,'Visible','off') 
    set(handles.beacon_panel,'Visible','on') 
    set(handles.cam_panel,'Visible','off') 
    set(handles.secondary_panel,'Visible','off') 
    set(handles.processor_panel,'Visible','off') 
    set(handles.eps_panel,'Visible','off') 
    set(handles.adcs_panel,'Visible','off') 
    set(handles.parameter_text,'String','Parameter Input: Beacon')     

  
%%%Payload 1 Panel 
elseif strcmp(Z,'Primary Payload') == 1 
    set(handles.overview_panel,'Visible','off') 
    set(handles.orbital_panel,'Visible','off') 
    set(handles.bat_panel,'Visible','off') 
    set(handles.sc_panel,'Visible','off') 
    set(handles.t_panel,'Visible','off') 
    set(handles.beacon_panel,'Visible','off') 
    set(handles.cam_panel,'Visible','on') 
    set(handles.secondary_panel,'Visible','off') 
    set(handles.processor_panel,'Visible','off') 
    set(handles.eps_panel,'Visible','off') 
    set(handles.adcs_panel,'Visible','off') 
    set(handles.parameter_text,'String','Parameter Input: Payload 1') 

  
%%%Payload 2 Panel 
elseif strcmp(Z,'Secondary Payload') == 1 
    set(handles.overview_panel,'Visible','off') 
    set(handles.orbital_panel,'Visible','off') 
    set(handles.bat_panel,'Visible','off') 
    set(handles.sc_panel,'Visible','off') 
    set(handles.t_panel,'Visible','off') 
    set(handles.beacon_panel,'Visible','off') 
    set(handles.cam_panel,'Visible','off') 
    set(handles.secondary_panel,'Visible','on') 
    set(handles.processor_panel,'Visible','off') 
    set(handles.eps_panel,'Visible','off') 
    set(handles.adcs_panel,'Visible','off') 
    set(handles.parameter_text,'String','Parameter Input: Payload 2')     
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%%%Processor Panel 
elseif strcmp(Z,'Processor') == 1 
    set(handles.overview_panel,'Visible','off') 
    set(handles.orbital_panel,'Visible','off') 
    set(handles.bat_panel,'Visible','off') 
    set(handles.sc_panel,'Visible','off') 
    set(handles.t_panel,'Visible','off') 
    set(handles.beacon_panel,'Visible','off') 
    set(handles.cam_panel,'Visible','off') 
    set(handles.secondary_panel,'Visible','off') 
    set(handles.processor_panel,'Visible','on') 
    set(handles.eps_panel,'Visible','off') 
    set(handles.adcs_panel,'Visible','off') 
    set(handles.parameter_text,'String','Parameter Input: Processor') 

  
%%%EPS Panel 
elseif strcmp(Z,'EPS') == 1 
    set(handles.overview_panel,'Visible','off') 
    set(handles.orbital_panel,'Visible','off') 
    set(handles.bat_panel,'Visible','off') 
    set(handles.sc_panel,'Visible','off') 
    set(handles.t_panel,'Visible','off') 
    set(handles.beacon_panel,'Visible','off') 
    set(handles.cam_panel,'Visible','off') 
    set(handles.secondary_panel,'Visible','off') 
    set(handles.processor_panel,'Visible','off') 
    set(handles.eps_panel,'Visible','on') 
    set(handles.adcs_panel,'Visible','off') 
    set(handles.parameter_text,'String','Parameter Input: EPS') 

  
%%%ADCS Panel 
elseif strcmp(Z,'ADCS') == 1 
    set(handles.overview_panel,'Visible','off') 
    set(handles.orbital_panel,'Visible','off') 
    set(handles.bat_panel,'Visible','off') 
    set(handles.sc_panel,'Visible','off') 
    set(handles.t_panel,'Visible','off') 
    set(handles.beacon_panel,'Visible','off') 
    set(handles.cam_panel,'Visible','off') 
    set(handles.secondary_panel,'Visible','off') 
    set(handles.processor_panel,'Visible','off') 
    set(handles.eps_panel,'Visible','off') 
    set(handles.adcs_panel,'Visible','on')     
    set(handles.parameter_text,'String','Parameter Input: ADCS')     

  
%%%Error Checker 
else 
    disp ('Check: Go Button Panel') 
end 
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VI. Matlab GUI Class Code 

classdef pow < handle 
     properties 
        sih                         %seconds in an hour         
        orbit_num                   %orbit1: number of orbits 
        sun_time                    %sunlength: minutes spent in sun 
        suntime_offset              %sunoffset: offset for time in sun 
        orbit_time                  %orbitlength: orbital time 

         
        time_start                  %start at 2 seconds  
        time_orbit                  %number of seconds in an orbit  
        time_stop                   %number of seconds in X orbits  

         
        sun_start                   %sun start (0 seconds)  
        sun_stop                    %sun stop time 

         
        bat_max                     %bat1: 10 Watt Hour Max 
        bat_start                   %bat2: battery start power 

         
        sc_active                    

         
        r_start                     %beacon1: radio start time 
        r_stop                      %beacon2: radio stop time 
        r_active                    %trans1: radio active power usage 
        r_low                       %trans2: radio low power usage 

         
        window_open                 %transmit window open time 
        window_close                %transmit window close time 
        window_offset               %transmit window offset         
        max_transmit                %window: transmit window duration 

         
        img_start                   %transmit image begins 
        cam_time                    %camlength1: total image time 
        img_stop                    %transmit image ends  
        cam_offset                  %camoffset: offset start time 

         
        cam_active                  %cam1: camera active power usage 
        cam_low                     %cam2: camera low power usage 
        cam_start                   %camera start time 
        cam_stop                    %camera stop time 

         
        offset_c1 
        freq_c1 

         
        secondary_active             
        secondary_low                
        cam_time2                    
        cam_start2 
        img_stop2 
        cam_stop2 
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        offset_c2  
        freq_c2 

         
        p_active                    %processor1:  
        p_low                       %processor2: 

         
        eps_active                  %eps1: eps active power usage 
        eps_heat                    %eps2: eps heat power usage 

         
        adcs_active                 %adcs1: adcs active power usage 
        adcs_low                    %adcs2: adcs low power usage 
        adcs_duration               %adcslength: adcs duration 
        adcs_start                  %adcs start time for window/antenna 
        adcs_stop 

         
        offset_adcs 
        freq_adcs 

         
        battery                     %battery power vector         
        sc_power                    %solarcell power vector 
        r_power                     %radio power vector 
        cam_power                   %camera power vector 
        cam_power2                  %secondary payload power vector 
        p_power                     %processor power vector 
        eps_power                   %eps power vector 
        adcs_power                  %adcs power vector 
     end 

      

  
     methods (Static) 
       function calculation (p, orbit_num, sun_time, suntime_offset, 

orbit_time, bat_max, bat_start, sc_active, cam_time, cam_time2, 

window_offset, cam_active, cam_low, offset_c1, freq_c1, r_start, 

r_stop, r_active, r_low, p_active, p_low, eps_active, eps_heat, 

adcs_active, adcs_low, adcs_duration, offset_adcs, freq_adcs, 

max_transmit, secondary_active, secondary_low, offset_c2, freq_c2) 
            p.sih = 60*60; 

             
            p.time_start = 2;                                               
            p.time_orbit = orbit_time * 60; 
            p.time_stop = orbit_num * p.time_orbit; 

             
            p.sun_start = 60 * suntime_offset; 
            p.sun_stop = (sun_time + suntime_offset) * 60;       

             
            p.window_open = (0 + window_offset) * 60; 
            p.window_close = (max_transmit + window_offset) * 60; 

             
            p.img_start = 0; 

             
            p.img_stop = cam_time * 60; 
            p.cam_start = (0 + offset_c1) * 60; 
            p.cam_stop = p.img_stop + (offset_c1 * 60); 
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            p.img_stop2 = cam_time2 * 60; 
            p.cam_start2 = (0 + offset_c2) * 60; 
            p.cam_stop2 = p.img_stop2 + (offset_c2 * 60); 

             
            p.adcs_start = (0 + offset_adcs) * 60; 
            p.adcs_stop = (adcs_duration * 60) + (offset_adcs * 60); 

             
            p.battery(1) = bat_start;            
            p.sc_power(1) = sc_active/p.sih;                     
            p.r_power(1) = r_active/p.sih; 
            p.cam_power(1) = cam_low/p.sih; 
            p.cam_power2(1) = secondary_low/p.sih; 
            p.p_power(1) = p_active/p.sih; 
            p.eps_power(1) = eps_active/p.sih; 
            p.adcs_power(1) = adcs_low/p.sih; 

             
       for time = p.time_start:p.time_stop 
           orbit = mod(time, p.time_orbit); 
           radio_time = mod(time, r_start+r_stop); 
           cam1_time = (p.time_orbit/freq_c1); 
           cam1_time1 = mod(time, cam1_time); 
           cam2_time = (p.time_orbit/freq_c2); 
           cam2_time2 = mod(time, cam2_time); 
           adcs_time = (p.time_orbit/freq_adcs); 
           adcs_time1 = mod(time, adcs_time); 

            
            %calculate solar cell 
            if ((orbit > p.sun_start) && (orbit < p.sun_stop)) 
                p.sc_power(time) = sc_active/p.sih; 
            else 
                p.sc_power(time) = 0; 
            end 

             
            %calculate transceiver (radio & camera) 
            if ((orbit > p.window_open) && (orbit < p.window_close)) || 

(radio_time <= r_start) 
                p.r_power(time) = r_active/p.sih; 
            else 
                p.r_power(time) = r_low/p.sih;  
            end 

                 
            %calculate camera 
            if ((cam1_time1 > p.cam_start) && (cam1_time1 < 

p.cam_stop)) 
                p.cam_power(time) = cam_active/p.sih; 
            else 
                p.cam_power(time) = cam_low/p.sih;  
            end 

  
            %calculate secondary payload 
            if ((cam2_time2 > p.cam_start2) && (cam2_time2 < 

p.cam_stop2)) 
                p.cam_power2(time) = secondary_active/p.sih; 
            else 
                p.cam_power2(time) = secondary_low/p.sih;  
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            end 

             
            %calculate processor 
            p.p_power(time) = p_active/p.sih; 

             
            %calculate eps 
            if (p.sc_power(time) ~= 0) 
                p.eps_power(time) = eps_active/p.sih; 
            else 
                p.eps_power(time) = eps_heat/p.sih;  
            end 

             
            %calculate adcs 
            if ((adcs_time1 > p.adcs_start) && (adcs_time1 < 

p.adcs_stop)) 
                p.adcs_power(time) = adcs_active/p.sih; 
            else 
                p.adcs_power(time) = adcs_low/p.sih; 
            end 

             
            %calculate total charge 
            p.battery(time) = p.battery(time-1) + p.sc_power(time) - 

p.r_power(time) - p.cam_power(time) - p.p_power(time) - 

p.eps_power(time) - p.adcs_power(time) - p.cam_power2(time); 

     
            %battery check 
            if (p.battery(time) > bat_max)  
                p.battery(time) = bat_max; 
            end 
            if (p.battery(time) < 0) 
                p.battery(time) = 0; 
            end 
       end 
       end 
     end 
end 
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