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Abstract 

In this paper we present our results on using RNN-based LM 
scores trained on different phone-gram orders and using 
different phonetic ASR recognizers. In order to avoid data 
sparseness problems and to reduce the vocabulary of all 
possible n-gram combinations, a K-means clustering 
procedure was performed using phone-vector embeddings as a 
pre-processing step. Additional experiments to optimize the 
amount of classes, batch-size, hidden neurons, state-unfolding, 
are also presented. We have worked with the KALAKA-3 
database for the plenty-closed condition [1]. Thanks to our 
clustering technique and the combination of high level phone-
grams, our phonotactic system performs ~13% better than the 
unigram-based RNNLM system. Also, the obtained RNNLM 
scores are calibrated and fused with other scores from an 
acoustic-based i-vector system and a traditional PPRLM 
system. This fusion provides additional improvements 
showing that they provide complementary information to the 
LID system. 

1. Introduction 

Automatic spoken language identification (LID) is the process 
of identifying the actual language of a sample of speech using 
a known set of trained language models.  Currently, there are 
two main methods to achieve this goal: the first method uses 
acoustic features extracted from the speech signal, while the 
second method uses as features the sequences of transcribed 
text (typically phones) obtained using an automatic speech 
recognition system (ASR).  In general, acoustic-based systems 
achieve the best performances, although the combination with 
a phonetic-based system provides a higher accuracy when both 
kind of features/scores are fused  [2], [3]. This paper is mainly 
focused on improving the results of a phonetic-based system 
using the same structure of a PPRLM-based system [4].  In 
this case, our system is made of two components: a) the 
"Front-End" where several parallel phonetic recognizers are 
used to generate the sequence of phonemes for a given speech 
audio file, and b) the "Back-End" where the sequence of 
phonemes are used to train different language models (one for 
each language to recognize and phone recognizer) whose 
scores are finally compared among them in order to select as 
recognized language the language corresponding to the model 

which generates the lowest perplexity for the given test 
utterance. 

Since the scores produced by each language model are 
biased [4], due to the different number of phone units used by 
each ASR and the amount of training data, a calibration step is 
required before the classifier.  Besides, the combination of 
scores from different levels and sources of information (e.g. 
acoustic features, higher n-gram orders) provide 
complementary information, so fusion techniques are also 
applied to get better performances. 

In our system, we will combine traditional language 
models [5] with more recent recurrent-based language models 
[6] trained with the output of three different ASR phone 
recognizers, and fused with an acoustic i-vector based system. 
Results are presented for the plenty-closed condition of the 
KALAKA-3 database provided during the Albayzin LRE 2012 
evaluation [1].  The audio used in this database was very 
challenging since it was collected from YouTube videos, with 
different length durations, channel conditions, number of 
speakers, and several kinds of noises. All audio files were 
sampled at 16 KHz. During the evaluation, four different 
conditions were proposed depending on the languages to 
recognize, the availability of training data (plenty or empty), 
and the possibility of recognizing out-of-set languages or not 
(open vs closed). This paper shows results only on the main 
condition (plenty-closed), where the target languages were: 
Spanish, Catalan, Basque, Galician, Portuguese, and English; 
the total number of files for the train set was 5115, 458 for 
development, and 941 for eval. 

This paper is organized as follows: In section 2, the phone-
gram units concept and the system components are explained. 
In section 3, the different phone-based RNN-LM models and 
acoustic model used in this work are described. Then, in 
section 4, we present and discuss our results. Finally, in 
section 5, we present our conclusions and future work. 

2. System Description 

2.1. The concept of phone-gram units 

Language models used in PPRLM-based systems can be 
trained using different algorithms.  For instance, in 2001 [5] 
proposed maximum entropy models, while [7] proposed using 
neural network models, and Mikolov [6], in 2010, successfully 
proposed using recurrent neural networks. In Mikolov's model, 
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the state layer information is stored in the form of a 
multidimensional vector representation of two or more 
temporal states in the neural network, and then it is 
concatenated with the elements of the input layer of the neural 
network. The multidimensional vector representation is 
obtained applying a learning process which is based on the 
application of the Back-Propagation Through Time algorithm 
(BPTT) [8], [9] where the weights used by the RNN are 
calculated considering the temporal information obtained from 
the past states of the RNN. 

The model proposed by Mikolov [6] is designed to model 
phonetic structures at a word level, which is clearly efficient. 
However, the problem gets worse when the phonetic structures 
are phonemes, as the model needs a state layer which is three 
times bigger than the layer used with words [10] to obtain 
similar results. There are two important drawbacks for 
phonemes. First, there is an important increase of the 
computational cost, and second, the systems can be easily 
over-trained [11]. 

We have considered the model proposed by Mikolov 
adapted to phonemes as our baseline. Then, we will show how 
the n-gram phones concept applied to the phonetic sequences 
improves the baseline performance. We have used a 1-N 
codification for the phonetic units, being N the total number of 
phonemes (our vocabulary).  

As we know the relevance of the phoneme context in a 
LID task based on phonotactic information, with this approach 
we look forward to improve the RNNs behavior by 
incorporating contextual information in the inputs and, for that 
objective, we propose the concatenation of n-adjacent 
phonemes in a structure called phone-gram unit. As we can see 
in Figure 1, for diphones and triphones the new sequence 
includes contextual information in a more explicit way in the 
RNN, both in the state layer and in the projection layer where 
usually the temporal information is stored. 

 

 

Figure 1: Generation of the phone-gram units from a 
phoneme sequence. 

With this approach, we expect to improve the performance 
of the RNNLMs that use only phoneme sequences in the 
training process. The generation of high-order phone-grams 
has the implicit drawback of the increase in vocabulary size. 
For instance, for the database used for this work, [1] and using 
one of the phoneme recognizers from Brno University [12], 
specifically the Hungarian recognizer, the phone-grams of 1 
element or uniphones have a vocabulary of 61 elements 
(obviously, the same number obtained with the original model 
that uses phonemes), the phone-grams of order 2 or diphones 
have a vocabulary of 1938 elements and the triphones have a 
vocabulary of 28097 elements. All of them are the units 
observed considering Spanish utterances from the training data 
with the Hungarian recognizer.  

2.2. Phoneme Recognizers 

The phoneme recognizer, the main component of the “Front-
End” in the PPRLM structure, is based on the system designed 
by the Brno University (BUT) [12], which uses monophone 
three state HMMs. There are 3 HMMs (Hungarian, Russian 
and Czech) with  61 different types of phonemes, 46, and 52 
respectively. 

2.3. RNNLM-P applied to Language Identification 

As mentioned in previous sections, a PPRLM architecture has 
been used in this work. For each Phonetic recognizer [12] 
used in the Front-End a phoneme sequence is obtained. These 
sequences are used to generate the new phone-grams 
sequences and to train the models for each language in a 
supervised way. For each phone-gram sequence from a 
evaluation utterance, an entropy metric is obtained for each 
language,. Then, these scores are calibrated and fused [13] to 
obtain a global score. Finally, the complete system is 
evaluated using the Cavg metric, that takes into account the 
“False Acceptance” and the “False Rejection” errors [14]. 

2.4. Phonetic Vector Representation 

In our approach, neural embeddings are vector representations 
of the input elements used for a LID task.  

This way, the objective of the neural embedding models is 
to predict the phonetic unit that is going to appear next 
according to the context where the unit is included. From 
several models that have been proposed, two of them are the 
most used: the Skip-Gram Model and the C-Bow Model.  

Using a Skip-Gram model, a phonetic vector 
representation is obtained, which is useful to predict the 
context words in a sentence or document.  

The model definition normally used to train the 
embeddings is focused at the word-level, so it is based on the 
hypothesis that words in similar contexts tend to have similar 
meanings. The distance between words with a similar syntax 
and semantics tends to be small, while the distance between 
words with a different syntax and semantics tends to be higher. 

In our case, where we work at the phone level. We are 
looking forward to finding co-ocurrence of phonemes and 
sequences of phonemes that tend to happen in similar contexts 
for a specific language. This way, we expect to improve the 
results compared with the results obtained when only 
uniphone sequences are used. Since vector representations 
have been usually treated at a word level and, on the other 
side, our study focuses on phonetic units that we have called 
“phone-grams”, and their use in the continuous space has been 
called Phonetic Vector Representation. 

In general, the models are characterized by the relationship 
between the phone input, its context and the context 
representation [15].  The representation of the context used to 
calculate the conditional probability is defined by the Skip-
Gram model or the CBow model. We have selected Skip-
Gram as we obtained better results in initial experiments. 

2.4.1. Skip-Gram model 

The training objective of the Skip-Gram model is to learn the 
phonetic vector representation of a phone-gram that could be 
“good” to predict its context in the same sentence. The context 
of the sentence is represented by one of the phone-grams in the 
window v that contains the context.  
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Figure 2: Skip-Gram model. 

The model is forced to predict random sampled phone-
grams from a context defined in a window v [16]. This means 
that, in each iteration of gradient descent (learning process of 
the network), a section of the phonetic sequence of window v 
is sampled, and just there, the phone-grams in that window are 
randomly sampled, this way a classification phase between the 
phone-grams and the context in that window is created. 

The phone-gram in time t is used as an input to a linear-
logarithmic classifier with a projection layer and predicts the 
occurrence probability of a phone-gram in the same t given 
other phone-grams randomly selected from the context 
window, either before or after the phone-grams that appeared 
in time t [17] (Figure 2). 

2.4.2. Vocabulary reduction using phonetic vector 
representation 

High order phone-grams imply an increase of the number of 
phonetic units and, so, their dispersion and the appearance of 
units with a low number of examples in the training database, 
and so they suffer from an unreliable estimation. In this work, 
we have used the vector representation of phone-grams as the 
input in a vocabulary reduction process using the k-means 
algorithm. 

Our focus is to eliminate from the vocabulary the less 
representative phone-grams of a language, and with the 
resultant vocabulary to train the language models using the 
recurrent neural network. We considerate that vocabulary 
reduction will decrease the scattering of training information, 
and we could obtain more robust language models. The system 
can be seen in Figure 3.   

The k-means algorithm is an unsupervised classification 
algorithm that is useful to group scattered data or observations 

in different groups usually called “classes”. The method used 
to define the classes for each phone-gram in the vocabulary is 
the following: first, the embeddings must be generated, as the 
distance between the units will be based on that. After that, the 
final number of classes is defined, which will be the number of 
centroids used by the k-means algorithm. Finally, for each 
phone-gram, the distance between its embedding and each 
centroid is computed, choosing the closest as the unit class.. 

2.5. Systems Fusion 

The objective of the fusion is to make use of information 
obtained from different modules to extract the best 
contribution from each one and obtain a general improvement 
in the results [18]. Usually, this type of information is related 
to probability values or scores and methods of linear or 
logarithmic combinations that assign weights to every model 
implicated in the fusion. Information from the three phoneme 
recognizers has been used in this work to generate the decision 
scores and subsequent fusion.  

3. System Configuration 

3.1. In relation to the neural network 

The right performance of the neural networks in the generation 
of the language models is conditioned to an appropriate 
configuration of their parameters. Among the most important 
ones we should mention: 

1. The Number of neurons in the state layer (NNE). 

2. Number of classes (NCS). Phone-grams are grouped in 
the output layer in a factorization process [19], [20], 
[21], where the phone-gram probability is the 
probability of the class multiplied by the probability of 
the phone-gram given the class. A high NCS value 
speeds up the RNN training but the final language 
model is less accurate.   

3. Number of the state layers (MEM) corresponding to the 
previous times. With this parameter, previous context 
information is taken into account.  

4. Number of times the network output values are 
processed before upgrading the network weights 
(ORD). This parameter is not especially relevant in 
comparison with the other ones. 

 

 
Figure 3: LID system used to reduce the vocabulary size of phone-grams. 
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To evaluate the behavior of the RNNLMs being generated 
using phone-grams (RNNLM-P), we must be aware of the 
vocabulary sizes obtained. For instance, the vocabulary sizes 
for uni, di and triphones in the case of the Spanish training set 
for each of the phonetic recognizers are shown in Table 2: 
 

 Number of phone-grams 
Phone-gram Russian Hungarian Czech 
Uniphone 52 61 46 
Diphone 1,876 1,938 1,572 
Triphone 29,822 28,097 25,874 

Table 2: Number of phone-gram units found in the 
Spanish train set for each phone recognizer 

For the other languages, we obtain similar figures, so we 
can use Table 2 as a reference. We can see that, as could be 
expected, the vocabulary increases drastically as the phone-
gram order does, with the dispersion problems already 
mentioned in Section 2.4.2. To deal with it, the factorization of 
the output layer and the number of the neurons in the state 
layer (NNE) have been modified.  

3.2. In relation to the embedding modeling 

To select the optimum model for the embeddings (either Skip-
Gram or CBow), we have trained an i-vector system using as 
inputs the trained embeddings.  Each phone-gram unit in the 
phonetic sequences used to train the i-vectors was replaced by 
its respective embedding sequence. These sequences have 
been used as feature vectors to train a total variability matrix 
and an Universal Background Model (UBM), which are used 
to obtain the i-vectors of each evaluation utterance (the 
method is similar to the method used with the acoustic 
parameters). The resultant i-vectors are used to train a 
multiclass logistical regression classifier where the scores are 
calibrated and fused. The obtained Cavg [14] was used to 
determinate the best embedding model.   

3.3. Acoustic i-vector-based system using MFCCs 

From each speech evaluation utterance present in a voice file, 
12 coefficients MFCCs [22] that include C0 are extracted for 
each frame. The silent and noise segments of the acoustic 
signal have been removed using a Voice Activity Detector. To 
reduce the noise perturbation, a RASTA filter has been used 
together with a cepstral mean and variance normalization 
(CMNV). Frames of speech separated 10 ms were projected in 
a feature vector of 56 dimensions, generated from the 
concatenation of the SDC parameters using the 7-1-3-7 
configuration. Feature vectors are used to training the total 
variability matrix, from which the i-vectors of dimension 400 
with 512 Gaussians are extracted (optimal configuration). 

4. Results 

Based on the parameters defined in the previous section, a 
particular analysis of each phone-gram order was performed to 
determine the optimal configuration in each case. In all cases, 
the results in the tables correspond to the fusion of the three 
phonetic recognizers (Russian, Hungarian, and Czech). 

4.1. Language models based on RNNs for uniphones 

For this condition, NCS=1 has been chosen because of the 
small vocabulary size (see Table 2), as the factorization of the 
output layer is not necessary. In preliminary tests, the optimal 
number of neurons in the state layer has been determined as 
NNE=250. In relation to the previous times considered by the 
RNN to include past information (parameter MEM), we have 
experimented with several values, finding an optimum for 
MEM=3. So, we consider this value as the optimal and the 
RNN configuration is defined by NNE=250, MEM=3, NCS=1 
and ORD=5. We can see the results in Table 3. 

4.2. Language models based on RNNs for diphones 

For diphones the vocabulary size is around 2,000. Therefore, 
the factorization of the output layer is necessary and finding 
the optimum number of classes in the output layer (NCS) is a 
must. We have evaluated the RNN performance for 3 different 
values for NCS (1, 30, and 60) and varying the number of the 
neurons in the state layer. We found that the performance of 
the RNN with diphones for NCS=30 is better than the result 
obtained with uniphones. 

This way, in our database the optimal configuration using 
diphones is NCS=30, NNE=100, MEM=20 and ORD=5. 

4.2.1. Vocabulary reduction of diphones using vector 
representations 

As we described in Section 2.4.2, we have used vector 
representations to replace the diphones with few appearances 
in the training set by the nearest one as defined by the clusters 
obtained by the k-means algorithm. With the new phone-gram 
sequences, the RNN training process was performed with the 
same configuration used previously. 

Applying this technique, we have improved the 
recognition results up to 7.34% relative compared to the LID 
system that uses diphones with no vocabulary reduction (see 
Table 3). On the other side, there is an improvement of 10.3% 
relative compared to the system with uniphones.  

 
 Cavg  

Phone-grams Abs Improve% 
Uniphone 12.81  
Diphone 12.40 3.2 

Diphone + vocab_reduct 11.49 10.3 

Table 3: Behavior of Cavg for Uniphone, Diphone and 
Diphone + vocabulary reduction 

4.3. Language models based on RNNs for triphones 

The vocabulary size for triphones is around 28k (see Table 2) 
in our database. The optimal configuration of the RNN starts 
with the following values: NCS=100, MEM=3, ORD=5 and 
NCS=300, and varying the number of the neurons in the state 
layer NNE. We have determined that using 200 neurons 
(NNE) is the optimum. Next, we evaluated the quantity of the 
time memory required to the RNN (MEM parameter). The 
results can be seen in Figure 4: 
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    Figure 4: Optimal Memory factor for the RNN using 
triphones. 

As we can see in Figure 4, although the optimum is 
obtained with 3 to 5 memory states, the performance of the 
RNN gets worse when this value increases. Analyzing the 
reasons of this behavior, we propose the following hypothesis: 
the intra and between classes scattering for triphones and the 
reduced number of appearances of a lot of them, complicate 
the RNN training. The hypothesis is based on the fact that we 
do not observe this behavior for uniphones nor diphones, 
where the scattering is very low. We also observed that the 
RNN applies implicitly a penalty on the score for unseen units 
in the training set. This can be seen in the log-likelihood 
obtained when we compare the RNNLM with a classical 
language model of phonemes (SRI-LM) in two evaluation 
triphones. In both cases, these triphones did not appear in the 
training phase. (Table 4). 
 

Triphone RNNLM SRI-LM 
i_i:_x -4.7917 -2.1383 
m_i_u: -4.6339 -2.2294 

Table 4: Log-likelihood for two triphones obtained 
with RNNLMs and a classical LM 

As we can see in Table 4, the penalty applied by the RNNs 
to the log-likelihood is higher than the penalty applied by the 
classical language models [5], and for that reason, we decided 
to apply a threshold so that triphones that do not appear in 
training do not deteriorate the perplexity generated by the rest 
of the triphones present in the evaluation sentence. 

This threshold is applied as follows. First, the average of 
the occurrence probability in the sentence is calculated from 
each triphone in the phone sequence. Second, this average is 
divided by a numeric constant k whose value is selected 
empirically to obtain the final value. This threshold value is 
assigned to all unseen triphones. Equation 1 reflects this 
procedure: 

                             (1) 

Where  is the occurrence probability of a 
triphone phi given the triphone phj that appears at time t-1. k is 
the numeric constant. N is the number of triphones in the 
evaluation file. 

To find the optimum k, we carried out experiments 
varying k between 1 and 10, keeping the configuration 
parameters NNE=200, NCS=300 and MEM=8. We considered 
a non optimal value for MEM because we believe that the 

effect of the threshold could be more evident with a worse 
MEM value. The results can be seen in Figure 5. 

 

 
Figure 5: Modification of k in the threshold formula 

In Figure 5 we can see that the best threshold value is k=5. 
Next, we continued the evaluation with fixed values for 
NNE=200, NCS=300 and a variable MEM. In Figure 6 we 
compare the results without the threshold (taken from Figure 
4) and with the threshold. Now, the optimum is for MEM=5. 
So, we will use this configuration as the optimal for 
triphones.

 

Figure 6: Comparison of the triphone system with and 
without the threshold. 

Similar tests have been performed using diphones, but no 
improvements have been observed, which could be expected 
as the number of unseen diphones is extremely low, so the 
threshold is very rarely applied. 

4.4. Comparison of uni-, di- and triphones 

We will now compare the results of the proposed technique, 
RNNLM-P, for uni, di, and triphones. The results can be seen 
in Figure 7, where it is obvious that the best recognition rate is 
obtained for triphones, although the effect of increasing the 
memory states in the RNN is useful until a value of MEM=5 
where a relative improvement of 7.7% is obtained compared to 
the optimum for uniphones. 
 

 
Figure 7: Best results for uniphone, diphone, and 

triphones 
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4.5. Fusion of the three phone-gram orders 

The next step is to fuse these systems. Results in Table 5 have 
been obtained for the following configurations, which 
correspond to the best topology for each phone-gram order: 

        - Uniphone: NNE=250, MEM=3, NCS=1 and ORD=5 
        - Diphone: NNE=100, MEM=20, NCS=30 and ORD=5 
        - Triphone: NNE=200, MEM=5, NCS=300 and ORD=5 
 

 Cavg  
RNNLM-P Trial Abs Improve% 

Uni-gram 12.81  
Diphone 11.49 10.3 
Triphone 11.92 6.9 
Fusion 10.87 15.1 

Table 5: Fusion of uni, di and triphones 

In Table 6 we compare the results obtained by the 
RNNLM-P system proposed in this paper with the PPRLM 
and MFCCs systems. The RNNLM-P provides a 6.1% relative 
improvement over the PPRLM system. 

 
 
 
 
 
 

Table 6: Best results for all individual systems 

In the case of the PPRLM system, the language models 
have been obtained applying the Witten-Bell technique to 
smooth the model. 

In Table 7, the final global result for all fusions are shown, 
combining the three systems, RNNLM-P, PPRLM and 
MFCCs. Improvements are also computed in relation to the 
PPRLM system There are relevant improvements in all cases, 
with contributions to both PPRLM and MFCC systems. We 
can also see that the combination of MFCC with the proposed 
technique is better than with PPRLM. In any case, the 
combination of the three systems further improves the results. 
 

 Cavg  
System Abs Imp% 

RNNLM-P+PPRLM 10.51 9.2 
PPRLM+MFCCs 5.10 32.9 

RNNLM-P+MFCCs 5.04 33.7 
RNNLM-P+PPRLM+MFCCs 4.80 36.8 

Table 7: Best results for all fused systems 

5. Conclusions and future work 

The proposed technique, based on using phone-gram units for 
the LID task provides better results than the original 
technique, based on using characters for the language models 
generation. Also, the system benefit from the fusion of phone-
gram orders 1-2-3 with a 13% relative improvement.  

We have also presented the best parameter configurations 
of the RNNLM for all phone-gram orders. 

Finally, the fusion of RNNLM-P with other language 
recognition systems, namely an acoustic based system and a 

PPRLM system provides improvements in all cases, up to 
36.8%. So, we can conclude that the phonetic vector 
representation can be successfully used for the LID task. 

As future work, we expect to improve the performance of 
the RNNLM-P thanks to the inclusion of discriminative 
information obtained from rankings of the most discriminative 
phonemes between languages.  In relation to the phonetic 
vector representation for the LID task, we will evaluate other 
clustering techniques to the reduction of the vocabulary, as 
well as dealing with the OOVs present in test sentences. 
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