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Abstract 
  

The goal of the work presented in this paper is to develop a practical solution for mission 
plan execution to simplify the way in which operators configure the missions of robots. 
This work has been done to promote a more extensive use of the software framework for 
aerial robotics Aerostack. We have designed a computer system called execution engine 
that includes technical solutions from general robotics and artificial intelligence. The 
system follows a behavior-based approach and a symbolic representation of beliefs. The 
execution engine has been designed to be part of Aerostack but it can also work 
independently, so that it can be reused for building other type of robot architectures. This 
paper has been written as a specification and software design to be used as a guide for 
software implementation of the execution engine.  
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1. Introduction 
 
Aerostack is a software framework that helps developers design the control architecture of an 
aerial robot, integrating multiple heterogeneous computational solutions for autonomous behavior 
(e.g., computer vision algorithms, motion controllers, planning algorithms, etc.). Aerostack 
provides a powerful library of software components for robotics and a combination scheme for 
building the final architecture. Aerostack has demonstrated to be an effective tool for building 
different types of aerial systems in complex and dynamic environments [Sanchez-Lopez et al., 
2016; 2017]. It has proved to be a useful research platform to support flight experiments that 
evaluate new approaches in aerial robotics (e.g., [Suárez-Fernández et al., 2016; Molina et al., 
2017]). Aerostack was created to be available for different communities of developers and it is 
currently an active open-source project with periodic software releases (www.aerostack.org). 
 
Programmers who are familiar with Aerostack (e.g., programmers that belong to the development 
team of Aerostack or experienced programmers in aerial robotics) may use of the Aerostack 
library of components for rapid construction of a control architecture for an aerial platform. 
However, this is not easy for other potential users of Aerostack. The main problem is that the 
current version of Aerostack assumes that the programmer knows many low-level technical 
details, and it is not protected against certain errors. Therefore, Aerostack can be difficult to 
manage and error-prone for general users. 
  
In this paper we present results of our recent work to promote a more extensive use of Aerostack. 
In principle, to achieve this goal, Aerostack admits different improvements (e.g., graphical user 
interfaces with additional communication methods, etc.). Our emphasis in the work presented in 
this paper is on issues related to the practical execution of mission plans that can simplify the 
operation with robots. 
 
As a result of this work, we have designed a new software system, that we call execution engine, 
that provides the robot with effective execution capabilities. This system incorporates a number 
of technical solutions used in robotics and artificial intelligence. The resulting system creates a 
new logical interface with Aerostack that accepts instructions from the operator in a simpler way, 
encapsulating in more robust components the libraries of basic components of Aerostack.  
 
This paper has been written as a specification and general design to be used as a guide for the 
software implementation of the execution engine with the corresponding programming languages. 
The paper describes engineering details of our efforts to improve Aerostack, showing the reasons 
that support our design decisions, which can be useful for developers to better understand the 
architecture of this framework. The paper presents the execution engine, that was created to be 
part of Aerostack, but it has been designed to be general and, therefore, reusable for other robot 
architectures. 
 
The remainder of the paper presents in detail the results of this work. Section 2 identifies the 
execution needs for a more effective operation, following ideas from the state of the art in 
robotics and artificial intelligence. Section 3 shows an overview of our execution engine. Section 
4 and 5 explain the two components of the execution engine. Section 6 describes how the 
execution engine can be used by mission plan interpreters. 
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2. Execution needs for effective operation 

The goal of this section is to place the objectives of our work in the context of robotic systems, to 
identify and justify the execution capabilities that are needed to simplify the user operation with 
aerial robots during the specification and the execution of mission plans. 
 

2.1. Human-robot interaction based on supervisory control 

In the work presented in this paper, we assume that the human-robot interaction is based on 
supervisory control [Sheridan, 1992] (Figure 1). According to this form of control, the relation 
between operator and robot follows a hierarchical authority. A human operator acts as a 
supervisor and the robot as a subordinate. The operator gives directives to delegate mission tasks 
to the robot. The robot understands and translates the directives into detailed actions by the robot. 
The robot collects detailed information about results and presents it to the supervisor. In 
supervisory control, the human operator programs the robot and receives information from the 
robot that itself closes an autonomous control loop through effectors and sensors to the 
environment.  

 

 
Figure 1: Human-robot interaction based on supervisory control. 

 
For example, the operator may ask the aerial robot to perform an inspection mission, specifying 
the area to cover and the exploration strategy. During the development of the mission, the 
operator observes the robot behavior and the robot sends messages to inform about the mission 
execution progress. This observation is useful to confirm that the mission is developed as 
expected. The operator can interrupt the mission under certain circumstances (for example, to 
avoid wrong behaviors in unexpected situations). 
 
One of the design decisions in this human-robot interaction is to select an appropriate language to 
be used between operator and robot with the adequate expressivity and level of abstraction. 
Operators use this language to describe formally the goals that the robot must achieve during the 
mission (including the specific criteria that uses the robot to determine the sequence of actions to 
achieve such goals). In robotics, different languages have been proposed to specify mission plans 
following a variety of representations:  
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● Many of languages for aerial robotics use lists of GPS waypoints with associated actions 
or commands. For instance, MP – Mission Planner uses navigation commands  to travel 
to waypoints, do commands to execute specific actions (e.g., taking pictures), and 
condition commands  that control when other commands are able to run.  

 
● A popular approach also is using finite state machines (FSMs). This representation has 

been used, for example, in languages such as the Behavior Language [Brooks 1990],  the 
Colbert language [Konolige, 1997], or MissionLab [MacKenzie 1997].  

 
● Other approaches have proposed modular and hierarchical representations such as 

hierarchical finite state machines (HFSM). For example XABSL (Extensible Agent 
Behavior Specification Language) [Loetzsch et al 2006] [Risler, 2009], State Control 
Library and Behavior Control Framework5 in NimboRo-OP [Allgeuer, Behnke, 2013].  

 
● Another hierarchical approach common in robotics is the task-based representation. In 

robotics, this representation has been used in ground robot control [Simmons, 
Apfelbaum, 1998; Nicolescu, Matarić, 2002], underwater vehicles [Roberts et al., 2003; 
Ridao et al., 2005] or for multi-agent UAV systems [Doherty et al 2010]. 

 
● The representation with behavior trees is another approach that uses a hierarchical 

representation. Behavior trees were proposed in the computer gaming industry. In 
robotics, behavior trees have been used recently [Marzinotto et al 2014] [Colledanchise, 
Ogren, 2014] and, specifically for UAVs [Ögren 2012] [Klöckner, 2013], such as the 
Modelica library (not free available) for UAV [Klöckner, et al. 2014].  

 
Hierarchical representations are popular solutions for complex and adaptive missions. For 
example, in Aerostack we can use the TML language that follows a hierarchical approach 
together with reactive planning [Molina et al., 2015]. However, our emphasis in this work is not 
on a particular specification language for mission plans. In the work presented in this paper, we 
are interested on issues related to the effective execution of mission plans and the appropriate 
interaction with the operator during the mission execution.  
 

2.2. Practical needs of execution systems 

To execute mission plans written by human users, it is necessary to have effective interpreters 
that transform automatically the instructions described in the operator language into detailed 
commands for the robot’s controllers. Autonomous robots have particular execution needs due to, 
for example, the mission may be executed in unpredictable environments (that makes, for 
example, that a planned action may be unfeasible) or the aerial robot has limited physical 
resources (e.g., the battery charge) that must be used efficiently. 
 
Robot architectures with high degree of autonomy usually have an executive system in charge of 
these issues. The executive layer in robot architectures can be understood as the interface between 
the numerical behavioral control and the symbolic planning layer [Kortenkamp et al., 2016]. The 
execution system takes a plan that assumes a certain level of certainty and expected outcomes and 
makes executive decisions to guarantee the correct execution of the plan in an uncertain and 
dynamic environment [Verma et al., 2005; Murphy, 2000]. 
 
The practical experience in the development of robot systems shows that this part of the 
architecture is a critical component with a high impact on safety and quality of the 
communication with the operator. It is important to design and validate carefully the executive 
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system of a robotic system. In a robot engineering context, where productivity is essential, it is 
important to have methods and software tools that reduce the effort of building such executive 
systems 
 
Ideally, the goal of an execution system is to achieve robust effective performance of an 
autonomous robots with the minimum programming effort to specify the mission. We analyze 
here two basic goals to consider in the development of an effective execution system that can 
facilitate the human operation with robots: (1) simplicity, plans written by operators should be 
described as simple as possible, and (2) robustness, robots should be able to react correctly to 
contingencies that happen in an unpredictable environment. In the following, we explain how 
these goals can be achieved by using certain solutions from general robotics and artificial 
intelligence. 
 
2.2.1. Simplicity 
To achieve simplicity, we can use the concept of behavior that provides abstraction, hiding low 
level technical details and complexity. A behavior is a natural notion that is familiar for general 
users (in simple terms, a behavior is is anything the robot is able to do: take off, move forward, 
land, etc.).  
 
The concept of behavior has been traditionally used in the literature of robotics for example, in 
subsumption architectures [Brooks, 1986]. A behavior encapsulates a set of perception algorithms 
and actuation controllers to generate a particular pattern perception-actuation. According to Robin 
Murphy, a behavior is a direct mapping of sensory inputs to a pattern of motor actions that is used 
to achieve a task [Murphy, 2000]. A behavior can be understood as a control law that clusters a 
set of constraints in order to achieve and maintain a goal [Mataric, 1994]. According to François 
Michaud and Monica Nicolescu, each behavior receives inputs from sensors and/or other 
behaviors in the system, and provides outputs to the robot’s actuators or to other behaviors 
[Michaud, Nicolescu, 2016]. 
 
A mission can be specified with a coordinated set of behaviors. During the execution of the 
mission plan, some groups of behaviors are activated and other groups are deactivated following a 
detailed sequence of activations and deactivations. An important issue to consider here is how to 
manage conflicts of behaviors that can operate concurrently. There is a conflict between two 
behaviors if they try to act on the same actuator at the same time with different orders. In general, 
this problem is called behavior coordination (or behavior fusion).  
 
Mission plans may use different types of physical devices (speakers, cameras, microphones, 
lights, etc.). It is important manage efficiently these devices during the mission execution due to 
resource-bounded operation. Their use is associated to the increase of resource consumption 
(memory space, processing time, battery charge) so it is important to stop unnecessary processes 
when it is possible. 
 
Besides behaviors, mission plan descriptions should able to include abstract expressions, avoiding 
excessive details, which helps to be more general and therefore reusable across different 
environments. This generality, for example, can be achieved by using specialized planners. 
During the execution, planners particularize the abstract expressions of the global plan with 
specific details of the environment. For example, an abstract plan may express that the robot must 
go to the next point to explore (without saying the specific spatial coordinates of that point). 
Then, during the execution of the plan, a specialized planner automatically determines the 
particular coordinates of the point of the environment in which the plan is executed, according to 
a prefixed exploration strategy.  
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2.2.2. Robustness 
A useful notion to operate in unpredictable environments is the concept of cognizant failure. This 
is a design approach that states that a system should be designed to detect failures [Gat, 1997; 
1998]. Robustness can be achieved by using contingency-handling constructs that express how to 
react to contingencies, with procedures that recover from failures. Some languages for mission 
plans include this approach using specialized representations based on reactive planning or 
conditional sequencing [Firby 1987; Gat, Dorais, 1994] in languages such as RAPs [Firby 1989] 
or ESL [Gat, 1997].  
 
Thus, to gain robustness, the robot may exhibit the ability of self-monitoring its own behavior. In 
a context with human-robot interaction with supervisory control, the result of this monitorization 
should be represented in an appropriate way to be communicated to the operator, in order to help 
to understand unexpected robot behaviors (e.g., using symbolic representations). 
 

3. The execution engine 

Following the ideas presented in the previous section, we have designed a software system that 
we call execution engine. This section describes the characteristics of such a system. 
 

3.1. Robot functional requirements to facilitate user operation 

In the discussion presented in section 2, we consider two basic goals in the development of an 
effective execution system, simplicity and robustness, that can be achieved using different means 
such as the use of behaviors or cognizant failure. This lead us to the following robot functional 
requirements:  
 

● Requirement “execute behaviors”. The robot is capable of executing simple instructions 
of a mission plan requested by the operator in terms of behaviors. The operator can select 
a behavior from a set of available behaviors for the robot. The robot may activate and 
cancel the execution of the behavior requested by the operator. The robot executes 
concurrently behaviors keeping consistency with the state of the world and with other 
behaviors.  

 
● Requirement “explain itself”. The robot is capable of describing to the operator what it 

believes about the environment and about its own performance. A symbolic 
representation is important to establish an understandable communication with operators. 
The robot manages a memory of symbolic beliefs to simulate awareness of the state of 
the world and the internal state of the robot. Beliefs can also represent the awareness of 
deliberative thinking done by the robot (e.g. reasoning about the physical world for 
motion planning, such as path planning). In addition, beliefs also help to monitor the 
correct execution of behaviors. The correct execution of each behavior is periodically 
monitored with defensive procedures that check belief expressions and beliefs are used 
inform more clearly to the operator when contingencies are detected. Operators can also 
use beliefs when they write mission plans to describe the presence of potential 
contingencies and adapt the execution of the plan to the current circumstances.  
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3.2. The execution engine in Aerostack 

Figure 2 presents a diagram of building blocks showing how the execution engine is integrated to 
be part of the software architecture of Aerostack. The architecture includes a lower level (in green 
color) with a set of processes provided by Aerostack for perception, control, planning and 
communication. The execution engine (in blue color) creates a robust level on top of this level to 
offer two execution capabilities: (1) a set of processes to execute behaviors and (2) a set of 
processes that manage beliefs that help the robot explain itself. In its turn, the execution engine is 
used by a mission plan interpreter that translates the representation used by a mission plan (e.g., 
task trees) into service calls of the execution engine. 
 

 

Figure 2: The execution engine in the architecture of Aerostack. 
 

3.3. Software architecture of the execution engine 

The architecture of the execution engine is implemented with two systems, the behavior 
management system and the belief management system. Each system includes a set of processes, 
that are implemented using ROS (Robot Operating System). Sections 4 and 5 explain in more 
detail such processes. These systems belong to other super-systems of the executive layer of the 
Aerostack architecture: the belief management system belongs to situation awareness system and 
the behavior management system belongs to executive system.  
 
Figure 3 shows how these systems are connected. The figure is a block diagram (in general, in 
this type of diagram each block can be a system or a process). In the figure, blocks are connected 
with input/output ports (rounded ports correspond to ROS services and squared ports correspond 
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to ROS topics). The figure uses also generic names for certain ports (in italic) that establish the 
connection with the rest of Aerostack. For example, the generic name for the port perception 
values represents any topic generated by the perception system of Aerostack.  

 

 
 

Figure 3: Architecture of the execution engine with two main systems. 
 

3.4. Mission plan verification 

One of the main functions of the execution engine is to provide robustness by verifying that the 
written instructions for the robot are correct. The execution engine must return adequate messages 
to the operator in the presence of errors to help to correct them. There are two main categories of 
errors, depending on when they are detected: 
 

● Specification errors that are detected before the plan is executed. Specification errors 
correspond to mistakes done by the operator who writes the mission plan. Examples of 
these errors are: wrong format of the instructions (e.g., wrong names, wrong values) or 
goal conflicts due to unfeasible action plans that cannot be executed in any environment 
(e.g., the action land cannot be requested just after the same action land has been 
requested). 

 
● Execution errors that correspond to problems detected during the execution of a mission 

plan. In this case, the language specification of such mission is correct but the specific 
characteristics of the environment where the mission is executed, and/or the particular 
aerial platform used, create a conflict to execute the mission. 

 
 

Error type Text message 

WRONG_FORMAT The behavior <x> does not exist 
The argument <x> of behavior <y> does not exist 
The format of the belief expression <x> is not correct 
The predicate <x> of the belief expression <y> does not exist 

WRONG_VALUE The value <x> of argument <y> for behavior <y>  is not correct (...  is 
expected) 

WRONG_SEQUENCE The execution of behavior <x> cannot be done after the execution of <y> 

 
Table 1. Example of specification language errors. 
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Error type Text message 

FAILED_PRECONDITIONS Behavior <x> cannot be executed because its preconditions are not 
satisfied.  

TIME_OUT The goal of behavior <x> has not been reached in the expected time 
(<y> seconds) 

WRONG_PROGRESS The behavior <x> does not progress correctly 

ACHIEVED_GOAL The goal of behavior <x> has already been achieved 

 
Table 2.Example of execution errors. 

 
According to this, we separate the verification in two parts. Before the execution, the mission 
plan is verified to detect specification errors. During the execution, the rest of the errors are 
verified. This means that, when an instruction is going to be executed, it is assumed that it has 
been verified previously and it does not have any specification errors.  
 
Table 2 shows examples of conflicts to that may happen before or during the execution of 
behaviors. They can grouped in three categories: 

● Environment state conflict. There is a conflict between the behavior and the current state 
of the environment (this behavior could be activated in other environments). 

● Robot state conflict. There is a conflict between the behavior and the current state of the 
robot (this behavior could be activated if the the robot is in another state). 

● Goal conflict. The goal is impossible to be reached by this robot independently of the 
state of the environment and the state of the robot (this behavior goal cannot be achieved 
by this robot in any environment). 

 
 

Type of conflict Example 

Environment state 
conflict 

The illumination is insufficient to activate behavior <x> 
There are too strong vibrations to activate behavior <x> 
There is an impassable barrier to complete behavior <x> 
There is an obstacle too close to destination point to complete behavior <x> 
The available space is too narrow to activate behavior <x> 
The ground is unstable to activate behavior <x> 
There are not visual markers in the field of view to activate behavior <x> 
The environment is not represented with enough density points to generate a path 

Robot state conflict The robot is landed so it cannot activate behavior <x> 
The robot does not have enough charge of battery for behavior <x> 
The robot is not able to estimate its position 

Goal conflict The destination is too far for behavior <x> 
The maximum speed is insufficient to reach the goal of behavior <x> (e.g. to reach 
a point in short time that is at a long distance) 

 
Table 3.  Example of conflicts to execute behaviors. 
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4. The behavior management system 

 
The main goal of the behavior management system is to provide the robot with the ability of 
executing instructions requested by the user in terms of behaviors. This system includes four 
processes: behavior manager, behavior specialist, behavior process and resource manager (Figure 
4). Behavior process is actually a type of process with several occurrences, one for each behavior 
as we explain below. In figure 4, processes in blue color are general for all robot systems. 
Processes in orange color need to be programmed to support specific behaviors. 
 

 
 

Figure 4: Architecture of the behavior management system. 
 

4.1. The behavior process 
Our architecture includes a separate process for each type of behavior. For example, there is a 
separate process for behavior take off and another one for behavior go to point. This separation 
provides modularity and robustness, since each process encapsulates the technical details for the 
correct execution of the behavior.  
 
One of the significant services provided by this process is to check that the environment is 
consistent with the behavior execution. For example, to execute the behavior land the robot must 
be flying. Trying to execute the behavior go to a point where the drone is already located does not 
make sense. For this purpose the process provides a ROS service called check situation that 
verifies a set of preconditions. These preconditions are formulated as belief expressions (this is 
explain in more detail in Section 5 that describes the belief management system). 
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To control the execution of the behavior, this process provides the ROS services: start and stop. 
The possible execution states of a behavior are the same states that we use for general processes 
in Aerostack. Figure 5 shows the available states and transitions of Aerostack processes. Initially, 
once the system is running for a particular aerial robot, the process is in the state ready to start. 
The execution of the behavior is activated with the ROS service start, which automatically 
changes to the state running. To cancel the execution of the behavior, we use the ROS service 
stop, which changes to the state ready to start. 

 
Figure 5: State-transition diagram of a process in Aerostack. 

 
 

 
  Algorithm 1: start(behavior b)  

 
1. activate resources for behavior b 
2. if  (resources for behavior b cannot be activated) 
3. then  return(failure) 
4. else  
5.   initiate the time measurement of behavior execution 
6.   extract argument values 
7.   connect inputs/outputs (advertise and subscribe ROS topics) 
8.   initiate behavior execution (read and publish ROS topics and call ROS services) 
9.   return(success) 

 
 

 
  Algorithm 2: run(behavior b) 

 
1.  f ← FALSE 
2. repeat  
3.   if  (wrong progress conditions are TRUE) then  e ← WRONG_PROGRESS,  f ← TRUE 
4.   else if  (category of behavior b is “goal-based” or “deliberative”) then 
5.       if  (goal achieved conditions are TRUE) then e ← GOAL_ACHIEVED,  f ← TRUE 
6.     else if  (timeout of behavior b is TRUE) then e ← TIME_OUT,  f ← TRUE 
7. until (f) 
8. publish execution result (publish event e in the topic “behavior event”) 
9. call the function stop(behavior b) 

 
 

 
  Algorithm 3: stop(behavior b)

 
1. write end values for inputs/outputs (read/publish topics and call services) 
2. cancel resources of behavior b  
3. disconnect input/outputs (shutdown ROS topics and services) 
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The detailed execution of a behavior is controlled by three functions: start(), run(), stop(). The 
function start() is called by the ROS service start. The function run() is automatically called 
when the process is in the state running. The function stop() is called at the end of the function 
run(), or inside the ROS service stop. 
 
The function start() executes a sequence of steps that are summarized by algorithm 1. It is 
important to know that before this function is called, the argument values (in text format) and the 
timeout value (a number) are written in two fields of the behavior object. In summary the 
algorithm covers the following steps: 

● The first step of the algorithm is to activate the resources corresponding to the behavior. 
As a consequence of this, the processes that support the execution of this behavior start 
running. If this is not possible, the behavior returns failure.  

● In the second step, the measurement of execution time is initiated.  
● In the third step, the process extracts the values of the arguments (if the behavior has 

arguments) from the text stored in the corresponding field of the behavior object.  
● In the fourth step, the process establishes the input/output connections (using ROS 

interprocess communication methods for advertisement and subscription).  
● In the fifth step, the behavior publishes initial values for certain processes if it is 

necessary (which in turn may require to read certain values).  
 
Once this function has been finished, the state of the process is running. Note that steps three, 
four and five are specific for each behavior and the rest and general. This is why the first two 
steps are programmed in a general class (the class behavior process) and the rest are specific for 
each instance. 
 
When the state of the process is running, the function run() is called automatically. This function 
executes the steps described by algorithm 2. This algorithm performs a loop to monitor the 
execution progress, reading perception values. Note that this monitoring is different in goal-based 
behaviors, concurrent behaviors and deliberative behaviors (Appendix A describes the categories 
of behaviors that we use). The loop of the algorithm can finish with success or failure and, finally, 
the function publishes the generated event (using the ROS topic behavior event) and calls the 
function stop() to stop the behavior execution, changing the state of the process to ready to start. 
 
In certain execution systems behaviors generate specific events. For example, in the system 
designed by Firby and Slack [Firby, Slack, 1995], the behavior watch-for-landmark can generate 
the event landmark-visible, or the behavior move-to-landmark can generate the events movement-
complete, stuck, or lost-landmark. However, in our execution engine, we consider only generic 
events that are common for all behaviors (if we would need to consider specific cases, they could 
be processed as beliefs as it explained in Section 5). For example, we consider the following 
generic event for recurrent behaviors: WRONG_PROGRESS, i.e., the behavior progress is incorrect. 
For goal-based behaviors, in addition to the previous event, we consider other two events: 
GOAL_ACHIEVED, i.e., the goal of the behavior has been reached, and TIME_OUT, i.e., the goal has 
not been reached in the expected time interval. In the case of deliberative behaviors, the possible 
events are GOAL_ACHIEVED or TIME_OUT. The result of the deliberative behavior is communicated 
through the ROS topic behavior event. 
 
The function stop() executes the steps presented by algorithm 3. In the first step, the algorithm 
writes final values for certain processes (if necessary). The second step deactivates the resources 
of the behavior by stopping the running processes that support the behavior. Finally, step three 
disconnects inputs/outputs. The execution of this function changes automatically the process to 
the state ready to start. The function stop() can be also called by the ROS service stop. When this 
service is called, this means that the behavior does not stop by itself, but the operator interrupts 
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the execution (e.g., to inhibit a recurrent behavior) or the behavior coordinator forces the stop 
(e.g., because its execution not compatible with a requested behavior). Thus, the ROS service stop 
performs two actions: (1) call the function stop() and (2) publish the generic event INTERRUPTED, 
i.e., the behavior has been forced to stop. 
 
In summary, the possible events that can generate the execution of a behavior are: 
WRONG_PROGRESS, GOAL_ACHIEVED, TIME_OUT, and INTERRUPTED. 
 

4.2. The behavior coordinator 
An important issue for behavior execution is the coordination of the activation of multiple and 
interacting behaviors that can operate simultaneously. In our design, this coordination is 
performed by a centralized process, called behavior coordinator, that knows in advance the 
potential conflicts and avoids the concurrent execution of incompatible behaviors. For example, 
certain behaviors that use the same actuators (e.g., flight maneuvers controlled by rotors) are 
incompatible, i.e., only one behavior can be performed at any given moment.  
 
The behavior coordinator activates a behavior taking into account the consistency with the 
environment and with other active behaviors. When a behavior is requested to be active, the 
coordinator analyzes the following: (1) checks if the behavior has conflicts with the current 
situation (this is directly asked to the behavior process), and (2) checks group consistency, i.e., 
checks if the activation of the behavior is consistent with other behaviors that are already active 
(e.g., the behavior keep hovering and the behavior go to point cannot be active at the same time).  
 
We assume that behaviors are requested to be active by deliberation (e.g., during the 
interpretation of a mission plan or directly by the operator). But behaviors can also be requested 
to be active by reaction to certain situations. For example, Interrap [Müller, 1996] uses the 
concept of reactors for this type of behaviors. An example of this is the behavior land that is 
activated when the battery charge is low. When the behavior take off finishes (or when the 
behavior go to point finishes) the behavior keep hovering is automatically activated to be sure that 
the flight is correctly controlled.  
 
These two activation request methods (deliberative or reactive) are a potential source of conflict 
when incompatible behaviors are requested to be active at the same time. To solve these conflicts 
we use a priority value for the reactive activation request:  

● Lower. The reactive activation request of the behavior has lower priority than the 
deliberative activation request. This corresponds to a category of behaviors that must be 
active unless the operator activates other incompatible behaviors. 

● Higher. The reactive activation request of the behavior has higher priority than the 
deliberative activation request. This category corresponds to behaviors for emergency 
situations that must be active, no matter what the operator says. 

 
Thus, the order of priority is: reaction with higher priority > deliberation > reaction with lower 
priority. In the presence of two requests of the same order of priority, we apply the control 
strategy of recency, i.e., the most recent request has higher priority.  
 
Group consistency is analyzed by a different process (the behavior specialist). If the current 
situation is not compatible with the requested behavior, the request is rejected (see algorithm 4). 
If an incompatible behavior with high priority is active, the coordinator rejects the request. If an 
incompatible behavior with low priority is active, the coordinator stops the active behavior.   
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  Algorithm 4: Activate behavior b 
 

1. check if the activation of behavior b is compatible with current situation 
2. if  (behavior b is not compatible with current situation)  
3. then  
4.     reject the request  
5. else  
6.      if  (behavior b is not compatible with an active behavior of higher priority)  
7.      then  
8.         reject the request 
9.      else  
10.          if (behavior b is not compatible with a set of active behaviors A of lower priority or equal priority)  
11.              then stop all behaviors in A  
12.          start behavior b 

 
 
The behavior coordinator activates sequentially behaviors as they are requested. In addition, the 
coordinator reacts to events generated by the execution of an activated behavior 
(GOAL_ACHIEVED, TIME_OUT, WRONG_PROGRESS or INTERRUPTED). These events 
are received through the ROS topic behavior event. When the coordinator receives this event, this 
means that the behavior has finished the execution (with success or failure). Thus, the coordinator 
removes the behavior from the list of active behaviors and activates all default behaviors that are 
compatible with the active behaviors (algorithm 5). 
 

 
  Algorithm 5: Behavior event handling (behavior b) 

 
1. A ← set of active behaviors 
2. A ←  A - {b} /* remove behavior b from the list of active behaviors A */ 
3. C ← set of all behaviors that could be requested to be active by reaction 
4. C ← C - A  /* remove behaviors in C that are already active */ 
5. for each behavior bi in C: /* loop to filter incompatible behaviors in C */ 
6.    if (bi has lower priority than deliberative activation request) 
7.    then  
8.       for each behavior bj in A (stop this loop if one incompatibility is detected) 
9.           if (bi is not compatible with bj ) 
10.           then  C ← C - {bi} 
11. for each behavior bk in C: /* loop to active only behaviors of C that satisfy their conditions  */ 
12.     if (default activation condition of bk is satisfied) /* this takes time because consults belief manager, so it must be optimized */ 
13.     then  
14.         activate behavior bk 
15.         if (bk is successfully activated) then A ← A ∪ {bk} 
16. update active behaviors with the value of A  

 
 
Note that a limitation of our design is that it does not accept the simultaneous execution of two 
occurrences of the same process. For example, if the robot has two arms, it is not possible to have 
one behavior called move arm for moving both arms simultaneously. Two different behaviors 
with different names would be needed: move left arm and move right arm. Another solution is to 
have a specific sub-coordinator as a single process, specialized in a category of behaviors, that 
coordinates the concurrent execution of a set of processes (e.g., moving arms coordinator). 
 

4.3. The behavior specialist 
The behavior specialist is a process that centralizes information about how to use each behavior 
and information about the expected evolution of each behavior. For this purpose, the behavior 
specialist use a file, called behavior catalog written in YAML format with information about each 
behavior such as the correct names, arguments, allowed values and compatibility.  
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With this information, the behavior specialist can check whether the activation request for a 
behavior is correct or not. For example, the numerical value for a particular argument may be out 
of the limits of the allowed values. The behavior specialist can also check whether particular 
groups of behaviors are compatible to be active simultaneously or not. 
 
behavior_descriptors: 
 
  - behavior: GO_TO_POINT 
    timeout: 120 
    category: goal_based 
    incompatible_lists: [motion_behaviors] 
    capabilities: [SETPOINT_BASED_FLIGHT_CONTROL, PATH_PLANNING] 
    arguments: 
      - argument: COORDINATES 
        allowed_values: [-100,100] 
        dimensions: 3 
      - argument: RELATIVE_COORDINATES 
        allowed_values: [-100,100] 
        dimensions: 3 
 
  - behavior: ROTATE 
    incompatible_lists: [motion_behaviors] 
    capabilities: [SETPOINT_BASED_FLIGHT_CONTROL] 
    arguments: 
      - argument: ANGLE 
        allowed_values: [-360,360] 
 
  - behavior: KEEP_MOVING 
    category: recurrent 
    incompatible_lists: [motion_behaviors] 
    capabilities: [SETPOINT_BASED_FLIGHT_CONTROL] 
    arguments: 
      - argument: SPEED 
        allowed_values: [0,30] 
      - argument: DIRECTION 
        allowed_values: [BACKWARD, FORWARD, UP, DOWN, LEFT, RIGHT] 
... 
 
behavior_lists: 
 
  - list: motion_behaviors 
    behaviors: 
      - TAKE_OFF 
      - LAND 
      - FLIP 
      - KEEP_HOVERING 
      - FOLLOW_OBJECT_IMAGE 
      - START_MOVING 
      - START_HOVERING 
      - GO_TO_POINT 
      - ROTATE 
... 
 
reactive_activation: 
 
  - behavior: KEEP_HOVERING 
    condition: flight_state(self, FLYING) 
    priority: lower 
 
  - behavior: LAND 
    condition: charge(battery, ?X), less_than(?X, 10) 
    priority: higher 
 
  - behavior: SELF_LOCALIZE_BY_ODOMETRY 
    priority: lower 
... 
 

 
Figure 6: Behavior description in the behavior catalog 
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In the catalog, we can specify when to activate automatically a behavior (reactive activation) 
including the two options for priority (lower or higher). It is possible to include conditions 
expressed with belief expressions.  
 
The catalog also includes the set of processes that are required to execute a behavior. To express 
this in a modular way, we use capabilities. A capability represents a particular robot’s feature that 
is achieved by executing certain processes. A process may belong only to one capability. Table 4 
shows examples of potential capabilities that can be used in aerial robotics. We may have 
different types of capabilities such as perception capabilities (the robot is able to perceive certain 
characteristics like colors, voice, visual markers, etc.), situation awareness capabilities (the robot 
is able to generate certain situation awareness abstractions like self localization, obstacles 
detection, or map building), and flight maneuver capabilities (the robot has certain capabilities 
that help in flight maneuvers like plan trajectories or limit extreme movements).  
 
 

Capability Description 
VISUAL_MARKERS_RECOGNITION The robot recognizes visual markers 
SELF_LOCALIZATION_BY_ODOMETRY The robot localizes its own position by using odometry 
SELF_LOCALIZATION_BY_VISUAL_MARKERS The robot localizes its own position by using visual markers 
SELF_LOCALIZATION_BY_LIDAR The robot localizes its own position by using LIDAR 
SELF_LOCALIZATION_BY_GPS The robot localizes its own position by using GPS 
COLOR_RECOGNITION The robot recognizes colors 
SHAPE_RECOGNITION The robot recognizes shapes 
SPEECH_RECOGNITION The robot recognizes voice commands from the operator 
HELIPAD_RECOGNITION The robot is able to recognize helipads 
VISUAL_SERVOING The robot controls the flight by vision 
SETPOINT_BASED_FLIGHT_CONTROL The robot controls the flight using reference values (setpoints) 
SPEECH_GENERATION The robot generates spoken words 
CAMERA_CONTROL_FOR_PICTURES The robot controls the camera to take pictures 
CAMERA_CONTROL_FOR_VIDEOS The robot controls the camera to record videos 
LIGHT_CONTROL The robot controls the lights 
ARM_CONTROL The robot controls the arm 
PATH_PLANNING The robot generate paths that avoid obstacles 
2D_MAP_GENERATION The robot builds a 2D map of the environment 
3D_MAP_GENERATION The robot builds a 3D map of the environment 
USER_INTERACTION_TO_REQUEST_IMAGE The robot can request to the operator to select a part of the camera image 
USER_INTERACTION_TO_DISPLAY_IMAGE The robot displays on the ground station monitor the camera image 
SOCIAL_COMMUNICATION The robot communicates with other drones 
OPERATION_WITH_AR_DRONE The robot is supported by the physical platform AR Drone 2.0  
OPERATION_WITH_RVIZ_SIMULATOR The robot is supported by a simulator based on RViz  
OPERATION_WITH_GAZEBO_SIMULATOR The robot is supported by the Gazebo simulator 

 
Table 4. Examples of capabilities. 

 
Figure 7 shows how capabilities are described in the behavior catalog. The information of each 
capability is written in a descriptor that includes the name and the set of processes that must be 
running to support the capability. In addition, it is possible to write ROS service calls to adjust the 
execution of certain processes. On the other hand, each behavior descriptor includes the required 
capabilities for the behavior. 
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capability_descriptors: 
 
  - capability: SETPOINT_BASED_FLIGHT_CONTROL 
    process_sequence: [droneTrajectoryController] 
    incompatible_capabilities: [VISUAL_SERVOING] 
 
  - capability: PATH_PLANNING 
    process_sequence: [droneTrajectoryPlanner, droneYawPlanner] 
 
  - capability: VISUAL_SERVOING 
    process_sequence: [trackerEye, open_tld_translator, droneIBVSController] 
    incompatible_capabilities: [SETPOINT_BASED_FLIGHT_CONTROL] 
 
  - capability: DYNAMIC_SELF_LOCALIZATION_MODE 
    process_sequence: [self_localization_mode_selector] 
 
  - capability: SELF_LOCALIZATION_BY_ODOMETRY 
    permanent_active: yes 
    process_sequence: [droneOdometryStateEstimator] 
 
  - capability: SELF_LOCALIZATION_BY_VISUAL_MARKERS 
    process_sequence: 
      - droneLocalizer 
 
  - capability: OBSTACLE_DETECTION_BY_VISUAL_MARKERS 
    process_sequence: 
      - droneObstacleDistanceCalculator 
      - droneObstacleProcesser 
 
  - capability: VISUAL_MARKERS_RECOGNITION 
    process_sequence: 
      - droneArucoEyeROSModule 

 
Figure 7: Description of capabilities 

 
The behavior specialist may also help to verify if a mission plan is feasible, analyzing if a given 
sequence behaviors can be executed. This analysis does not perform a complete and detailed 
verification, since many details are only known during the actual execution. The main purpose of 
this verification is to detect in advance evident incorrect sequences of behaviors based on 
physical common sense. For example, this process can help to detect that it is not correct to 
request to land and, then, to request again to land. For this purpose, the behavior catalog can 
include the following representation: 

● There is a set of state machines, where each state machine is associated to a particular 
physical phenomenon. Examples of physical phenomena are: light (the light of the robot 
that can be on or off) and flight (flight state of the robot). 

● Each state machine includes states and transitions. Each state represents a qualitative 
situation of physical phenomena. For example, the states for the physical phenomenon 
light can be: on or off. The states for physical phenomenon flight can be: hovering, 
landed, moving. Each transition corresponds to a valid activation of a behavior. If the 
transition is not present, the behavior activation is not possible. 

 
With this representation, the behavior specialist can check if a sequence of transitions is valid 
using the state machines. The procedure receives a sequence of behaviors and applies the 
transitions using the set of the state machines to verify that the activations are valid. 
 
It is very important to keep the consistency between the behavior catalog (where capabilities are 
related to behaviors) and the software architecture configured for the aerial robot. When the 
software architecture is configured by the developer, the set of processes are declared to be 
launched and ready to be executed (using ROS launchers). It is important that all the potential 
processes defined in the catalog must be declared in the launchers. To ensure that the architecture 
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and catalog are consistent, the behavior specialist verifies that all the processes of the behavior 
catalog are consistent with the processes declared in the launchers. This verification is done while 
the catalog is loaded. If an inconsistency is detected, the behavior specialist shows a warning 
message to the operator informing that the capability is not supported by the architecture and 
continue the execution. 
 
 
behavior_transitions: 
  - behavior: TAKE_OFF 
    physical_phenomenon: flight 
    initial_state: landed 
    final_state: hovering 
 
  - behaviors: [GO_TO_POINT, START_HOVERING] 
    physical_phenomenon: flight 
    initial_state: [hovering, moving] 
    final_state: hovering 
 
  - behavior: START_MOVING 
    physical_phenomenon: flight 
    initial_state: [hovering, moving] 
    final_state: moving 
 
  - behavior: LAND 
    physical_phenomenon: flight 
    initial_state: [hovering, moving] 
    final_state: landed 
 
  - behavior: TURN_LIGHT 
    argument: MODE 
    argument_value: ON 
    phenomenon: light 
    initial_state: off 
    final_state: on 

 
Figure 8: Example representation of state machines to verify the feasibility of a sequence of behaviors. 

 

4.4. The resource manager 
 
The role of the resource manager is to run the processes that support the execution of  behaviors, 
trying to use efficiently the limited resources of the robot. As mentioned before, the processes of 
a behavior are grouped in capabilities (each process may belong only to one capability). When a 
behavior is activated, its corresponding capabilities are activated automatically by starting the 
corresponding processes. We assume that human operators do not specify directly when to 
activate or deactivate capabilities (e.g., in a mission plan). Otherwise, there can be conflicts 
between what the operator says and what a behavior needs. 
 
The activation of capabilities is associated to the increase of resource consumption (memory 
space, processing time, battery charge) so it is important to deactivate automatically unnecessary 
capabilities when it is possible. Since a capability may be used by different concurrent behaviors, 
the capability can be deactivated only when it is not used by any behavior. For this purpose, the 
resource manager keeps updated a number of references for each capability. When a capability 
has zero references, the resource manager can stop its processes. However the actual stop of 
processes is not done immediately to keep the processes running, avoiding unnecessary stops 
when two consecutive behaviors use the same processes. 
 
The resource manager has been designed to activate the processes taking into account also the 
existing faults and making decisions about alternative processes to start, for example, when a 
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resource is broken or already used (e.g., a right handed person can open a door with the left hand 
when the right hand is holding something). For example, if an acoustic altitude sensor fails, the 
manager can decide to use a pressure sensor to estimate altitude. Or, in a robot that has stereo 
vision, sonars and infrared sensors, the resource manager can decide what sensor to use according 
to the range detection (e.g., IR can detect at a sufficient range, stereo vision may be fast enough to 
work when the robot is moving,  and sonars may produce reliable readings) [Murphy, 2000]. 
 

5. The belief management system 

 
We consider a belief as a proposition about the world that the robot thinks is true (the world here 
refers to both the external world and the internal state of the robot). The robot uses beliefs as true 
facts while it reasons trying to adapt the execution of the mission plan to the current 
circumstances.  
 
The belief management system stores the set of beliefs and keeps their consistency (with the 
world and with the other beliefs). Figure 9 shows the set of processes of this system. It includes a 
process for belief management and a set of processes that we call belief updaters.  

 
 

Figure 9: Architecture of the belief management system. 

5.1. The belief manager 
 
The goal of the belief manager is to manage the memory of beliefs accepting requests to add and 
delete beliefs and questions about the existence of beliefs (i.e., consult a belief expression). The 
belief manager ensures the consistency in the stored beliefs. 
 
It is important to use a uniform and symbolic representation for beliefs that can be used (1) by the 
operator to write mission plans, and (2) by the robot to explain to the operator its own behavior. 
Beliefs should be based on notions used in the operator’s language, to generate understandable 
descriptions. With symbolic beliefs, the robot may communicate more naturally to the operator its 



 
 
 

Page 21 of 35 

own knowledge simulating a kind of conscious understanding of the current situation and its own 
performance. 
 
It is important to note that only a small part of all the information used by the robot needs to be 
represented as beliefs. For example, the robot uses an environment map that may have detailed 
information about dimensions, limits, walls, obstacles, etc. However, it is not necessary to use 
beliefs to represent all the details of the map. The general rule is that certain information is 
represented as belief if the operator can use it to formulate a mission plan or to understand an 
unexpected behavior. For example, information is represented as belief if the mission plan uses 
this information to make decisions, or if the behavior uses this information as precondition to 
check its correct activation. During the execution, the size of the content of the belief memory is 
normally small (e.g., usually a few dozens of beliefs).  
 
We represent beliefs using a logic-based approach with predicates. Table 5 shows examples of 
such predicates with the general format of predicate(object, value) or simpler forms such as 
property(object). The representation follows also an object-oriented approach. Objects are 
instances of a class. They can have attributes with values. We assume that the values of attributes 
defined for an object using triplets are mutually exclusive. For example, the belief 
charge(battery, empty) is incompatible with the belief charge(battery, full) because the 
values empty and full are mutually exclusive. If a particular relation does not have values that 
are not mutually exclusive, this must be explicitly stated as an exception. The belief manager 
keeps consistency among beliefs. When a belief is added, e.g., charge(battery, empty), the 
incompatible beliefs are automatically retracted, e.g., charge(battery, full).  
 
 

Predicate Description 

object(x, y) The object x is an instance of the class y. 
position(x, y) The object x is at the position y. 
name(x, y) The name of object x is y. 
flight_state(x, y) The aerial robot x is flight state y (e.g., landed or flying) 
code(x, y) The numerical code of x is y. 
color(x, y) The color of x is y. 
frequency(communication,x) The frequency of the communications is x. 
charge(battery, x) The charge of battery is x. 
carry(self, x) The own aerial robot carries the object x. 
image(x, y) The image of object x is y. 
temperature(air, x) The temperature of the air is x. 
visible(x) The object x is visible. 
stability(ground, x) The stability of the ground is x. 

 
Table 5. Examples of predicates to represent beliefs about situation awareness. 

 
As it was explained above, beliefs can be used to detect certain types of errors. For example, the 
assumptions of a behavior for its activation (e.g., the behavior take off can be activated only if the 
robot is landed) can be expressed as a set of preconditions represented with belief expressions.  
 
Table 6 shows examples of such expressions. The expressions are verified to identify conflicts. 
When a conflict is detected, the robot can inform the operator what are the beliefs that do not 
verify the expression. We assume that the behavior does not have to check for conditions that are 
common for the majority of behaviors (e.g., communication(wireless, ok), 
charge_level(battery, ok), visibility(camera, ok), vibrations(self, none)). This 
is done more efficiently, in a separate reactive process that verifies these events and reacts 
accordingly. 
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Behavior Precondition 
GO_TO_POINT  flight_state(self, ?x1), belong(?x1, [moving, hovering]) 

position(self,?x2), approximate_travel_time(?x2, ?y,?t), ?t < 30 
minimum_distance_to_obstacle(?y, ?d), ?d > 3 
NOTE: ?y is the destination point 

FLIP flight_state(self, ?x), belong(?x, [moving, hovering]) 
position(self, ?x),  minimum_distance_to_obstacle(?x, ?y), ?x > 3 
charge_level(battery, ?x), ?x >30  

LAND flight_state(self, ?x), belong(?x, [moving, hovering]) 
stability(ground, stable) 

 
Table 6: Examples of belief expressions as preconditions for behavior execution. 

 
 

Predicate Description 
belong(x, y) The element x belongs to the list y 
x > y, x < y, x = y, x >= y, x =< y Comparison operators for numbers x and y. 
approximate_travel_time(x, y) The approximate travel time to go from the current position to x is y. 
distance_to_obstacle(x, y) The minimum distance to an obstacle from x is y. 

 
Table 7. Examples of beliefs to represent the result of simple functions. 

 

5.2. The belief updater process 
 
Beliefs are updated periodically using information from sensors. This is done by processes called 
belief updaters. Each belief updater is a process specialized in updating a category of beliefs. 
Beliefs do not need to be updated at a high frequency, compared to the frequency used by 
controllers. It is enough a lower frequency to work with the executive system. Beliefs can be 
updated periodically at a certain frequency or they can be updated when they are consulted. 
 
To indicate that an object is currently observed, we use the predicate visible(). When an 
object is not observed, this predicate is retracted, but the rest of predicates related to this object 
are kept in memory (name, color, position, etc.). In general, beliefs should be stored in memory 
with a limited duration. The robot may assume that, after a period of time, something that was 
observed in the world is not longer true (based on common sense about the objects in the world). 
We call this the temporal persistence of a belief. The beliefs of each type of object have a certain 
persistence value according to its nature. For example, beliefs about the position of a moving 
object (e.g., a person, a car) should have a very low persistence and beliefs about the position of a 
static object (e.g., a wall, a door) should have a high persistence. A mobile object (e.g., a chair, a 
bucket) can have an intermediate value of persistence.  
 
Based on the duration of missions that perform aerial robots (usually less than one hour), we can 
simplify the management of persistence with the practical assumption that beliefs may have one 
of two extreme values: permanent persistence or null persistence. By default, all objects have 
permanent persistence (the operator can express exceptions to this). Thus, the majority of beliefs 
are stored forever, unless incompatible beliefs are added. As an alternative to this approach, it is 
possible to use other more complex representations such as a probabilistic approach to model 
uncertainty about persistence, variable duration of persistence calibrated for each type of object, 
methods to forget non relevant beliefs, etc. 
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Beliefs can be anchored to percepts (e.g., to images). This is useful to learn to recognize objects. 
For example, the robot can memorize the image of a person together with a belief with the name. 
This can be used to recognize again the person and call her/him by her/his name. A simple 
method to learn this is by storing a belief that links the name and the image. As an alternative, 
instead of the image we could store the recognition process of the image (e.g., a trained neural 
network). 
 
A problem related to this is to know if the perception is unique for the object. For example, if the 
robot has recognized a chair in the past and now the robot sees a similar image, is it the same 
chair? And also, is it important for the robot to know that it is the same chair? For our missions, 
we can assume that images have univocal interpretation. Therefore, if the robot recognizes the 
face of a person, the name is also recognized. For more complex missions, we can consider that 
certain objects don’t have this property. 
 
An active management of beliefs could modify the behavior of the robot to focus attention on 
certain objects. For example, in the presence of uncertainty between symbolic name and image, 
the robot can move the camera to have a better image in order to reduce uncertainty. Another 
example is related to the persistence of the position of an object, using an estimated duration of 
persistence. When the persistence time is close to the end, the robot can move the camera to see if 
the object continues in the same position. 
 

6. Interpreters for mission plans 
 
This section presents some examples of mission plan interpreters that illustrate how the execution 
engine can be used using different representation languages. We present here three interpreters 
used in Aerostack: 
 

● TML mission interpreter. Executes a mission specified in the language TML (Task-based 
mission specification language). 

 
● Python-based mission interpreter. Executes a mission specified in the language Python. 

 
● Behavior tree mission interpreter. Executes a mission specified using behavior trees. 

 
The TML mission interpreter uses a language with XML syntax called TML (Task-based mission 
specification language) that uses a hierarchical approach to describe how to decompose complex 
tasks of a mission plan into a sequence of atomic executable actions. TML belongs to the 
category of execution languages (e.g., the Plexil language [Verma et al., 2005]). TML is 
described in detail in some publications [Molina et al., 2016]. The following two sections 
describe the other two interpreters. 
 

6.1. The interpreter of mission plans written in Python language 
A mission plan can be represented in Python language using the behaviors and beliefs presented 
in this paper. This language is presented to the developer as an API (Application Programming 
Interface) with a library of functions (see next table).  
 
The interpreter of this language can verify in advance (before the plan is executed) the correct 
format of the Python program. For example, the interpreter can verify that all the names of 
behaviors exist and all the beliefs expressions are correct. 
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With this approach, the operator can write the mission tasks directly in Python calling specific 
functions of the API library specialized in robotic actions. This is a very flexible approach but 
presents two main limitations: (1) it is difficult to verify the complete feasibility of the 
specification in advance, and (2) it is difficult to be used by users who are not familiar with 
computer languages. 
 
 
 

Function Description Example of use 

executeBehavior(x, y) Executes a goal-based behavior x with 
arguments y, and waits until the behavior 
reaches the goal. This function returns the 
result of the execution. The result is one of 
the following values: {ACHIEVED_GOAL, 
TIME_OUT, WRONG_PROGRESS, 
FAILED_PRECONDITIONS} 

executeBehavior(‘GO_TO_POINT’, point=’(1, 2, 3)’) 
result = executeBehavior(‘LAND’) 
 

activateBehavior(x, y) Activates a behavior x with arguments y. 
This function returns the result of the 
activation. The result is one of the following 
values: {OK, 
FAILED_PRECONDITIONS} 

activateBehavior(‘KEEP_HOVERING’) 
 

askBehavior(x, y) Executes a deliberative behavior x with 
arguments y, and returns a string with the 
result.  

path = askBehavior(‘GENERATE_PATH’) 
 

inhibitBehavior(x) Inhibits the activation of behavior x. We 
assume that this function always succeeds. 

inhibitBehavior(‘RECOGNIZE_ARUCO_MARKERS’) 

isActiveBehavior(x) Answers whether a behavior x is active 
(true) or not (false). 

isActiveBehavior(‘RECOGNIZE_ARUCO_MARKERS’) 

consultBelief(x) 
 

Returns a tuple (R1, R2), where R1 is a 
boolean indicating whether the belief 
expression x matches an instance in the 
belief memory or not, and R2 is a list (as a 
Python dictionary) with the value of the 
variables of belief expression x that unify 
such expression with an instance in the 
belief memory. Only the first instance that 
matches the expression is considered. If the 
belief expression does not match any 
instance in the belief memory R1 is false. 

success, unification = 
consultBelief('charge(battery, ?X)’) 
if success: 
  x = unification[‘?X’] 
 
 

trueBelief(x) 
 

Returns true if the belief expression x is true 
or false in other case. 

trueBelief(‘object(?X, marker), code(?X, 3’) 

 
Table 8: Functions of the Execution Engine API. 

 
 

 
 

Figure 10: Example program in Python for a mission plan. 
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6.2. The interpreter of mission plans represented with behavior trees 
 
A behavior tree is a popular representation that was proposed in the computer gaming industry. 
In robotics, behavior trees have been used recently [Marzinotto et al 2014] [Colledanchise, 
Ogren, 2014] and specifically for UAVs [Ögren 2012] [Klöckner, 2013]. The goal of the MBT 
mission interpreter is to execute a mission plan described as a behavior tree (MBT - Mission 
plan specification with behavior trees). Figure 11 shows an example of behavior tree for a 
particular mission (mission 7 of IARC). 
 

 
Figure 11: Example of behavior tree. 

 
In short, the interpreter interacts with the execution engine in the following way. Intermediate 
nodes of the tree establish the control regime (e.g., a sequence, a loop, etc.). The leaf nodes of 
the tree may correspond to: behaviors or conditions represented with belief expressions. The 
interpreter of the behavior tree travels through the nodes following the control regime 
established by intermediate nodes and, when a leaf node is reached, the interpreter interacts with 
the execution engine in the following way: (1) behavior, if the leaf node is a behavior, the 
interpreter requests the execution engine to execute such a behavior, (2) condition, if the leaf 
node is a condition, the interpreter consults belief expression to the execution engine. 
 
The behavior representation makes it easier for operators that are not familiar with computer 
languages to formulate a mission plan. In contrast, this solution is less flexible than the solution 
based on a programming language like Python. The implementation of several approaches in 
Aerostack for mission planning is easier thanks to the execution engine. Having multiple 
methods to formulate mission plans is appropriate to offer alternative solutions to be chosen by 
operators according to their preferences. 
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7. Conclusions 
 
In this paper, we have presented the technical details of an execution system that has been 
designed to help simplify the specification of mission plans for aerial robot systems. This work 
has been done as part of our efforts to promote a more extensive use of the software framework 
Aerostack. 
 
The proposal follows a behavior-based approach that simplifies the description of mission plan 
with a uniform representation. The approach is supported by a general architecture conceived as 
an execution engine with two main systems: one system to facilitate the execution of behaviors 
and another one to manage a memory of beliefs that are represented with predicates.  
 
The system presented in this paper is based on solutions from the current state of the art in 
artificial intelligence and robotics. The main contribution of this work is an original design 
conceived to improve the usability of Aerostack. Thus, this paper can be useful to understand 
reasons that support the design of Aerostack. Compared to other execution systems, our design 
has been conceived using modern software technology (e.g., ROS, Linux, C++, etc.) to achieve 
acceptable levels of efficiency, as it is required in aerial robotics. The design of the execution 
engine is not committed with Aerostack, so it can be reused as a model for other different robot 
architectures. 
 
The description of the execution engine presented in this paper corresponds to its specification 
and general design. In our research group, we are currently working on its implementation and its 
validation with real flight tests. As a result of this, this general design could be refined to cope 
with certain issues that might have not been considered in the initial version. Once the 
implementation is completed, we plan to make the programs freely available as part of a new 
release of the Aerostack open-source project (www.aerostack.org). 
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Appendix A: Library of behaviors for aerial robotics 
 
This section describes a library of behaviors for aerial robotics that we designed for our execution 
engine. The library of behaviors has been designed considering part of quality principles (Table 
1). For example, the principle of orthogonality says that two behaviors are orthogonal if they do 
not interfere with one another, each inducing no side-effects in the other [Michaud, Nicolescu, 
2016]. A language is said to be orthogonal if it allows the programmer to mix these constructs 
freely. In our library, this can be achieved only partially because there are certain behaviors that 
cannot execute simultaneously because they use the same effectors (e.g., keep hovering and go to 
point). 
 

 
Principle Description 

Orthogonality Behaviors are orthogonal if there are no restrictions on how they may be combined.  

Parsimony The number of behaviors should not be multiplied needlessly. 

Necessity Each behavior achieves a goal that cannot be achieved by other behavior  [Michaud, Nicolescu, 2016]. 

Sufficiency Each behavior is sufficient for achieving the goals mandated for the controller [Michaud, Nicolescu, 2016]. 

Generality The library should be general to be applicable to as many different situations as possible. 

Clarity The name of the behavior should be as clear as possible, to avoid the need to explain its meaning. 

Conciseness The names used should express much in few words. 

Simplicity The name and arguments of behaviors should not be complex. The simplest of several expressions is to be preferred. 

Stability The library should be stable in time. 

Scalability The library should be able to grow, including with new behaviors, without losing its quality. 

 
Table A.1: Quality principles for the design of a library of behaviors. 

 
In our library of behaviors, we distinguish three basic categories: 
 

● Goal-based behaviors. These behaviors are defined to reach a final state (attain a goal). 
Examples of these behaviors are flight maneuvers (related to rotors) such as simple flight 
maneuvers (take off, land) or complex flight maneuvers (go to a point, move in circles). 
This category also includes behaviors related to other effectors such as: sound (say 
sentence), light (turn on-off), camera (take photo or video), dropping mechanism (to drop 
an item), hand/arm (to grasp an item), moving camera (turn camera, look at a point), etc. 

 
● Recurrent behaviors. These behaviors perform an activity recurrently or maintain a 

desired state. For example, some communication behaviors belong to this category (speak 
up, show video image to the operator). Other examples are: data storage behaviors (build 
a map, record a video), attention behaviors (pay attention to colors, pay attention to voice 
commands, etc.), etc. 

 
● Deliberative behaviors. These behaviors correspond to deliberation tasks such as 

planning tasks. The result of these behaviors is either returned by the behavior event or 
stored in the memory of beliefs. A deliberative behavior can find a result successfully or 
it can fail due to, for example, the current situation (e.g., planning a path can be 
impossible if there is a barrier of obstacles). 

 
Recurrent behaviors differ from goal-based behaviors in the following way. A goal-based 
behavior defines implicitly a goal to be achieved in terms of a final state. The final state can be 
formulated with a set of conditions about the state of the world. The behavior is deactivated in the 
moment when these conditions are satisfied (or when it fails). For example, the goal of the 



 
 
 

Page 30 of 35 

behavior go-to-point is to be at a certain point. The final state is defined as the situation when the 
robot position is the same as the desired position. The behavior finishes when this condition is 
satisfied. These behaviors fail if the goal is not reached in a limited period of time (timeout). All 
goal-based behaviors have a default timeout value that can be changed by the operator in a 
particular mission plan.  
 
In contrast, recurrent behaviors don’t define a final state, so it is not possible to determine when 
the behavior has finished. Recurrent behaviors can express a desired state to maintain or a 
permanent activity that can be either active or inactive, so they can be working without any limit 
of time. For example, the recurrent actions build-map and record-video can be active all the time 
during a mission. Recurrent behaviors could be activated under certain conditions: 
 

● Distance. The behavior is only activated when the distance between the position of the 
robot and a certain point (x, y, z) is less than certain value. Attribute: value (meters). 

 
● Delay. The behavior is only activated after a number of seconds. Attribute: value 

(seconds). 
 

● Yaw. The behavior is only activated for a particular yaw. Attribute: min value (degrees), 
max value (degrees). 

 
Deliberative behaviors are used by the execution engine to create a uniform and robust interface 
with deliberative processes using correct symbolic names and correct arguments and values. For 
example, the behavior GENERATE_PATH_FREE_OF_OBSTACLES uses the deliberative process called 
path planner that finds a path free of obstacles to go from a point x to a point y. Another example 
is the behavior GENERATE_NEXT_POINT_TO_EXPLORE that may use the process exploration 
planner. This process finds the next point to explore according a certain strategy.  Some of these 
processes may have memory (e.g., remember the explored area to generate a new point to 
explore) and, therefore, they can operate sequentially.  
 
This type of beliefs can help to formulate general descriptions about how to do complex 
behaviors using simpler behaviors. For example, the high level action go to point y could be 
formulated as a complex behavior in the following way: 

1. Assuming that the robot is in position x, consult the belief path_free_of_obstacles(x, 
y, z). This can execute the process path planner to generate the value of the variable z 
with the path. 

2. Execute the behavior follow path z.  
3. If there is an obstacle during the execution, go to 1. 

 
Another example is the complex behavior explore spatial region x that could be formulated in the 
following way: 

1. Consult the belief next_point_to_explore(x, y). This can execute the process 
exploration planner to generate the value of the variable y with the point to explore. 

2. Execute the behavior go to point y. 
3. If the region is not completely explored, go to 1. 

 
The following tables show the design of our library of behaviors. Tables present sets of behaviors 
that belong to a certain categories such as general flight maneuvers, maneuvers guided by visual 
references, communication, planning behaviors, etc. 
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Behavior Type Description Arguments 

TAKE_OFF Goal-based The robot takes off vertically from the surface 
to the normal altitude. If the altitude argument 
is not given, the robot reaches a default 
altitude.  

ALTITUDE (meters) 
 

LAND Goal-based The robots lands vertically in the current 
position. 

 

KEEP_HOVERING Recurrent The robot keeps hovering. Hovering is a 
maneuver in which the robot is maintained in 
nearly motionless flight over a reference point 
at a constant altitude and on a constant 
heading. This behavior does not avoid moving 
obstacles. 

 

KEEP_MOVING Recurrent The robot keeps moving at a constant speed in 
some direction (forward, backward, upward, 
downward}. If the speed value is not given a 
default value is considered. This behavior 
does not avoid obstacles. 

DIRECTION {FORWARD, BACKWARD,  
UPWARD, DOWNWARD} 
SPEED (m/sec) 

ROTATE 
 

Goal-based The robot rotates some degrees in a certain 
axis (yaw, pitch, roll} 

AXIS {YAW, ROLL, PITCH} ANGLE 
(degrees), RELATIVE_ANGLE 
(degree), 
DIRECTION {CLOCKWISE, 
COUNTERCLOCKWISE} 

GO_TO_POINT Goal-based The robot goes to a point avoiding obstacles. 
Time is expressed with the number of seconds 
since the mission starts. Spline means that the 
robot flies smooth paths both vertically and 
horizontally instead of straight lines. 

COORDINATES (x,y,z  in meters), 
RELATIVE_COORDINATES (x,y,z) 
POINT_TO_LOOK_AT_THE_END (x,y,z), 
YAW_ANGLE_AT_THE_END (degrees), 
TIME (seconds), 
POINT_TO_LOOK_DURING_FLIGHT 
(x,y,z), 
SPLINE (yes, no), 

FLIP Goal-based The robot performs a flip movement. DIRECTION {RIGHT, LEFT, FRONT, 
BACK} 

FOLLOW_OBJECT_IMAGE  The robot follows a moving object image, 
keeping a certain constant distance between the 
drone and the object. 

IMAGE (image) 

FOLLOW_PATH Goal-based The robot tries to follow a path defined as a 
sequence of points. 

PATH (sequence of points (x,y.z) ) 

LOOK_AT_A_POINT Goal-based The robot looks at a certain point, i.e. the robot 
rotates (yaw and pitch) to see the point through 
the front camera. 

COORDINATES (x, y, z  in meters), 

KEEP_LOITERING Recurrent The robot keeps moving in circles or squares . 
Avoid obstacles is active by default. 

SHAPE (CIRCLE, SQUARE) 
DELAY (seconds),  
CLOCKWISE (true/false),  
RADIUS (meters, it can be zero), 
SIDE (side length of the square in 
meters, different from zero), 
AVOID_OBSTACLES (yes, no). 

TRACK_OBJECT_IMAGE Recurrent The robot keeps looking to an object image. 
The robot keeps its position but rotates to keep 
looking at a moving image. 

IMAGE (image) 

ALIGN_OVER_IMAGE Goal-based The robot aligns vertically over an image. IMAGE (image) 

LAND_ON_MOVING_ 
PLATFORM 

Goal-based The robot lands on a moving platform.  

TOUCH_MOVING_OBJECT Goal-based The robot touches a moving object.  

TAKE_OFF_FROM_MOVING_ 
PLATFORM 

Goal-based The robot takes off from a moving platform.  

 
Table A.2: Motion behaviors based on different flight maneuvers. 
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Category Behavior Type Description Arguments 

Understanding SELF_LOCALIZE_BY_ 
VISUAL_MARKERS 

Recurrent The robot self localizes using visual 
markers. 

 

Understanding PAY_ATTENTION_TO_ 
VISUAL_MARKERS 

Recurrent The robot pays attention to visual 
markers. The recognized colors are 
stored as beliefs. 

MARKER {ARUCO, …} 

Understanding PAY_ATTENTION_TO_ 
COLORS 

Recurrent The robot pays attention to the images to 
recognize colors. The recognized colors 
are stored as beliefs. 

 

Understanding PAY_ATTENTION_TO_ 
SHAPES 

Recurrent The robot pays attention to the images to 
recognize shapes. The recognized shapes 
are stored as beliefs. 

 

Understanding VERIFY Deliberative The robot checks if a condition is 
satisfied. The result is true if the 
condition is satisfied. Otherwise, the 
result is false. 

MARKER_IS_OBSERVED 
(integer) 
HOVERING(true, false) 
CURRENT_SPEED(integer) 
OBSTACLE_DISTANCE(integer) 
VOICE_COMMAND(text) 

Planning GENERATE_PATH_ 
FREE_OF_OBSTACLES 

Deliberative The robot generates a path free of 
obstacles to go from the current position 
to a certain destination. The result is a 
list of 3D points such as: [[2.5, 3.2, 1.5], 
[1.2, 3.3, 1.5]]. If the robot is not able to 
generate a path, it generates the empty 
value. 

DESTINATION (x,y,z  in 
meters), 
 

Planning GENERATE_NEXT_ 
POINT_TO_EXPLORE 

Deliberative The robot generates the next point to 
explore a spatial region. The result is a 
3D point such as: [3.5, 2.3, 1.5]. If  the 
there are not more points to explore, it 
generates the empty value.  

REGION  (list of x,y,z  in 
meters), 

Communication BROADCAST_MESSAGE Goal-based The robot broadcasts a message to be 
received by other drones. 

MESSAGE (string) 

Communication NOTIFY_OPERATOR Goal-based The robot sends a message to be received 
by the operator 

MESSAGE (string) 

Communication ASK_OPERATOR  Goal-based The robot ask a question to the operator QUESTION (string), 
POSSIBLE_ANSWERS(list of 
strings) 

Communication ASK_FOR_OBJECT_ 
IMAGE 

 Goal-based The robot ask the operator for an object 
image. 

 

Communication DISPLAY_CAMERA_ 
IMAGE 

Recurrent The robot shows to the operator the 
camera image. This requires, for 
example, to activate the capability 
front_camera_sensing (if it is optional). 

 

Communication SPEAK_UP Recurrent The robot says out loud the content 
(tasks, etc.) 

CONTENT {TASKS, ...} 
 

Communication SAY Goal-based The robot says a sentence out loud. SENTENCE(string) 

Data recording BUILD_MAP Recurrent The robot builds a map. DIMENSION {TWO, THREE} 

Data recording RECORD_VIDEO Recurrent The robot records a video.  

Data recording TAKE_PHOTO Goal-based The robot takes a photo.  

Configuration TURN_LIGHTS Goal-based The robot changes the status of the light VALUE {ON, OFF} 

Manipulation DROP_ITEM Goal-based The robot drops an item.  

 
 

Table A.3: Other behaviors. 
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Appendix B: Example of behavior catalog 
 
This appendix shows a complete example of behavior catalog in YAML language.  
 
default_behavior_values:  
  timeout: 15 
  category: goal_based 
 
behavior_descriptors: 
  - behavior: TAKE_OFF 
    incompatible_lists: [motion_behaviors] 
 
  - behavior: LAND 
    incompatible_lists: [motion_behaviors] 
 
  - behavior: GO_TO_POINT 
    timeout: 120 
    incompatible_lists: [motion_behaviors] 
    capabilities: [SETPOINT_BASED_FLIGHT_CONTROL, PATH_PLANNING] 
    arguments: 
      - argument: COORDINATES 
        allowed_values: [-100,100] 
        dimensions: 3 
      - argument: RELATIVE_COORDINATES 
        allowed_values: [-100,100] 
        dimensions: 3 
 
  - behavior: ROTATE 
    incompatible_lists: [motion_behaviors] 
    capabilities: [SETPOINT_BASED_FLIGHT_CONTROL] 
    arguments: 
      - argument: ANGLE 
        allowed_values: [-360,360] 
 
  - behavior: KEEP_MOVING 
    category: recurrent 
    incompatible_lists: [motion_behaviors] 
    capabilities: [SETPOINT_BASED_FLIGHT_CONTROL] 
    arguments: 
      - argument: SPEED 
        allowed_values: [0,30] 
      - argument: DIRECTION 
        allowed_values: [BACKWARD, FORWARD, LEFT, RIGHT] 
 
  - behavior: FOLLOW_OBJECT_IMAGE 
    timeout: 90 
    incompatible_lists: [motion_behaviors] 
    capabilities: [VISUAL_SERVOING] 
 
  - behavior: PAY_ATTENTION_TO_VISUAL_MARKERS 
    recurrent: yes 
    capabilities: [VISUAL_MARKERS_RECOGNITION] 
 
  - behavior: KEEP_HOVERING 
    category: recurrent 
    incompatible_lists: [motion_behaviors] 
    capabilities: [SETPOINT_BASED_FLIGHT_CONTROL] 
 
 
  - behavior: WAIT 
 
    arguments: 
      - argument: DURATION 



 
 
 

Page 34 of 35 

        allowed_values: [1,1000] 
      - argument: UNTIL_OBSERVED_VISUAL_MARKER 
        allowed_values: [0,1023] 
 
  - behavior: FLIP 
    incompatible_lists: [motion_behaviors] 
    capabilities: [SETPOINT_BASED_FLIGHT_CONTROL] 
    arguments: 
      - argument: DIRECTION 
        allowed_values: [BACK, FRONT, LEFT, RIGHT] 
 
 
 
  - behavior: SELF_LOCALIZE_BY_ODOMETRY 
    category: recurrent 
    incompatible_lists: [self_localization_behaviors] 
    capabilities: 
      - SELF_LOCALIZATION_BY_ODOMETRY  
      - DYNAMIC_SELF_LOCALIZATiON_MODE 
    ROS_service_calls: [change_self_localization_mode_to_odometry] 
 
  - behavior: SELF_LOCALIZE_BY_VISUAL_MARKERS 
    category: recurrent 
    incompatible_lists: [self_localization_behaviors] 
    capabilities: 
     -  SELF_LOCALIZATION_BY_ODOMETRY 
      - VISUAL_MARKERS_RECOGNITION 
      - SELF_LOCALIZATION_BY_VISUAL_MARKERS  
      - DYNAMIC_SELF_LOCALIZATiON_MODE 
    ROS_service_calls: [change_self_localization_mode_to_visual_markers] 
 
  - behavior: SLAM_BY_VISUAL_MARKERS 
    category: recurrent 
    incompatible_lists: [self_localization_behaviors] 
    capabilities: 
     -  SELF_LOCALIZATION_BY_ODOMETRY  
      - VISUAL_MARKERS_RECOGNITION 
      - SELF_LOCALIZATION_BY_VISUAL_MARKERS 
      - OBSTACLE_DETECTION_BY_VISUAL_MARKERS 
      - DYNAMIC_SELF_LOCALIZATiON_MODE 
 
  - behavior: BROADCAST_MESSAGE 
    arguments: 
      - argument: TEXT 
        allowed_values: TEXT 
 
  - behavior: GENERATE_PATH_FREE_OF_OBSTACLES 
    category: deliberative 
    capabilities: [MISSION_PLANNING] 
    arguments: 
      - argument: DESTINATION 
        allowed_values: [-100, 100] 
        dimension: 3 
 
behavior_lists: 
  - list: self_localization_behaviors 
    behaviors: 
      - SELF_LOCALIZE_BY_ODOMETRY 
      - SELF_LOCALIZE_BY_VISUAL_MARKERS 
      - SLAM_BY_VISUAL_MARKERS 
  - list: motion_behaviors 
    behaviors: 
      - TAKE_OFF 
      - LAND 
      - FLIP 
      - KEEP_HOVERING 
      - FOLLOW_OBJECT_IMAGE 
      - START_MOVING 
      - START_HOVERING 
      - GO_TO_POINT 
      - ROTATE 
 
reactive_activation: 
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  - behavior: KEEP_HOVERING 
    condition: flight_state(self, FLYING) 
    priority: lower 
 
  - behavior: LAND 
    condition: charge(battery, ?X), less_than(?X, 10) 
    priority: higher 
 
  - behavior: SELF_LOCALIZE_BY_ODOMETRY 
    priority: lower 
 
 
capability_descriptors: 
 
  - capability: SETPOINT_BASED_FLIGHT_CONTROL 
    process_sequence: [droneTrajectoryController] 
    incompatible_capabilities: [VISUAL_SERVOING] 
 
  - capability: PATH_PLANNING 
    process_sequence: [droneTrajectoryPlanner, droneYawPlanner] 
 
  - capability: VISUAL_SERVOING 
    process_sequence: [trackerEye, open_tld_translator, droneIBVSController] 
    incompatible_capabilities: [SETPOINT_BASED_FLIGHT_CONTROL] 
 
  - capability: DYNAMIC_SELF_LOCALIZATION_MODE 
    process_sequence: [self_localization_mode_selector] 
 
  - capability: SELF_LOCALIZATION_BY_ODOMETRY 
    permanent_active: yes 
    process_sequence: [droneOdometryStateEstimator] 
 
  - capability: SELF_LOCALIZATION_BY_VISUAL_MARKERS 
    process_sequence: 
      - droneLocalizer 
 
  - capability: OBSTACLE_DETECTION_BY_VISUAL_MARKERS 
    process_sequence: 
      - droneObstacleDistanceCalculator 
      - droneObstacleProcesser 
 
  - capability: VISUAL_MARKERS_RECOGNITION 
    process_sequence: 
      - droneArucoEyeROSModule 
 

 
 
 


