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Abstract

In this paper we present our results on using RNéé&thd M
scores trained on different phone-gram orders asithgu
different phonetic ASR recognizers. In order to dvdiata
sparseness problems and to reduce the vocabulargll of
possible n-gram combinations, a K-means clustering
procedure was performed using phone-vector embgddia a
pre-processing step. Additional experiments to rojzé the
amount of classes, batch-size, hidden neurong-stdblding,
are also presented. We have worked with the KALAKA-
database for the plenty-closed condition [1]. Thsan& our
clustering technique and the combination of higrelgphone-
grams, our phonotactic system performs ~13% b#ttar the
unigram-based RNNLM system. Also, the obtained RNNLM
scores are calibrated and fused with other scam® fan
acoustic-based i-vector system and a traditionaRLENP
system. This fusion provides additional improversent
showing that they provide complementary informatiorthe
LID system.

1

Automatic spoken language identification (LID) letprocess
of identifying the actual language of a samplepdezh using
a known set of trained language models. Currettigre are
two main methods to achieve this goal: the firsthod uses
acoustic features extracted from the speech sigvidle the
second method uses as features the sequencessdrivad
text (typically phones) obtained using an automateech
recognition system (ASR). In general, acoustic-aystems
achieve the best performances, although the cotitineith
a phonetic-based system provides a higher accuvhey both
kind of features/scores are fused], [3]. This paper is mainly
focused on improving the results of a phonetic-dasgstem
using the same structure of a PPRLM-based syst#m Ih
this case, our system is made of two componentshe)
"Front-End" where several parallel phonetic recegrd are
used to generate the sequence of phonemes foea gpeech
audio file, and b) the "Back-End" where the sequente
phonemes are used to train different language raddek for
each language to recognize and phone recognizegsevh
scores are finally compared among them in ordesetect as
recognized language the language correspondingetonbdel
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which generates the lowest perplexity for the giviest
utterance.

Since the scores produced by each language moeel ar
biased 4], due to the different number of phone units uised
each ASR and the amount of training data, a calratep is
required before the classifier. Besides, the coatimn of
scores from different levels and sources of infaroma(e.g.
acoustic features, higher n-gram orders) provide
complementary information, so fusion techniques also
applied to get better performances.

In our system, we will combine traditional language
models [5] with more recent recurrent-based languagdels
[6] trained with the output of three different ASRhgme
recognizers, and fused with an acoustic i-vecteelaystem.
Results are presented for the plenty-closed comditibthe
KALAKA-3 database provided during the Albayzin LRB12
evaluation [1]. The audio used in this databases wery
challenging since it was collected from YouTubeedsd, with
different length durations, channel conditions, bem of
speakers, and several kinds of noises. All audes fivere
sampled at 16 KHz. During the evaluation, four efint
conditions were proposed depending on the languages
recognize, the availability of training data (plemtr empty),
and the possibility of recognizing out-of-set laagas or not
(open vs closed). This paper shows results onlghenmain
condition (plenty-closed), where the target langsagvere:
Spanish, Catalan, Basque, Galician, Portuguese, aglisk
the total number of files for the train set was %1458 for
development, and 941 for eval.

This paper is organized as follows: In sectiorh2,ghone-
gram units concept and the system components ataiesd.
In section 3, the different phone-based RNN-LM medaid
acoustic model used in this work are described.nThe
section 4, we present and discuss our results.|lEina
section 5, we present our conclusions and futum&.wo

2. System Description

2.1. The concept of phone-gram units

Language models used in PPRLM-based systems can be
trained using different algorithms. For instanice2001 B)
proposed maximum entropy models, whilé proposed using
neural network models, and Mikolo@][ in 2010, successfully
proposed using recurrent neural networks. In Miislanodel,
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the state layer information is stored in the forrh @
multidimensional vector representation of two or reno
temporal states in the neural network, and thenisit
concatenated with the elements of the input lajéhe neural
network. The multidimensional vector representation
obtained applying a learning process which is basedhe
application of the Back-Propagation Through Timeoatgm
(BPTT) [8], [9] where the weights used by the RNN are
calculated considering the temporal informationagt®d from
the past states of the RNN.

The model proposed by Mikolov [6] is designed todelo
phonetic structures at a word level, which is dieafficient.
However, the problem gets worse when the phongtictsires
are phonemes, as the model needs a state layehn ighilcree
times bigger than the layer used with words [10]otmain
similar results. There are two important drawbadks
phonemes. First, there is an important increase thef
computational cost, and second, the systems capabity
over-trained [11].

We have considered the model proposed by Mikolov
adapted to phonemes as our baseline. Then, wshal how
the n-gram phones concept applied to the phonetiopences
improves the baseline performance. We have usedNa 1
codification for the phonetic units, being N th&atcmumber of
phonemes (our vocabulary).

As we know the relevance of the phoneme contex in
LID task based on phonotactic information, withsthpproach
we look forward to improve the RNNs behavior by
incorporating contextual information in the inpatsd, for that
objective, we propose the concatenation of n-adface
phonemes in a structure called phone-gram unitvésan see
in Figure 1, for diphones and triphones the newusege
includes contextual information in a more explivity in the
RNN, both in the state layer and in the projectayel where
usually the temporal information is stored.

Uil =] =0 —— Original Phonetic

Sequence
phone-gram units )
u-ni-i-j—g-n ——————  Uniphone
un:-n_i-iJ-Jo-on —p Diphone
un_i-n_iJ-iJo-lon —_— Triphone

Figure 1 Generation of the phone-gram units from a
phoneme sequence.

With this approach, we expect to improve the pentamce
of the RNNLMs that use only phoneme sequences in the
training process. The generation of high-order ghorams
has the implicit drawback of the increase in vodatyusize.
For instance, for the database used for this wdikand using
one of the phoneme recognizers from Brno Univergli$),
specifically the Hungarian recognizer, the phoressgg of 1
element or uniphones have a vocabulary of 61 el&nen
(obviously, the same number obtained with the negmodel
that uses phonemes), the phone-grams of orderdipbones
have a vocabulary of 1938 elements and the triphbiaee a
vocabulary of 28097 elements. All of them are thdtsu
observed considering Spanish utterances from #narig data
with the Hungarian recognizer.
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2.2. Phoneme Recognizers

The phoneme recognizer, the main component of Enent-
End” in the PPRLM structure, is based on the systesigned
by the Brno University (BUT)12], which uses monophone
three state HMMs. There are 3 HMMs (Hungarian, Russi
and Czech) with 61 different types of phonemes,adl 52
respectively.

2.3. RNNLM-P applied to Language | dentification

As mentioned in previous sections, a PPRLM architechas
been used in this work. For each Phonetic recogrikg|

used in the Front-End a phoneme sequence is obtalinese
sequences are used to generate the new phone-grams
sequences and to train the models for each langirage
supervised way. For each phone-gram sequence from a
evaluation utterance, an entropy metric is obtaifeedeach
language,. Then, these scores are calibrated aed i3] to
obtain a global score. Finally, the complete systém
evaluated using the Caugetric, that takes into account the
“False Acceptance” and the “False Rejection” erfad.

2.4. Phonetic Vector Representation

In our approach, neural embeddings are vector septations
of the input elements used for a LID task.

This way, the objective of the neural embedding el®ds
to predict the phonetic unit that is going to appeaxt
according to the context where the unit is includBcom
several models that have been proposed, two of drenthe
most used: the Skip-Gram Model and the C-Bow Model.

Using a Skip-Gram model, a phonetic vector
representation is obtained, which is useful to jetethe
context words in a sentence or document.

The model definition normally used to train the
embeddings is focused at the word-level, so itaiseld on the
hypothesis that words in similar contexts tend awehsimilar
meanings. The distance between words with a siraifatax
and semantics tends to be small, while the distémtereen
words with a different syntax and semantics tendsethigher.

In our case, where we work at the phone level. \We a
looking forward to finding co-ocurrence of phonenesd
sequences of phonemes that tend to happen in sitoitdexts
for a specific language. This way, we expect torowp the
results compared with the results obtained wheny onl
uniphone sequences are used. Since vector repagenst
have been usually treated at a word level and,henother
side, our study focuses on phonetic units that aeltalled
“phone-grams”, and their use in the continuous sfes been
called Phonetic Vector Representation.

In general, the models are characterized by tléioakhip
between the phone input, its context and the contex
representation]5]. The representation of the context used to
calculate the conditional probability is defined the Skip-
Gram model or the CBow model. We have selected Skip-
Gram as we obtained better results in initial eixpents.

2.4.1. Skip-Gram model

The training objective of the Skip-Gram model idearn the
phonetic vector representation of a phone-gram ¢batd be
“good” to predict its context in the same sentefte context
of the sentence is represented by one of the ppaes in the
windowV that contains the context.
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Figure 2 Skip-Gram model.

The model is forced to predict random sampled phone
grams from a context defined in a windew16]. This means
that, in each iteration of gradient descent (lesgrprocess of
the network), a section of the phonetic sequenogindow v
is sampled, and just there, the phone-grams invitratow are
randomly sampled, this way a classification phaevéen the
phone-grams and the context in that window is exkat

The phone-gram in timeis used as an input to a linear-
logarithmic classifier with a projection layer apdedicts the
occurrence probability of a phone-gram in the sangéven
other phone-grams randomly selected from the contex
window, either before or after the phone-grams Hpgieared
in timet [17] (Figure 2).

2.4.2. Vocabulary
representation

reduction using phonetic vector

High order phone-grams imply an increase of the memof
phonetic units and, so, their dispersion and thgeagance of
units with a low number of examples in the traindejabase,
and so they suffer from an unreliable estimationthis work,
we have used the vector representation of phormesyes the
input in a vocabulary reduction process using thaeans
algorithm.

Our focus is to eliminate from the vocabulary tless|
representative phone-grams of a language, and ti¢h
resultant vocabulary to train the language modsisguthe
recurrent neural network. We considerate that voleaip
reduction will decrease the scattering of trainimgrmation,
and we could obtain more robust language models.syhtem
can be seen in Figure 3.

The k-means algorithm is an unsupervised clastifica
algorithm that is useful to group scattered datalimervations

in different groups usually called “classes”. Thethod used
to define the classes for each phone-gram in ticatudary is
the following: first, the embeddings must be geteztaas the
distance between the units will be based on thiaér Ahat, the
final number of classes is defined, which will be humber of
centroids used by the k-means algorithm. Finalty, éach
phone-gram, the distance between its embedding emcth
centroid is computed, choosing the closest asititelass..

2.5. SystemsFusion

The objective of the fusion is to make use of infation
obtained from different modules to extract the best
contribution from each one and obtain a generatawgment

in the results 18]. Usually, this type of information is related
to probability values or scores and methods ofaliner
logarithmic combinations that assign weights torgvaodel
implicated in the fusion. Information from the tarphoneme
recognizers has been used in this work to gen#ratdecision
scores and subsequent fusion.

3. System Configuration

3.1. Inreation totheneural network

The right performance of the neural networks ingbeeration

of the language models is conditioned to an appatgpr
configuration of their parameters. Among the mogpartant

ones we should mention:

1. The Number of neurons in the state layer (NNE).

2. Number of classes (NCS). Phone-grams are groimped
the output layer in a factorization process [120][
[21], where the phone-gram probability is
probability of the class multiplied by the probitlgilof
the phone-gram given the class. A high NCS value
speeds up the RNN training but the final language
model is less accurate.

the

3. Number of the state layers (MEM) correspondmghe
previous times. With this parameter, previous cxinte
information is taken into account.

4. Number of times the network output values are
processed before upgrading the network weights
(ORD). This parameter is not especially relevant in
comparison with the other ones.

Train-Data
t RNN-
\—Ig M | LM Language
; Multi-Class identified
K Train
-means Logistic
usmg_ Regression
embedding RNNLM [ | Classifier
r Test
|
Test-Data

Figure 3 LID system used to reduce the vocabulary sizghohe-grams.
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To evaluate the behavior of the RNNLMs being geteera

using phone-grams (RNNLM-P), we must be aware ef th

vocabulary sizes obtained. For instance, the vdeapsizes
for uni, di and triphones in the case of the Spgafraining set
for each of the phonetic recognizers are showraind 2:

Number of phone-grams
Phone-gram | Russian Hungarian Czech
Uniphone 52 61 46
Diphone 1,876 1,938 1,572
Triphone 29,822 28,097 25,874

Table 2:Number of phone-gram units found in the
Spanish train set for each phone recognizer

For the other languages, we obtain similar figuseswe
can use Table 2 as a reference. We can see thebultk be
expected, the vocabulary increases drasticallyhasphone-
gram order does, with the dispersion problems djrea
mentioned in Section 2.4.2. To deal with it, thetdgization of
the output layer and the number of the neuronshén state
layer (NNE) have been modified.

3.2. Inréelation to the embedding modeling

To select the optimum model for the embeddinghéeiSkip-
Gram or CBow), we have trained an i-vector systemgisis
inputs the trained embeddings. Each phone-gramimithe
phonetic sequences used to train the i-vectorsrey@aced by
its respective embedding sequence. These sequéranes
been used as feature vectors to train a total hiitjamatrix
and an Universal Background Model (UBM), which aredis
to obtain the i-vectors of each evaluation utteear{the
method is similar to the method used with the atious
parameters). The resultant i-vectors are used &n ta
multiclass logistical regression classifier whewe scores are
calibrated and fused. The obtained Cavg [14] wad uee
determinate the best embedding model.

3.3. Acoustici-vector-based system using MFCCs

From each speech evaluation utterance presentaica file,
12 coefficients MFCCs [22] that include CO are exw&ddbr
each frame. The silent and noise segments of tbhestc
signal have been removed using a Voice Activitydotr. To
reduce the noise perturbation, a RASTA filter hasnbased
together with a cepstral mean and variance norat&iz
(CMNV). Frames of speech separated 10 ms were pedjéc
a feature vector of 56 dimensions, generated frdma t

concatenation of the SDC parameters using the 7+1-3-

configuration. Feature vectors are used to trairtmg total
variability matrix, from which the i-vectors of dansion 400
with 512 Gaussians are extracted (optimal confitma

4. Results

Based on the parameters defined in the previousorec
particular analysis of each phone-gram order wa®peed to
determine the optimal configuration in each caseall cases,
the results in the tables correspond to the fusibthe three
phonetic recognizers (Russian, Hungarian, and Czech).
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4.1. Language models based on RNNsfor uniphones

For this condition, NCS=1 has been chosen becaugbeof
small vocabulary size (see Table 2), as the faztian of the
output layer is not necessary. In preliminary tests optimal
number of neurons in the state layer has beenrdieted as
NNE=250. In relation to the previous times consédeby the
RNN to include past information (parameter MEM), hsve
experimented with several values, finding an optimfor
MEM=3. So, we consider this value as the optimal #me
RNN configuration is defined by NNE=250, MEM=3, NCS=1
and ORD=5. We can see the results in Table

4.2. Language models based on RNNsfor diphones

For diphones the vocabulary size is around 2,00@ré&fore,
the factorization of the output layer is necessamy finding
the optimum number of classes in the output lajg2g) is a
must. We have evaluated the RNN performance foff8reit
values for NCS (1, 30, and 60) and varying the numolb¢he
neurons in the state layer. We found that the pedoce of
the RNN with diphones for NCS=30 is better than rsult
obtained with uniphones.

This way, in our database the optimal configuratising
diphones is NCS=30, NNE=100, MEM=20 and ORD=5.

4.2.1. Vocabulary reduction of diphones using vector
representations

As we described in Section 2.4.2, we have usedowect
representations to replace the diphones with fepearances
in the training set by the nearest one as defiryethd clusters
obtained by the k-means algorithm. With the newrpghgram
sequences, the RNN training process was performéd the
same configuration used previously.

Applying this technique, we have improved the
recognition results up to 7.34% relative compaxedhe LID
system that uses diphones with no vocabulary reztug¢see
Table 3). On the other side, there is an improveroéa0.3%
relative compared to the system with uniphones.

Cavg
Phone-grams Abs Improve%
Uniphone 12.81
Diphone 12.40 3.2
Diphone + vocab_reduct| 11.49 10.3

Table 3:Behavior of Cavg for Uniphone, Diphone and
Diphone + vocabulary reduction

4.3. Language models based on RNNsfor triphones

The vocabulary size for triphones is around 28le (Eable 2)

in our database. The optimal configuration of theNR#arts
with the following values: NCS=100, MEM=3, ORD=5 and
NCS=300, and varying the number of the neuronsénstate
layer NNE. We have determined that using 200 neuron
(NNE) is the optimum. Next, we evaluated the qugrdf the
time memory required to the RNN (MEM parameter). The
results can be seen in Figure 4:
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Figure 4:Optimal Memory factor for the RNN using
triphones.

As we can see in Figure 4, although the optimum is
obtained with 3 to 5 memory states, the performasfcthe
RNN gets worse when this value increases. Analyzirey
reasons of this behavior, we propose the followipgothesis:
the intra and between classes scattering for triphand the
reduced number of appearances of a lot of thempboate
the RNN training. The hypothesis is based on thetfeat we
do not observe this behavior for uniphones nor aligls,
where the scattering is very low. We also obsenved the
RNN applies implicitly a penalty on the score fosaan units
in the training set. This can be seen in the lkglihood
obtained when we compare the RNNLM with a classical
language model of phonemes (SRI-LM) in two evaluatio
triphones. In both cases, these triphones did ppéar in the
training phase. (Table 4).

Triphone RNNLM SRI-LM
i_i_X -4.7917 -2.1383
m_i_u: -4.6339 -2.2294

Table 4:Log-likelihood for two triphones obtained
with RNNLMs and a classical LM

As we can see in Table 4, the penalty applied ByRNNs
to the log-likelihood is higher than the penaltykgd by the
classical language models]| and for that reason, we decided
to apply a threshold so that triphones that do apyear in
training do not deteriorate the perplexity genetdig the rest
of the triphones present in the evaluation sentence

This threshold is applied as follows. First, therage of
the occurrence probability in the sentence is ¢ated from
each triphone in the phone sequence. Second, taiage is
divided by a numeric constark whose value is selected
empirically to obtain the final value. This threkhwalue is
assigned to all unseen triphones. Equation 1 tefléais
procedure:

Umb =
MY = Nk 4

LE

N
pphi.lphj,_4)
= (1)

Where slzhilshi-_1) is the occurrence probability of a
triphonephi given the triphone phj that appears at timek-%.
the numeric constanfN is the number of triphones in the
evaluation file.

To find the optimum k, we carried out experiments
varying k between 1 and 10, keeping the configamati
parameters NNE=200, NCS=300 and MEM=8. We considered
a non optimal value for MEM because we believe tiat
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effect of the threshold could be more evident vattworse
MEM value. The results can be seen in Figure 5.

12,8

e N\
\v/

Cavg
12,2

12

11,8
0 3 5 7 8
Threshold (k)

Figure 5:Modification of k in the threshold formula

In Figure 5 we can see that the best thresholdeviakr=5.
Next, we continued the evaluation with fixed valufes
NNE=200, NCS=300 and a variable MEM. In Figure 6 we
compare the results without the threshold (takemfFigure
4) and with the threshold. Now, the optimum is KBEM=5.

So, we will use this configuration as the optimar f
triphones.

13
128
126

Cavg 12; — _~ Without threshold
- --‘-"h..—-—l—'_/

12 = With threshold
11,8
11,6

1 3 5 8 10
Memory of the RININ (MEM)

Figure6: Comparison of the triphone system with and
without the threshold

Similar tests have been performed using diphonasnd
improvements have been observed, which could bectsg
as the number of unseen diphones is extremely sowthe
threshold is very rarely applied.

4.4, Comparison of uni-, di- and triphones

We will now compare the results of the proposedneyue,
RNNLM-P, for uni, di, and triphones. The results denseen
in Figure 7, where it is obvious that the best geition rate is
obtained for triphones, although the effect of @éasing the
memory states in the RNN is useful until a valueMEM=5

where a relative improvement of 7.7% is obtaineshgared to
the optimum for uniphones.

135

13 R e
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12 = Triphones
115
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Figure7: Best results for uniphone, diphone, and
triphones



4.5, Fusion of the three phone-gram orders

The next step is to fuse these systems. Resultabiie s have
been obtained for the following configurations, i
correspond to the best topology for each phone-gnater:

- Uniphone: NNE=250, MEM=3, NCS=1 and ORD=5
- Diphone: NNE=100, MEM=20, NCS=30 and ORD=5
- Triphone: NNE=200, MEM=5, NCS=300 and ORD=5

Cavg
RNNLM-P Trial Abs Improve%
Uni-gram 12.81
Diphone 11.49 10.3
Triphone 11.92 6.9
Fusion 10.87 15.1

Table 5:Fusion of uni, di and triphones

In Table 6 we compare the results obtained by the
RNNLM-P system proposed in this paper with the PPRLM
and MFCCs systems. The RNNLM-P provides a 6.1% relativ
improvement over the PPRLM system.

System Abs
MFCCs 7.60
PPRLM 11.57
RNNLM-P 10.87

Table 6:Best results for all individual systems

In the case of the PPRLM system, the language models

have been obtained applying the Witten-Bell techaida
smooth the model.

In Table 7, the final global result for all fusioase shown,
combining the three systems, RNNLM-P, PPRLM and
MFCCs. Improvements are also computed in relatiothé&
PPRLM system There are relevant improvements icaaes,
with contributions to both PPRLM and MFCC systems. We
can also see that the combination of MFCC with tleppsed
technique is better than with PPRLM. In any cases th
combination of the three systems further improbesresults.

Cavg
System Abs Imp%
RNNLM-P+PPRLM 10.51 9.2
PPRLM+MFCCs 5.10 32.9
RNNLM-P+MFCCs 5.04 33.7
RNNLM-P+PPRLM+MFCCs | 4.80 36.8

Table 7:Best results for all fused systems

5. Conclusions and future work

The proposed technique, based on using phone-gnémfar
the LID task provides better results than the oagi
technique, based on using characters for the lgggoaodels
generation. Also, the system benefit from the fugb phone-
gram orders 1-2-3 with a 13% relative improvement.

We have also presented the best parameter cortfimusa
of the RNNLM for all phone-gram orders.

Finally, the fusion of RNNLM-P with other language
recognition systems, namely an acoustic based myatel a
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PPRLM system provides improvements in all casestaup
36.8%. So, we can conclude that the phonetic vector
representation can be successfully used for thethsk.

As future work, we expect to improve the performené
the RNNLM-P thanks to the inclusion of discriminativ
information obtained from rankings of the most disinative
phonemes between languages. In relation to thengiimo
vector representation for the LID task, we will xade other
clustering techniques to the reduction of the votaly, as
well as dealing with the OOVs present in test seres.
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