

Page 1 of 35

An Execution Engine for
Aerial Robot Mission Plans

Martin Molina

Department of Artificial Intelligence
Technical University of Madrid, Spain

Technical Report

June 29, 2017

Abstract

The goal of the work presented in this paper is to develop a practical solution for mission
plan execution to simplify the way in which operators configure the missions of robots.
This work has been done to promote a more extensive use of the software framework for
aerial robotics Aerostack. We have designed a computer system called execution engine
that includes technical solutions from general robotics and artificial intelligence. The
system follows a behavior-based approach and a symbolic representation of beliefs. The
execution engine has been designed to be part of Aerostack but it can also work
independently, so that it can be reused for building other type of robot architectures. This
paper has been written as a specification and software design to be used as a guide for
software implementation of the execution engine.

Page 2 of 35

TABLE OF CONTENTS

1. Introduction ... 3	
2. Execution needs for effective operation ... 4	

2.1. Human-robot interaction based on supervisory control ... 4	
2.2. Practical needs of execution systems ... 5	

3. The execution engine .. 7	
3.1. Robot functional requirements to facilitate user operation .. 7	
3.2. The execution engine in Aerostack .. 8	
3.3. Software architecture of the execution engine ... 8	
3.4. Mission plan verification ... 9	

4. The behavior management system .. 11	
4.1. The behavior process ... 11	
4.2. The behavior coordinator ... 14	
4.3. The behavior specialist .. 15	
4.4. The resource manager .. 19	

5. The belief management system ... 20	
5.1. The belief manager .. 20	
5.2. The belief updater process ... 22	

6. Interpreters for mission plans ... 23	
6.1. The interpreter of mission plans written in Python language .. 23	
6.2. The interpreter of mission plans represented with behavior trees ... 25	

7. Conclusions ... 26	
Acknowledgements ... 26	
References ... 27	
Appendix A: Library of behaviors for aerial robotics .. 29	
Appendix B: Example of behavior catalog ... 33	

Page 3 of 35

1. Introduction

Aerostack is a software framework that helps developers design the control architecture of an
aerial robot, integrating multiple heterogeneous computational solutions for autonomous behavior
(e.g., computer vision algorithms, motion controllers, planning algorithms, etc.). Aerostack
provides a powerful library of software components for robotics and a combination scheme for
building the final architecture. Aerostack has demonstrated to be an effective tool for building
different types of aerial systems in complex and dynamic environments [Sanchez-Lopez et al.,
2016; 2017]. It has proved to be a useful research platform to support flight experiments that
evaluate new approaches in aerial robotics (e.g., [Suárez-Fernández et al., 2016; Molina et al.,
2017]). Aerostack was created to be available for different communities of developers and it is
currently an active open-source project with periodic software releases (www.aerostack.org).

Programmers who are familiar with Aerostack (e.g., programmers that belong to the development
team of Aerostack or experienced programmers in aerial robotics) may use of the Aerostack
library of components for rapid construction of a control architecture for an aerial platform.
However, this is not easy for other potential users of Aerostack. The main problem is that the
current version of Aerostack assumes that the programmer knows many low-level technical
details, and it is not protected against certain errors. Therefore, Aerostack can be difficult to
manage and error-prone for general users.

In this paper we present results of our recent work to promote a more extensive use of Aerostack.
In principle, to achieve this goal, Aerostack admits different improvements (e.g., graphical user
interfaces with additional communication methods, etc.). Our emphasis in the work presented in
this paper is on issues related to the practical execution of mission plans that can simplify the
operation with robots.

As a result of this work, we have designed a new software system, that we call execution engine,
that provides the robot with effective execution capabilities. This system incorporates a number
of technical solutions used in robotics and artificial intelligence. The resulting system creates a
new logical interface with Aerostack that accepts instructions from the operator in a simpler way,
encapsulating in more robust components the libraries of basic components of Aerostack.

This paper has been written as a specification and general design to be used as a guide for the
software implementation of the execution engine with the corresponding programming languages.
The paper describes engineering details of our efforts to improve Aerostack, showing the reasons
that support our design decisions, which can be useful for developers to better understand the
architecture of this framework. The paper presents the execution engine, that was created to be
part of Aerostack, but it has been designed to be general and, therefore, reusable for other robot
architectures.

The remainder of the paper presents in detail the results of this work. Section 2 identifies the
execution needs for a more effective operation, following ideas from the state of the art in
robotics and artificial intelligence. Section 3 shows an overview of our execution engine. Section
4 and 5 explain the two components of the execution engine. Section 6 describes how the
execution engine can be used by mission plan interpreters.

Page 4 of 35

2. Execution needs for effective operation

The goal of this section is to place the objectives of our work in the context of robotic systems, to
identify and justify the execution capabilities that are needed to simplify the user operation with
aerial robots during the specification and the execution of mission plans.

2.1. Human-robot interaction based on supervisory control

In the work presented in this paper, we assume that the human-robot interaction is based on
supervisory control [Sheridan, 1992] (Figure 1). According to this form of control, the relation
between operator and robot follows a hierarchical authority. A human operator acts as a
supervisor and the robot as a subordinate. The operator gives directives to delegate mission tasks
to the robot. The robot understands and translates the directives into detailed actions by the robot.
The robot collects detailed information about results and presents it to the supervisor. In
supervisory control, the human operator programs the robot and receives information from the
robot that itself closes an autonomous control loop through effectors and sensors to the
environment.

Figure 1: Human-robot interaction based on supervisory control.

For example, the operator may ask the aerial robot to perform an inspection mission, specifying
the area to cover and the exploration strategy. During the development of the mission, the
operator observes the robot behavior and the robot sends messages to inform about the mission
execution progress. This observation is useful to confirm that the mission is developed as
expected. The operator can interrupt the mission under certain circumstances (for example, to
avoid wrong behaviors in unexpected situations).

One of the design decisions in this human-robot interaction is to select an appropriate language to
be used between operator and robot with the adequate expressivity and level of abstraction.
Operators use this language to describe formally the goals that the robot must achieve during the
mission (including the specific criteria that uses the robot to determine the sequence of actions to
achieve such goals). In robotics, different languages have been proposed to specify mission plans
following a variety of representations:

Page 5 of 35

● Many of languages for aerial robotics use lists of GPS waypoints with associated actions
or commands. For instance, MP – Mission Planner uses navigation commands to travel
to waypoints, do commands to execute specific actions (e.g., taking pictures), and
condition commands that control when other commands are able to run.

● A popular approach also is using finite state machines (FSMs). This representation has

been used, for example, in languages such as the Behavior Language [Brooks 1990], the
Colbert language [Konolige, 1997], or MissionLab [MacKenzie 1997].

● Other approaches have proposed modular and hierarchical representations such as

hierarchical finite state machines (HFSM). For example XABSL (Extensible Agent
Behavior Specification Language) [Loetzsch et al 2006] [Risler, 2009], State Control
Library and Behavior Control Framework5 in NimboRo-OP [Allgeuer, Behnke, 2013].

● Another hierarchical approach common in robotics is the task-based representation. In

robotics, this representation has been used in ground robot control [Simmons,
Apfelbaum, 1998; Nicolescu, Matarić, 2002], underwater vehicles [Roberts et al., 2003;
Ridao et al., 2005] or for multi-agent UAV systems [Doherty et al 2010].

● The representation with behavior trees is another approach that uses a hierarchical

representation. Behavior trees were proposed in the computer gaming industry. In
robotics, behavior trees have been used recently [Marzinotto et al 2014] [Colledanchise,
Ogren, 2014] and, specifically for UAVs [Ögren 2012] [Klöckner, 2013], such as the
Modelica library (not free available) for UAV [Klöckner, et al. 2014].

Hierarchical representations are popular solutions for complex and adaptive missions. For
example, in Aerostack we can use the TML language that follows a hierarchical approach
together with reactive planning [Molina et al., 2015]. However, our emphasis in this work is not
on a particular specification language for mission plans. In the work presented in this paper, we
are interested on issues related to the effective execution of mission plans and the appropriate
interaction with the operator during the mission execution.

2.2. Practical needs of execution systems

To execute mission plans written by human users, it is necessary to have effective interpreters
that transform automatically the instructions described in the operator language into detailed
commands for the robot’s controllers. Autonomous robots have particular execution needs due to,
for example, the mission may be executed in unpredictable environments (that makes, for
example, that a planned action may be unfeasible) or the aerial robot has limited physical
resources (e.g., the battery charge) that must be used efficiently.

Robot architectures with high degree of autonomy usually have an executive system in charge of
these issues. The executive layer in robot architectures can be understood as the interface between
the numerical behavioral control and the symbolic planning layer [Kortenkamp et al., 2016]. The
execution system takes a plan that assumes a certain level of certainty and expected outcomes and
makes executive decisions to guarantee the correct execution of the plan in an uncertain and
dynamic environment [Verma et al., 2005; Murphy, 2000].

The practical experience in the development of robot systems shows that this part of the
architecture is a critical component with a high impact on safety and quality of the
communication with the operator. It is important to design and validate carefully the executive

Page 6 of 35

system of a robotic system. In a robot engineering context, where productivity is essential, it is
important to have methods and software tools that reduce the effort of building such executive
systems

Ideally, the goal of an execution system is to achieve robust effective performance of an
autonomous robots with the minimum programming effort to specify the mission. We analyze
here two basic goals to consider in the development of an effective execution system that can
facilitate the human operation with robots: (1) simplicity, plans written by operators should be
described as simple as possible, and (2) robustness, robots should be able to react correctly to
contingencies that happen in an unpredictable environment. In the following, we explain how
these goals can be achieved by using certain solutions from general robotics and artificial
intelligence.

2.2.1. Simplicity
To achieve simplicity, we can use the concept of behavior that provides abstraction, hiding low
level technical details and complexity. A behavior is a natural notion that is familiar for general
users (in simple terms, a behavior is is anything the robot is able to do: take off, move forward,
land, etc.).

The concept of behavior has been traditionally used in the literature of robotics for example, in
subsumption architectures [Brooks, 1986]. A behavior encapsulates a set of perception algorithms
and actuation controllers to generate a particular pattern perception-actuation. According to Robin
Murphy, a behavior is a direct mapping of sensory inputs to a pattern of motor actions that is used
to achieve a task [Murphy, 2000]. A behavior can be understood as a control law that clusters a
set of constraints in order to achieve and maintain a goal [Mataric, 1994]. According to François
Michaud and Monica Nicolescu, each behavior receives inputs from sensors and/or other
behaviors in the system, and provides outputs to the robot’s actuators or to other behaviors
[Michaud, Nicolescu, 2016].

A mission can be specified with a coordinated set of behaviors. During the execution of the
mission plan, some groups of behaviors are activated and other groups are deactivated following a
detailed sequence of activations and deactivations. An important issue to consider here is how to
manage conflicts of behaviors that can operate concurrently. There is a conflict between two
behaviors if they try to act on the same actuator at the same time with different orders. In general,
this problem is called behavior coordination (or behavior fusion).

Mission plans may use different types of physical devices (speakers, cameras, microphones,
lights, etc.). It is important manage efficiently these devices during the mission execution due to
resource-bounded operation. Their use is associated to the increase of resource consumption
(memory space, processing time, battery charge) so it is important to stop unnecessary processes
when it is possible.

Besides behaviors, mission plan descriptions should able to include abstract expressions, avoiding
excessive details, which helps to be more general and therefore reusable across different
environments. This generality, for example, can be achieved by using specialized planners.
During the execution, planners particularize the abstract expressions of the global plan with
specific details of the environment. For example, an abstract plan may express that the robot must
go to the next point to explore (without saying the specific spatial coordinates of that point).
Then, during the execution of the plan, a specialized planner automatically determines the
particular coordinates of the point of the environment in which the plan is executed, according to
a prefixed exploration strategy.

Page 7 of 35

2.2.2. Robustness
A useful notion to operate in unpredictable environments is the concept of cognizant failure. This
is a design approach that states that a system should be designed to detect failures [Gat, 1997;
1998]. Robustness can be achieved by using contingency-handling constructs that express how to
react to contingencies, with procedures that recover from failures. Some languages for mission
plans include this approach using specialized representations based on reactive planning or
conditional sequencing [Firby 1987; Gat, Dorais, 1994] in languages such as RAPs [Firby 1989]
or ESL [Gat, 1997].

Thus, to gain robustness, the robot may exhibit the ability of self-monitoring its own behavior. In
a context with human-robot interaction with supervisory control, the result of this monitorization
should be represented in an appropriate way to be communicated to the operator, in order to help
to understand unexpected robot behaviors (e.g., using symbolic representations).

3. The execution engine

Following the ideas presented in the previous section, we have designed a software system that
we call execution engine. This section describes the characteristics of such a system.

3.1. Robot functional requirements to facilitate user operation

In the discussion presented in section 2, we consider two basic goals in the development of an
effective execution system, simplicity and robustness, that can be achieved using different means
such as the use of behaviors or cognizant failure. This lead us to the following robot functional
requirements:

● Requirement “execute behaviors”. The robot is capable of executing simple instructions
of a mission plan requested by the operator in terms of behaviors. The operator can select
a behavior from a set of available behaviors for the robot. The robot may activate and
cancel the execution of the behavior requested by the operator. The robot executes
concurrently behaviors keeping consistency with the state of the world and with other
behaviors.

● Requirement “explain itself”. The robot is capable of describing to the operator what it

believes about the environment and about its own performance. A symbolic
representation is important to establish an understandable communication with operators.
The robot manages a memory of symbolic beliefs to simulate awareness of the state of
the world and the internal state of the robot. Beliefs can also represent the awareness of
deliberative thinking done by the robot (e.g. reasoning about the physical world for
motion planning, such as path planning). In addition, beliefs also help to monitor the
correct execution of behaviors. The correct execution of each behavior is periodically
monitored with defensive procedures that check belief expressions and beliefs are used
inform more clearly to the operator when contingencies are detected. Operators can also
use beliefs when they write mission plans to describe the presence of potential
contingencies and adapt the execution of the plan to the current circumstances.

Page 8 of 35

3.2. The execution engine in Aerostack

Figure 2 presents a diagram of building blocks showing how the execution engine is integrated to
be part of the software architecture of Aerostack. The architecture includes a lower level (in green
color) with a set of processes provided by Aerostack for perception, control, planning and
communication. The execution engine (in blue color) creates a robust level on top of this level to
offer two execution capabilities: (1) a set of processes to execute behaviors and (2) a set of
processes that manage beliefs that help the robot explain itself. In its turn, the execution engine is
used by a mission plan interpreter that translates the representation used by a mission plan (e.g.,
task trees) into service calls of the execution engine.

Figure 2: The execution engine in the architecture of Aerostack.

3.3. Software architecture of the execution engine

The architecture of the execution engine is implemented with two systems, the behavior
management system and the belief management system. Each system includes a set of processes,
that are implemented using ROS (Robot Operating System). Sections 4 and 5 explain in more
detail such processes. These systems belong to other super-systems of the executive layer of the
Aerostack architecture: the belief management system belongs to situation awareness system and
the behavior management system belongs to executive system.

Figure 3 shows how these systems are connected. The figure is a block diagram (in general, in
this type of diagram each block can be a system or a process). In the figure, blocks are connected
with input/output ports (rounded ports correspond to ROS services and squared ports correspond

Page 9 of 35

to ROS topics). The figure uses also generic names for certain ports (in italic) that establish the
connection with the rest of Aerostack. For example, the generic name for the port perception
values represents any topic generated by the perception system of Aerostack.

Figure 3: Architecture of the execution engine with two main systems.

3.4. Mission plan verification

One of the main functions of the execution engine is to provide robustness by verifying that the
written instructions for the robot are correct. The execution engine must return adequate messages
to the operator in the presence of errors to help to correct them. There are two main categories of
errors, depending on when they are detected:

● Specification errors that are detected before the plan is executed. Specification errors
correspond to mistakes done by the operator who writes the mission plan. Examples of
these errors are: wrong format of the instructions (e.g., wrong names, wrong values) or
goal conflicts due to unfeasible action plans that cannot be executed in any environment
(e.g., the action land cannot be requested just after the same action land has been
requested).

● Execution errors that correspond to problems detected during the execution of a mission

plan. In this case, the language specification of such mission is correct but the specific
characteristics of the environment where the mission is executed, and/or the particular
aerial platform used, create a conflict to execute the mission.

Error type Text message

WRONG_FORMAT The behavior <x> does not exist
The argument <x> of behavior <y> does not exist
The format of the belief expression <x> is not correct
The predicate <x> of the belief expression <y> does not exist

WRONG_VALUE The value <x> of argument <y> for behavior <y> is not correct (... is
expected)

WRONG_SEQUENCE The execution of behavior <x> cannot be done after the execution of <y>

Table 1. Example of specification language errors.

Page 10 of 35

Error type Text message

FAILED_PRECONDITIONS Behavior <x> cannot be executed because its preconditions are not
satisfied.

TIME_OUT The goal of behavior <x> has not been reached in the expected time
(<y> seconds)

WRONG_PROGRESS The behavior <x> does not progress correctly

ACHIEVED_GOAL The goal of behavior <x> has already been achieved

Table 2.Example of execution errors.

According to this, we separate the verification in two parts. Before the execution, the mission
plan is verified to detect specification errors. During the execution, the rest of the errors are
verified. This means that, when an instruction is going to be executed, it is assumed that it has
been verified previously and it does not have any specification errors.

Table 2 shows examples of conflicts to that may happen before or during the execution of
behaviors. They can grouped in three categories:

● Environment state conflict. There is a conflict between the behavior and the current state
of the environment (this behavior could be activated in other environments).

● Robot state conflict. There is a conflict between the behavior and the current state of the
robot (this behavior could be activated if the the robot is in another state).

● Goal conflict. The goal is impossible to be reached by this robot independently of the
state of the environment and the state of the robot (this behavior goal cannot be achieved
by this robot in any environment).

Type of conflict Example

Environment state
conflict

The illumination is insufficient to activate behavior <x>
There are too strong vibrations to activate behavior <x>
There is an impassable barrier to complete behavior <x>
There is an obstacle too close to destination point to complete behavior <x>
The available space is too narrow to activate behavior <x>
The ground is unstable to activate behavior <x>
There are not visual markers in the field of view to activate behavior <x>
The environment is not represented with enough density points to generate a path

Robot state conflict The robot is landed so it cannot activate behavior <x>
The robot does not have enough charge of battery for behavior <x>
The robot is not able to estimate its position

Goal conflict The destination is too far for behavior <x>
The maximum speed is insufficient to reach the goal of behavior <x> (e.g. to reach
a point in short time that is at a long distance)

Table 3. Example of conflicts to execute behaviors.

Page 11 of 35

4. The behavior management system

The main goal of the behavior management system is to provide the robot with the ability of
executing instructions requested by the user in terms of behaviors. This system includes four
processes: behavior manager, behavior specialist, behavior process and resource manager (Figure
4). Behavior process is actually a type of process with several occurrences, one for each behavior
as we explain below. In figure 4, processes in blue color are general for all robot systems.
Processes in orange color need to be programmed to support specific behaviors.

Figure 4: Architecture of the behavior management system.

4.1. The behavior process
Our architecture includes a separate process for each type of behavior. For example, there is a
separate process for behavior take off and another one for behavior go to point. This separation
provides modularity and robustness, since each process encapsulates the technical details for the
correct execution of the behavior.

One of the significant services provided by this process is to check that the environment is
consistent with the behavior execution. For example, to execute the behavior land the robot must
be flying. Trying to execute the behavior go to a point where the drone is already located does not
make sense. For this purpose the process provides a ROS service called check situation that
verifies a set of preconditions. These preconditions are formulated as belief expressions (this is
explain in more detail in Section 5 that describes the belief management system).

Page 12 of 35

To control the execution of the behavior, this process provides the ROS services: start and stop.
The possible execution states of a behavior are the same states that we use for general processes
in Aerostack. Figure 5 shows the available states and transitions of Aerostack processes. Initially,
once the system is running for a particular aerial robot, the process is in the state ready to start.
The execution of the behavior is activated with the ROS service start, which automatically
changes to the state running. To cancel the execution of the behavior, we use the ROS service
stop, which changes to the state ready to start.

Figure 5: State-transition diagram of a process in Aerostack.

 Algorithm 1: start(behavior b)

1. activate resources for behavior b
2. if (resources for behavior b cannot be activated)
3. then return(failure)
4. else
5. initiate the time measurement of behavior execution
6. extract argument values
7. connect inputs/outputs (advertise and subscribe ROS topics)
8. initiate behavior execution (read and publish ROS topics and call ROS services)
9. return(success)

 Algorithm 2: run(behavior b)

1. f ← FALSE
2. repeat
3. if (wrong progress conditions are TRUE) then e ← WRONG_PROGRESS, f ← TRUE
4. else if (category of behavior b is “goal-based” or “deliberative”) then
5. if (goal achieved conditions are TRUE) then e ← GOAL_ACHIEVED, f ← TRUE
6. else if (timeout of behavior b is TRUE) then e ← TIME_OUT, f ← TRUE
7. until (f)
8. publish execution result (publish event e in the topic “behavior event”)
9. call the function stop(behavior b)

 Algorithm 3: stop(behavior b)

1. write end values for inputs/outputs (read/publish topics and call services)
2. cancel resources of behavior b
3. disconnect input/outputs (shutdown ROS topics and services)

Page 13 of 35

The detailed execution of a behavior is controlled by three functions: start(), run(), stop(). The
function start() is called by the ROS service start. The function run() is automatically called
when the process is in the state running. The function stop() is called at the end of the function
run(), or inside the ROS service stop.

The function start() executes a sequence of steps that are summarized by algorithm 1. It is
important to know that before this function is called, the argument values (in text format) and the
timeout value (a number) are written in two fields of the behavior object. In summary the
algorithm covers the following steps:

● The first step of the algorithm is to activate the resources corresponding to the behavior.
As a consequence of this, the processes that support the execution of this behavior start
running. If this is not possible, the behavior returns failure.

● In the second step, the measurement of execution time is initiated.
● In the third step, the process extracts the values of the arguments (if the behavior has

arguments) from the text stored in the corresponding field of the behavior object.
● In the fourth step, the process establishes the input/output connections (using ROS

interprocess communication methods for advertisement and subscription).
● In the fifth step, the behavior publishes initial values for certain processes if it is

necessary (which in turn may require to read certain values).

Once this function has been finished, the state of the process is running. Note that steps three,
four and five are specific for each behavior and the rest and general. This is why the first two
steps are programmed in a general class (the class behavior process) and the rest are specific for
each instance.

When the state of the process is running, the function run() is called automatically. This function
executes the steps described by algorithm 2. This algorithm performs a loop to monitor the
execution progress, reading perception values. Note that this monitoring is different in goal-based
behaviors, concurrent behaviors and deliberative behaviors (Appendix A describes the categories
of behaviors that we use). The loop of the algorithm can finish with success or failure and, finally,
the function publishes the generated event (using the ROS topic behavior event) and calls the
function stop() to stop the behavior execution, changing the state of the process to ready to start.

In certain execution systems behaviors generate specific events. For example, in the system
designed by Firby and Slack [Firby, Slack, 1995], the behavior watch-for-landmark can generate
the event landmark-visible, or the behavior move-to-landmark can generate the events movement-
complete, stuck, or lost-landmark. However, in our execution engine, we consider only generic
events that are common for all behaviors (if we would need to consider specific cases, they could
be processed as beliefs as it explained in Section 5). For example, we consider the following
generic event for recurrent behaviors: WRONG_PROGRESS, i.e., the behavior progress is incorrect.
For goal-based behaviors, in addition to the previous event, we consider other two events:
GOAL_ACHIEVED, i.e., the goal of the behavior has been reached, and TIME_OUT, i.e., the goal has
not been reached in the expected time interval. In the case of deliberative behaviors, the possible
events are GOAL_ACHIEVED or TIME_OUT. The result of the deliberative behavior is communicated
through the ROS topic behavior event.

The function stop() executes the steps presented by algorithm 3. In the first step, the algorithm
writes final values for certain processes (if necessary). The second step deactivates the resources
of the behavior by stopping the running processes that support the behavior. Finally, step three
disconnects inputs/outputs. The execution of this function changes automatically the process to
the state ready to start. The function stop() can be also called by the ROS service stop. When this
service is called, this means that the behavior does not stop by itself, but the operator interrupts

Page 14 of 35

the execution (e.g., to inhibit a recurrent behavior) or the behavior coordinator forces the stop
(e.g., because its execution not compatible with a requested behavior). Thus, the ROS service stop
performs two actions: (1) call the function stop() and (2) publish the generic event INTERRUPTED,
i.e., the behavior has been forced to stop.

In summary, the possible events that can generate the execution of a behavior are:
WRONG_PROGRESS, GOAL_ACHIEVED, TIME_OUT, and INTERRUPTED.

4.2. The behavior coordinator
An important issue for behavior execution is the coordination of the activation of multiple and
interacting behaviors that can operate simultaneously. In our design, this coordination is
performed by a centralized process, called behavior coordinator, that knows in advance the
potential conflicts and avoids the concurrent execution of incompatible behaviors. For example,
certain behaviors that use the same actuators (e.g., flight maneuvers controlled by rotors) are
incompatible, i.e., only one behavior can be performed at any given moment.

The behavior coordinator activates a behavior taking into account the consistency with the
environment and with other active behaviors. When a behavior is requested to be active, the
coordinator analyzes the following: (1) checks if the behavior has conflicts with the current
situation (this is directly asked to the behavior process), and (2) checks group consistency, i.e.,
checks if the activation of the behavior is consistent with other behaviors that are already active
(e.g., the behavior keep hovering and the behavior go to point cannot be active at the same time).

We assume that behaviors are requested to be active by deliberation (e.g., during the
interpretation of a mission plan or directly by the operator). But behaviors can also be requested
to be active by reaction to certain situations. For example, Interrap [Müller, 1996] uses the
concept of reactors for this type of behaviors. An example of this is the behavior land that is
activated when the battery charge is low. When the behavior take off finishes (or when the
behavior go to point finishes) the behavior keep hovering is automatically activated to be sure that
the flight is correctly controlled.

These two activation request methods (deliberative or reactive) are a potential source of conflict
when incompatible behaviors are requested to be active at the same time. To solve these conflicts
we use a priority value for the reactive activation request:

● Lower. The reactive activation request of the behavior has lower priority than the
deliberative activation request. This corresponds to a category of behaviors that must be
active unless the operator activates other incompatible behaviors.

● Higher. The reactive activation request of the behavior has higher priority than the
deliberative activation request. This category corresponds to behaviors for emergency
situations that must be active, no matter what the operator says.

Thus, the order of priority is: reaction with higher priority > deliberation > reaction with lower
priority. In the presence of two requests of the same order of priority, we apply the control
strategy of recency, i.e., the most recent request has higher priority.

Group consistency is analyzed by a different process (the behavior specialist). If the current
situation is not compatible with the requested behavior, the request is rejected (see algorithm 4).
If an incompatible behavior with high priority is active, the coordinator rejects the request. If an
incompatible behavior with low priority is active, the coordinator stops the active behavior.

Page 15 of 35

 Algorithm 4: Activate behavior b

1. check if the activation of behavior b is compatible with current situation
2. if (behavior b is not compatible with current situation)
3. then
4. reject the request
5. else
6. if (behavior b is not compatible with an active behavior of higher priority)
7. then
8. reject the request
9. else
10. if (behavior b is not compatible with a set of active behaviors A of lower priority or equal priority)
11. then stop all behaviors in A
12. start behavior b

The behavior coordinator activates sequentially behaviors as they are requested. In addition, the
coordinator reacts to events generated by the execution of an activated behavior
(GOAL_ACHIEVED, TIME_OUT, WRONG_PROGRESS or INTERRUPTED). These events
are received through the ROS topic behavior event. When the coordinator receives this event, this
means that the behavior has finished the execution (with success or failure). Thus, the coordinator
removes the behavior from the list of active behaviors and activates all default behaviors that are
compatible with the active behaviors (algorithm 5).

 Algorithm 5: Behavior event handling (behavior b)

1. A ← set of active behaviors
2. A ← A - {b} /* remove behavior b from the list of active behaviors A */
3. C ← set of all behaviors that could be requested to be active by reaction
4. C ← C - A /* remove behaviors in C that are already active */
5. for each behavior bi in C: /* loop to filter incompatible behaviors in C */
6. if (bi has lower priority than deliberative activation request)
7. then
8. for each behavior bj in A (stop this loop if one incompatibility is detected)
9. if (bi is not compatible with bj)
10. then C ← C - {bi}
11. for each behavior bk in C: /* loop to active only behaviors of C that satisfy their conditions */
12. if (default activation condition of bk is satisfied) /* this takes time because consults belief manager, so it must be optimized */
13. then
14. activate behavior bk
15. if (bk is successfully activated) then A ← A ∪ {bk}
16. update active behaviors with the value of A

Note that a limitation of our design is that it does not accept the simultaneous execution of two
occurrences of the same process. For example, if the robot has two arms, it is not possible to have
one behavior called move arm for moving both arms simultaneously. Two different behaviors
with different names would be needed: move left arm and move right arm. Another solution is to
have a specific sub-coordinator as a single process, specialized in a category of behaviors, that
coordinates the concurrent execution of a set of processes (e.g., moving arms coordinator).

4.3. The behavior specialist
The behavior specialist is a process that centralizes information about how to use each behavior
and information about the expected evolution of each behavior. For this purpose, the behavior
specialist use a file, called behavior catalog written in YAML format with information about each
behavior such as the correct names, arguments, allowed values and compatibility.

Page 16 of 35

With this information, the behavior specialist can check whether the activation request for a
behavior is correct or not. For example, the numerical value for a particular argument may be out
of the limits of the allowed values. The behavior specialist can also check whether particular
groups of behaviors are compatible to be active simultaneously or not.

behavior_descriptors:

 - behavior: GO_TO_POINT
 timeout: 120
 category: goal_based
 incompatible_lists: [motion_behaviors]
 capabilities: [SETPOINT_BASED_FLIGHT_CONTROL, PATH_PLANNING]
 arguments:
 - argument: COORDINATES
 allowed_values: [-100,100]
 dimensions: 3
 - argument: RELATIVE_COORDINATES
 allowed_values: [-100,100]
 dimensions: 3

 - behavior: ROTATE
 incompatible_lists: [motion_behaviors]
 capabilities: [SETPOINT_BASED_FLIGHT_CONTROL]
 arguments:
 - argument: ANGLE
 allowed_values: [-360,360]

 - behavior: KEEP_MOVING
 category: recurrent
 incompatible_lists: [motion_behaviors]
 capabilities: [SETPOINT_BASED_FLIGHT_CONTROL]
 arguments:
 - argument: SPEED
 allowed_values: [0,30]
 - argument: DIRECTION
 allowed_values: [BACKWARD, FORWARD, UP, DOWN, LEFT, RIGHT]
...

behavior_lists:

 - list: motion_behaviors
 behaviors:
 - TAKE_OFF
 - LAND
 - FLIP
 - KEEP_HOVERING
 - FOLLOW_OBJECT_IMAGE
 - START_MOVING
 - START_HOVERING
 - GO_TO_POINT
 - ROTATE
...

reactive_activation:

 - behavior: KEEP_HOVERING
 condition: flight_state(self, FLYING)
 priority: lower

 - behavior: LAND
 condition: charge(battery, ?X), less_than(?X, 10)
 priority: higher

 - behavior: SELF_LOCALIZE_BY_ODOMETRY
 priority: lower
...

Figure 6: Behavior description in the behavior catalog

Page 17 of 35

In the catalog, we can specify when to activate automatically a behavior (reactive activation)
including the two options for priority (lower or higher). It is possible to include conditions
expressed with belief expressions.

The catalog also includes the set of processes that are required to execute a behavior. To express
this in a modular way, we use capabilities. A capability represents a particular robot’s feature that
is achieved by executing certain processes. A process may belong only to one capability. Table 4
shows examples of potential capabilities that can be used in aerial robotics. We may have
different types of capabilities such as perception capabilities (the robot is able to perceive certain
characteristics like colors, voice, visual markers, etc.), situation awareness capabilities (the robot
is able to generate certain situation awareness abstractions like self localization, obstacles
detection, or map building), and flight maneuver capabilities (the robot has certain capabilities
that help in flight maneuvers like plan trajectories or limit extreme movements).

Capability Description
VISUAL_MARKERS_RECOGNITION The robot recognizes visual markers
SELF_LOCALIZATION_BY_ODOMETRY The robot localizes its own position by using odometry
SELF_LOCALIZATION_BY_VISUAL_MARKERS The robot localizes its own position by using visual markers
SELF_LOCALIZATION_BY_LIDAR The robot localizes its own position by using LIDAR
SELF_LOCALIZATION_BY_GPS The robot localizes its own position by using GPS
COLOR_RECOGNITION The robot recognizes colors
SHAPE_RECOGNITION The robot recognizes shapes
SPEECH_RECOGNITION The robot recognizes voice commands from the operator
HELIPAD_RECOGNITION The robot is able to recognize helipads
VISUAL_SERVOING The robot controls the flight by vision
SETPOINT_BASED_FLIGHT_CONTROL The robot controls the flight using reference values (setpoints)
SPEECH_GENERATION The robot generates spoken words
CAMERA_CONTROL_FOR_PICTURES The robot controls the camera to take pictures
CAMERA_CONTROL_FOR_VIDEOS The robot controls the camera to record videos
LIGHT_CONTROL The robot controls the lights
ARM_CONTROL The robot controls the arm
PATH_PLANNING The robot generate paths that avoid obstacles
2D_MAP_GENERATION The robot builds a 2D map of the environment
3D_MAP_GENERATION The robot builds a 3D map of the environment
USER_INTERACTION_TO_REQUEST_IMAGE The robot can request to the operator to select a part of the camera image
USER_INTERACTION_TO_DISPLAY_IMAGE The robot displays on the ground station monitor the camera image
SOCIAL_COMMUNICATION The robot communicates with other drones
OPERATION_WITH_AR_DRONE The robot is supported by the physical platform AR Drone 2.0
OPERATION_WITH_RVIZ_SIMULATOR The robot is supported by a simulator based on RViz
OPERATION_WITH_GAZEBO_SIMULATOR The robot is supported by the Gazebo simulator

Table 4. Examples of capabilities.

Figure 7 shows how capabilities are described in the behavior catalog. The information of each
capability is written in a descriptor that includes the name and the set of processes that must be
running to support the capability. In addition, it is possible to write ROS service calls to adjust the
execution of certain processes. On the other hand, each behavior descriptor includes the required
capabilities for the behavior.

Page 18 of 35

capability_descriptors:

 - capability: SETPOINT_BASED_FLIGHT_CONTROL
 process_sequence: [droneTrajectoryController]
 incompatible_capabilities: [VISUAL_SERVOING]

 - capability: PATH_PLANNING
 process_sequence: [droneTrajectoryPlanner, droneYawPlanner]

 - capability: VISUAL_SERVOING
 process_sequence: [trackerEye, open_tld_translator, droneIBVSController]
 incompatible_capabilities: [SETPOINT_BASED_FLIGHT_CONTROL]

 - capability: DYNAMIC_SELF_LOCALIZATION_MODE
 process_sequence: [self_localization_mode_selector]

 - capability: SELF_LOCALIZATION_BY_ODOMETRY
 permanent_active: yes
 process_sequence: [droneOdometryStateEstimator]

 - capability: SELF_LOCALIZATION_BY_VISUAL_MARKERS
 process_sequence:
 - droneLocalizer

 - capability: OBSTACLE_DETECTION_BY_VISUAL_MARKERS
 process_sequence:
 - droneObstacleDistanceCalculator
 - droneObstacleProcesser

 - capability: VISUAL_MARKERS_RECOGNITION
 process_sequence:
 - droneArucoEyeROSModule

Figure 7: Description of capabilities

The behavior specialist may also help to verify if a mission plan is feasible, analyzing if a given
sequence behaviors can be executed. This analysis does not perform a complete and detailed
verification, since many details are only known during the actual execution. The main purpose of
this verification is to detect in advance evident incorrect sequences of behaviors based on
physical common sense. For example, this process can help to detect that it is not correct to
request to land and, then, to request again to land. For this purpose, the behavior catalog can
include the following representation:

● There is a set of state machines, where each state machine is associated to a particular
physical phenomenon. Examples of physical phenomena are: light (the light of the robot
that can be on or off) and flight (flight state of the robot).

● Each state machine includes states and transitions. Each state represents a qualitative
situation of physical phenomena. For example, the states for the physical phenomenon
light can be: on or off. The states for physical phenomenon flight can be: hovering,
landed, moving. Each transition corresponds to a valid activation of a behavior. If the
transition is not present, the behavior activation is not possible.

With this representation, the behavior specialist can check if a sequence of transitions is valid
using the state machines. The procedure receives a sequence of behaviors and applies the
transitions using the set of the state machines to verify that the activations are valid.

It is very important to keep the consistency between the behavior catalog (where capabilities are
related to behaviors) and the software architecture configured for the aerial robot. When the
software architecture is configured by the developer, the set of processes are declared to be
launched and ready to be executed (using ROS launchers). It is important that all the potential
processes defined in the catalog must be declared in the launchers. To ensure that the architecture

Page 19 of 35

and catalog are consistent, the behavior specialist verifies that all the processes of the behavior
catalog are consistent with the processes declared in the launchers. This verification is done while
the catalog is loaded. If an inconsistency is detected, the behavior specialist shows a warning
message to the operator informing that the capability is not supported by the architecture and
continue the execution.

behavior_transitions:
 - behavior: TAKE_OFF
 physical_phenomenon: flight
 initial_state: landed
 final_state: hovering

 - behaviors: [GO_TO_POINT, START_HOVERING]
 physical_phenomenon: flight
 initial_state: [hovering, moving]
 final_state: hovering

 - behavior: START_MOVING
 physical_phenomenon: flight
 initial_state: [hovering, moving]
 final_state: moving

 - behavior: LAND
 physical_phenomenon: flight
 initial_state: [hovering, moving]
 final_state: landed

 - behavior: TURN_LIGHT
 argument: MODE
 argument_value: ON
 phenomenon: light
 initial_state: off
 final_state: on

Figure 8: Example representation of state machines to verify the feasibility of a sequence of behaviors.

4.4. The resource manager

The role of the resource manager is to run the processes that support the execution of behaviors,
trying to use efficiently the limited resources of the robot. As mentioned before, the processes of
a behavior are grouped in capabilities (each process may belong only to one capability). When a
behavior is activated, its corresponding capabilities are activated automatically by starting the
corresponding processes. We assume that human operators do not specify directly when to
activate or deactivate capabilities (e.g., in a mission plan). Otherwise, there can be conflicts
between what the operator says and what a behavior needs.

The activation of capabilities is associated to the increase of resource consumption (memory
space, processing time, battery charge) so it is important to deactivate automatically unnecessary
capabilities when it is possible. Since a capability may be used by different concurrent behaviors,
the capability can be deactivated only when it is not used by any behavior. For this purpose, the
resource manager keeps updated a number of references for each capability. When a capability
has zero references, the resource manager can stop its processes. However the actual stop of
processes is not done immediately to keep the processes running, avoiding unnecessary stops
when two consecutive behaviors use the same processes.

The resource manager has been designed to activate the processes taking into account also the
existing faults and making decisions about alternative processes to start, for example, when a

Page 20 of 35

resource is broken or already used (e.g., a right handed person can open a door with the left hand
when the right hand is holding something). For example, if an acoustic altitude sensor fails, the
manager can decide to use a pressure sensor to estimate altitude. Or, in a robot that has stereo
vision, sonars and infrared sensors, the resource manager can decide what sensor to use according
to the range detection (e.g., IR can detect at a sufficient range, stereo vision may be fast enough to
work when the robot is moving, and sonars may produce reliable readings) [Murphy, 2000].

5. The belief management system

We consider a belief as a proposition about the world that the robot thinks is true (the world here
refers to both the external world and the internal state of the robot). The robot uses beliefs as true
facts while it reasons trying to adapt the execution of the mission plan to the current
circumstances.

The belief management system stores the set of beliefs and keeps their consistency (with the
world and with the other beliefs). Figure 9 shows the set of processes of this system. It includes a
process for belief management and a set of processes that we call belief updaters.

Figure 9: Architecture of the belief management system.

5.1. The belief manager

The goal of the belief manager is to manage the memory of beliefs accepting requests to add and
delete beliefs and questions about the existence of beliefs (i.e., consult a belief expression). The
belief manager ensures the consistency in the stored beliefs.

It is important to use a uniform and symbolic representation for beliefs that can be used (1) by the
operator to write mission plans, and (2) by the robot to explain to the operator its own behavior.
Beliefs should be based on notions used in the operator’s language, to generate understandable
descriptions. With symbolic beliefs, the robot may communicate more naturally to the operator its

Page 21 of 35

own knowledge simulating a kind of conscious understanding of the current situation and its own
performance.

It is important to note that only a small part of all the information used by the robot needs to be
represented as beliefs. For example, the robot uses an environment map that may have detailed
information about dimensions, limits, walls, obstacles, etc. However, it is not necessary to use
beliefs to represent all the details of the map. The general rule is that certain information is
represented as belief if the operator can use it to formulate a mission plan or to understand an
unexpected behavior. For example, information is represented as belief if the mission plan uses
this information to make decisions, or if the behavior uses this information as precondition to
check its correct activation. During the execution, the size of the content of the belief memory is
normally small (e.g., usually a few dozens of beliefs).

We represent beliefs using a logic-based approach with predicates. Table 5 shows examples of
such predicates with the general format of predicate(object, value) or simpler forms such as
property(object). The representation follows also an object-oriented approach. Objects are
instances of a class. They can have attributes with values. We assume that the values of attributes
defined for an object using triplets are mutually exclusive. For example, the belief
charge(battery, empty) is incompatible with the belief charge(battery, full) because the
values empty and full are mutually exclusive. If a particular relation does not have values that
are not mutually exclusive, this must be explicitly stated as an exception. The belief manager
keeps consistency among beliefs. When a belief is added, e.g., charge(battery, empty), the
incompatible beliefs are automatically retracted, e.g., charge(battery, full).

Predicate Description

object(x, y) The object x is an instance of the class y.
position(x, y) The object x is at the position y.
name(x, y) The name of object x is y.
flight_state(x, y) The aerial robot x is flight state y (e.g., landed or flying)
code(x, y) The numerical code of x is y.
color(x, y) The color of x is y.
frequency(communication,x) The frequency of the communications is x.
charge(battery, x) The charge of battery is x.
carry(self, x) The own aerial robot carries the object x.
image(x, y) The image of object x is y.
temperature(air, x) The temperature of the air is x.
visible(x) The object x is visible.
stability(ground, x) The stability of the ground is x.

Table 5. Examples of predicates to represent beliefs about situation awareness.

As it was explained above, beliefs can be used to detect certain types of errors. For example, the
assumptions of a behavior for its activation (e.g., the behavior take off can be activated only if the
robot is landed) can be expressed as a set of preconditions represented with belief expressions.

Table 6 shows examples of such expressions. The expressions are verified to identify conflicts.
When a conflict is detected, the robot can inform the operator what are the beliefs that do not
verify the expression. We assume that the behavior does not have to check for conditions that are
common for the majority of behaviors (e.g., communication(wireless, ok),
charge_level(battery, ok), visibility(camera, ok), vibrations(self, none)). This
is done more efficiently, in a separate reactive process that verifies these events and reacts
accordingly.

Page 22 of 35

Behavior Precondition
GO_TO_POINT flight_state(self, ?x1), belong(?x1, [moving, hovering])

position(self,?x2), approximate_travel_time(?x2, ?y,?t), ?t < 30
minimum_distance_to_obstacle(?y, ?d), ?d > 3
NOTE: ?y is the destination point

FLIP flight_state(self, ?x), belong(?x, [moving, hovering])
position(self, ?x), minimum_distance_to_obstacle(?x, ?y), ?x > 3
charge_level(battery, ?x), ?x >30

LAND flight_state(self, ?x), belong(?x, [moving, hovering])
stability(ground, stable)

Table 6: Examples of belief expressions as preconditions for behavior execution.

Predicate Description
belong(x, y) The element x belongs to the list y
x > y, x < y, x = y, x >= y, x =< y Comparison operators for numbers x and y.
approximate_travel_time(x, y) The approximate travel time to go from the current position to x is y.
distance_to_obstacle(x, y) The minimum distance to an obstacle from x is y.

Table 7. Examples of beliefs to represent the result of simple functions.

5.2. The belief updater process

Beliefs are updated periodically using information from sensors. This is done by processes called
belief updaters. Each belief updater is a process specialized in updating a category of beliefs.
Beliefs do not need to be updated at a high frequency, compared to the frequency used by
controllers. It is enough a lower frequency to work with the executive system. Beliefs can be
updated periodically at a certain frequency or they can be updated when they are consulted.

To indicate that an object is currently observed, we use the predicate visible(). When an
object is not observed, this predicate is retracted, but the rest of predicates related to this object
are kept in memory (name, color, position, etc.). In general, beliefs should be stored in memory
with a limited duration. The robot may assume that, after a period of time, something that was
observed in the world is not longer true (based on common sense about the objects in the world).
We call this the temporal persistence of a belief. The beliefs of each type of object have a certain
persistence value according to its nature. For example, beliefs about the position of a moving
object (e.g., a person, a car) should have a very low persistence and beliefs about the position of a
static object (e.g., a wall, a door) should have a high persistence. A mobile object (e.g., a chair, a
bucket) can have an intermediate value of persistence.

Based on the duration of missions that perform aerial robots (usually less than one hour), we can
simplify the management of persistence with the practical assumption that beliefs may have one
of two extreme values: permanent persistence or null persistence. By default, all objects have
permanent persistence (the operator can express exceptions to this). Thus, the majority of beliefs
are stored forever, unless incompatible beliefs are added. As an alternative to this approach, it is
possible to use other more complex representations such as a probabilistic approach to model
uncertainty about persistence, variable duration of persistence calibrated for each type of object,
methods to forget non relevant beliefs, etc.

Page 23 of 35

Beliefs can be anchored to percepts (e.g., to images). This is useful to learn to recognize objects.
For example, the robot can memorize the image of a person together with a belief with the name.
This can be used to recognize again the person and call her/him by her/his name. A simple
method to learn this is by storing a belief that links the name and the image. As an alternative,
instead of the image we could store the recognition process of the image (e.g., a trained neural
network).

A problem related to this is to know if the perception is unique for the object. For example, if the
robot has recognized a chair in the past and now the robot sees a similar image, is it the same
chair? And also, is it important for the robot to know that it is the same chair? For our missions,
we can assume that images have univocal interpretation. Therefore, if the robot recognizes the
face of a person, the name is also recognized. For more complex missions, we can consider that
certain objects don’t have this property.

An active management of beliefs could modify the behavior of the robot to focus attention on
certain objects. For example, in the presence of uncertainty between symbolic name and image,
the robot can move the camera to have a better image in order to reduce uncertainty. Another
example is related to the persistence of the position of an object, using an estimated duration of
persistence. When the persistence time is close to the end, the robot can move the camera to see if
the object continues in the same position.

6. Interpreters for mission plans

This section presents some examples of mission plan interpreters that illustrate how the execution
engine can be used using different representation languages. We present here three interpreters
used in Aerostack:

● TML mission interpreter. Executes a mission specified in the language TML (Task-based
mission specification language).

● Python-based mission interpreter. Executes a mission specified in the language Python.

● Behavior tree mission interpreter. Executes a mission specified using behavior trees.

The TML mission interpreter uses a language with XML syntax called TML (Task-based mission
specification language) that uses a hierarchical approach to describe how to decompose complex
tasks of a mission plan into a sequence of atomic executable actions. TML belongs to the
category of execution languages (e.g., the Plexil language [Verma et al., 2005]). TML is
described in detail in some publications [Molina et al., 2016]. The following two sections
describe the other two interpreters.

6.1. The interpreter of mission plans written in Python language
A mission plan can be represented in Python language using the behaviors and beliefs presented
in this paper. This language is presented to the developer as an API (Application Programming
Interface) with a library of functions (see next table).

The interpreter of this language can verify in advance (before the plan is executed) the correct
format of the Python program. For example, the interpreter can verify that all the names of
behaviors exist and all the beliefs expressions are correct.

Page 24 of 35

With this approach, the operator can write the mission tasks directly in Python calling specific
functions of the API library specialized in robotic actions. This is a very flexible approach but
presents two main limitations: (1) it is difficult to verify the complete feasibility of the
specification in advance, and (2) it is difficult to be used by users who are not familiar with
computer languages.

Function Description Example of use

executeBehavior(x, y) Executes a goal-based behavior x with
arguments y, and waits until the behavior
reaches the goal. This function returns the
result of the execution. The result is one of
the following values: {ACHIEVED_GOAL,
TIME_OUT, WRONG_PROGRESS,
FAILED_PRECONDITIONS}

executeBehavior(‘GO_TO_POINT’, point=’(1, 2, 3)’)
result = executeBehavior(‘LAND’)

activateBehavior(x, y) Activates a behavior x with arguments y.
This function returns the result of the
activation. The result is one of the following
values: {OK,
FAILED_PRECONDITIONS}

activateBehavior(‘KEEP_HOVERING’)

askBehavior(x, y) Executes a deliberative behavior x with
arguments y, and returns a string with the
result.

path = askBehavior(‘GENERATE_PATH’)

inhibitBehavior(x) Inhibits the activation of behavior x. We
assume that this function always succeeds.

inhibitBehavior(‘RECOGNIZE_ARUCO_MARKERS’)

isActiveBehavior(x) Answers whether a behavior x is active
(true) or not (false).

isActiveBehavior(‘RECOGNIZE_ARUCO_MARKERS’)

consultBelief(x)

Returns a tuple (R1, R2), where R1 is a
boolean indicating whether the belief
expression x matches an instance in the
belief memory or not, and R2 is a list (as a
Python dictionary) with the value of the
variables of belief expression x that unify
such expression with an instance in the
belief memory. Only the first instance that
matches the expression is considered. If the
belief expression does not match any
instance in the belief memory R1 is false.

success, unification =
consultBelief('charge(battery, ?X)’)
if success:
 x = unification[‘?X’]

trueBelief(x)

Returns true if the belief expression x is true
or false in other case.

trueBelief(‘object(?X, marker), code(?X, 3’)

Table 8: Functions of the Execution Engine API.

Figure 10: Example program in Python for a mission plan.

Page 25 of 35

6.2. The interpreter of mission plans represented with behavior trees

A behavior tree is a popular representation that was proposed in the computer gaming industry.
In robotics, behavior trees have been used recently [Marzinotto et al 2014] [Colledanchise,
Ogren, 2014] and specifically for UAVs [Ögren 2012] [Klöckner, 2013]. The goal of the MBT
mission interpreter is to execute a mission plan described as a behavior tree (MBT - Mission
plan specification with behavior trees). Figure 11 shows an example of behavior tree for a
particular mission (mission 7 of IARC).

Figure 11: Example of behavior tree.

In short, the interpreter interacts with the execution engine in the following way. Intermediate
nodes of the tree establish the control regime (e.g., a sequence, a loop, etc.). The leaf nodes of
the tree may correspond to: behaviors or conditions represented with belief expressions. The
interpreter of the behavior tree travels through the nodes following the control regime
established by intermediate nodes and, when a leaf node is reached, the interpreter interacts with
the execution engine in the following way: (1) behavior, if the leaf node is a behavior, the
interpreter requests the execution engine to execute such a behavior, (2) condition, if the leaf
node is a condition, the interpreter consults belief expression to the execution engine.

The behavior representation makes it easier for operators that are not familiar with computer
languages to formulate a mission plan. In contrast, this solution is less flexible than the solution
based on a programming language like Python. The implementation of several approaches in
Aerostack for mission planning is easier thanks to the execution engine. Having multiple
methods to formulate mission plans is appropriate to offer alternative solutions to be chosen by
operators according to their preferences.

Page 26 of 35

7. Conclusions

In this paper, we have presented the technical details of an execution system that has been
designed to help simplify the specification of mission plans for aerial robot systems. This work
has been done as part of our efforts to promote a more extensive use of the software framework
Aerostack.

The proposal follows a behavior-based approach that simplifies the description of mission plan
with a uniform representation. The approach is supported by a general architecture conceived as
an execution engine with two main systems: one system to facilitate the execution of behaviors
and another one to manage a memory of beliefs that are represented with predicates.

The system presented in this paper is based on solutions from the current state of the art in
artificial intelligence and robotics. The main contribution of this work is an original design
conceived to improve the usability of Aerostack. Thus, this paper can be useful to understand
reasons that support the design of Aerostack. Compared to other execution systems, our design
has been conceived using modern software technology (e.g., ROS, Linux, C++, etc.) to achieve
acceptable levels of efficiency, as it is required in aerial robotics. The design of the execution
engine is not committed with Aerostack, so it can be reused as a model for other different robot
architectures.

The description of the execution engine presented in this paper corresponds to its specification
and general design. In our research group, we are currently working on its implementation and its
validation with real flight tests. As a result of this, this general design could be refined to cope
with certain issues that might have not been considered in the initial version. Once the
implementation is completed, we plan to make the programs freely available as part of a new
release of the Aerostack open-source project (www.aerostack.org).

Acknowledgements

The development of Aerostack has been partially supported by the Spanish Ministry of Economy
and Competitiveness through the project VA4UAV (Visual autonomy for UAV in Dynamic
Environments) reference DPI2014-60139-R.

The work presented in this paper has been developed in the context of the Aerostack open-source
project in the the research group CVAR (Computer Vision and Aerial Robotics) in the Technical
University of Madrid (UPM). The following members of CVAR are the persons in charge of
building the programs that implement and validate the design presented in this paper: Alberto
Camporredondo, Guillermo de Fermin, Carlos Valencia, Jorge Pascual and Rafael Artiñano.

Page 27 of 35

References
Allgeuer, P., Behnke, S. (2013): “Hierarchical and state-based architectures for robot behavior planning and

control”. In Proceedings of 8th Workshop on Humanoid Soccer Robots, IEEE-RAS Int. Conf. on
Humanoid Robots, Atlanta, USA (pp. 3-5).

Brook, R. A. (1986): “A Robust Layer Control System for a Mobile Robot”, IEEE Journal of Robotics and
Automation RA-2, 14-23.

Brooks, R. A. (1990): “The Behaviour Language; User’s Guide,” MIT AI Lab.
Colledanchise M. and Ogren P. (2014): “How behavior trees modularize ro- bustness and safety in hybrid

systems”. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pages 1482–1488. IEEE, 2014.

Doherty, P., Heintz, F., Landén, D. (2010): “A distributed task specification language for mixed-initiative
delegation”. In International Conference on Principles and Practice of Multi-Agent Systems (pp.
42-57). Springer Berlin Heidelberg.

Firby, R. J. (1987): “An investigation into reactive planning in complex domains”. In AAAI (Vol. 87, pp.
202-206).

Firby, R. J. (1989): “Adaptive execution in complex dynamic worlds”. Doctoral dissertation, Yale
University.

Firby, R. J., Slack, M. G. (1995): “Task execution: Interfacing to reactive skill networks”. In AAAI Spring
Symposium.

Gat, E. (1998): “On three-layer architectures”. Artificial intelligence and mobile robots, 195, 210.
Gat, E., Dorais, G. (1994): “Robot navigation by conditional sequencing”. In Robotics and Automation,

1994. Proceedings., 1994 IEEE International Conference on (pp. 1293-1299). IEEE.
Gat, E. (1997). “ESL: A language for supporting robust plan execution in embedded autonomous agents”.

In Aerospace Conference, 1997. Proceedings., IEEE (Vol. 1, pp. 319-324). IEEE.
Klöckner, A., van der Linden, F., Zimmer, D. (2014). “The modelica behavior trees library: Mission

planning in continuous-time for unmanned aircraft”. In Proceedings of the 10th International
Modelica Conference, number 96, pages 727–736.

Konolige, K. (1997). “Colbert: A language for reactive control in Sapphira,” in KI-97: Advances in
Artificial Intelligence, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp.
31–52.

Kortenkamp, D., Simmons, R., Brugali, D. (2016). “Robotic systems architectures and programming”. In
Springer Handbook of Robotics (pp. 283-306). Springer International Publishing.

Loetzsch, M., Risler, M., & Jungel, M. (2006): “XABSL-a pragmatic approach to behavior engineering”. In
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on (pp. 5124-5129).
IEEE. http:// www.xabsl.de

MacKenzie, D. (1997): “A design methodology for the configuration of behavior-based mobile robots”.
Ph.D. dissertation, Georgia Institute of Technology, GA, USA.

Marzinotto, M., Colledanchise, M., Smith, C., Ögren, P. (2014): “Towards a unified behavior trees
framework for robot control”. In Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pages 5420–5427. IEEE, 2014.

Mataric, M. (1994): “Interaction and intelligent behavior”. Ph.D. thesis, MIT, EECS.
Michaud, F., Nicolescu, M. (2016). “Behavior-based systems”. In Springer Handbook of Robotics.

Springer International Publishing.
Molina, M., Díaz Moreno, A., Palacios, D., Suárez Fernández, R., Sánchez López, J. L., Sampedro Pérez,

C., Bavle H., Campoy Cervera, P. (2016): “Specifying complex missions for aerial robotics in
dynamic environments”. The International Micro Air Vehicle Conference and Competition
(IMAV 2016), Beijing, China.

Molina, M., Frau, P., Maraval, D., Sanchez-Lopez, J.L., Bable, H., Campoy, P. (2017): “Human-Robot
Cooperation in Surface Inspection Aerial Missions”. The International Micro Air Vehicle
Conference and Competition, IMAV 2017, Toulouse, France.

Müller, J. P. (1996): “The design of intelligent agents: a layered approach”. Springer Science & Business
Media (Vol. 1177).

Murphy, R. (2000): “Introduction to AI robotics”. MIT press.
Nicolescu, M. N., Matarić, M. J. (2002): “A hierarchical architecture for behavior-based robots”. In

Proceedings of the first international joint conference on Autonomous agents and multiagent
systems: part 1 (pp. 227-233). ACM.

Page 28 of 35

Ögren, P. (2012): “Increasing Modularity of UAV Control Systems using Computer Game Behavior
Trees”. In AIAA Guidance, Navigation and Control Conference, Minneapolis, Minnesota, 13 - 16
August 2012. AIAA. AIAA 2012-4458.

Ridao, P., Yuh, J., Batlle, J., Sugihara, K. (2005): “On AUV Control Architecture”. In Proceedings of the
2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), volume
2, pages 855–860.

Roberts, G. N., Sutton, R., Allen, R. (2993). “Guidance and control of underwater vehicles”. Elsevier
Science and Technology, IFAC Proceedings Volumes(1):1–40.

Risler, M. (2009): “Behavior control for single and multiple autonomous agents based on hierarchical finite
state machines,” PhD Dissertation. Fortschritt-Berichte VDI, Technische Universitt Darmstadt.

Molina, M., Bavle, H., Sampedro, C., Campoy, P. (2017): “A Multi-Layered Component-Based Approach
for the Development of Aerial Robotic Systems: The Aerostack Framework”. Journal of
Intelligent & Robotic Systems, 1-27.

Sanchez-Lopez, J.L., Suarez-Fernandez, R. A., Bavle, H., Sampedro, C., Molina, M., Pestana, J., Campoy,
P. (2016): “AEROSTACK: An Architecture and Open-Source Software Framework for Aerial
Robotics”. ICUAS 2016, Arlington, USA.

Sheridan, T. B. (1992): “Telerobotics, automation, and human supervisory control”. MIT Press.
Simmons, R., Apfelbaum, D. (1998): “A task description language for robot control”. In Intelligent Robots

and Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference on (Vol. 3, pp. 1931-
1937).

Suárez-Fernández, R. A., Sanchez-Lopez, J. L., Sampedro, C., Bavle, H., Molina, M., & Campoy, P.
(2016). “Natural user interfaces for human-drone multi-modal interaction”. In Unmanned Aircraft
Systems (ICUAS), 2016 International Conference on (pp. 1013-1022). IEEE.

Verma, V., Estlin, T., Jónsson, A., Pasareanu, C., Simmons, R., & Tso, K. (2005): “Plan execution
interchange language (PLEXIL) for executable plans and command sequences”. In Proceedings of
the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space.

Page 29 of 35

Appendix A: Library of behaviors for aerial robotics

This section describes a library of behaviors for aerial robotics that we designed for our execution
engine. The library of behaviors has been designed considering part of quality principles (Table
1). For example, the principle of orthogonality says that two behaviors are orthogonal if they do
not interfere with one another, each inducing no side-effects in the other [Michaud, Nicolescu,
2016]. A language is said to be orthogonal if it allows the programmer to mix these constructs
freely. In our library, this can be achieved only partially because there are certain behaviors that
cannot execute simultaneously because they use the same effectors (e.g., keep hovering and go to
point).

Principle Description

Orthogonality Behaviors are orthogonal if there are no restrictions on how they may be combined.

Parsimony The number of behaviors should not be multiplied needlessly.

Necessity Each behavior achieves a goal that cannot be achieved by other behavior [Michaud, Nicolescu, 2016].

Sufficiency Each behavior is sufficient for achieving the goals mandated for the controller [Michaud, Nicolescu, 2016].

Generality The library should be general to be applicable to as many different situations as possible.

Clarity The name of the behavior should be as clear as possible, to avoid the need to explain its meaning.

Conciseness The names used should express much in few words.

Simplicity The name and arguments of behaviors should not be complex. The simplest of several expressions is to be preferred.

Stability The library should be stable in time.

Scalability The library should be able to grow, including with new behaviors, without losing its quality.

Table A.1: Quality principles for the design of a library of behaviors.

In our library of behaviors, we distinguish three basic categories:

● Goal-based behaviors. These behaviors are defined to reach a final state (attain a goal).
Examples of these behaviors are flight maneuvers (related to rotors) such as simple flight
maneuvers (take off, land) or complex flight maneuvers (go to a point, move in circles).
This category also includes behaviors related to other effectors such as: sound (say
sentence), light (turn on-off), camera (take photo or video), dropping mechanism (to drop
an item), hand/arm (to grasp an item), moving camera (turn camera, look at a point), etc.

● Recurrent behaviors. These behaviors perform an activity recurrently or maintain a

desired state. For example, some communication behaviors belong to this category (speak
up, show video image to the operator). Other examples are: data storage behaviors (build
a map, record a video), attention behaviors (pay attention to colors, pay attention to voice
commands, etc.), etc.

● Deliberative behaviors. These behaviors correspond to deliberation tasks such as

planning tasks. The result of these behaviors is either returned by the behavior event or
stored in the memory of beliefs. A deliberative behavior can find a result successfully or
it can fail due to, for example, the current situation (e.g., planning a path can be
impossible if there is a barrier of obstacles).

Recurrent behaviors differ from goal-based behaviors in the following way. A goal-based
behavior defines implicitly a goal to be achieved in terms of a final state. The final state can be
formulated with a set of conditions about the state of the world. The behavior is deactivated in the
moment when these conditions are satisfied (or when it fails). For example, the goal of the

Page 30 of 35

behavior go-to-point is to be at a certain point. The final state is defined as the situation when the
robot position is the same as the desired position. The behavior finishes when this condition is
satisfied. These behaviors fail if the goal is not reached in a limited period of time (timeout). All
goal-based behaviors have a default timeout value that can be changed by the operator in a
particular mission plan.

In contrast, recurrent behaviors don’t define a final state, so it is not possible to determine when
the behavior has finished. Recurrent behaviors can express a desired state to maintain or a
permanent activity that can be either active or inactive, so they can be working without any limit
of time. For example, the recurrent actions build-map and record-video can be active all the time
during a mission. Recurrent behaviors could be activated under certain conditions:

● Distance. The behavior is only activated when the distance between the position of the
robot and a certain point (x, y, z) is less than certain value. Attribute: value (meters).

● Delay. The behavior is only activated after a number of seconds. Attribute: value

(seconds).

● Yaw. The behavior is only activated for a particular yaw. Attribute: min value (degrees),
max value (degrees).

Deliberative behaviors are used by the execution engine to create a uniform and robust interface
with deliberative processes using correct symbolic names and correct arguments and values. For
example, the behavior GENERATE_PATH_FREE_OF_OBSTACLES uses the deliberative process called
path planner that finds a path free of obstacles to go from a point x to a point y. Another example
is the behavior GENERATE_NEXT_POINT_TO_EXPLORE that may use the process exploration
planner. This process finds the next point to explore according a certain strategy. Some of these
processes may have memory (e.g., remember the explored area to generate a new point to
explore) and, therefore, they can operate sequentially.

This type of beliefs can help to formulate general descriptions about how to do complex
behaviors using simpler behaviors. For example, the high level action go to point y could be
formulated as a complex behavior in the following way:

1. Assuming that the robot is in position x, consult the belief path_free_of_obstacles(x,
y, z). This can execute the process path planner to generate the value of the variable z
with the path.

2. Execute the behavior follow path z.
3. If there is an obstacle during the execution, go to 1.

Another example is the complex behavior explore spatial region x that could be formulated in the
following way:

1. Consult the belief next_point_to_explore(x, y). This can execute the process
exploration planner to generate the value of the variable y with the point to explore.

2. Execute the behavior go to point y.
3. If the region is not completely explored, go to 1.

The following tables show the design of our library of behaviors. Tables present sets of behaviors
that belong to a certain categories such as general flight maneuvers, maneuvers guided by visual
references, communication, planning behaviors, etc.

Page 31 of 35

Behavior Type Description Arguments

TAKE_OFF Goal-based The robot takes off vertically from the surface
to the normal altitude. If the altitude argument
is not given, the robot reaches a default
altitude.

ALTITUDE (meters)

LAND Goal-based The robots lands vertically in the current
position.

KEEP_HOVERING Recurrent The robot keeps hovering. Hovering is a
maneuver in which the robot is maintained in
nearly motionless flight over a reference point
at a constant altitude and on a constant
heading. This behavior does not avoid moving
obstacles.

KEEP_MOVING Recurrent The robot keeps moving at a constant speed in
some direction (forward, backward, upward,
downward}. If the speed value is not given a
default value is considered. This behavior
does not avoid obstacles.

DIRECTION {FORWARD, BACKWARD,
UPWARD, DOWNWARD}
SPEED (m/sec)

ROTATE

Goal-based The robot rotates some degrees in a certain
axis (yaw, pitch, roll}

AXIS {YAW, ROLL, PITCH} ANGLE
(degrees), RELATIVE_ANGLE
(degree),
DIRECTION {CLOCKWISE,
COUNTERCLOCKWISE}

GO_TO_POINT Goal-based The robot goes to a point avoiding obstacles.
Time is expressed with the number of seconds
since the mission starts. Spline means that the
robot flies smooth paths both vertically and
horizontally instead of straight lines.

COORDINATES (x,y,z in meters),
RELATIVE_COORDINATES (x,y,z)
POINT_TO_LOOK_AT_THE_END (x,y,z),
YAW_ANGLE_AT_THE_END (degrees),
TIME (seconds),
POINT_TO_LOOK_DURING_FLIGHT
(x,y,z),
SPLINE (yes, no),

FLIP Goal-based The robot performs a flip movement. DIRECTION {RIGHT, LEFT, FRONT,
BACK}

FOLLOW_OBJECT_IMAGE The robot follows a moving object image,
keeping a certain constant distance between the
drone and the object.

IMAGE (image)

FOLLOW_PATH Goal-based The robot tries to follow a path defined as a
sequence of points.

PATH (sequence of points (x,y.z))

LOOK_AT_A_POINT Goal-based The robot looks at a certain point, i.e. the robot
rotates (yaw and pitch) to see the point through
the front camera.

COORDINATES (x, y, z in meters),

KEEP_LOITERING Recurrent The robot keeps moving in circles or squares .
Avoid obstacles is active by default.

SHAPE (CIRCLE, SQUARE)
DELAY (seconds),
CLOCKWISE (true/false),
RADIUS (meters, it can be zero),
SIDE (side length of the square in
meters, different from zero),
AVOID_OBSTACLES (yes, no).

TRACK_OBJECT_IMAGE Recurrent The robot keeps looking to an object image.
The robot keeps its position but rotates to keep
looking at a moving image.

IMAGE (image)

ALIGN_OVER_IMAGE Goal-based The robot aligns vertically over an image. IMAGE (image)

LAND_ON_MOVING_
PLATFORM

Goal-based The robot lands on a moving platform.

TOUCH_MOVING_OBJECT Goal-based The robot touches a moving object.

TAKE_OFF_FROM_MOVING_
PLATFORM

Goal-based The robot takes off from a moving platform.

Table A.2: Motion behaviors based on different flight maneuvers.

Page 32 of 35

Category Behavior Type Description Arguments

Understanding SELF_LOCALIZE_BY_
VISUAL_MARKERS

Recurrent The robot self localizes using visual
markers.

Understanding PAY_ATTENTION_TO_
VISUAL_MARKERS

Recurrent The robot pays attention to visual
markers. The recognized colors are
stored as beliefs.

MARKER {ARUCO, …}

Understanding PAY_ATTENTION_TO_
COLORS

Recurrent The robot pays attention to the images to
recognize colors. The recognized colors
are stored as beliefs.

Understanding PAY_ATTENTION_TO_
SHAPES

Recurrent The robot pays attention to the images to
recognize shapes. The recognized shapes
are stored as beliefs.

Understanding VERIFY Deliberative The robot checks if a condition is
satisfied. The result is true if the
condition is satisfied. Otherwise, the
result is false.

MARKER_IS_OBSERVED
(integer)
HOVERING(true, false)
CURRENT_SPEED(integer)
OBSTACLE_DISTANCE(integer)
VOICE_COMMAND(text)

Planning GENERATE_PATH_
FREE_OF_OBSTACLES

Deliberative The robot generates a path free of
obstacles to go from the current position
to a certain destination. The result is a
list of 3D points such as: [[2.5, 3.2, 1.5],
[1.2, 3.3, 1.5]]. If the robot is not able to
generate a path, it generates the empty
value.

DESTINATION (x,y,z in
meters),

Planning GENERATE_NEXT_
POINT_TO_EXPLORE

Deliberative The robot generates the next point to
explore a spatial region. The result is a
3D point such as: [3.5, 2.3, 1.5]. If the
there are not more points to explore, it
generates the empty value.

REGION (list of x,y,z in
meters),

Communication BROADCAST_MESSAGE Goal-based The robot broadcasts a message to be
received by other drones.

MESSAGE (string)

Communication NOTIFY_OPERATOR Goal-based The robot sends a message to be received
by the operator

MESSAGE (string)

Communication ASK_OPERATOR Goal-based The robot ask a question to the operator QUESTION (string),
POSSIBLE_ANSWERS(list of
strings)

Communication ASK_FOR_OBJECT_
IMAGE

 Goal-based The robot ask the operator for an object
image.

Communication DISPLAY_CAMERA_
IMAGE

Recurrent The robot shows to the operator the
camera image. This requires, for
example, to activate the capability
front_camera_sensing (if it is optional).

Communication SPEAK_UP Recurrent The robot says out loud the content
(tasks, etc.)

CONTENT {TASKS, ...}

Communication SAY Goal-based The robot says a sentence out loud. SENTENCE(string)

Data recording BUILD_MAP Recurrent The robot builds a map. DIMENSION {TWO, THREE}

Data recording RECORD_VIDEO Recurrent The robot records a video.

Data recording TAKE_PHOTO Goal-based The robot takes a photo.

Configuration TURN_LIGHTS Goal-based The robot changes the status of the light VALUE {ON, OFF}

Manipulation DROP_ITEM Goal-based The robot drops an item.

Table A.3: Other behaviors.

Page 33 of 35

Appendix B: Example of behavior catalog

This appendix shows a complete example of behavior catalog in YAML language.

default_behavior_values:
 timeout: 15
 category: goal_based

behavior_descriptors:
 - behavior: TAKE_OFF
 incompatible_lists: [motion_behaviors]

 - behavior: LAND
 incompatible_lists: [motion_behaviors]

 - behavior: GO_TO_POINT
 timeout: 120
 incompatible_lists: [motion_behaviors]
 capabilities: [SETPOINT_BASED_FLIGHT_CONTROL, PATH_PLANNING]
 arguments:
 - argument: COORDINATES
 allowed_values: [-100,100]
 dimensions: 3
 - argument: RELATIVE_COORDINATES
 allowed_values: [-100,100]
 dimensions: 3

 - behavior: ROTATE
 incompatible_lists: [motion_behaviors]
 capabilities: [SETPOINT_BASED_FLIGHT_CONTROL]
 arguments:
 - argument: ANGLE
 allowed_values: [-360,360]

 - behavior: KEEP_MOVING
 category: recurrent
 incompatible_lists: [motion_behaviors]
 capabilities: [SETPOINT_BASED_FLIGHT_CONTROL]
 arguments:
 - argument: SPEED
 allowed_values: [0,30]
 - argument: DIRECTION
 allowed_values: [BACKWARD, FORWARD, LEFT, RIGHT]

 - behavior: FOLLOW_OBJECT_IMAGE
 timeout: 90
 incompatible_lists: [motion_behaviors]
 capabilities: [VISUAL_SERVOING]

 - behavior: PAY_ATTENTION_TO_VISUAL_MARKERS
 recurrent: yes
 capabilities: [VISUAL_MARKERS_RECOGNITION]

 - behavior: KEEP_HOVERING
 category: recurrent
 incompatible_lists: [motion_behaviors]
 capabilities: [SETPOINT_BASED_FLIGHT_CONTROL]

 - behavior: WAIT

 arguments:
 - argument: DURATION

Page 34 of 35

 allowed_values: [1,1000]
 - argument: UNTIL_OBSERVED_VISUAL_MARKER
 allowed_values: [0,1023]

 - behavior: FLIP
 incompatible_lists: [motion_behaviors]
 capabilities: [SETPOINT_BASED_FLIGHT_CONTROL]
 arguments:
 - argument: DIRECTION
 allowed_values: [BACK, FRONT, LEFT, RIGHT]

 - behavior: SELF_LOCALIZE_BY_ODOMETRY
 category: recurrent
 incompatible_lists: [self_localization_behaviors]
 capabilities:
 - SELF_LOCALIZATION_BY_ODOMETRY
 - DYNAMIC_SELF_LOCALIZATiON_MODE
 ROS_service_calls: [change_self_localization_mode_to_odometry]

 - behavior: SELF_LOCALIZE_BY_VISUAL_MARKERS
 category: recurrent
 incompatible_lists: [self_localization_behaviors]
 capabilities:
 - SELF_LOCALIZATION_BY_ODOMETRY
 - VISUAL_MARKERS_RECOGNITION
 - SELF_LOCALIZATION_BY_VISUAL_MARKERS
 - DYNAMIC_SELF_LOCALIZATiON_MODE
 ROS_service_calls: [change_self_localization_mode_to_visual_markers]

 - behavior: SLAM_BY_VISUAL_MARKERS
 category: recurrent
 incompatible_lists: [self_localization_behaviors]
 capabilities:
 - SELF_LOCALIZATION_BY_ODOMETRY
 - VISUAL_MARKERS_RECOGNITION
 - SELF_LOCALIZATION_BY_VISUAL_MARKERS
 - OBSTACLE_DETECTION_BY_VISUAL_MARKERS
 - DYNAMIC_SELF_LOCALIZATiON_MODE

 - behavior: BROADCAST_MESSAGE
 arguments:
 - argument: TEXT
 allowed_values: TEXT

 - behavior: GENERATE_PATH_FREE_OF_OBSTACLES
 category: deliberative
 capabilities: [MISSION_PLANNING]
 arguments:
 - argument: DESTINATION
 allowed_values: [-100, 100]
 dimension: 3

behavior_lists:
 - list: self_localization_behaviors
 behaviors:
 - SELF_LOCALIZE_BY_ODOMETRY
 - SELF_LOCALIZE_BY_VISUAL_MARKERS
 - SLAM_BY_VISUAL_MARKERS
 - list: motion_behaviors
 behaviors:
 - TAKE_OFF
 - LAND
 - FLIP
 - KEEP_HOVERING
 - FOLLOW_OBJECT_IMAGE
 - START_MOVING
 - START_HOVERING
 - GO_TO_POINT
 - ROTATE

reactive_activation:

Page 35 of 35

 - behavior: KEEP_HOVERING
 condition: flight_state(self, FLYING)
 priority: lower

 - behavior: LAND
 condition: charge(battery, ?X), less_than(?X, 10)
 priority: higher

 - behavior: SELF_LOCALIZE_BY_ODOMETRY
 priority: lower

capability_descriptors:

 - capability: SETPOINT_BASED_FLIGHT_CONTROL
 process_sequence: [droneTrajectoryController]
 incompatible_capabilities: [VISUAL_SERVOING]

 - capability: PATH_PLANNING
 process_sequence: [droneTrajectoryPlanner, droneYawPlanner]

 - capability: VISUAL_SERVOING
 process_sequence: [trackerEye, open_tld_translator, droneIBVSController]
 incompatible_capabilities: [SETPOINT_BASED_FLIGHT_CONTROL]

 - capability: DYNAMIC_SELF_LOCALIZATION_MODE
 process_sequence: [self_localization_mode_selector]

 - capability: SELF_LOCALIZATION_BY_ODOMETRY
 permanent_active: yes
 process_sequence: [droneOdometryStateEstimator]

 - capability: SELF_LOCALIZATION_BY_VISUAL_MARKERS
 process_sequence:
 - droneLocalizer

 - capability: OBSTACLE_DETECTION_BY_VISUAL_MARKERS
 process_sequence:
 - droneObstacleDistanceCalculator
 - droneObstacleProcesser

 - capability: VISUAL_MARKERS_RECOGNITION
 process_sequence:
 - droneArucoEyeROSModule

