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The restriction of vascular plants to gypsum-rich soils under arid or semiarid climates has been reported by many authors 
in different parts of the world. However, factors controlling the presence of gypsophytes on these soils are far from under
stood. We investigated the establishment of Lepidium subulatum, a gypsophyte, in a nondisturbed semiarid gypsum-soil 
landscape in central Spain, both from spatial and temporal perspectives. Over 1400 seedlings were tagged, and their growth 
and survival were monitored for a 2-yr period. Several biotic and abiotic variables were measured to determine the factors 
controlling the emergence and early survival. These variables included the cover of annual plants, bryophytes, lichens, litter, 
gypsum crystals, bare fraction and cover of each perennial plant, and several soil properties (gravel, fine gravel, and fine-
earth fraction, conductivity, pH, gypsum content, organic matter and penetrometer soil resistance). Our results support the 
linkage of gypsophily with some physical properties of the surface crust. Seedlings tended to establish on the gypsum surface 
crust, and their survival was size dependent, probably as a consequence of the necessity of rooting below the surface crust 
before summer drought arrives. However, once seedlings emerged, a higher survival rate occurred on the alluvial soils of 
the piedmont-slope boundary where soil crusts are absent or thinner. We conclude that Lepidium subulatum may be consid
ered a refuge model endemic with a distribution range that occupies a reduced fraction of a wider habitat from which it is 
probably excluded by competition. 
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Soil endemics of arid systems have received remark
ably little study (Meyer, 1986; Meyer and Garcia-Moya, 
1989; Meyer, Garcia-Moya, and Lagunes, 1992), in spite 
of their abundance in local floras (Meyer, 1989). Fur
thermore, studies on the critical early stages of these 
plants are almost absent (Escudero, Perez-Garcia, and 
Carnes, 1997; Escudero et al., 1999). For the last two 
decades, a model describing the establishment of desert 
plants has been developed. This involves some biotic in
teractions such as competition (Fowler, 1986; Kadmon 
and Shmida, 1990; Paruelo and Sala, 1995; Goldberg and 
Novoplansky, 1997), and facilitation (Franco and Nobel, 
1989; Callaway and D'Antonio, 1991; Valiente-Banuet et 
al., 1991; Puignaire, Haase, and Puigdefabregas, 1996). 
The relative importance of competition vs. facilitation is 
a key factor in explaining the establishment of these 
plants, because individuals may either compete for re
sources with new seedlings or facilitate establishment 
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(Aguiar and Sala, 1994, 1997; Callaway et al., 1996; Cal
laway, and Walker, 1997). On the other hand, from a 
temporal perspective, the establishment of plants requires 
not only the availability of propagules, but the occurrence 
of favorable climatic events, such as unusually heavy 
rains during certain seasons (Jordan and Nobel, 1979, 
1981; Goldberg and Turner, 1986). As a consequence, 
populations of desert perennial plants may be composed 
of cohorts established in successful years, with wide tem
poral gaps between events. This widely accepted model 
has not been tested in soil endemic plants of arid systems 
(Escudero et al., 1999). Thus, two questions that arise are 
whether the establishment of soil endemics follows this 
model and what the factors determining the restriction of 
these soils are. 

Gypsophytes represent one of the most conspicuous 
sets of arid soil endemic plants (Jonhston, 1941; Parsons, 
1976; Powell and Turner, 1977; Meyer, 1986; Meyer and 
Garcia-Moya, 1989). These plants are confined to gyp
sum soils or gypsosols, which extend over 100 million 
ha in the world (Verheye and Boyadgiev, 1997) and are 
mainly composed of narrowly distributed and threatened 
species (Meyer, 1986). Gypsosols are characterized by a 
gypsum (hydrous calcium sulfate) content over 5%. Sev
eral authors (Meyer, 1986; Verheye and Boyadgiev, 1997) 
have suggested that the existence of a hard surface gyp
sum crust may inhibit seed germination of nongypsophy-
tes, whereas gypsophytes may be able to could surpass 
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the soil crust. Anyhow, direct evidence of the relationship 
between gypsum crust strength and emergence and sur
vival of gypsophytes has rarely been reported (Escudero 
et al., 1999). The ability of adult gypsophytes to persist 
under certain chemical restrictions of gypsum soils has 
also been stressed (Duvigneaud and Denaeyer-De Smet, 
1966, 1968; Boukhris and Loissant, 1970; Cannon, 
1971). However, recent field studies show little evidence 
of this type of soil restriction (Meyer, 1986; Meyer, 
Garcia-Moya, and Lagunes, 1992; Verheye and Boyad-
giev, 1997). The effect of soil properties and microhabitat 
features (litter, lichens, bryophytes, bare fraction, and 
gypsum crystals cover) on earlier life stages of gypso
phytes needs to be tested. 

Thus, in the present study, several specific questions 
about the establishment pattern, both from spatial and 
temporal perspectives, of a widely distributed and non-
threatened gypsophyte, Lepidium subulatum L. were 
posed. The main hypotheses were evaluated in this study 
using structural equation modeling (SEM), taking into ac
count a priori knowledge based on other studies of gyp
sophytes (Jonhston, 1941; Parsons, 1976; Powell and 
Turner, 1977; Meyer, 1986; Meyer and Garcia-Moya, 
1989) and our experience with these plants (Escudero, 
Perez-Garcia, and Carnes, 1997; Escudero et al., 1999). 
We hypothesized that since gypsum soils are character
ized by the presence of a gypsum crust, soil strength is 
a primary factor affecting emergence. Furthermore, we 
hypothesized that soil resource availability and micro-
habitat affect emergence and survival. From the perspec
tive of biotic interactions, competition by annuals has 
been shown to be an active factor limiting emergence of 
other Iberian gypsophytes (Escudero et al., 1999), so the 
cover of annuals was included in the model. We also 
expected that the presence of mature perennial plants 
could result in a positive interference (facilitation) at the 
emergence stage; although later, this could pose a nega
tive effect due to competition. Furthermore, we consid
ered that the presence of adult plants of Lepidium subu
latum could increase the emergence of new seedlings due 
to the short-range dispersion of mucilaginous seeds (Gut-
terman, 1993). The effect of germination date on seedling 
growth and survival, the response of seedling emergence 
to interannual climatic variation, and the relationships be
tween seedling size and probability of survival were also 
evaluated. Finally, the effect of herbivory on the early 
survival of seedlings was studied. 

MATERIALS AND METHODS 

Study site—This study was carried out in El Espartal, a site close to 
Ciempozuelos, 30 km south of Madrid, in Central Spain (40°11' N. 
3°36' W, 570 m altitude). The bioclimate is upper semiarid mesome-
diterranean, with an annual average rainfall for the last 30 yr of 415 
mm, but with almost no rainfall in the summer. Mean daily maximum 
and minimum temperatures in January are 9.6°C and 0.6°C, respective
ly, and 32.7°C and 15.4°C in July. The soils are classified as Calcic 
Gypsisols, developed over gypsum parental rocks (Monturiol and Alcala 
del Olmo, 1990). Soil texture is normally fine (clay content between 45 
and 60%), and texture class is clay loam (Monturiol and Alcala del 
Olmo, 1990). 

The study site was located on a southern slope (average 30—40%) on 
gypsum sediments that includes the alluvial gypsum soils of the pied
mont and bottom flats. It was covered with very sparse perennial com

munities on slope and piedmont, and dense grass tussocks in the bottom 
flat (Rivas-Martinez and Costa, 1970; Izco, 1984). This community pat
tern was studied in detail by Rivas-Martinez and Costa (1970) and three 
main community bands were identified: Centaurea hyssopifolia Vahl-
Gypsophila struthium L. community on gypsum slopes, Artemisia her-
ba-alba Asso—Frankenia thymifolia Desf. community in the piedmont, 
and Lygeum spartum L. tussocks on the bottom flats. 

Lepidium subulatum L. is a small shrub that grows in dwarf scrubs 
("tomillares" in Spanish) at low elevations (100—1000 m) on gypsum 
soils in the western half of the Mediterranean Basin (Hernandez-Ber-
mejo and Clemente, 1993). The species can grow in the three com
munity bands, although it is most frequent in the gypsum slope com
munity. The fruits are very numerous small capsules (silicules) 2.5 X 
1.5 mm (N= 120). Seeds are also very small (0.9 X 0.7 mm, N= 90), 
with no structures to assist dispersion, except for a mucilage that favors 
seed adhesion to soil. Certain morphological traits have been reported 
by Gomez et al. (1996), such as a mean number >1000 flowers per 
plant, two ovules, 4.12 mm mean flower size, and a 40—60 cm height. 

Sampling design—A rectangular surface (30 X 110 m, x and y com
ponents, respectively) was selected according to the maximum slope, 
with a maximal altitudinal range of 15 m. A 10 X 10 m grid was laid 
on this surface resulting in 4 X 12 lines and 48 grid nodes. Each hor
izontal line was considered as an altitudinal level. The three first levels 
(1—3) comprised the Lygeum spartum band; levels 4 and 5, the Arte
misia herba-alba band and the rest, the Centaurea hyssopifolia band 
(6-12). 

In late spring of 1996, the cover (percentage) of several variables, 
perennial plants, annual plants, bryophytes, lichens, litter, gypsum crys
tals, and bare fraction, was estimated in 1 X 1 m quadrats centered at 
each grid node. The percentage of ground cover of the 30 perennial 
plant species identified at the study site, including Lepidium subulatum, 
was also recorded. Three soil cores (5 cm deep and 5 cm in diameter) 
were randomly collected in each quadrat and mixed before analyses to 
reduce soil heterogeneity within each quadrat (Palmer, and Dixon, 
1990). All soil samples were dried in laboratory conditions and sieved; 
different fractions were separated and their percentages calculated: grav
el (particles >6 mm in diameter), fine gravel (6—2 mm) and fine-earth 
(<2 mm). Electrical conductivity of the saturated extract, organic matter 
(Walkley, 1946) and pH value in H 2 0 (1:2.5) were determined in the 
last fraction. Gypsum content was estimated by a thermogravimetric 
method based on mass loss due to gypsum dehydration when a sample 
containing gypsum is heated. The total conversion of gypsum to an
hydrite is attained at 200°C (Eswaran and Zi-Tong, 1991; Porta, 1996). 
Gypsum soil crust strength was measured by a portable penetrometer 
(RIMIK CP-20, Toowoomba, Australia) with a conical probe 5 mm long 
and with a 30° apex (Borselli et al., 1996). Values were obtained at 15, 
30, 45, and 60 mm in water-saturated conditions (January 1998). Three 
punctures were randomly carried out in each seedling plot. A hand 
clinometer (Meridian) was used to measure the slope at the center of 
each 100-m2 cell (macroslope) and also of each seedling plot (micros-
lope). 

Seedlings of Lepidium were identified and tagged in 48 plots (35 X 
50 cm) centered in each of the 48 quadrats. Growth measured as max
imum height was recorded regularly every 2—4 wk (for a total of 23 
censuses) from February 1996 to October 1997. No recent seedlings or 
remains of Lepidium were recorded at the beginning of the study. This 
suggests that no new establishments had taken place for at least 2 yr 
prior to the study, because dead seedlings remain identifiable for at least 
2 yr (Somolinos, 1997). Mortality causes were grouped into three cat
egories: (1) drought, (2) physical damage, and (3) herbivory. Seedlings 
that died with exposed roots were classified as physical damage. Seed
lings that died after hypocotyls had been partially eaten or cut or over 
half of the total leaves had been eaten since the previous census were 
placed in the herbivory category, as well as those that had disappeared. 



No evidence of any disease was found in remaining dead seedlings, 
which were placed in the drought category. 

In order to estimate the influence of mature Lepidium plants as seed 
sources, we measured maximum width, height, distance to the center 
of the quadrat, and orientation (in relation to the maximum slope axis) 
of every Lepidium individual located within a circle of 2 m radius. As 
the correlation (r2 = 0.83) between width and height was highly sig
nificant (P < 0.001), only height was considered in further analyses. 
Seed sources (SS) for each quadrat were estimated as: 

SS = ^ K c o s <*/ + l) /2]/ / /d, (slope > 15°) (1) 

or 

SS = ^ 0.5///d, (slope < 15°) (2) 

where H is the height of each mature plant, d is the distance to the 
center of every seedling plot, and " a " is the angle between the direction 
of the maximum slope and the line linking the plant to the centre. These 
equations assume that seed production is a function of plant size and 
that dispersion, which is not very efficient as suggested by the presence 
of mucilaginous seeds (Gutterman, 1993), depends on distance and 
slope. 

Equation 1 evaluates the seed-supplying efficiency of mature plants 
as a function of location (the coefficient multiplying the height ranges 
from 0, when the mature plant is located below the seedling plot (a = 
180°) to 1 when it is directly above (a = 0° or a = 360°). On steep 
slopes, mature plants located above plots are more efficient seed sources 
than those located below them (gravity and run-off effects) but, when 
the slope is shallower, the effect of each plant as seed source is not 
affected by its position, but only by its distance and size. The accuracy 
of both equations has been previously studied in Lepidium subulatum 
and Helianthemum squamatum (Cistaceae), other Iberian gypsophyte 
(Somolinos, 1997). 

Numerical analyses—All data variables were assessed for normality 
prior to statistical analyses. Appropriate transformations were performed 
when necessary to improve normality according to Zar (1984). In order 
to avoid multicollinearity problems, the variance inflation factor (VIF) 
for each variable was carried out (Philippi, 1993). Following Chatterjee 
and Price (1991), only gravel fraction surpassed the criterion rule for 
deletion of values higher than 10. 

The effect of the two main Cartesian spatial components x and y (not 
the altitudinal or z axis), on the survivorship matrix was evaluated in 
order to obtain the spatially structured variation (for details, see Bor-
card, Legendre, and Drapeau, 1992; Legendre, 1993). For this purpose 
a partial canonical correspondence analysis (ter Braak and Prentice, 
1988) and a permutational test of significance of the extracted axes (ter 
Braak, 1990) were carried out. Matrix vectors were the number of seed
ling emergences and deaths by censuses (46 vectors), emergences in 
February, March, April, and May (four vectors), deaths by drought and 
herbivory (two vectors) and seed source value (one vector). 

Variation explained by the x and y spatial components on the survi
vorship matrix was very low and the extracted constrained axes were 
not significant (P = 0.45 for the x component and P = 0.52 for the y 
component after 1000 randomizations). Consequently, the four seedling 
plots located at similar altitudinal levels were assumed to not be auto-
correlated, and thereby considered to be real replicates. 

Survival functions were estimated by the Kaplan-Meier method for 
each altitudinal level (1—12). Shape differences were tested by the log-
rank test (Pyke and Thompson, 1986). 

Seedling size at different landform levels was compared using a Krus-
kal-Wallis nonparametrical test as a consequence of the low number of 
replicates and the difficulties found in normalizing the variable. 

The relationship between seedling size and probability of survival at 
the end of July (date of maximum mortality rate in both 1996 and 1997) 
was established with logistic models. Coefficients were estimated by 
maximization of the likelihood function (L). Differences among fitted 

curves for each altitudinal level (with surviving seedlings at this census) 
can be tested by calculating the ln(Z,max) for pooled and separate groups 
with the statistic A, which compares the goodness of fit for the pooled 
data with that of each separate altitudinal level. A follows approximately 
a x2 with 2k-2 degrees of freedom, with k as the number of compared 
groups. This method is described in detail by Wesselingh et al. (1993, 
1997). 

Finally, we used structural equation modeling (SEM) to test the rel
evance of several factors to emergence and survival (Browne, 1982; 
Hayduk, 1987; Loehlin, 1987). The advantages of SEM in path analysis 
are related to the possibility of testing the overall agreement between 
the path model and the data, the use of latent variables, and the eval
uation of nested models (Cloninger et al., 1983; Breckler, 1990). As the 
sample size is relatively small (48 seedling plots), we followed the 
recommendations of Tanaka (1987) when designing the model to test 
(see Geweke and Singleton, 1980). Thus, the number of variables used 
in the model was limited to seven. The number of survivors at the end 
of the first year, January 1997, was used and the number of survivors 
in September 1997 was omitted since they were rather similar. A "hab
itat" variable was built using the first extracted axis of a principal com
ponents analysis from soil variables and the cover of several elements 
(cover of gypsum crystals, bare fraction, bryophytes, lichens, and litter). 
The effect of the presence of mature plants was evaluated by another 
first principal component synthesizing the cover value of the six most 
frequent mature plants. The relationships included in our model come 
from a priori knowledge, based on other studies on gypsophytes (Jonhs-
ton, 1941; Parsons, 1976; Powell and Turner, 1977; Meyer, 1986; Meyer 
and Garcia-Moya, 1989), and field experience with these plants (Es-
cudero, Perez-Garcia, and Carnes, 1997; Escudero et al., 1999). 

The maximum likelihood method was used to estimate standardized 
path coefficients, which are equivalent to standardized partial regression 
coefficients. The degree of fit between the observed and expected co-
variance structures was first examined by a goodness-of-fit x2- A sig
nificant x2 indicates that the model does not fit the data. As this test 
may present inadequate statistical power because valid models can be 
rejected (Mitchell, 1993; Bishop and Schemske, 1998) and because un
satisfactory models can be retained (Tanaka, 1984), other fit indices 
were also considered. The Bentler-Bonnet Normed Fit Index (NFI) was 
used as it gives a measure of the practical fit of the model ignoring the 
number of subjects "sample size free" (Bentler and Bonnet, 1980; 
Mitchell, 1992). Tanaka (1987) also recommended the simultaneous use 
of the Goodness-of-Fit index (GFI) (Tanaka and Huba, 1985) because 
it is not affected by the methods of estimation. NFI and GFI range 
between 0 and 1, with values above 0.90 indicating a good fit (Tanaka, 
1987; Mulaik et al., 1989; Mitchell, 1993). The multivariate significance 
of each individual path coefficient was assessed through the stepwise 
multivariate Wald test, which detects those paths whose absence implies 
a nonsignificant increase of the x2 (P > 0.05) (Buse, 1982). Analyses 
were conducted by the CALIS procedure of SAS. 

RESULTS 

Germination—Emergences occurred in 1996, but not 
in 1997, even though rainfall in 1997 was also above 
average (Fig. 1). No seedlings from previous years 
(1994-1995) were found. The total number of Lepidium 
seedlings was 1416, with 1109 seedlings (78.3%) emerg
ing in February and fewer in March (115, 8.1%), April 
(143, 10.1%), and in May/June (49, 3.5%). Emergences 
were unevenly distributed in space (Fig. 2), were absent 
in the lowest zone, the Lygeum spartum community (al
titudinal levels 1-3), and very scarce in the lower portion 
of the Artemisia-Frankenia community (level 4). Ger
mination was very high at level 5, with an average of 
222 seedlings/m2 and a maximum of 468 seedlings/m2 

(Fig. 2) This level corresponds to the contact between 



% of total emergences) 

Fig. 1. Monthly mean temperature over the course of the study (dotted line) and averaged over the period 1960—1990 (xline). Histogram bars 
indicated monthly rainfall departure from the averaged value over the period 1960—1990. Arrow indicates the time of maximum seedling emergence 
(February cohort comprised >80% of emergences) although emergences extended until June. Monthly averaged rainfall for the last 30 yr are as 
follows: January, 40.2 mm; February, 37.8 mm; March, 33.3 mm; April, 53.6 mm; May, 42.7 mm; June, 26.7 mm; July, 11.0 mm; August, 17.5 
mm; September, 43.27 mm; October, 45.61 mm; November, 49.7 mm, and December, 52.59 mm. 

alluvial soils of the piedmont and the gypsum slope. The 
number of emergences in the steeper gypsum slope (level 
7) reached similar values than in level 5. The highest 
densities were at the summit zone (level 10), where in
clination decreases, with an average of 467 seedlings/m2 

and a maximum of 988 seedlings/m2. Germination ex
tended to June in almost all the levels (Fig. 2). 

Survival and growth—In the 21-mo study period the 
total number of seedlings that died was 1333. Drought 
was the main cause of mortality of seedlings (98.72%), 
with a very low incidence of herbivory (0.05%). The 
highest rate of mortality coincided with the beginning of 
the first summer, June/July 1996 (census 9 in the levels, 
5 and 6, and census 8 for the rest). 

Lygeum com, Artemisia com. Centaurea com. 

2 3 4 5 6 7 8 9 

Altitudinal levels 
10 11 12 

Fig. 2. Seedling density at each of the 12 altitudinal levels: (a) all the cohorts pooled and (b) considering each monthly cohort independently 
(shown on log scale). Error bars represent standard deviations. In (a) the outline of the sampling site slope is represented in the background. 



Altitudinal level 5 

January 

Fig. 3. Survival curves of the cohorts considered in the altitudinal 
level 5 (contact between piedmont and slope) during the first year. The 
April class comprises cohorts of April, May, and June. The log rank 
statistic was 57.18 between February and March cohorts (P < 0.0001), 
15.41 between February and April (P = 0.0001) and 0.64 between 
March and April (P = 0.433). 

Eighty-three seedlings survived to January 97 and this 
number was only slightly lower by September 1997 (79 
survivors). Final survivors were primarily restricted to 
the piedmont (levels 5 and 6, with 48 and 18% of the 
surviving seedlings, respectively, and a mean of 54 seed-
lings/m2 at level 5) and to the summit area (levels 11 and 
12, with 10 and 9.6%, respectively). Hereafter only these 
four levels were considered because the number of sur
vivors in the rest was extremely low. Significant differ
ences in the final percentage of surviving seedlings be
tween these four levels (G = 41.44, df = 3, P< 0.0001) 
were found, with 24% of the total number of emerged 
seedlings at level 5 and 19% at level 6 (G = 0.86, df = 
1, P = 0.351) and only 4 and 8% at levels 11 and 12 (G 
= 2.26, df = 1, P= 0.132). 

Survival curves of seedlings growing at these four lev
els were compared. The shape of these curves showed 
significant differences (log rank statistic 71.36, df = 3, 
P < 0.0001). These curves were similar for seedlings 
emerged on levels 5 and 6 (log rank statistic 1.17, df = 
1, P = 0.27), but the rest of pairwise comparisons were 
significantly different (P < 0.01), with delayed mortality 
in lower levels. 

Only seedlings of the February cohort survived in the 
slope and summit area levels (6-12). Germination cohorts 
(seedlings of February, March, and the rest) did not differ 
in their survival rate in the piedmont-slope contact, level 
5 (G = 0.86, df = 2, P = 0.351), although the shape of 
the survival curve for the first cohort was significantly 
different from those of the other two cohorts, with de
layed mortality for the former seedlings (Fig. 3). 

Seedling size at the end of the first year, January 1997, 
was similar in the four levels (x2 = 6.81, df = 3, P = 
0.08). However, this trend was not maintained in Septem
ber 1997 when significant differences (x2 = 14.25, df = 
3, P = 0.002) were found, the largest seedlings being 
found at level 5. 

In order to assess whether seedling survival was size 
dependent, we compared the size shown in the preceding 
census, for seedlings that either appeared dead or sur
vived at census when maximum mortality was recorded. 
Survivors were significantly larger than those that died 

TABLE 1. Comparison between size of surviving seedlings vs. dead 
seedlings of Lepidium subulatum in Ciempozuelos (Spain) during 
the census previous to that when maximum mortality rate was 
reached (Kruskal-Wallis test). Survivors and Total indicate, respec
tively, the number of survivings at the end of the period and the 
number of seedlings at the beginning of the period. Boldface type 
denotes P < 0.01. 

Altitudinal 
level 

Pooled 
5 
6 

11 
12 

Period 

1 Jun/18 Jun 
18 Jun/1 Jul 
18 Jun/1 Jul 
1 Jun/18 Jun 
1 Jun/18 Jun 

X2 

83.24 
14.46 
9.17 
5.66 
0.04 

Significance 

0.0000 
0.0001 
0.0025 
0.0173 
0.831 

Survivors 

546 
72 
27 
99 
26 

Total 

1153 
150 
65 

297 
99 

Survival 

47.3 
48.0 
41.5 
33.3 
26.2 

for pooled data and within each level, except in level 11 
(Table 1). 

To determine the threshold size for survival at the date 
when maximum mortality rate is reached, an independent 
logistic model for each level with size as predictor was 
developed and tested. These logistic models were highly 
significant for pooled data and for the considered levels 
(improvement of the model x2 = 32.83, P < 0.0001 for 
pooled data; x2 = 13.19, P = 0.0001 for level 5; x2 = 
11.93, P= 0.005 for level 6; and x2 = 5.25, P= 0.0218 
for level 12) predicting correctly for over 60% of the 
cases. Furthermore, logistic curves for the probability of 
survival did not differ significantly by pairs between lev
els 5 and 6 (A = 0.758, df = 2, P > 0.1), levels 5 and 
12 (A = 0.507, P> 0.1) and levels 6 and 12 (A = 1.752, 
df = 2, P > 0.1). Threshold size for survival during the 
first summer was ~3 cm height (Fig. 4). 

The model—Our path model (Fig. 5) provided a good 
overall fit to the data set because it had a nonsignificant 
X2 (x2 = 2.31, df = 2, P = 0.31), indicating that the 
covariance matrices of the experimental data and those 
specified by the model were not different. Furthermore, 
NFI and GFI values over 0.90 were obtained (NFI = 

V 
rt Level 5 

Pooled data 

2 3 4 5 6 7 8 9 10 

Height (cm) 
Fig. 4. Comparison of threshold sizes for surviving in different al

titudinal levels. The lines are the fitted logistic curves. Arrows indicate 
the estimated size at which 50% of the plants survive. 
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Fig. 5. Path model for the establ ishment of Lepidium subulatum in 
which " e m e r g e n c e s " and " su rv ivo r s after one y e a r " are the dependent 
variables. Width of each arrow is proportional to the standardized path 
coefficient, and dashed lines denote negat ive paths. Coefficients indicate 
the expected change in the dependent variable if the predictor variable 
is changed one unit. A r r o w s not originating from a variable show the 
effect of unexplained causes. Aster isks indicate values significantly dif
ferent from zero (P < 0.05). Goodness-of-fit statistics for the model 
are: x2 = 2 .3 , df = 2, P = 0 .31 ; N o r m e d Fit Index (NFI) = 0.98; and 
Goodness-of-Fit Index (GFI) = 0.99. N F I and GFI values above 0.90 
together wi th a nonsignificant x2 indicate a good model fit. The variables 
" seed source , " "soi l s t rength ," " e m e r g e n c e s , " and " s u r v i v o r s " were 
log t ransformed and "annua l c o v e r " was arcsine transformed. 

0.983, GFI = 0.986), indicating that the experimental 
data fit our model better than a null model where vari
ables are assumed to be uncorrelated. The excellent fit of 
the path model was largely due to the strong relationship 
between "emergences" and "surv ivors" (Fig. 5). 
"Emergences" were greatly and almost equally affected 
(standardized coefficient over 0.21) by "seed source," 
"soil strength," "habitat," and "mature plants." The var
iable "habitat" was positively correlated to "lichen cov
er" (0.69), "bare fraction" (0.59), "gypsum crystals" 
(0.63), and negatively correlated to "fine earth fraction" 
(-0.69), "organic matter" (-0.66), and "litter cover" 
(-0.61). On the other hand, the variable "mature plants" 
was positively correlated with the presence of genuine 
shrubby gypsophytes, such as "Helianthemum squama
tum (L.) Dum. Cours." (0.71), "Thymus lacaitae Pau" 
(0.63), and "Centaurea hyssopifolia Vahl." (0.58). Only 
"habitat" and mainly "emergences" showed a significant 
direct effect on "survivors." The negative direct effect 
of habitat on "survivors" (path coefficient: -0.37) was 
partially compensated by a positive indirect effect 
through "emergences" (partial correlation coefficient: 
0.23), being the total effect only -0 .14. On the other 
hand, "mature plants" had a nonsignificant negative ef
fect on "survivors," but a positive indirect effect (0.19) 
through "emergences." 

DISCUSSION 

Timing of emergence—Winter germination is the pre
vailing trait in Lepidium subulatum. Approximately 80% 
of total seedlings emerged in February 1996. Germina
tion at low temperatures has been reported to be a typical 
strategy of Mediterranean plants (Corral, Pita, and Perez-
Garcia, 1990; Thanos et al., 1992; Bell, Plummer, and 
Taylor, 1993). Greenhouse experiments have also shown 
that germination of Iberian gypsophytes is higher and 
faster at low temperatures (optima temperatures ranging 

between 5°C and 15°C) (Escudero, Perez-Garcia, and 
Carnes, 1997). 

Germination occurred after a period of rainfall far 
above the average (autumn 1995 and early winter 1995/ 
1996), following 4 yr of severe drought (1992-1995) 
(Fig. 1). It has been shown that the length of the drought 
period limits the establishment of many desert perennials 
to certain favorable years (Brum, 1973; Jordan and No
bel, 1981) and that in demographic terms it leads to spo
radic recruitments (Boyd and Brun, 1982; Grice and Wes-
toby, 1987; Milton, 1995). 

According to this pattern, a high germination event 
would have also been expected in early 1997, because 
rainfall in the autumn of 1996 and in the winter of 1996/ 
1997 was also very high (Fig. 1). However, no emer
gences were detected in that year. A similar response with 
a very high emergence in 1996 and a low one in 1997 
was also found in Helianthemum squamatum in our ex
perimental area (Somolinos, 1997; Escudero et al., 1999). 
This suggests an intense depletion of the local soil seed 
bank as a consequence of a long drought period (1992-
1995) followed by a mass germination event (maximum 
of 988 seedlings/m2) during a favorable period. The ab
sence of new emergences in 1997 is also related to a 
significant scarce seed production during the spring and 
summer of 1996. According to Coffin and Lauenroth 
(1989) and Mott (1973) most perennials in arid environ
ments have transient seed banks. Little work has been 
done in order to quantify the proportion of viable seeds 
that remain dormant in the soil after a pulse of germi
nation event (Venable, 1989). In the case of Lepidium 
subulatum and also Helianthemum squamatum (Somoli
nos, 1997; Escudero et al., 1999) the depletion might be 
very important. 

Factors controlling emergence—Meyer (1986) and 
Meyer, Garcia-Moya, and Lagunes (1992) have proposed 
that the main limitation of gypsum soils takes place at 
the establishment stage, probably as a consequence of 
their unusual physical properties. Mineral nutrition re
strictions are not likely to play an important role in the 
phenomenon of gypsophily (Meyer, Garcia-Moya, and 
Lagunes, 1992; Verheye and Boyadgiev, 1997). 

Soil strength—Surface soil layers with a gypsum con
tent over 25%, as in our study site, show a tendency to 
slake and form gypsum surface crusts (Verheye and Boy
adgiev, 1997), which are notoriously thicker than those 
found in typical desert soils. These crusts are of two 
types, physical soil crusts formed by gypsum crystals 
which are unable to support plant life, and cryptobiotic 
crusts that are of biological origin. In desert crust soils, 
it is known that the development of high crust strength 
is one of the most limiting factors for the emergence of 
new seedlings (Hanks and Thorp, 1956; Harper, Wil
liams, and Sagar, 1965; Cary and Evans, 1974) and that 
there is a negative correlation between vascular plant dis
tribution and cryptobiotic crust cover (West, 1990; Eld-
ridge, 1993; Boeken and Shachak, 1994). Furthermore, 
Johansen (1993) has suggested that desert crusts may in
hibit seed germination because they prevent the penetra
tion of seeds into the soil below the crust layer. Our re
sults support the hypothesis of Meyer (1986) linking gyp-



sophily to soil crust strength (see Verheye and Boyad-
giev, 1997) because Lepidium subulatum emergence was 
mainly confined to the localities with higher soil strength. 
Although no significant gypsum content differences were 
found among the three community bands, mechanical 
strength was significantly higher (Kruskal-Wallis test) in 
the gypsum slope levels (x2 = 12.76, df = 2, P= 0.0017; 
466 kPa in the Lygeum spartum community, 647 kPa in 
the Frankenia thymifolia community, and 850 kPa in the 
Centaurea hyssopifolia community). Furthermore, in 
some seedlings plots of the gypsum slope, penetrometer 
soil strenght values over 1000 kPa were measured, which 
might pose severe problems in seedling recruitment (see 
Borselli et al., 1996). The ability of Lepidium subulatum 
to germinate on these hard soil crusts may be partially 
explained by the mucilaginous coats in its seeds. Ac
cording to Zaady, Gutterman, and Boeken (1997) the pro
duction of mucilaginous seeds is one of the most efficient 
traits enabling plants to become established on crusted 
soils (see also Gutterman and Shem-Tov, 1996, 1997), 
because it minimizes the runoff depletion of the local 
seed bank and provides a humid environment during ger
mination. Thus, this extended morphological trait of gyp-
sophytes (Somolinos, 1997; Escudero et al., 1999) seems 
to link seedling emergence to crust strength. 

The importance of the gypsum crust in the perfor
mance of gypsophytes may explain the fact that although 
gypsum outcrops also appear in mesic environments, 
gypsophily is consistently restricted to arid and semiarid 
zones (Rivas-Martinez and Costa, 1970; Meyer, 1986). 
Under more mesic climates, the gypsum crusts do not 
appear and the gypsum outcrops are covered with a cal-
cicole vegetation (Rivas-Martinez and Costa, 1970). 

Habitat—The relevant positive relationship found be
tween "emergences" and "habitat" (Fig. 5) provides a 
clear description of additional differential habitat features 
found in the establishment of the gypsophytes, and also 
highlights the relevance of the gypsum crust. The "hab
itat" variable is positively correlated with "lichen cover," 
"bare fraction" and "gypsum crystal cover" and nega
tively correlated with "fine earth fraction," "organic 
matter content," and "litter cover." Gypsophyllous li
chens, almost all narrow endemics, have been reported 
as dominant elements of semiarid gypsum landscapes 
(Crespo and Barreno, 1975), and they have been closely 
related to the presence of gypsum crust (Tarazona et al., 
1980). On the other hand, bare cover and gypsum crust 
have also been related (Watson, 1979). 

Annual plants cover—As hypothesized in our model 
(Fig. 5), annuals cover is a relevant factor during the 
emergence stage of Lepidium subulatum. Although com
petition by annuals was not studied directly, we think the 
influence of "annual plants cover" mainly underlines a 
competitive interaction. Competition by annuals with 
seedlings of perennial plants under arid conditions has 
been previously reported (van Epps and McKell, 1983). 
This is probably due to the fact that annuals are efficient 
water competitors, and seedlings have evolved to be able 
to use moisture quickly from the rapidly drying soil sur
face (Kadmon, 1997). Topographic gradients can create 
substantial spatial variation in the productivity and per

formance of desert annuals (Pantastico-Caldas and Ven-
able, 1993; Kadmon, 1997). These authors pointed out 
that competition tended to be weak on the slope and more 
intense in the two habitats below it because of higher 
water availability. We detected a similar geomorpholog-
ical pattern in the performance of "annuals cover" (x2 = 
25.62, df = 2, P < 0.0001; 28.0% in the Lygeum spartum 
community, 23.6% in the Frankenia thymifolia commu
nity, and 5.0% in the Centaurea hyssopifolia communi
ty). Bottom levels had higher moisture availability than 
slope and summit levels due to higher percentages of fine 
soil texture ("fine earth," x2 = 18.16 df = 2, P< 0.0001; 
91% in the Lygeum community, 94.2% in the Frankenia 
community, and 66.9 in the Centaurea commmunity) and 
higher "organic matter content" (x2 = 24.60, df = 2, P 
< 0.0001, 3.94% in the Lygeum community, 2.20% in 
the Frankenia community, and 1.11% in the Centaurea 
community). 

Seed source—The inclusion of the "seed source" var
iable as one of the predictors of emergence in our model 
was related to the species dispersal strategy of this plant 
(Fig. 5). As pointed out by Gutterman (1993), anchoring 
by mucilages is a common dispersal mechanism of desert 
plants; thus, the seed bank is increased in the vicinity of 
mature plants. On the other hand, as suggested by Ellner 
and Shmida (1981, 1984), long-range dispersal may pro
vide no benefit as an adaptive trait for desert plants be
cause the most favorable environment is usually located 
in the vicinity of mother plants. In the case of gypsophy
tes, constraints to find new available gypsum outcrops 
might make the long-range dispersal even less desirable. 
This conclusion is also supported by Escudero et al. 
(1999) who found a similar dispersal pattern in Helian-
themum squamatum, another widely distributed Iberian 
gypsophyte. This limited dispersal pattern may help ex
plain why most gypsophytes are narrow endemics re
stricted to very local gypsum outcrops. 

Mature plants—Although, no evidence of positive bi-
otic interactions in gypsum environments has been re
ported, our results show that the emergence in our seed
ling plots is related to the presence of mature plants. This 
suggests that facilitation may be involved in the emer
gence of this gypsophyte, although our experimental ap
proach cannot confirm that this interaction is the only 
process involved. In any case, this argument agrees with 
the extended idea that facilitation plays an important role 
in severe environments (Chapin et al., 1994; Escudero, 
1997) including arid zones (Aguiar and Sala, 1994, 1997: 
Callaway et al., 1996; Callaway and Walker, 1997). 

Factors limiting seedling survival and growth—Sur
vival patterns varied significantly between cohorts and 
depended on the topography (see Fowler, 1988; Eldridge, 
Westoby, and Holbrook, 1991) (Fig. 4). Only seedlings 
of the first cohort had a chance of survival in the Cen-
turea community (levels 6-12), probably because it had 
more time to be established than subsequent ones before 
the arrival of the drought period in the summer. This 
observation agrees with the assertions that water is the 
limiting resource for seedlings in arid regions (Harring
ton, 1991) and that these seedlings are highly susceptible 



to mortality from water stress (Chabot and Mooney, 
1985). Thus, in Lepidium subulatum, deaths were pri
marily assigned to drought (>95%). The low final sur
vival percentages observed were probably a consequence 
of the severe summer drought of 1996 (Fig. 1). Similar 
low survivals have also been reported in other desert pe
rennials, such as Artemisia tridentata (Young and Evans, 
1989) and Cactaceae species (Steenberg and Lowe. 
1969). 

Contrary to our results, Goldberg and Novoplansky 
(1997), under the scheme of their two-phase resource dy
namics hypothesis, suggested that for low water avail
ability scenarios, a negative correlation between survival 
and growth may happen. Some papers have reported ear
lier cohorts with lower survival rates, but a higher mean 
size (Gross, 1980, 1984; Klemow and Raynal, 1981; 
Marks and Prince, 1981; Mack and Pyke, 1983; Goldberg 
and Novoplansky, 1997). Two possible explanations for 
this behavior are: (1) smaller plants have lower water 
requirements and (2) water is much less easily accumu
lated in plants than other nutrients (Chapin, Schulze, and 
Mooney, 1990). However, our results clearly show that 
survival is size dependent in the opposite way. Therefore, 
larger seedlings are more likely to survive; similar be
haviors have been reported in light-dependent commu
nities (Kobe et al., 1995; Walters and Reich, 1996). The 
reason for this correlation may be related to the specific 
physical properties of gypsum soils such as high hydrau
lic conductivity, steep thermal gradients, and white color, 
which may result in a significant increase in water avail
ability during summer drought (Meyer, 1986; Meyer and 
Garcia-Moya, 1989). High water availability could also 
explain the summer flowering phenology and active sum
mer growth of most gypsophytes (Meyer, 1986; Gomez 
et al., 1996; Somolinos, 1997). Only larger plants, over 
3 cm height (Fig. 4), were able to surpass the gypsum 
crust and consequently benefit from the favorable hy
draulic summer conditions of gypsum soils. 

Although a relation between the "mature plants" and 
the "survivors" as a consequence of competition had 
been suggested (Fig. 5), the path coefficient obtained was 
not significantly different from zero. In addition to the 
obvious direct effect of "emergences" on "survivors," 
the only other significant direct path came from "habi
tat." Nevertheless, "mature plants" and "soil strength" 
presented a relevant indirect effect through "emergenc
es" on "survivors." The negative effect of "habitat" on 
"survivors" suggests that conditions that are favorable 
for emergence are different from those for seedling sur
vival. Thus, emergence occurred mainly on the crusted 
soils of the Centaurea community (levels 6-12) where 
competition with annuals is not relevant and Lepidium 
subulatum seedlings are able to surpass the surface crust. 
However, the low proportion of seedlings that emerged 
on the lower levels, had a better chance of survival after 
a 2-yr period. This suggests that Lepidium subulatum 
might conform to Gankin and Major's "refuge" model 
for soil endemics (Gankin and Major, 1964). Thus, Lep
idium subulatum is confined to the crusted gypsum soils 
of slopes, which are relatively free from competition 
(Meyer, 1986), but grow and survive even better on al
luvial gypsum soils. Somolinos (1997) previously re
ported a similar pattern in H. squamatum and also sug

gested that there was an allelopathic boundary in the al
luvial soils of the piedmont as a consequence of the high 
density of Artemisia herba-alba in this zone. 

We conclude that emergence and recruitment of Lepi
dium subulatum seem to be controlled by a precise set of 
factors. Seedlings primarily emerge on the gypsum sur
face crust (Fig. 2), and their survival is size dependent 
(Fig. 4), probably as a consequence of the necessity of 
rooting below the surface crust before summer drought. 
However, once emerged, the chance of survival is posi
tively related to the relatively alluvial soils of the pied
mont-slope contact (level 5). 

Although, our results link gypsophily to some prop
erties of the surface crust, several other aspects need to 
be evaluated, such as the role of the physical properties 
of gypsum soils in the development of mature plants. 
Bridges and Burnham (1980) pointed out that roots of 
generalist plants cannot penetrate soils with gypsum con
tents over 25% since under these circumstances, soil ma
terial lacks plasticity, cohesion, and aggregation, and be
comes completely mechanically unstable. On the other 
hand, the examination of soil chemical data has so far 
reported little evidence to explain this soil restriction be
havior (Meyer, 1986; Meyer and Garcia-Moya, 1989; 
Verheye and Boyadgiev, 1997). Further studies are need
ed to clarify the possible incidence of chemical soil prop
erties on gypsophily. 

The knowledge of the factors controlling seedling 
abundance and survival at spatial and temporal scales 
provide a basic tool for the management and conservation 
of this type of arid systems (Milton, 1995; Wiegand and 
Milton, 1996). In this sense, gypsum systems are consid
ered one of the most threatened systems in the Mediter
ranean basin (Gomez-Campo, 1987) and have been in
cluded in the European Community Habitats and Species 
Directive (Comunidad Europea, 1992), which promotes 
the conservation of the most vulnerable ecosystems in 
Europe. 
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