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Abstract—The scattering of plane waves by periodic arrays 
of stacked rectangular patches in multilayered substrates is a 
problem that has to be solved many times when designing reflec­
tarray antennas made of those patches under the local periodicity 
assumption. The solution to the periodic multilayered problem has 
been traditionally carried out by means of the Galerkin's version 
of the method of moments (MoM) in the spectral domain. This 
approach involves the computation of double infinite summations, 
and whereas some of these summations converge very fast, some 
other converge very slowly. In this paper, the slowly convergent 
summations are computed by making use of an enhanced mixed 
potential integral equation (MPIE) formulation of the MoM in 
the spatial domain. This enhanced formulation is based on the 
interpolation of the multilayered periodic Green's functions, and 
on the efficient computation of the four-dimensional (4-D) inte­
grals leading to the MoM matrix entries. Both the novel hybrid 
spectral-spatial MoM code and the standard spectral domain 
MoM code have been used for the design of a contoured beam 
reflectarray antenna. It has been verified that the spectral-spatial 
MoM code requires CPU times that are typically 30 times smaller 
than those required by the pure spectral domain MoM code. 

Index Terms—Green's functions, integral equations, moment 
methods, multilayered media, periodic structures, reflectarrays. 

I. INTRODUCTION 

R EFLECTARRAY antennas are an interesting alternative 
to reflector antennas and phased arrays because of their 

simple manufacturing process, low weight, improved polariza­
tion performance, absence of complex feed networks, etc. [1]. 
The main disadvantage of reflectarray antennas is their narrow 
bandwidth, but this disadvantage has been overcome to a large 
extent by using cells with stacked rectangular patches [2], and 
by introducing optimization techniques in the design process 
that adjust the patches dimensions to fulfill the beam require­
ments at several frequencies [3], [4]. The combined use of cells 

with stacked patches and wideband optimization techniques 
has made it possible to design a contoured beam reflectar­
ray for space applications with two independent coverages 
(European and North American) in orthogonal polarizations at 
Ku-band [5], a multifed contoured beam reflectarray for cen­
tral station LMDS applications with three independent beams 
in alternate polarization at K-band [6] and finally, a transmit-
receive reflectarray for DBS applications with dual-frequency 
dual-polarization capabilities and South American coverage at 
Ku-band [7]. 

When designing a frequency optimized reflectarray made of 
stacked rectangular patches of variable size, it is necessary to 
accurately tune the sizes of the patches that lead to the appropri­
ate reflection phase at different frequencies for the generation 
of a given radiation pattern in a prescribed frequency band. In 
the determination of the sizes of the patches of a certain cell, 
it is common practice to assume that this cell is surrounded 
by an infinite periodic array of cells of the same dimensions, 
which was proposed for the first time by Pozar et al. [8]—[10]. 
This simplification is known as the local periodicity assump­
tion. The assumption is justified by the fact that it leads to 
theoretical antenna designs that show a good agreement with 
measurements [5], [7], [10], [11]. When the local periodic­
ity assumption is used in the design of a frequency-optimized 
reflectarray made of stacked patches, the numerical analysis of 
the scattering of a plane wave obliquely incident on a periodic 
multilayered structure has to be carried out a huge number of 
times. Therefore, very efficient numerical tools are required for 
the solution of this scattering problem. 

The numerical method traditionally employed for the char­
acterization of reflectarray cells in periodic environments is the 
method of moments (MoM) in the spectral domain [10]—[12]. 
Unfortunately, when the MoM in the spectral domain is applied, 
the matrix entries may be slowly convergent double infinite 
summations, and the accurate brute force computation of these 
summations may require a long CPU time. Several approaches 
have been proposed to accelerate the convergence of these 
series such as the use of two-dimensional (2-D) fast Fourier 
transforms [13], [14], the combined use of Kummer's transfor­
mation and contour integration in the complex plane [15], or the 
combined use of Kummer's transformation, Poisson's formula, 
and Chebyshev polynomial interpolation [16]. The problem 
with all these approaches is that they are restricted to subsec-
tional basis functions (BFs), and these BFs have been found to 
be less adequate than entire domain BFs when modeling the 
current on rectangular patches [17] such as those found in the 



reflectarrays of [2]-[7], [11] (the size of the MoM matrix is 
substantially smaller when entire domain BFs are used instead 
of subsectional BF). An alternative to the MoM in the spectral 
domain for the analysis of multilayered periodic structures is 
the mixed potential integral equation (MPIE) formulation of the 
MoM in the spatial domain [18], [19]. In this latter approach, 
one has to face with the computation of multilayered peri­
odic Green's functions (MPGF) consisting of slowly convergent 
double infinite summations, and with the computation of four-
dimensional (4-D) integrals with singular integrands in case 
Galerkin's version of the MoM is used. Very efficient strategies 
have been proposed to accelerate the computation of the dou­
ble summations leading to the MPGF (see [19] and [20], and 
references therein). Also, the evaluation of 4-D singular inte­
grals is a problem that has been addressed in detail in [21]-[23] 
for free-space Green's functions and subsectional BF. However, 
when multilayered Green's functions and entire domain BFs are 
involved, to the authors' knowledge, the only available strat­
egy for the accurate determination of these latter 4-D singular 
integrals is the double exponential formula recently described 
in [24]. 

In this paper, the authors focus on the efficient analysis of 
the periodic arrays of stacked rectangular patches that have 
been used to design the reflectarray antennas of [2]-[7] under 
the local periodicity assumption. In particular, a hybrid imple­
mentation of the Galerkin's version of the MoM is applied to 
the analysis of those periodic multilayered structures. On one 
hand, the MoM matrix entries involving BF of patches located 
at different metallization levels are efficiently computed in the 
spectral domain. On the other hand, the MoM matrix entries 
involving BF of patches located at the same metallization level 
are computed by means of a MPIE spatial domain formulation. 
The CPU time required for this spatial domain computation 
of the MoM matrix entries is substantially reduced by intro­
ducing two improvements. The first improvement is that the 
MPGF with 2-D periodicity for the potentials are judiciously 
interpolated in the spatial domain [25], [26] in terms of 2-
D Chebyshev polynomials after extracting the behavior of the 
MGPF around the source points. The second improvement in 
the spatial domain computation of the MoM entries has to do 
with the efficient computation of 4-D singular integrals. For 
entire domain BFs accounting for edge singularities [17], [27], 
two of the four integrals leading to the MoM matrix entries are 
cross-correlations between BFs which can be obtained in closed 
form [28]. The remaining 2-D integrals are numerically evalu­
ated in an efficient way by extracting the MPGF singularities, 
and by handling the logarithmic singularities of the cross-
correlations with Ma-Rokhlin-Wandzura (MRW) quadrature 
rules [29], [30]. The numerical results obtained in the paper 
show that the novel hybrid spectral-spatial MoM approach typ­
ically provides a CPU time reduction of roughly two orders 
of magnitude with respect to the classical spectral domain 
approach for an accuracy of two significant figures. Both 
the spectral-spatial domain software and the spectral domain 
software have been employed for the design of a contoured 
beam reflectarray antenna under the local periodicity assump­
tion, and it has been checked that a CPU time reduction between 
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Fig. 1. (a) Side view and (b) top view of a periodic multilayered structure. The 
unit cell contains three stacked rectangular patches. The periodic structure is 
illuminated by a plane wave. 

one and two orders of magnitude is achieved for this particular 
application. 

II. DESCRIPTION OF THE PROBLEM 

Fig. 1(a) and (b) shows a periodic multilayered structure 
containing three stacked rectangular patches in each unit cell. 
For simplicity, the three patches are assumed to be centered 
in the periodic unit cell as shown in Fig. 1(b) (however, this 
restriction is not required in the derivations that follow). The 
patches are assumed to be PEC with negligible thickness. The 
multilayered substrate consists of Ni lossy dielectric layers of 
thickness d¿ and complex permittivity Si = £o£r,¿(l — j tan Si) 
(i = 1 , . . . , Ni), and it is limited either by a ground plane or by 
free space at the lower end. The periodic structure of Fig. 1(a) 
and (b) is obliquely illuminated by a linearly polarized plane 
wave with an arbitrary polarization direction (the incidence 



direction is given by the angular spherical coordinates 0¡ and y>¡, 
and the polarization state is characterized by the polarization 
angle 7 shown in [28, Fig. 1(c)]). Assuming a time depen­
dence of the type ejuJt which will be suppressed throughout, 
the incident electric field with unit amplitude can be written 
as shown in [28, eqs. (l)-(3)]. In order to know the elec­
tric field scattered by the periodic structure of Fig. 1(a) and 
(b), we need to determine the current density induced on the 
three metallized interfaces, J i(x, y), J2(x, y), and 3%{x, y), by 
the incident plane wave. These three current densities can be 
obtained by solving the system of three coupled electric field 
integral equations (EFIE) shown as follows: 

z x Ems{x,y,z = -hPi) 

3 +00 +00 ,0/2+05/2+1110 rb/2+bi/2+nb 

J2J2 E / / 
j=\ m = - o o n = - o o J a/2-aj/2+ma J b/2-bj/2+nb 

When (4) is substituted into (1) and the Galerkin's version of 
the MoM is applied, the following system of linear equations 
for the unknown coefficients c¿; is obtained as 

3 Nb 

EEA^< 
3 = 11=1 

{i = 1,2,3; k=l, ,N (6) 

By invoking Parseval's identity for 2-D Fourier transforms, 
the elements A^ of the coefficient matrix of the system of equa­
tions (6) can be expressed as double infinite summations of the 
following type [12] 

ab E 
-Hoc 

E (Ji*(*. vxmi ™yn, 

m= — oo m= — oc 

•_E,c 

^ \™x ^xmi &y fáymi % ^PÍI % Pj) 

•Jii(kxm,kyn) (i,j = 1,2,3; k,l = l,...,Nb) (7) 

G (x-x',y-y',z =-hPi,z'=-hP) 

•Jj(x', y')dx'dy' 0 a/2 - cij/2 < x < a/2 + a¿/2; 

b/2 - bi/2 < y < 6/2 + bi/2 («=1,2,3) (1) 

where Ems(x,y, z) is the electric field generated in all space 
by the plane wave impinging on the multilayered substrate 

— E 

in the absence of the patches, and G is the non-periodic 
dyadic Green's function of the multilayered substrate [31]. 
Since Jj(x,y) (j = 1,2,3) are Floquet-periodic functions in 
the x- and y-directions, J¿(x, y) can be written as 

-00 +OC 

^3V^lV) / J / J •* j {KXm, Kyn) & 
i t t i m l + i j m ! / ) (2) 

m= — 00 n = —oc 

where kxm = ko sin 0¡ cos y>¡ + 2irm/a, kym = ko sin 0¡ sin <p\ 
+2-rm/b, and where 

j \ xm> ™yn) T 

¡•a/2+aj/2 r-b/2+bj/2 

x / / J j ( ^ y ) 
Ja/2-aj/2 Jb/2-bj/2 

x e-Xk*mX+k«mV'>dxdy. (3) 

If the MoM is used to solve the system of coupled EFIEs 
shown in (1), Jj(x,y) (j = 1,2,3) have to be expanded in 
terms of known BFs J¿¡(#, y) (I = 1,..., Nb) as follows: 

Nb 

3j(x>y) = ^2cjiJji(x>y) C? = i , 2 , 3 ) - (4) 
i=i 

When (4) is introduced in (3), it turns out that the spectral 
3 \'tyr¡ 

functions of (3) 3^{kym) is also expanded in terms of spectral 

BF JUkym) (I = 1,..., N) as follows: 

Nb 

**j\™xm-¡ ™yn) / J
(^^ i l \ xrn'¡ V (5) 

i=i 

where G {kx,ky, z = — hp.,z' = —hp.) is the contin-
— E 

uous 2-D Fourier transform of G (x,y,z = —hpi,z' = 

—hpó). The components of G (kx,ky,z = —hpi,z' = 
-hPj) involved in (7) can be obtained by means of the recur­
rent algorithm described in [31]. Also, the coefficients d\ of 
the system of equations (6) can be obtained in the spectral 
domain as 

-ab J¿fc(^a;0, kyor E™(x,y,z 

-jfco(sin #i cos cpiX-\-sin 9\ sin <p\y) (8) 

{i = 1,2,3; k = l, Nh 

Equations (6)-(8) summarize the spectral domain MoM anal­
ysis of the scattering problem shown in Fig. 1(a) and (b). 
It can be analytically shown that the terms involved in the 
computation of A^ show an exponential convergence of the 
t y p e e-V

k*m,+k2yJhp,-hP3\ a s k2
xm + k2

yn^oo when i + j . 
In practical cases, this means we just need to add a few hun­
dred terms to compute the series A^(i ^ j) of (7) with a great 
degree of accuracy, and the computation of A^(i ^ j) can 
be confidently carried out in the spectral domain. However, 
the series involved in the computation of A"¡ {i = 1,2,3) are 
slowly convergent, and several million terms may be required 
for the accurate computation of these series as will be shown 
in Section V. Therefore, the computation of A"¡ (i = 1,2, 3) 
should not be carried out in the spectral domain. In fact, this 
computation can be made more efficient if it is carried out in 
the spatial domain in terms of Green's functions for the vec­
tor potential and scalar potential of the multilayered substrate 
of [19, Fig. 1(a)]. If we invoke the rationale followed to obtain 
[28, eqs. (16), (33), and (34)], it can be shown that the MoM 
matrix entries A"¡ can be rewritten as 

lvkl — -3uT¡ 
1 

{% = 1,2,3; k,l 

rp4> 
±ikl 

(9) 
Nh 



where Tikl and T¡kl are given by the 2-D integrals 

I 9iki\xTV) 
-ai J —hi 

x C?^¿pp(x, y,z = —hpi, z = —hPi)dxdy (10) 

i k i - i i 9?ki(
x,y) 

J —ai J—b¿ 

x G'p'pp(x,y,z = -hPi,z' = -hpjdxdy. (11) 

The functions G ^ p p and G^pp of (10) and (11) are MPGF 
with 2-D periodicity which can be obtained in terms of the 
spectral Green's functions G^¿ and G" '̂c defined in [28, 
eqs. (13)—(15)] by means of the double infinite summations 

G£*p(x -x',y- y', z = -hPi,z' = -hPi) = — 

hOO + O C 

/ j / j Gx¿, [kp — kp¡mn, z — —hpi, z — —h¡ 

m= — co n= — oc 

x ^[kxm(x-x') + kvn(y-y')\ 

G4''pp(x - x',y - y'', z = -hPi, z' = -hPi) 

(12) 

ab 
h o c + OC 

E E G**{kp = kp = —hp., z' = —hi 

m= — oo n= — oc 

x e 
j[ko:m(x-x') + kyn(y-y')] 

where ki 

given by 

p,mn 
V kln + klm- T n e functions gfkl and gfkl are 

gfki&y) = 

OO /* + OC 

OO J — OC 

[(3ik(x -\-u,y-\- v))*] • 3u(u, v)dudv (14) 

9tki(x>y) 

DO /* + OC 

— DO «/ —DC 

[V • J i f c(x + u, y + v)]* [V • J i ; ( « , «)] (15) 

i.e., gfki(x, y) is a 2-D cross-correlation between J¿fc(x, y) and 
J¿;(x, y), and gfkl{x, y) is a 2-D cross-correlation between V • 
3ik(x,y) and V • 3u(x,y). For the particular case of the BF 
3ik(x,y) used in this paper, the cross-correlations of (14) and 
(15) can be obtained in closed form, which introduces important 
simplifications in the numerical computation of T^¡ and Tfkl 

via (10) and (11) [28]. 

Once the coefficients Kl
k\ are computed [by using (7) as well 

as (9), (10), and (11)] and the system of equations (6) is solved, 
the electric field generated in the regions z > 0 and z < -h0 of 
Fig. 1(a) and (b) by the incident plane wave can be computed 
in a straightforward way. 

III. E F F I C I E N T C O M P U T A T I O N OF THE M P G F W I T H 

SPECIFIC T R E A T M E N T F O R T H I N L A Y E R S 

The double infinite summations of (12) and (13) are slowly 
convergent, and the brute force accurate determination of c? A ' p p 

and G"^,pp via (12) and (13) may require the evaluation of 
hundreds of millions of addends. This circumstance has a dele­
terious effect on the efficient numerical computation of T^d 

and T?kl by means of (10) and (11). One strategy leading to 
the efficient computation of the series of (12) and (13) is to 
apply Kummer's decomposition to these series [32] and use the 
DCIM proposed in [33] for the determination of the asymptotic 
behavior of the addends in the spectral domain. This strategy 
has proven to be useful not only in the efficient computation 
of three-dimensional (3-D) MPGF with 2-D periodicity [20], 
[34], but also in the efficient computation of 2-D MPGF with 
one-dimensional (1-D) periodicity [28]. 

Let G^f(x,y) (i = 1,2,3) represent any of the two spa­
tial domain MPGF G^rf

p(x,y,z = -hPi,z' = -hPi) and 
G^pp(x,y,z = -hPi,z' = -hPi) of (12) and (13), and 
let Gc

0i{kp) (¿ = 1,2,3) represent any of the two spectral 

domain Green's functions G^r 

G^c(kp,z = -hPi,z' 

(kp, z = —hpi,z' = —hPi) and 
hPi). According to [20], [33], and 

[34], the DCIM can be used to provide a very accurate approx­
imation of Gc

0i in the interval 5fc0 < kp < oo as follows: 

G0i{kp 
e¿o 

fc0>5fco K (kf) 

i 
M0 

ÍVD 

£• 
3 = 1 

- « 0 / í ; 

= G^c(kp) cTjF'c(kp (16) 

(13) where u0 = Jk2
p - k^ and k0 = ^ , / e ^ ü o . In (16), the fitting 

unknown coefficients e¿¿ and fij (i = 1,2,3; j = 1, Nr 

of (16) are obtained by means of the generalized pen­
cil of functions (GPoF) technique [35]. Numerical simula­
tions have shown that the real part of the exponents fy of 
(16) is always positive (i.e., Re(/¿¿) > 0 -i = 1,2,3; j = 
1 , . . . , ND—), which means that the term G'0

3
i
PoF'c(A;/9) expo­

nentially decays as kp —> oo. The coefficients e i 0 and kfñ of 
G^'c(kp) are chosen in this paper as follows: 

Mo 
2 

(18) 

e? ¿o (17) 

4> sio £ o ( £ r , P ¿ + £r,Pi + l) 

i eft,A i £r,Pi + £r,Pi + l 
ki = k 0 \ — 7T-1 

kf^ = k0, 
I 2er¡Píer¡Pí+i 

~r,Pí + £r,Pí + l 

(19) 

(20) 

which is a choice different from those proposed in [28] and [33]. 
As pointed out in [25], the choice of e i 0 and kfa carried out 
in (17)-(20) makes it possible that the first two terms of the 
asymptotic expansion of G^'c(kp) as kp —> oo match the same 
dominant terms of the asymptotic expansion of Gc

0i(kp). As a 
consequence of this, Gc

0i(kp) — G^i
,c(kp) decays at a rate k~5 

as kp —> oo [25]. It has been found that this decaying behavior 
is very well reproduced by the decaying exponential functions 

of G GPoF,c 
Oi (kp). In fact, we have found that the choice of 

e i 0 and kfñ given by (17)-(20) leads to both increased accu­
racy and stability in the GPoF approximation of Gc

0i(kp) with 
respect to other published choices [28], [33]. 



Numericaljimulations have shown that the approximation 
obtained for Gc

0{kp) when (17)-(20) are substituted in (16) pro­
vides an accuracy of at least seven significant figures in most of 
the interval 5k0 < kp < oo. Bearing in mind this fact, we can 
apply Kummer's transformation [32] to (12) and (13), while 
using G^¡'c{kp) + GQ^oF'c(kp) as asymptotic behavior of 
Gc

0i{kp) when ^ - > o o . After application of Kummer's trans­
formation, a version of [28, eq. (24)] is obtained in which the 
three single summations are substituted byjhree double sum­
mations. The double summation involving G^kp = kn 

ÍGPoF.c, 

and (35)], when n = 0] of (21), which can be computed by 
using [37, eq. (6.621.4)] in the Abel sense as 

Gp
0f(x,y)\ p^O 

e¿0 

2TT 

{kfYp 
= G$1™(x,y). (22) 

Let us now introduce regularization functions that contain 
the behavior of the nonperiodic multilayered Green's functions 
around the source point. According to (22), these regularization 
functions can be defined as 

Go¡'C(kP = kp,mn) - G^°''c(kp = kPimn) requires the com­
putation of less than 100 terms provided a < A0 and b < A0 

(A0 = jr-), which is a situation encountered in many practical 
applications [20] (e.g., in the design of reflectarray anten­
nas to avoid the appearance of grating lobes). The other two 
asymptotic double summations involving G^'c(kp = kp¡mn) 

fr%{x,y) = G^^{x,y) nfl,pp/ £¿0 
2n 

[kfYp (23) 

can be expressed in the spatial and G0i (kp 

domain by means of Poisson's formula, and after applica­
tion of Poisson's formula, they can be efficiently computed by 
means of Ewald's method for periodic Green's functions with 
2-D periodicity in homogeneous media as shown in [32], [34], 
and [36]. 

Bearing in mind the ideas presented in [25], further CPU time 
reductions can be achieved in the numerical computation of the 
2-D integrals of (10) and (11) if the MPGF Gg[(x, y) are inter­
polated in terms of the two variables x and y in one of the unit 
cells of the periodic structure of Fig. 1(a) and (b). However, 
according to [25], the Green's functions G$/(x,y) should be 
regularized before proceeding with the interpolation, i.e., the 
singularities of G^f(x,y) at the source points as well as the 
singularities of the derivatives of G^f(x, y) should be extracted 
in closed form prior to the interpolation. Let us focus on the 
singularity of G^f(x,y) at the source point located at (x = 

Bearing in mind the definition of (23), the regularized MPGF 
Gg['reg(x, y) in the unit cell {0 < x < a; 0 < y < b} can be 
defined as 

G?0?'ie*(x,y) = G™(x,y)-f?*(x,y) 

- ejfc*°aif g(x -a,y)- eJk«obf¡es(x,y- b) 

fJV°*°a+kv<>b)f?es(x-a,y-b) 

0 <x < a; 0 <y <b (24) 

where the regularization function has been extracted at the four 
source points placed at the corners of the unit cell. The reg­
ularized MPGF of (23) and (24) are basically shown in [25, 
eq. (25)], except for the fact that Valerio et al. only extract the 
regularization function at the source point (x = 0, y = 0) since 
they work with the unit cell {—a/2 <x< a/2; —5/2 <y< 
b/2}. 

Once the periodic Green's functions have been regularized 
by extracting the singularities as well as the singularities of 
the first derivatives [25], the regularized Green's functions 

0, y = 0) [the source points of GgP(x, y) are located at (x = GgP'reg(x, y) are amenable to 2-D interpolation in terms of 
ma, y = nb); m,n = . -2 , -1 ,0 ,1 ,2 , . ]. The behavior of 
G^f(x, y) around (x = 0, y = 0) is the same as that of the non-
periodic multilayered Green's function around (x = 0, y = 0), 
and according to the theory of Fourier transforms, this latter 
behavior is closely related to the behavior of Gc

0i{kp) as kp —> 
oo. If we use the approximation (16) for \he computation of 
Gc

0i{kp) when kp > 5k0, the behavior of Gc
0i{kp) as kp —> oo 

is dominated by the term ei0/Jk2
p - (k^)2 [remind numerical 

simulations have shown that G^i
PoF'c(A;/9) exponentially decays 

as fcp -> oo]. In particular, if we retain the first two dominant 

Oi 

and y. While 2-D B-splines were used in [25] for the interpo­
lation of the regularized MPGF with 2-D periodicity, in this 
paper, we use 2-D Chebyshev polynomials, which are simpler 
to use (just as we used 1-D Chebyshev polynomials in [28] for 
the interpolation of regularized MPGF with 1-D periodicity). 
The resulting interpolating expressions for G^p'reg(x, y) in the 
unit cell {0 < x < a; 0 < y < 6} are 

G g r g ( x , y ) « ^ ^ ^ „ T „ 
m=0 n=0 Í-M! 

terms in the asymptotic expansion of ei0/Jk2 — {kf1)2 for 

large kp, we can write 

Gc
0i(kp) e¿o 

1 (kf) 
2k$ 

= Gt'c(kp). (21) 

Since the behavior of the Fourier transform of a function for 
large values of the spectral variable is related to the behavior 
of the function for low values of the spatial variable, both the 
behavior of the nonperiodic multilayered Green's function and 
the behavior of G^f(x, y) when p = \Jx2 + y2 —> 0 should be 
dominated by the inverse Hankel transform [see [19, eq. (34) 

where the coefficients hl
mn of (25) are computed as 

and where sk 

E^t1 (Tm(sk)f E ^ l + 1 ( T n ( ^ ) ) ^ 

(25) 

(26) 

•cos( 2fc- l 
2(WC + 1) r) (k=l, 

Jki 

Nc + l) and 
Ggf reg(x = 0.5a(Sfc + 1), y = 0.5b(Sl + 1)) (i = 1, 2, 

3; k, I = 1 , . . . , Nc + 1). Once an interpolating expression is 
available for G^f(x, y) in the unit cell { 0 < x < a ; 0 <y < 
b} by means of (24) and (25), the computation of G^f(x,y) 



outside the unit cell can be carried out by invoking the Floquet-
periodicity property of G^f given by 

G$?(x + ma,y + nb) = ^k'oma+ky°nb^G^(x,y) 

(TO, n = -1,0,1, 
(27) 

A common situation encountered in multilayered reflectar-
ray antennas made of stacked patches is that the layers next 
to the metallizations [located at z = —hP. in Fig. 1(a)] are 
very thin by comparison with the rest of the layers. This cir­
cumstance has a deleterious effect on the interpolation of the 
Green's function for the scalar potential G^'pp(x — x',y — 
y',z = —hPi,z' = —hPi). This is because even though the reg­
ularized MPGF of (23) and (24) are not singular at the source 
points, it is nearly singular at these points owing to the pres­
ence of very close quasidynamic images [38] through the thin 
layers in the z-direction. This problem could be avoided if the 
regularization functions of (23) were substituted by regular­
ization functions including the closest quasidynamic images. 
Although this can be done in closed form as shown in [38], 
we have noticed that better results are obtained in the inter­
polation process when the closest images are accounted for in 
an approximate form by invoking the DCIM. In particular, if 
we use the approximation (16) for the computation of G^kp) 
when kp > 5k0, the asymptotic behavior of Gc

0i{kp) for large 
kp can be approximately written as 

Goi(kp e¿o 
1 (M eff\2 m eff\4 

'H H 
15(A? ff\6 

4 8 ^ 

, ND 

3 = 1 

x e-«°fe = G*f'c(kp) (28) 

where four terms have been retained in the asymptotic expan­

sion of ei0/ Jk2 - (kfs)2 instead of retaining two terms as 

in (21). While the asymptotic behavior of Gc
0i{kp) for large 

kp of (21) only provides information about the two media 
next to the source located at z = —hPi as if these two media 
were semi-infinite, the asymptotic behavior of (28) also pro­
vides information about the quasidynamic images of the source 
through the rest of the layers of the multilayered substrate in 
an approximate way. Therefore, if we follow once again the 
rationale used to obtain (22) and (23), the inverse Hankel trans­
form of (28) should provide a more accurate approximation of 
G^f(x, y) when p = \Jx? + y2 —> 0, especially when the lay­
ers next to the metallizations located at z = —hP. are very thin. 
This inverse Hankel transform can then be used to define a new 
regularization function f¡es(x,y) to be used in (24) which is 
given by 

fr(*,y) 
^<nf2,pp 
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e f \6 5 

720 ~~ 
ND - ^-}k0y^+U~T 

U2* vV + C/̂ )2 (29) 

Note that in this paper, the DCIM is used in two ways. On 
one hand, the DCIM is used in (16) for the approximation of 
the spectral domain multilayered Green's function, and is sub­
sequently used in Kummer's transformation for the efficient 
computation of the MPGF. On the other hand, the DCIM is used 
in (29) to approximately account for the quasidynamic images 
in the regularization of the MPGF in the cases where thin layers 
are located next to the metallizations of Fig. 1(a). 

IV. BASIS FUNCTIONS AND COMPUTATION OF 

GALERKIN'S MATRIX ENTRIES 

In this paper, the BFs used to model the current density on the 
rectangular patches of Fig. 1(a) and (b) are Chebyshev polyno­
mials weighted by an edge condition function. These BFs have 
the advantage that ensure a uniform and fast convergence of the 
MoM with respect to the number of BFs as reported in [27]. 
The BFs are as follows: 

Jji(x,y) = jr
Xj(x,y)x = -7rrur-i 

2rbj 

2(x - a/2) 

2{x - a/2) 2 T ^ l - f c ^ 

y _ | 2{y-b/2) 

(¿ = 1,2,3; r=l,...,Mx-l: 

s = l,...,My; l=l,...,(Mx-l)My) (30) 

Jj,(Mx-i)My+i(x,y) =fyj(x,y)y 
jfeo 
2sao 

Tr-i 
2{x-a/2) 

2{x-a/2) 
M) 

2(y - 6/2) 

h 
(¿ = 1,2,3; r=l,...,Mx: 

s = 1 , . . . , My - 1; / = 1 , . . . , Mx(My - 1)) (31) 

where Tr_i(-) (Ts_i(-)) and E/r_i(-) (E/S_i(-)) are Chebyshev 
polynomials of first and second kind respectively, and where the 
total number of BFs per rectangular patch is A^ = 2MxMy -
MX - My. 

When the BFs of (30) and (31) are introduced in (14) 
and (15), and the results are subsequently introduced in (10) 
and (11), all the resulting integrals can be written as linear 
combinations of integrals of the type 

A1 

pq,rs 
tpr(x,ai)tqs(y,bi)Gp

lf(x,y)dxdy (32) 

where the functions tpr(x, a¿) and tqs(y,bi) were defined in 
[28, eq. (45)], and can be expressed in terms of the following 
set of integrals: 

IT 

4w" 

+ OC 

tkl{z,w) = — f l / Jfc_1(M)Ji_1(W)e r^"du. (33) 



In (33), Jfc-i(-) (J;_i(-)) are Bessel functions of first kind 
and order k - 1 (/ — 1). The products tpr(x,ai)tqs(y,bi) of 
(32) are basically the cross-correlations of (14) and (15) for 
the particular BF of (30) and (31), and their representation in 
terms of (33) is just the spectral domain version of these cross-
correlations. The integrals of (33) can be obtained in closed 
form by means of the recurrent relations [28, eqs. (46)-(53)]. 
In particular, these integrals can all be written as linear com­
binations of complete elliptic integrals of the first and second 
kind. The functions tki(z,w) of (33) turn out to have loga­
rithmic singularities as z —> 0 when k + / is even, and first 
derivative with logarithmic singularities as z —> 0 when k + I 
is odd. This means the integrands of the 2-D integrals of (32) 
present logarithmic singularities or derivatives with logarithmic 
singularities when either x = 0 or y = 0, which may have a 
deleterious effect in the numerical computation of these inte­
grals. These singularities must be located and carefully handled. 
The specific behavior of tki(z,w) as z —> 0 is given by the 
expressions 

tki(z,w) 

tki(z,w) 

z^O (fc+£ even) 
.sing 
lkl (*, 

k-\-l even 

2w 
ln|z| +PM 

>0(fc+i odd) ~ t' (z,w) sing 
hi 

' k + l Odd 
Qkl , , , rkl 

(34) 

(35) 
4w2 Aw2 

where PM, qu, and rki (k, I = 1,...) are constant quantities 
that can be computed by means of recurrent relations that are 
provided in Appendix A. 

The MPGF Gf¡f(x,y) of (32) are also singular when x = 
y = 0 (i.e., when p = 0). According to (22), the singular 
behavior of G%f(x, y) around p 

G%{x,y)\ 

0 can be written as 

p~M Gf£s(x,y) = ̂  + Ki (36) 

where the constant i£¿ can be easily computed by means of (24) 
and (25). 

If the integrals of (32) are computed by means of standard 
Gauss-Legendre quadratures, the singularities of (34), (35), and 
(36) will have a deleterious effect in the numerical integration 
process. In order to mitigate the effect of the singularities, we 
have split these integrals into two parts as follows: 

A% _ At,num i /losing 
pq,rs pq,rs ~T s±pq:rs 

(37) 

where 

At,num 
pq,rs [tpr(x,a,i)tqs(y,bi)G%f(x,y) 

t^(x,ai)t^(yX)GZS(x,y) • I i • lii 

wi'^(x,y)dxdy 
-bi 

(38) 

and where 

At, sing 
pq,rs 

-b. 

Cn«(x, a¿)Cns(y, h)Glfs(x, y)dxdy. 

(39) 

In this paper, the integrals Ap^f are numerically com­
puted. Although the singularity introduced by the three fac­
tors tpr(x,ai), tqs(y,bi), and G^f(x,y) at x = y = 0 has 
been removed in wp^™{x, y), the logarithmic singularities of 
tpr(x, a,i) at x = 0 when y =é 0 and those of tqs(y, 6¿) at y = 0 
when x =é 0 are still present in wp^™{x,y). So, before pro­
ceeding with the numerical integration of (38), the integrals 
Al'""™ are rearranged in the following way: 

pq,rs 

= Oibi f f [ 
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u,nura 
pq,rs 

Mi,num 

W. 
pq,rs 
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0 JO 
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pq,rs 

[X „ . t„, y ~i~ j i -~pq,rs 

[x = —a,iU,y = —biv)\ dudv. 

(x = a,iU,y -biv) 

(40) 

The integrals of (40) still have logarithmic singularities for 
u = 0 when «=¿0, and for v = 0 when v ̂  0. However, these 
singularities can be adequately handled by means of MRW 
quadrature rules [29] since these quadrature rules are specif­
ically designed for integrals of functions with logarithmic 
singularities in the lower limit of the integration interval. In fact, 
the MRW quadrature rules have been successfully used in [30] 
for the determination of integrals with logarithmic singularities 
that arise in the application of the MoM to free space problems 
with subsectional triangular BF. Bearing in mind the capabil­
ities of MRW quadratures to handle logarithmic singularities, 
the integrals of (40) have been computed by means of iter­
ated MRW quadratures of order NMRW [which implies that the 
determination of the integrals has required 4Af^RW evaluations 
of the function wp^™{x, y) in accordance with (40)]. 

The integrals Ap^™f of (39) turn out to be zero when p + r 
and/or q + s are odd numbers owing to the odd symmetry of the 
integrand with respect to x and/or y in those cases. However, 
the integrals Ay^f are not zero when both p + r and/or q + s 
are even numbers. For that particular case, we have developed 
a very efficient way to compute Ap^™f. The details of these 
calculations are provided in Appendix B. 

V. NUMERICAL RESULTS AND VALIDATIONS 

The multilayered substrate used in the results presented 
in this section is that used for the design of the reflectar-
ray antenna of [5]. This is a nine-layer substrate [N¡ = 9 
in Fig. 1(a)] for which d\ = d^ = dr = 2 mm, d-2 = d$ = 
d$ = 0.085 mm, d% = dg = dg = 0.18 mm, er i = £r,4=£r,7 
= 1.1, £r 2 = £r 5 = &r 8 = 3.043, Er 3 = Er Q = Er 9 = 2.67, 
tan Si = tan ¿4 = tan ¿7 = 0.002, tan ¿2 = tan ¿5 = tan 5g 
= 0.0036, and tanc53 = tanc56 = tanc59 = 0.0092. A ground 
plane is located at the lower end of the substrate as usual in 
reflectarray applications. The patches used in the reflectarray 
antenna of [5] are placed at the interfaces that are two layers, 
five layers, and eight layers above the ground plane [i.e., 
Pi = 2, P2 = 5, P3 = 8 in Fig. 1(a)], which means that very 
thin layers (around 0.1 mm thick) are located next to the 
metallizations. Numerical simulations have shown that for this 
particular multilayered substrate, when five exponential terms 
are retained in (16) (ND = 5), this equation provides an accu­
racy of roughly five significant figures when 5fc0 <kp< lOfco, 
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Fig. 2. Magnitude of the relative errors between the spectral domain multilay-
ered Green's functions for the scalar potential and the asymptotic approxima­
tions of (21) (dashed line) and (28) (solid line). Parameters: z = z' = —hp2 = 
-2.445 mm; / = 12.1 GHz; ND = 5. 
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Fig. 3. Magnitude of the relative errors between the spatial domain MPGF 
for the scalar potential G^' p p and the interpolation obtained from (24) and 
(25) when the regularization functions /4

r e g(x,y) are given either by (23) 
(dashed line), or by (29) (solid line). The MPGF values are sampled along 
the diagonal of the unit cell. Parameters: z = z' = —hp2 = —2.445 mm; 
/ = 12.1 GHz; a = b=U mm; 6{ = ^ = 30°; ND = 5; Nc = 10. 

and a larger accuracy of roughly seven significant figures when 
kp > 10fc0. 

In Fig. 2, the relative errors among the spectral Green's func­
tion G^,c and the two asymptotic approximations of (21) and 
(28) versus kp/ko are plotted. As expected, the larger the num­
ber of terms included in the asymptotic approximations, the 
larger the interval of kp/ko accurately covered by these approx­
imations. While the relative error between G^,c and (21) is 
below 0.01% when kp > 200/co, the relative error between G^,c 

and (28) is below 0.01% when kp > 5feo- This indicates that 
in the case of multilayered substrates containing thin layers, 
whereas (21) is a poor asymptotic approximationof G^,c, (28) 
provides a sufficiently accurate approximation of G^'c in a wide 
range of values of kp/ko since it accounts for the effect of 
the quasidynamic images trough the thin layers in the spectral 
domain as commented in Section III. 

Fig. 3 shows results for the interpolation of the regularized 
MPGF of (24) in terms of Chebyshev polynomials [see (25)] 
for the two different regularization functions of (23) and (29). 
As expected, the larger the number of terms included in the 
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Fig. 4. Magnitude of the relative error arising from the interpolation of the 
MPGF G^'PP for different values of the number of Chebyshev polynomials 
used in each direction 7VC. The interpolation is carried out by means of (24), 
(25), and (29). The MPFG values are sampled along the diagonal of the unit 
cell. Parameters: z = z' = —hp2 = —2.445 mm; / = 12.1 GHz; a = b = 
14 mm; 6{ = ^ = 30°; ND = 5. 
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Fig. 5. Magnitude of the relative error in the numerical computation of MoM 
matrix entries Aff and A | | . The solid and dashed lines are obtained in the 
spatial domain by means of (9)—(11). The dotted and dashed-dotted lines are 
obtained by means of (7). In the spatial domain case, the relative error is plotted 
as a function of the number of the evaluations of the integrands in (10) and 
(11). In the spectral domain case, the relative error is plotted as a function of the 
number of addends retained in the series of (7). Parameters: z = z' = —hp2 = 
-2.445 mm; / = 12.1 GHz; a = b = 14 mm; 0{ = (p{ = 30°; a2 = b2 = 
9.63 mm; Mx M?y 

regularization functions of (24), the more accurate the repre­
sentation of G^'pp around the source points, and therefore, 
the more accurate the interpolation of (25) for a given num­
ber of Chebyshev polynomials (iVc = 10 in this case). Note 
that the interpolation errors obtained with (23) reach 10% in 
the proximity of the sources for the substrate of [5] (which 
is not admissible) since (23) does not include the effect of 
the quasidynamic images through the thin layers. However, 
the interpolation errors obtained with (29) are always below 
0.0001% in the whole range of values of p. In Fig. 4, the rela­
tive errors arising from the Chebyshev polynomial interpolation 
of (25) are plotted versus iVc when the regularization function 
of (29) is used in (24). Note that the relative errors quickly 



decrease as the degrees of the polynomials increase. This indi­
cates that the regularized MPGF are smooth functions, even 
in the neighborhood of the source points. Note that a value of 
Nc = 7 suffices to obtain the interpolated MPGF with four sig­
nificant figures. This means that only 64 samples of the MPGF 
are required to generate this interpolation, which is substan­
tially less than the number of samples required in [25] and [26] 
to obtain the interpolated periodic Green's functions with the 
same accuracy of four significant figures. 

In Fig. 5, the standard spectral domain MoM is compared 
with the spatial domain MoM formulated in this paper regard­
ing the computation of the MoM entries Aff and A§§ of (7) and 
(9). While the computation of these MoM entries with an accu­
racy of three significant figures in the spectral domain requires 
the summation of a few million terms in (7), the evaluation of 
the MoM entries with the same accuracy in the spatial domain 
only requires the computation of a few hundred integrands in 
the integrals of (10) and (11). Fig. 5 also shows that the slope 
of the convergence ratio of the MoM entries versus the number 
of quadrature points used in (10) and (11) is substantially larger 
than that of the convergence ratio versus the number of addends 
in the summations of (7). 

In order to validate our MoM codes for the analysis of the 
structure of Fig. 1(a), in Fig. 6(a) and (b), we compute the 
magnitude and phase of the scattering parameter Sxx for the 
multilayered periodic structure with three stacked patches used 
in the design of the reflectarray of [5]. This scattering parameter 
Sxx is one of the diagonal elements of the cartesian scatter­
ing matrix defined in [39, eq. (1)]. The phase of these diagonal 
elements turns out to be crucial in the design of a reflectarray 
antenna [1], [39]. The phase curve of Fig. 6(b) is the phase-shift 
introduced by the reflectarray cell as a function of the patch 
size, which shows a range of phase variation larger than 700° as 
typically occurs for a cell made of three stacked patches (see [3, 
Fig. 2]). The magnitude curve of Fig. 6(a) is used to estimate the 
effect of dielectric losses in the designed antenna. Our results 
obtained with the spectral MoM and with the hybrid spectral-
spatial MoM are compared with the commercial software CST. 
Excellent agreement is observed in the comparisons carried out. 

Fig. 7(a) and (b) shows the convergence of MoM with respect 
to the number of BFs used in the calculation of the phase of the 
scattering parameter Sxx plotted in Fig. 6(b) for two different 
sets of dimensions. Whereas normal incidence was considered 
in Fig. 6(a) and (b), oblique incidence has been considered 
to obtain the results of Fig. 7(a) and (b). The set of dimen­
sions used in Fig. 7(a) (ai = b\ = 9.85 mm) is in between 
the two sets of dimensions for which the periodic structure is 
resonant [where the magnitude of Sxx reaches a minimum in 
Fig. 6(a)], and the set of dimensions used in Fig. 7(b) (a\ = 
&i = 10.7 mm) is the second set of resonant dimensions in 
Fig. 6(a). In the case of Fig. 7(a), the angle /Sxx converges 
within two significant figures when about 24 BFs of the type 
shown in (30) and (31) are used per patch in the structure of 
Fig. 1(a), and within three significant figures when about 100 
BFs are used per patch. However, in the case of Fig. 7(b), about 
60 BFs are required to reach convergence within two significant 
figures, and about 150 BFs are required to ensure convergence 
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Fig. 6. Magnitude (a) and phase (b) of Sxx for the reflectarray element made 
of three stacked patches that has been used in [5]. Our results obtained with 
both the spectral domain MoM (x) and the hybrid MoM of Sections II-IV 
(solid lines) are compared with those obtained with CST (+). Parameters: / = 
12.1 GHz; a = b=U mm; 6{ = ^ = 0°; a i = &i; a2 = b2 = 0.9ai; 
« 3 = ^ 3 = 0.8ai. 

within three significant figures. In general, numerical simula­
tions have shown that the convergence of MoM with respect to 
the number of BFs of (30) and (31) is very fast [similar to that 
of Fig. 7(a)], except for dimensions close to those of resonant 
structures where convergence becomes poorer [similar to that of 
Fig. 7(b)]. In Fig. 7(a) and (b), we also plot the ratio Tspe/Thyb 
between the CPU time required by the spectral domain MoM 
and that required by the hybrid spectral-spatial domain MoM 
of this paper to obtain ZSXX with both two and three significant 
figures for a given number of BFs. Note that the hybrid MoM is 
between 40 and 80 times faster than the spectral MoM when an 
accuracy of two significant figures is required in the values of 
ZSXX, and between 2000 and 3000 times faster than the spectral 
MoM when an accuracy of three significant figures is required 
in the values of ZSXX. 

In Fig. 8, we plot results for the radiation patterns of the 
reflectarray designed in [5] in the frequency band 11.45-
11.7 GHz for V-polarization, and in the frequency band 11.45-
12.75 GHz for H-polarization. Starting from the exact dimen­
sions obtained in [5] for the reflectarray elements (a total 
of 4068 elements), we have obtained the Cartesian scattering 
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matrix [39] for each of these elements under the local period­
icity assumption, and from these scattering matrices, we have 
obtained the radiation patterns as explained in [1]. The com­
putation of the scattering matrices has been carried out with 
both the spectral MoM and the hybrid MoM. A maximum rel­
ative error of 5% has been allowed in the computation of the 
elements of the scattering matrices since this suffices for a 
graphical representation such as that shown in Fig. 8. In par­
ticular, in the calculations we have retained 10 000 addends 
in the summations of (7) for the spectral domain computa­
tion of Aj^, and we have used 24 BFs per patch, Nc = 5 
in the Chebyshev interpolations of (25), and A^MRW = 5 for 
the computation of the integrals of (40). Note that in Fig. 8, 
the radiation pattern results obtained with both the spectral 
MoM and the hybrid MoM match very well the measurements 
reported in [5]. The ratio Tspe/Thyb between the CPU time 
required by the spectral MoM and the CPU time required by 
the hybrid MoM for the analysis of the antenna of [5] has 
turned out to be around 10. This CPU time ratio is smaller 

Fig. 8. Copolar gain patterns of the reflectarray designed in [5] for V-
polarization (left) at 11.575 GHz and H-polarization (right) at 12.1 GHz. This 
reflectarray has been analyzed with our codes, and the results obtained with 
both the spectral domain MoM (x) and the hybrid MoM of Sections II to 
IV (solid lines) under the local periodicity assumption are compared with 
measurements [5] (dashed lines). 

than those shown in Fig. 7(a) and (b), but this is because in 
Fig. 8, a larger error has been allowed in the computation of 
the cartesian scattering matrix and a smaller number of terms 
has been required in the summations of (7), which is benefi­
cial for the spectral MoM. Besides analyzing the antenna of 
[5, Fig. 8], in Fig. 9, we plot the radiation patterns obtained 
for an independent design of this antenna carried out at only 
two frequencies, 11.575 GHz for V-polarization and 12.1 GHz 
for H-polarization. In this case, the dimensions of the reflectar­
ray elements have been adjusted with both the spectral MoM 
code and the hybrid MoM code to obtain the required reflection 
phases that lead to the radiation patterns shown in the templates 
of Fig. 9. In particular, in the current design, we have used the 
reflection phases shown in [5, Fig. 6] at 11.575 GHz for V-
polarization, and in [5, Fig. 3] at 12.1 GHz for H-polarization. 
As in the case of the analysis carried out in Fig. 8, a maxi­
mum relative error of 5% has been allowed in the computation 
of the elements of the scattering matrices that have been used 
for the antenna design of Fig. 9. In spite of this, the ratio 
TSpe/Thyb between the CPU times required by the two codes 
to perform the antenna design is around 30, which is larger than 
that obtained for the analysis of Fig. 8. The explanation for this 
is that for every reflectarray element and every direction of inci­
dence, whereas the analysis of the antenna only requires the 
analysis of one periodic structure, the design requires the anal­
ysis of several periodic structures since the dimensions have to 
be adjusted several times until the correct reflection phase is 
achieved. While the dimensions are being adjusted, the MPGF 
do not vary and their interpolation has to be performed only 
once, which leads to important CPU time savings. So, in the 
case of the analysis of a reflectarray antenna, the number of 
MPGF interpolations equals the number of periodic structures 
that have to be studied. However, in the case of the design 
of a reflectarray antenna, the number of periodic structures to 
be studied is several times larger than the number of MPGF 
interpolations. 
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Fig. 9. Copolar gain patterns of the reflectarray designed in this paper at 
two frequencies: 11.575 GHz for V-polarization (left) and 12.1 GHz for H-
polarization (right). Our results obtained with both the spectral domain MoM 
(x) and the hybrid MoM of Sections II-IV (solid lines) under the local period­
icity assumption are compared with the templates used for the design (dashed 
lines). The multilayered substrate employed for the design is the nine-layer 
substrate of [5]. 

VI. C O N C L U S I O N 

In this paper, a novel hybrid spectral-spatial MoM approach 
is presented for the efficient analysis of periodic arrays of 
rectangular stacked patches in multilayered substrates. This 
approach is expected to save CPU time in the design of 
large reflectarray antennas using those stacked patches. In the 
approach, the MoM matrix entries involving BF from two dif­
ferent metallization levels are computed in the spectral domain, 
and the MoM matrix entries involving BF from the same met­
allization level are computed in the spatial domain. In order 
to ensure an efficient computation of the spatial MoM matrix 
entries, the spatial domain MPGF are interpolated in terms of 
a small number of Chebyshev polynomials after analytically 
extracting the behavior of the MPFG around the source points. 
Also, the singularities of the integrals leading to the spatial 
MoM entries are either analytically extracted or numerically 
handled by means of MRW quadrature rules. Numerical sim­
ulations have shown that the CPU time required by the hybrid 
MoM in the analysis of one periodic structure made of stacked 
patches is around 60 times smaller than that required by the 
standard spectral MoM for an accuracy of two significant fig­
ures. Also, the hybrid MoM has been applied to the design of a 
contoured beam reflectarray antenna containing 4086 elements, 
and the CPU time required by the hybrid MoM introduced in 
this paper has been found to be around 30 times smaller than 
that required by the standard spectral MoM. 

A P P E N D I X A 

The coefficients pki (k + 1 even) defined in (34) can be 
expressed in terms of new coefficients Uki (k + 1 even) as 
follows: 

Pki = IT- [ln(4w) + ukl] . (41) 

The coefficients Ukk* which are particular cases of the coef­
ficients Uki of (41), are given by the recurrent relation 

v>kk = 2, _ „ {(4fc - 8)ufc_i>fc_i 

- ( 2 f e - 5 K _ 2 , f e - 2 } ( f c>3 ) (42) 

which is initialized by 

un = 0 (43) 

u 2 2 = - 2 . (44) 

Once the coefficients Ukk n a v e been obtained (fc = 1,.. .), 
the coefficients Uki (k < I; k + 1 even) can be obtained by 
means of the coupled recurrent relations 

un = 2i¿2,z-i - ui,i-2 (I > 3) (45) 

Uki = Uk-ij-i + Uk+ij-i - Uk,i-2 (I - 1 > k > 2). 
(46) 

Finally, the coefficients uki (k > I; k + 1 even) can be 
obtained from the coefficients Uki (k < I; k + I even) derived 
from (45) and (46) by invoking the relation 

Uki = uik- (47) 

Once the coefficients Uki have been obtained, the coefficients 
qk,k+i a n d rfc,fc+i> which are particular cases of the coefficients 
qki and rki (k + I odd) of (35), can be computed by means of 
the recurrent relations 

2fc,fc+i = 4 + ?fc-i,fc ( f c > 2 ) (48) 

nfe,fc+i = 4ln(4w) + Aukk + rfc_i,fc (k > 2) (49) 

which are initialized by 

qi2 = 2 (50) 

ri2 = 21n(4w). (51) 

Once the coefficients Uki, qk,k+i a n d rk,k+i (fc, Z = 1,...) 
have all been computed, the coefficients q^i and r^ (k < I; k + 
I odd) of (35) can be obtained by means of the coupled recurrent 
relations 

011 = 8 + 202,1-1-01,1-2 ( Z > 4 ) (52) 

Qki = 8 + qk-u-i + 0/c+i,/-i - 0/c,/-2 (/ - 2 > fc > 2) 
(53) 

m = 8 ln(4^) + 8wi,i_i + 2r 2 , i - i - r i , ¡ _ 2 (/ > 4) (54) 

rki = 8 ln(Aw) + 8ufc>/_i + r fc_i}/_i 

+ r f e + i , i_i - rfe,/_2 (/ - 2 > k > 2). (55) 

Finally, the coefficients qki and rki (k > I; k + I odd) of (35) 
can be obtained from the coefficients qki and rki (k < I; k + I 
odd) derived from (48) to (55) by invoking the relations 

Qki = -Qik (56) 

rki = -rik- (57) 



APPENDIX B 

The integrals Ay™§ defined in (39) are different from zero in 
the case where both p + r and q + s are even. In this particular 
case, the integrals Ap^™f can be evaluated in an efficient way 
as shown in this Appendix. According to (34), (36), and (39), if 
both p + r and q + s are even, Ap^™f is given by 

/I»,sing _ 
pq,rs 

-bi 

1 
'2^u 

In I Ppr 

-¿ lnM+i,-)(wfe? + Ki dxdy 

e¿o 0 e i 0 . . 2ei0pprpqs 

=-iZji [Pqs^HI +PpAkZ) H "¿4 
2irw¿ mu ir 

+ f i ^ ( l n a i _ l ) ( l n 6 i _ l ) _ ^ ^ 
u^ w 

+ ppr(lllbi - 1)] + AKiPgsPprüibi 

where 

^ ¿ i 
ln |x | ln |y | 

\Jx2 + y2 
• I i • lii 

^ ¿ 2 — 

fiift — 

a. 

In I 

^/x2 + y2 
. /; . //; 

ln|y| 

\Jx2 + y2 
. /; . //; 

[í3gs(lna¿ - 1) 

(58) 

(59) 

(60) 

(61) 

o Jo 

a,- In 

dxdy 

\Jx2 + y2 

v \ ? + b2i + h hill Va¡ + b\ - <H 
h 

(62) 

The integrals (59)—(61) cannot be obtained in closed form. 
However, if polar variables are introduced (x = p cos ¡p and y = 
p sin ¡p), the integration with respect to p can be carried out in 
closed form, and after some manipulations, Cln, O i2, and O i3 

can be rewritten as 

Í2il = a i | [ ( l n a i )
2 - 2 1 n a i + 2lln ^ + ^ + h 

a,i 

+ (InOi-1) (r4i - r i 2 ) I +6< J - [ ( ln6 i )
2 -21n6 i + 2] 

+ ( ] n 6 i - i ) ( r i 3 - r i 4 ) l x In 
\fa¡ + b2 - at 

bi 

Qi2 = aH (lncij - l)ln 

x In 

^¿3 = ai \ (lna¿ - l)ln 

•bi(lnbi-l)\n 

V*i 

Vaf 

+ b2 

a,i 

+ H 

+ h 

- a,i 

(r ¿ i r,: ¿2 J 

(65) 

where r¿¿ (J = 1,2, 3,4) are 1-D integrals that cannot be 
obtained in closed form and are given by 

fVi In (sin cp) i fsin'^ lni , 
r¿i = / \ , *'dAp = / j — ¡ 2 d t ( 6 6 ) 

0 COS (f 

ri2 = r l^^dv 
Jo c o s V 

i» , sm Lp 

lni 

t V T ^ i 2 dt (67) 

0< lni 
i ^ 2 

lni 
tVY^t2 

dt 

dt 

(68) 

(69) 

where <pi = taii^1(bi/ai). 
While the integrands of r i 2 and r i 4 do not present singular­

ities in the integration interval, the integrands of r¿i and r i 3 

show a logarithmic singularity when t = 0. Numerical simula­
tions have shown that all these integrals can be computed within 
five significant figures with a 20-point MRW quadrature rule 
when i0 <(pi < 86°, which covers most practical dimensions 
of rectangular patches. 

One good thing about the computation of Ap^™f by means 
of (58) is that once the dimensions of the ¿th patch o¿ and 6, 
are fixed, the integrals Clij (j = 1,2, 3) only have to be com­
puted once [via (63)-(69)], no matter how many BFs have 
been employed to model the current density on that particu­
lar patch. This means that only four 1-D numerical integrals 
(that are computed to a high accuracy with only 20 quadrature 
points) are required to obtain all the integrals Ap^™f involved 
in the determination of the N% Galerkin's matrix entries A"¡ 
(k, I = 1,..., Nb) of (9). Therefore, the CPU time required for 
the computation of Ay^f is negligible by comparison with the 
overall CPU time required for the computation of A"¡. 
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