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Abstract 

This paper presents the IES-UPM experience in the outdoor characterization of PV modules. On 

days with clear sky conditions, a rather simple device consisting of a thermally-insulated wooden 

box allows the STC characteristics and the thermal coefficients of PV modules to be measured with 

low expanded uncertainty (±1.87% in power (k=2)). Particular attention has been paid to the 

calibration of the reference cell used for measuring the irradiance and making our measurements 

traceable to the International System of Units (S.I.). Furthermore, the uncertainty on the 

irradiance and module temperature measured by the reference PV modules calibrated with the 

help of this box has also been analyzed in relation to the angle of incidence of the direct 

irradiance. We think this experience is particularly interesting for local measurements in many 

countries currently incorporating PV plants in their electric grid, but lacking in specialized PV 

laboratories equipped with expensive solar simulators. 

Keywords: Uncertainty, I-V curve, PV module, Outdoor measurements, Reference module, 

Characterization at Standard Test Conditions. 

 

1. Introduction 

Indoor PV module characterization using Solar Simulators is becoming more common than 

outdoor characterization at real sun. Solar simulators offer independence with respect to time and 

weather conditions. This represents an obvious advantage for both PV module manufacturers, 

who must test their products at the same production rate, and for specialized laboratories located 

in places which often have cloudy or polluted skies. For this reason, a solar-simulator industry 

offering well normalized products (IEC:60904-9, 2007; “Solar simulators for PV modules,” 2010, 

“Solar simulators for PV modules includes new types of testers based on LED lamps,” 2011) has 

been developed for years and many relevant players in the current field of PV now have this 

equipment. This has contributed to extending the common believe that highly-accurate PV 

measurements are easily taken by solar simulators. A symptom of this belief is the recent supply of 

mobile solar simulators (Coello et al., 2014; “Mobile PV Testcenter. Intertek,” 2016, “Mobile 

quality control. Sun Energy Europe,” 2012, “PV MobiLAB. Kirchner Solar Group,” 2012; Navarrete 

et al., 2015) for the indoor testing of PV modules on the PV plant sites. 
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A main disadvantage of solar simulators is its price, which can easily exceed €150,000 for an AAA 

type. This cost is large enough to dissuade many possible PV practitioners (universities, engineers, 

etc.) from trying to measure PV modules accurately, as required under due diligence for 

controlling the delivered power of PV modules supplies or for PV reference-module calibration. 

This is particularly annoying in many countries currently incorporating PV plants into their electric 

gird, but which lack specialized PV laboratories -Bolivia, Cape Verde, Equator, Kenya, Senegal, etc. 

are just a few examples. However, most of these countries often enjoy clear skies that represent 

an appealing alternative to accurate outdoor PV module testing. 

The outdoor measurement of PV electrical performance has been reported by widely-recognized 

laboratories, such as the Arizona State University`s Photovoltaic Test Laboratory (Whitfield and 

Osterwald, 2001), The European Solar Test Installation, ESTI, at the European Commission’s Joint 

Research Center (Müllejans et al., 2009) and the Florida Solar Energy Center (Atmaram, 2006). All 

of them are dedicated to transferring I-V curves gathered under outdoor conditions to Standard 

Test Conditions, STC. All the corresponding analyses highlight that the major relative contribution 

to the uncertainty of the module power rating results comes from the calibration of the reference 

device (module or cell) used for measuring incident irradiance. In order to reduce the I-V curve 

corrections in accordance with IEC 60891, 2009,the irradiance is typically restricted to the range 

between 800 and 1100 W/m2. Temperature-related elements of uncertainty derive from back skin 

–to-cell temperature deviation and from the non-uniformity of the temperature within a module. 

The outdoor set-up of the ESTI consists of a thermally-insulated box with a sliding door. The PV 

module is placed inside the box and the I-V curves are recorded just after opening the door, when 

the temperature of the PV module is still close to the ambient temperature (which, in turn, is 

usually relatively close to the reference temperature of 25oC). Interestingly, the authors of an 

uncertainty comparison between ESTI available indoor (solar simulator) and outdoor methods 

conclude that “the outdoor set-up taking advantage of the uniformity of natural sunlight is 

preferred. As the temperature uncertainty is the major contribution to the overall uncertainty for 

the latter, the implementation of a temperature control system for the box (to stabilize the 

module at the desired temperature of 25oC) in which the module is mounted would be beneficial” 

(Müllejans et al., 2009). The superiority of natural sunlight for PV measurements has also been 

highlighted by other authors (Keogh and Blakers, 2004). In fact, several primary calibration 

techniques use it (Müllejans et al., 2005b).  

This paper reports on the IES-UPM experience in the outdoor testing of PV modules, using a   

“Solar Box”, a rather simple home-made device simply consisting of a thermally-insulated box 

coupled to a temperature control system. The latter is controlled using standard air conditioning, 

to achieve the desired temperature, and internal fans to keep the temperature inside the box 

uniform. Measurements of the STC power are complemented by measuring the temperature 

coefficients and irradiance coefficients, the latter, without the help of the “Solar Box”. Since 2013, 

we have characterized about 400 PV modules, many of them to be used as reference modules to 

measure the effective irradiance, Gef, and the solar cell temperature, TC, as quality assurance 
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procedures for large commercial crystalline silicon PV plants (Martínez-Moreno and Lorenzo, 

2015; Martínez-Moreno and Tyutyundzhiev, 2015). 

The instrumentation, measurement procedures and associated uncertainties are described. 

Moreover, attention is also paid to the uncertainties on Gef and TC values measured with these 

reference PV modules. 

 

2. PV module characterization procedure  

The Standard Test Conditions, STC, and temperature coefficients are characterized in terms of a 

uniform and perpendicular illumination of 1000 W/m2 irradiance and AM1.5 spectrum, and a 

uniform solar cell temperature of 25oC. Fig. 1 shows the simple device, called the “Solar Box”, that 

we have made to help achieving these conditions under the real sun. It is made up of a 

2.10x1.80x0.33 m (length x width x height - internal dimensions) thermally-insulated wooden box 

with polystyrene and equipped with a standard air-conditioning system. The box is mounted on a 

metallic structure that can be manually positioned in both azimuth and tilt. A working reference 

solar cell, coplanar but external to the box, provides a first approximation to the incident 

irradiance while the box is still closed. 

  
(a) (b) 

 
Fig. 1.Solar Box developed by IES-UPM used for testing PV modules outdoors. (a) Solar Box covered. (b) Solar Box 

opened. The figure shows the external and internal reference solar cells, the four fans to homogenize the temperature 

inside the box before it is opened, the air conditioning and the module inside, prepared to be measured at STC. 

 

The PV module is placed inside the box in such a way that the air-gap between the PV module 

surfaces (back-sheet and front-glass) and the inner box surfaces is about 15 cm, which ensures 

easy air circulation (Gan, 2009). Then, the box is oriented until this cell indicates an irradiance 

value close to 1000 W/m2 (according to our experience, ±5%, which is easy to obtain, suffices). 

Meanwhile, the air conditioning system maintains an inside temperature which is slightly lower 

than 25oC (quite often by cooling it down). Four fans located in the corners of the internal box help 

to homogenize the temperature (Huang et al., 2011). Then, the front cover of the box is removed 

and 25 I-V curves, equally spaced on time, are obtained throughout the PV module’s natural 
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heating process, which takes about 20 minutes. 9 PT1000 sensors glued to the back sheet of the 

PV module measure the temperature of the solar cell. The effective irradiance is accurately 

measured simultaneously by means of a carefully calibrated reference cell (Annex) placed inside 

the box. This reference cell is a monocrystalline silicon sensor, short-circuited through a high 

stability resistor, in such a way that the cell provides a voltage signal (which is recalibrated 

annually). The I-V curves are obtained by means of a home-made capacitive load (Muñoz et al., 

2015) with a capacitor large enough to assure a charging time of more than 20ms. Prior to tracing 

the curve, the capacitor is negatively pre-charged to ensure the short-circuit crossing. The 

connections of the PV module to this electronic load are made with four-point Kelvin probes. The 

incident irradiance, the voltage across the PV module (measured with two of the Kelvin probes) 

and its current (measured with the other two Kelvin probes as a voltage across a 150mV/10A, or 

15 mΩ, calibrated resistor) are acquired simultaneously through a differential four isolated 

channel digital storage oscilloscope with a sampling frequency of 5MS/s and 12 bit digitization. 

Typically, a total of 10k I-V points are acquired for each I-V curve. The data are transferred via USB 

interface to a PC when the measurement of the I-V curve is finished. Prior to their treatment, the 

data are digitally filtered (Caamaño et al., 1999) by selecting the first 40 coefficients of the 

Discrete Fourier Transform for both sequences of I and V. Data from the PT sensors are read 

synchronously using a datalogger (20-bit digitization). The average of the corresponding 9 values, 

once corrected by +3oC to compensate the drop in cell-to-back-skin temperature (King et al., 1998, 

1997; Whitfield and Osterwald, 2001) is considered to be the true PV module temperature. Finally, 

the I-V curves are characterized in terms of power, voltage and current at the maximum power 

point,     ,      and     , respectively, and of the short-circuit current,    , and open circuit 

voltage,    . When these variables appear with the superscript *, they refer to STC. Strictly 

speaking, such +3oC temperature correction is only valid in thermal equilibrium, so that its validity 

in the situation after the lid has been lifted and the module is warming up can be questioned. 

However, applying such correction leads to    
  values that agree well (better than 0.4%, as we will 

see later) with the values measured at pulsed solar simulators which are free of the drop in cell-to-

back-skin temperature effect. That is the main reason leading us to keep the correction even in 

that situation.  

In order to minimize corrections and uncertainty, the measurements are validated just if Gef ≥ 900 

W/m2 and the temperature between the hottest and the coldest point of the PV module (as given 

by the 9 PT1000) differ by less than 3oC at the beginning of the procedure (when testing the STC 

characteristics) and by less than 7oC throughout the rest of the process (when testing the 

temperature coefficients). That makes our measurements comply with IEC:60904-1, 2006; 

IEC:60904-4, 2011 and IEC 60891, 2009. Corrections to STC are made in accordance with IEC 

60891. In fact, our conditions are even more restrictive than that demanded by the norm. For 

example, IEC 60904-4 requires Gef ≥ 800 W/m2 and we impose Gef ≥ 900 W/m2; IEC 60891 requires 

the temperature to be measured at 4 positions, however we measure it at 9 positions. As the 

tested PV modules and the work reference cell are of equivalent technology (c-Si), possible 

spectral corrections are completely disregarded. Measurements are performed just on clear days, 

so that the irradiance keeps essentially constant along the 20 minutes process. 
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Finally, in order to make further research possible, collateral information is also recorded: 

barometric pressure provided by a meteorological station on the measurement site, as is the 

spectral related data (Aerosol Optical Thickness, water vapor and Angstrom parameter 

(“AERONET,” 2006)).It is worth mentioning that in Madrid we have about 180 sunny and totally 

clear days per year, and close to 75 partially cloudy days that still allow good measurements to be 

taken. 

 

2.1. Rated power 

Fig. 2 shows a representative I-V curve obtained at the beginning of the process and close to STC. 

The PV module is an Atersa A245P, with 60 polycrystalline-Si cells and a nominal power of 245 Wp, 

and it has been stabilized after 60 kWh/m2 of exposure to the Sun. The particular measurement 

conditions are Gef = 1003 W/m2 and TC = 24.4oC. Table 1 details the values of the characteristic 

parameters for both the recorded and the corrected STC I-V curves. The low impact of this 

correction, about 0.6% in     
 , is noticeable. Later we will see that the finally assigned     

  

value, resulting from several measurements performed along a year, is 237.4 W. The slight 

difference between individual and average results can be understood as an indication of low 

uncertainty. 

 
Fig. 2. Current versus voltage, I-V, curve measured almost at STC. 

 

Electrical 
parameters 

ISC (A) VOC (V) IMPP (A) VMPP (V) PMPP (W) FF 

Measured  8.61 37.66 8.05 29.66 239.03 0.737 
Extrapolated to STC 8.59 37.58 8.04 29.56 237.65 0.736 

Difference (%) 0.23 -0.21 0.12 0.34 0.58 0.14 
Table 1. Values of the measured and extrapolated to STC characteristics parameters. 

 

2.2. Temperature coefficients 
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Fig. 3 shows the evolution of the characteristics of the PV module versus the temperature for the 

same module as Fig. 2. Their slope determines the value of the corresponding temperature 

coefficients: 

  
 

   
 

    

   
     

 

   
 

    

   
   

 

    
 

     

   
  (1) 

Furthermore, the temperature coefficient of the FF (δ) can be obtained by: 

  
 

   

   

   
          (2) 

 
 
Fig. 3. PV module characteristics versus module temperature, throughout the measuring process. 

 

For a TC ranging from 22 to 59oC, the results of the coefficients are: α = 0.053 %/oC, β = -0.31 %/oC, 

γ= -0.43 %/oC and δ = -0.17%/oC. ¡Error! No se encuentra el origen de la referencia. shows the 

evolution time of TC and the corresponding non-uniformity throughout the heating process. It is 

worth mentioning that we have performed some measurements by taking the additional 

precaution of covering the back sheet of the module with a thermally-insulating foil. As expected, 

the final stabilized module temperature has increased from about 60 to 70oC. However, we did not 

observe significant differences in the resulting values of the temperature coefficients. Hence, we 

decided to disregard this precaution in our standard procedure. 

   
(a) (b) (c) 

Fig. 4. (a) Evolution of the temperature of the module (TC) and evolution of the maximum temperature difference 

among the 9 PT1000 throughout the measurement process. (b) Temperatures of the 9 PT1000 at the start of the 

process. (c) Temperatures of the 9 PT1000 at the end of the process. 
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2.3. Irradiance coefficients 

A critical review (De la Parra et al., 2017) of different available models for PV efficiency led us to 

conclude that only three independent parameters, one for temperature and two for irradiance, 

suffice to describe the PV performance of PV modules accurately in relative terms to STC. The 

oldest model complying with this idea was proposed fourteen years ago (Willians et al., 2003) and 

is given by: 

                 
                   (3) 

where   

   
 

        
  

 

              
   (4) 

where η is the efficiency of the PV module and  a1, a2 and a3 are empirically adjusted parameters. 

The particularization of this equation for STC leads to the condition:  

           (5) 

Consequently, equation (3) can be rewritten as 

                     
                   (6) 

This requires only three parameters, one for temperature and two for irradiance. As the PV 

module concerned has been characterized first in terms of    
 ,    

 ,     
 , α,   and γ, we can 

derive the two irradiance parameters from just two I-V curves obtained at two irradiances other 

than G*. This time we can manage without the Solar Box. We simply obtain 4 I-V curves at 

irradiances close to 200, 400, 600 and 800 W/m2, irrespective of the temperature of the module. 

Four curves instead of only two are enough for a better adjustment. Each curve is treated as 

follows: 

First, Gef and TC are derived from ISC and VOC by: 

     
   

   
             

       (7) 

   
        

  

 
          

   

    (8) 

     
   

   
 

   
        (9) 

where NS is the number of solar cells associated in series, k is the Boltzmann constant (1.38x10-

23J·K-1), q is the elementary charge (1.6x10-19C), m is the ideality factor of the diode (m=1.3 is a 

reasonable choice for c-Si), TC is expressed in oC and T0 is the absolute temperature at 0oC 
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(273.15K) and    
  can be understood as the open circuit voltage corrected in irradiance. Note that 

equations (7) to (9) form a non-linear equation system with no analytical solution. However, it is 

easily solved numerically through an iterative process starting with TC= TC
*. Typically, two 

iterations lead to errors of well below 1%. It must be stressed that effective incident irradiance is 

directly determined from the ISC itself of the PV module tested, once the corresponding STC value 

has been measured in a previous step.  It has been referred that this leads to less uncertainty than 

using a dedicated irradiance sensor (Campanelli and Osterwald, 2016) - this is also our experience. 

Second, the relative efficiency corrected to TC
*,   

 , is calculated as: 

  
  

    

  
   

 

     

 

     (10) 

and the values of a1, a2 and a3 are determined from the best fit of the second term in equation (3) 

to the four   
  resulting values. Finally,     

   and     
  are calculated and given as reference values, 

which allows the parameters of any PV efficiency versus irradiance model to be adjusted (Table 2 

and Fig. 5 presents the measurements performed on the same PV module that on section 2.1 and 

2.2). 

Measurements 
Gef (W/m2) TC (oC)   

  
ISC (A) VOC (V) PMPP (W) 

8.61 37.53 237.4 1000 25 1 
1.80 34.15 45.0 190 12.0 0.946 
3.52 35.47 90.7 370 15.6 0.994 
5.26 36.25 140.6 566 19.5 1.022 
6.99 36.77 189.1 780 22.7 1.012 

Model parameter 

a1 = 1.22 a2 = -0.22 a3 = 0.14 

Reference values 

    
 = 0.95     

 = 1 
Table 2. Measurements at 4 different operating conditions and derived efficiency versus irradiance model parameters. 

 

 
 
Fig. 5. Relative efficiency, η’, versus irradiance, G, observed values (corrected to 25oC) and fitted curve. 
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3. Uncertainty on the PV module characteristics 

3.1. Reference cell 

Table 3 presents the uncertainty components identified in this work. Following the analysis and 

terminology contained in the Guide to the Expression of Uncertainty in Measurements (ISO/IEC-

Guide98-3, 2008), it is indicated whether they are considered as Type A (whose uncertainty is 

estimated as the standard deviation of a series of repeated determinations) or Type B (whose 

uncertainty is calculated from the instrument’s  accuracy and calibration characteristics). Table 3 

also indicates the corresponding affected parameter. 

As recognized by other authors, the main contribution to uncertainty comes from the reference 

cell used for measuring irradiance and linking the traceability of our calibrations to the 

International System of Units (S.I.). This is why we have paid particular attention to the calibration 

of this device. By crossing different mutually independent calibrations, we have reached a 

standard uncertainty of ±0.67%, which is close to the middle value between the corresponding 

uncertainties on a primary reference cell (±0.12% (Müllejans et al., 2015)) and the typical 

secondary one (±2%). The different external calibrations and the uncertainty estimation 

procedures are described in Appendix. 

 

Uncertainty Component Type     
     

     
  

Temp. 
Coeff. 

Irrad. 
Coeff. 

Irradiance 

Reference cell calibration B X X    
Spectral mismatch A X X    
Misalignment A X X    
Data Acquisition System B X X    

Temperature 

PT 1000  B X     
Non-uniformity B X  X X X 
Backskin-to-cell drop B    X  
Data Acquisition System B X X X X  

Electrical Data Acquisition System B X X X X X 

Corrections 
I-V curve to STC A X X X   
TC from VOC B     X 
         to        

   A     X 
Table 3. Uncertainty components identified in this work. It is indicated whether they are considered as Type A or Type B, 

as are the affected parameter results. 

 

3.2. Type A uncertainties 

In order to quantify Type A uncertainties, we have periodically characterized a single PV module 

over a full year and analysed the repeatability of results. The PV module model is the same Atersa 

A245P, than in section 2. Over 2014, 15 measurements were taken -approximately one per month- 

and the PV module was kept in the dark between them.  
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Fig. 6a shows the time evolution of the measured     
  and  

Fig. 6b, the distribution of residuals with respect to the average value. This can be represented by 

a mean value,     
         = 237.4 W, and a standard deviation,        

 = 0.31%. This deviation is taken 

as a proper estimation of the Type A standard uncertainty (k=1). Table 4 extends the exercise to 

the remaining characteristic parameters. 

 

(a)                                                                                       (b) 

Fig. 6. (a)     
  of a PV module measured 15 times over a whole year inside the Solar Box. The continuous line 

represents the mean value of all the measurements and the dotted lines represent a deviation of 0.7% which includes all 

the measurements. (b) Distribution of residuals with respect to the average value. 

 

    
  

(W) 
    
  
(A) 

    
  
(V) 

   
  

(A) 
   

  
(V) 

FF* α 
(%/oC) 

β 
(%/oC) 

γ 
(%/oC) 

    
      

  

237.4 8.06 29.47 8.61 37.53 0.734 0.06 -0.32 -0.43 1 0.94 

       
 (%)        

 (%)        
  

(%) 

      
  

(%) 

      
  

(%) 

       
(%) 

     

(%/oC) 

     

(%/oC) 

     

(%/oC) 

       
(%)        

(%) 

0.31 0.40 0.21 0.43 0.16 0.24 
0.008 

(13.33%) 
0.010 

(3.13%) 
0.019 

(4.41%) 
0.6 0.5 

Table 4. Average and standard deviation (in %) of the characteristic parameters measured on a same PV module 15 times 

over a year. 

 

3.3. Type B uncertainties 

Table 5 presents the input information (instruments manufacturer specifications, updated 

calibration certificates, experimental requirements, assumptions, etc.) and the corresponding 

derived standard uncertainties for Type B components. The shape of the density function for each 

uncertainty component is generally assumed to be rectangular, so the corresponding standard 

uncertainty is given by: 

   
 

  
  (11) 
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where a is the interval within which the expected value of the measurement lies. In turns, it is the 

± accuracy typically specified by the instrument manufacturer or the requirement imposed on a 

given experiment. For example, the PT1000 are specified (manufacturer data) with a tolerance of ± 

0.415oC. This result translates into a standard uncertainty,   
      = ±0.240oC. On similar lines, 

imposing 3oC as the maximum difference between the readings of the 9 PT1000 glued to the back 

of the PV module is interpreted as a ±1.5oC interval and leads to   
    ±0.866oC. The drop in 

temperature between the cells and the PV module back-skin is considered to be 3oC with a range 

of ±1oC (King et al., 1998; Whitfield and Osterwald, 2001). D.A.S. is made up of an oscilloscope and 

a datalogger, which are of 12 and 20 bit digitalization respectively. Measurement ranges are 

selected in order to obtain signal values larger than half of the full scale. 

 

Component, i Input information Standard uncertainty 

Reference cell calibration 
Crossing different calibrations 
(Annex). Normal distribution 

  
    = 0.67% 

PT1000 Accuracy: ± 0.415oC   
      = 0.24oC 

Non-uniform temperature 
≤ 3oC at STC 
≤ 7oC at other than STC 

  
     0.866oC 

  
     2.021oC 

Backskin-to-cell drop 
temperature 

≤ 3oC 
Range: ±1oC 

  
   = 0.577oC 

D.A.S - Oscilloscope 
Accuracy: ±0.2%  
Resolution: 12 bits digitization 

  
     0.116% 

 
                 
                   

  

D.A.S - Datalogger 

Accuracy (VDC): 0.005% of 
reading + 0.004% of range 
 
Accuracy (Temp.): 0.06oC 
 
Resolution: 20 bits digitization 

  
       

  0.005% 

 
                 
                     

  

 

  
        0.035oC 

 
                 
                    

  

Calibrated resistor Accuracy: ±0.5%   
     0.289% 

Table 5. Input information of the instruments and components used in the measurements and the corresponding derived 

standard uncertainties for the Type B components. 

 

All these uncertainty components are mutually independent. Hence, the resulting combined Type 

B uncertainties on Gef and TC are estimated as: 

  
   

     
         

       
 
 
                          (12) 
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                                                    (13) 

  
       

                                                   (14) 

 

Table 6 shows the combined Type B uncertainty on the directly measured electrical parameters 

(ISC, VOC and PMPP) in %, as well as the uncertainty on α, β and γ in %/oC. The subscript “m” indicates 

directly measured values. Uncertainties on IMPP and VMPP, which are the inputs for PMPP uncertainty 

calculation, are considered to be the same as those corresponding to ISC and VOC, respectively. As a 

matter of example, the uncertainty on ISC,m and PMPP,m are given by: 

  

          
         

                                 (15) 

  

           

      
 
    

      
 
                           (16) 

 

 
ISC, m 
(%) 

VOC,m 
(%) 

PMPP,m 
(%) 

αIsc 

(%/oC) 
βVoc 

(%/oC) 
γPmpp 

(%/oC) 

Temperature       0.0045 0.026 0.036 

D.A.S. 0.116 0.116         

Calib. Resistor 0.289           

Imeasured     0.311 0.0124     

Vmeasured     0.116   0.0045   

Pmeasured           0.013 

Combined  
   (%) 

0.311 0.116 0.332 
0.013 

(21.66%) 
0.026 

(8.13%) 
0.038 

(8.84%) 

Table 6. Standard Type B uncertainties on the measured current, voltage and power, and on the temperature coefficients 

(k=1). 

 

Uncertainties on the temperature coefficients are estimated using the law of propagation of 

uncertainty: the combined standard uncertainty is the square root of the sum of the sensitivity 

coefficients (partial derivate of the equation with respect to the input parameter to be analyzed) 

squared, multiplied by its squared uncertainty.  

         
  

   
 
 
      

 
      (17) 
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For example, in accordance with equation 1, the uncertainty sources for α are ISC,m and TC. The 

corresponding calculations are: 

  

    
 

 

   
  

 

     
  

 

  
     

 

 
     (18) 

  

   
 

 

   
  

       
 

      
   

 
 

    
 
     

     
               

    (19)  

  
    

  

    
   

      
 

  
  

   
   

       
 
 

  

                                       
 

 
         (20) 

 

Table 7 shows the uncertainty on the STC characteristics. Again, the propagation law is applied to 

consider the required corrections. For example,    
  is given by: 

   
      

  

 
 

 

         
  

  (21) 

So G, TC, ISC,m and α are the uncertainty sources. The corresponding calculations are: 

    
 

  
 

   

         
  

 
  

 
 

 

  
    

   
      

         (22) 

    
 

   
    

  

          
   

  
     

   
    

   
       

          (23) 

    
 

    
 

 

         
  

 
 

  
    

   
      

          (24) 

    
 

  
    

       
  

          
   

  
       

   
    

   
       

          (25) 

  
   
 

                                                                   (26) 

 

 
   
  

(%) 
   

  
(%) 

    
  

(%) 
    
(%) 

  
 

(%) 

Irradiance 0.67 
 

0.67  0.67 

Temperature 0.064 0.345 0.464 0.183 0.464 

Imeasured 0.311 
 

  
 

Vmeasured 
 

0.116   
 

Pmeasured   0.334  0.334 

FFmeasured    0.334  

αIsc 0.014 
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βVoc  
0.028 

 
 

 
γPmpp   

0.041  0.041 

δFF    0.001  

Combined 
   (%) 

0.742 0.365 0.882 0.381 0.882 

Table 7. Standard Type B uncertainties on the extrapolated current, voltage, power, FF and efficiency. 

 

3.4. Combined and expanded uncertainties 

Again, the uncertainty components are considered as mutually independent. Hence, the combined 

uncertainty for a particular result is given by: 

              
          

    
 

  (27) 

where “i” stands for all the Type B components. Table 8 shows the combined standard uncertainty 

on the STC parameters and on the temperature coefficients. 

       
  

(%) 

      
  

(%) 

      
  

(%) 

       
(%) 

     
(%/oC) 

     

(%/oC) 

     

(%/oC) 

      

(%) 

0.935 0.858 0.399 0.45 
0.015 

(25.43%) 
0.028 

(8.71%) 
0.042 

(9.88%) 
0.935 

Table 8. Combined standard uncertainty on the STC parameters and on the temperature coefficients. 

 

3.5. Intercomparison 

We have compared the results of our outdoor measurements for three different modules with the 

results from a high quality pulsed solar simulator available at the Centro de Investigaciones 

Energéticas, Medioambientales y Tecnológicas – CIEMAT (Pasan 3b with class AAA in accordance 

with IEC 60904-9 with a flash duration of 10ms), respectively. Table 9 shows the results. The 

maximum power is within ±0.7%, which is of the order of the differences observed at worldwide 

intercomparison between reference laboratories (±1.3% for crystalline silicon modules (Dirnberger 

et al., 2014)).  

     
  

(W) 
    
  
(A) 

    
  
(V) 

   
  

(A) 
   

  
(V) 

FF* 

M1: Atersa A245P, 60 polycrystalline-Si cells,     
         

Flash CIEMAT 239.7 7.96 30.12 8.56 37.46 0.748 

Outdoor IES 241.0 8.08 29.83 8.60 37.60 0.750 
Difference (%) 0.54 1.51 -0.96 0.47 0.37 0.27 

M2: Solon P215, 60 polycrystalline-Si cells,     
         

Flash CIEMAT 209.2 7.40 28.27 7.99 36.16 0.724 
Outdoor IES 209.0 7.44 28.09 8.03 36.29 0.717 
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Difference (%) -0.11 0.50 -0.63 0.46 0.35 -0.97 
M3: Yingli YL230, 60 monocrystalline-Si cells,     

        
Flash CIEMAT 235.5 7.98 29.49 8.44 36.72 0.760 
Outdoor IES 236.6 8.04 29.43 8.51 36.80 0.756 
Difference (%) 0.45 0.72 -0.20 0.80 0.23 -0.56 
Table 9. Difference in the results of the measurements with the solar simulators from CIEMAT and measurements taken 

at real sun with the “Solar Box”. 

 

It is worth mentioning that we also had a medium quality pulsed solar simulator (Berger PSS 8 with 

class A, flash duration of 10 ms). The irradiance level is adjusted with the same reference cell we 

used for outdoor measurements. Table 10 compares the measurements from both solar 

simulators. Interestingly, the differences are larger than those corresponding to the outdoor 

measurements. 

     
  

(W) 
    
  
(A) 

    
  
(V) 

   
  

(A) 
   

  
(V) 

FF* 

M1: Atersa A245P, 60 polycrystalline-Si cells,     
         

Flash CIEMAT 239.7 7.96 30.12 8.56 37.46 0.748 

Flash IES 244.3 8.03 30.43 8.59 37.45 0.760 
Difference (%) 1.92 0.88 1.03 0.35 -0.03 1.58 

M2: Solon P215, 60 polycrystalline-Si cells,     
         

Flash CIEMAT 209.2 7.40 28.27 7.99 36.16 0.724 
Flash IES 212.5 7.46 28.48 7.96 36.11 0.739 
Difference (%) 1.57 0.81 0.74 -0.38 -0.14 2.06 

M3: Yingli YL230, 60 monocrystalline-Si cells,     
        

Flash CIEMAT 235.5 7.98 29.49 8.44 36.72 0.760 
Flash IES 240.8 7.98 30.17 8.52 36.70 0.770 
Difference (%) 2.23 0.00 2.31 0.95 -0.05 1.30 
Table 10. Difference in the results of the measurements with the solar simulators from CIEMAT and IES-UPM. 

Finally, it should be mentioned that the “Solar Box” materials cost is only about 1500€ (wood: 80€; 
insulation: 40€; fans: 50€; support structure: 850€; reference cell: 500€). This box must be used in 
combination with additional components (a laptop computer, a capacitive load, an air-
conditioning system and temperature sensors), that cost must be also taken into account. The 
total cost is, approximately, 4500€. 

4. Uncertainty on PV reference module measurements 

As a representative case, we have prepared 20 PV modules of the same model (Yingli YL250-29b 

250 Wp) to be used as Gef and TC sensors in large PV plants. All of them were previously submitted 

to an exposure to the Sun of about 60 kWh/m2 and revised using electroluminescence, in order to 

assure that they are well stabilized and fully free of internal defects. Half of them are going to be 

used as Gef sensors. For that, they were shunted by means of calibrated resistors (Class 0.5, high 

thermal stability). Corresponding irradiance signals are the drop in voltage at these resistors. The 

other half is going to be used as TC sensors, which corresponding signals are the open circuit 

voltages. All of them were individually calibrated as described in the previous section, but the 



16 
 

calibration of ISC was substituted by the calibration of the direct irradiance signal, which leads to 

the Type B uncertainty corresponding to the calibrated resistor being avoided. 

Next, we installed the 20 PV modules on the same surface (30o tilted, South oriented) and we 

compared their Gef and TC measurements over several days (May 19th and 20th, 2016 for Gef and 

June 2nd and 5th, 2016 for TC). The corresponding differences have been the basis for estimating 

the uncertainty.  

 

4.1. Uncertainty on irradiance 

As a representative example, Fig. 7 shows the average of the 10 Gef individual measurements and 

the corresponding difference between each individual measurement and this average. Differences 

are within ± 1%, which is consistent with the uncertainties on the    
  characterization described 

above (1% is close to one standard deviation). As all of the PV modules receive the same 

irradiance, the uncertainty on the average value is less than for the measurement of a single PV 

module. In particular, Type A uncertainty is divided by   , N being the number of PV modules. 

This allows the calibration to be refined in such a way that all of the modules give measurements 

as close as possible to the average value. Fig. 8 shows the evolution of the difference in the 

irradiance measured by two of these PV modules - after refining the calibration - versus the angle 

of incidence of the direct irradiance component, θS. The key point is to realize that the difference 

increases sharply for θS> 50o, which can be explained by slight differences in angle of incidence, 

due to the frame not being perfectly flat all over. The resulting standard uncertainty is 0.93% for θS 

≤ 50o (Type A: 0.43%, Type B: 0.82%) and 1.36% for θS> 50o (Type A: 0.43%, Type B: 1.35%).  

 

 

Fig. 7. Effective irradiance, Gef, obtained by the average of the 10 PV modules and differences between this average and 

each module for irradiances above 600 W/m2 (for clarity of presentation, the differences are shown for only three 

modules). Measurements have been recorded on May 19th, 2016. 
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Fig. 8. Difference in the effective irradiance measured by two reference modules on a clear day (May 19th) versus the 

angle of incidence. 

 

4.2. Uncertainty on PV module temperature 

Fig. 9 shows the 10 values of TC measured with clear sky (June 2nd, 2016) with a cell temperature 

close to 65oC at noon. The maximum difference between PV modules during the two days of TC 

calibration (June 2nd and 5th, 2016) is ±3.3oC. These differences are within the expected range, 

because the thermal dissipation process influences the module and varies from one PV module to 

another, even if they are from the same manufacturer, model and type of cell. For this reason, 

possible calibration refinements based on compensating this difference have been disregarded. 

The resulting combined standard uncertainty is 0.381% (Type A: 0.16%, Type B: 0.381%), for k=1. 

 

 

Fig. 9. Module temperature obtained by the average of the 10 PV modules and differences between this average and each 

module (for clarity of presentation, the differences are shown for only three modules). Measurements have been recorded 

on June 2nd, 2016. 

 

5. Conclusions 

The IES-UPM experience with the outdoor characterization of c-Si PV modules and calibration of 

reference modules has been presented. Clear sky conditions are common in Madrid. Taking 
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advantage of this pleasant circumstance, a home-made “Solar Box”, which is a simple, thermally-

insulated wooden box with polystyrene and equipped with a standard air-conditioning system, 

allows us to measure the characteristics of the PV modules at Standard Test Conditions and also to 

measure the temperature coefficients. I-V curves are also obtained by means of a home-made 

capacitive load, whose capacitor is adjusted to ensure charging times of at least 20 ms, in order to 

avoid voltage-sweep related FF disturbances. 

We have paid particular attention to the calibration of the reference solar cell used for measuring 

irradiance. This device makes our measurements traceable to the S.I. and represents the major 

contribution to uncertainty. By crossing different independent calibrations, including our 

participation at the 5th International Spectro – and Broadband Radiometer Intercomparison, we 

established the calibration value with an expanded uncertainty of 1.34% (k=2). Together with 

standard electrical precautions, such as four-point Kelvin probe I-V measurements, this leads to 

the following expanded uncertainties (k=2) on the STC characterization parameters: 1.87% in 

    
 , 1.72% in    

 , 0.80% in    
  and 0.90% in    . On the other hand, we also use the “Solar Box” 

for calibrating reference PV modules as irradiance and module temperature sensors. We relate the 

corresponding uncertainty to the angle of incidence of the direct irradiance. The resulting 

expanded uncertainties (k=2) on Gef for angles below (above) 50o are 0.93% (1.36%) and 0.38% on 

TC. These values are in the order of those corresponding to high accuracy solar simulators, and 

allow their involvement in the technical quality assurance of large PV plants. 

We think this experience can help to open the door to high-quality PV measurements without the 

need for rather expensive solar simulators. This is of interest for local measurements in the 

growing number of countries currently incorporating PV plants into their electric grids, but still 

lacking PV specialized laboratories, and enjoying frequent clear sky conditions. In fact, our work 

has been developed simply within the framework of the quality assurance processes for these PV 

plants. 
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A. The calibration of the reference solar cell 

The traceability of our measurements to the S.I. is established through a c-Si reference solar cell 

(ISET sensor) we acquired in 2013 from IKS Photovoltaik. It provides an irradiance signal (from an 

internal resistor, short-circuiting the cell) and a temperature signal (from an internal PT1000). The 

cell was delivered with a calibration certificate from the Fraunhofer-ISE (2626-13). The calibration 

value is 92.025 mV/(kW/m2) ± 4% (k=2) with the cell at 25oC. Furthermore, the instruction manual 

of the ISET sensor says that the temperature coefficient for irradiance is 0.065±0.015 %/oC. 

As this cell plays a key role in our measurement uncertainties, we have paid particular attention to 

its calibration, submitting it to the three additional calibration procedures as summarized in Table 

A.1. In all the cases the initial calibration value is given by the slope of the direct irradiance signal 

of the solar cell plotted against the irradiance seen by a coplanar reference device traceable to the 

S.I. Now, appropriate angular, spectral and temperature corrections must be applied to take into 

account the difference among the calibration procedures:  

 

Independent calibrations 

Date 
Calibration 

body 

Initial calibration 

Procedure 

Corrected calibration 

Value 
(mV/(kW/m2)) 

Standard 
deviation   

 (%) 

Value 
(mV/(kW/m2)) 

Standard 
deviation  

(%) 

March 
2013 

FISE 92.025 2 
At a solar 

simulator against 
a reference cell 

92.025 2 

July  
2014 

CIEMAT 90.4 1 

At natural 
sunlight against 

the global 
irradiance given 

by a 
pyranometer 

90.354 1.459 

May  
2015 

5th International 
Spectro – and 

Broadband 
Radiometer 

Intercomparison 

90.84 0.87 

At natural 
sunlight against 

the global 
irradiance given 

by a cavity 
pyrheliometer 
and a shaded 
pyranometer 

90.796 0.988 

February  
2017 

IES-UPM 91.384 1.05 

At natural 
sunlight against 
a reference cell 

calibrated by 
NREL 

91.089 1.445 
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March 
2017 

Final assigned calibration 90.899 0.67 

Table A.1 Calibration procedures carried out by different laboratories. Likewise, the initial calibration values are also 

shown with their respective uncertainties (k=1) and corrected for temperature, angle and AM. 

 

The FISE calibration was carried out on a solar simulator against a c-Si primary reference cell 

which, in turn, was calibrated at the PTB (Dirnberger and Kräling, 2013) by means of the so-called 

DSR calibration method (Metzdorf et al., 2000). In both calibration steps all the light is inside the 

angle of acceptance of the concerned cell (≈ 60o). Furthermore, the cell temperature is kept at 

25oC. No corrections are needed. 

At the 5th International Spectro – and Broadband Radiometer Intercomparison, the calibration was 

carried out on days with clear sky conditions. The solar cell, three cavity radiometers (for direct 

irradiance traceable to the WRR (Fröhlich, 1991), having a combined uncertainty of 0.103% 

(Galleano and Zaaiman, 2016)) and a shaded pyranometer (for diffuse irradiance, calibrated by the 

sun and shade method against the cavities and having an uncertainty of 0.78%) tracked the Sun. 

This is somewhat close to the so-called global sunlight method for primary photovoltaic reference 

cells (Müllejans et al., 2005a). The measuring campaign was carried out in Madrid, from May 18th 

to 22th 2015. The calibration period was within ± 3 hours around midday and that AM-corrected 

pressure ranged from 1.0 to 1.6. The result (after the appropriate filtering: G > 800 W/m2, 

difference between cavity radiometers < 1 W/m2) is a set of more than 700 valid measurements, 

each made up of four values: the irradiance signal of our cell, the direct irradiance given by the 

cavities, the diffuse irradiance given by the shaded pyranometer and the ambient temperature. 

Unfortunately, the temperature signal of our cell was not stored. The standard deviation of the 

initial calibration is 0.87% (Type A: 0.86% and Type B: 0.10%). However, the angle of acceptance of 

the pyranometer (≈ 90o) is larger than that corresponding to the cell. An angular correction is 

divided into two steps. First, considering that the diffuse irradiance has two components: one 

isotropic, DI, and another circumsolar, DC. According with Hay (Hay and McKay, 1985), the 

isotropic component can be estimated as: 

       
 

    
   (A.1) 

where B0 and ε0 are, respectively, the solar constant (1367 W/m2) and the eccentricity factor of 

the day. The ratio DI/D on the results of the measuring campaign ranges from between 0.24 and 

0.40. Second, considering that the ratio between the isotropic irradiance seen by two devices with 

acceptance angles α1 and α2 is: 

   
 

   
   

     

     
 
 
  (A.2) 
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In our case, 
   

 

   
      . Furthermore, a spectral correction for the direct irradiance can be derived 

using the empirical polynomial regression between AM and the relative short-circuit response, 

considered at the so-called SANDIA PV performance model (King et al., 2004; Osterwald et al., 

2014).  

                        (A.3) 

                                 (A.4) 

where a0 to a4 are empirical coefficients for each particular PV device. We have used typical values 

from the Sandia module database (Sandia, 2013) for c-Si modules: a0= 0.9315, a1= 0.05975, a2=-

0.01067, a3=0.0008 and a4=-0.0000224. It is worth remembering that the incident spectrum not 

only depends on AM but also on aerosols and water vapor content at the Atmosphere. Hence, 

because these parameters are not taken into account, some uncertainty associated to spectral 

effects must remain even after applying this correction. 

Finally, the irradiance signal can be corrected to 25oC, taking into account the solar cell 

temperature (estimated from the ambient temperature and the global irradiance) and the 

corresponding coefficient provided by the cell manufacturer. That leads to a final corrected 

calibration value of 90.796 mV/(kW/m2). The corresponding uncertainty is 0.988% for k=1 (Type A: 

0.67%; Type B: 0.730%, where 0.107% comes from the reference sensors, 0.174% from the angle 

correction, 0.674% from the temperature correction and 0.180% from the AM correction).  

Interestingly, the final dispersion of the corrected data (Type A: 0.67%) is less than the dispersion 

of the data without making any correction (Type A: 0.86%), which is a symptom of the soundness 

of the corrections. 

The CIEMAT calibration has carried out on a day with clear sky conditions. The solar cell concerned 

and a secondary pyranometer were exposed to the Sun at 40.4o latitude on a tilted and south-

oriented surface. The calibration was carried out for an irradiance of more than 600 W/m2. The 

uncertainty reported by the CIEMAT is 1% (k=1). Again, corrections can be made for the angle of 

acceptance (we have assumed a diffuse/global ratio equal to 10%), for the spectrum and the solar 

cell temperature. The final corrected calibration value is 90.354 mV/(kW/m2) with an uncertainty 

of 1.459% (Type A: 0.783%; Type B: 1.23% where 1% comes from the CIEMAT calibration, 0.174% 

from the angle correction, 0.674% from the temperature correction and 0.180% from the AM 

correction). 

The internal calibration was also carried out on a day with clear sky conditions. The cell concerned 

and a secondary reference cell calibrated by the NREL with an uncertainty of 0.7 % (k=1) are 

exposed to the Sun, and the calibration is made for G ≥ 800 W/m2. The NREL calibration is made at 

a solar simulator against a primary reference c-Si. Only temperature corrections are required. 

Interestingly, the primary devices at the origin of the corresponding traceability chains are 

different, so that we can consider these calibrations as mutually independent and derive the 
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weighted average and their expanded uncertainty, following (Cox, 2007; Müllejans et al., 2005a) 

as: 

  
     

 
   

   
 
   

 
 

  
  
 

 
   

 
 

  
 

 
   

  (A.5) 

with    
 

  
  , and    

           

 
, where   is the weighted mean, wi is the weight assigned to 

each calibration and σi corresponds to the standard deviation of each calibration. The weighted 

means standard deviation can be calculated by: 

   
    

   
  

   

   
 
   

 
 

  
 

  
 

 
   

  (A.6) 

Fig.A.1 shows the different calibration values: 

 

Fig.A.1. Calibration values of the reference cell from different laboratories once they have been corrected by thermal, 

angular and AM effects (see Table A.1). The red horizontal lines correspond to the calibration values, the rectangles limit 

±σ intervals and the vertical lines limit ±2σ intervals. The last one, in black and with the horizontal line in white, 

corresponds to weighted average. 

 

It could be said that, as the initial calibration value provided by the reference cell manufacturer is 

very close to the final value assigned after comparing different calibrations, this rather painstaking 

comparison exercise is superfluous. However, we must warn against this idea. In fact, we have 

acquired two reference cells from the same manufacturer and their corresponding Gef 

measurements, when exposed together to the sun and using their initial calibration values, differ 

consistently by about 3.4%. This difference is consistent with the expanded uncertainty claimed by 

the manufacturer (4% for k=2), but not with the uncertainty reached after the comparison 

performed here. It is also worth mentioning that the final uncertainty (0.67%) is lower than the 

lowest reported for calibration at pulsed solar simulators (Plag et al., 2014). 
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