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ABSTRACT 
Optimum scheduling is a key objective in many communica­
tions systems where different users have to share a common 
resource. Typically, centralized implementations are capable 
of guaranteeing certain fairness. In our approach, we follow a 
different path modeling the scheduling process as a dynamic 
infinite horizon discrete-time game. This formulation allows 
us to include any kind of dynamics and distributed implemen­
tations. Despite, these games are very difficult to solve, we 
are able to show that they are in fact dynamic potential games 
equivalent to a non-stationary multivariate optimum control 
problem. The dynamic control problem is solved via an aug­
mented Bellman equation including time as an extra state. 

Index Terms— Optimum Scheduling, Fairness, Dynamic 
Potential Games, Augmented Bellman Equation 

1. INTRODUCTION 

Radio resources are usually of restricted use in many commu­
nication systems. Thus, letting several users make use simul­
taneously of a single resource in a wireless communication 
system implies in many cases limiting the capacity of the sys­
tem by interference. Through a different approach [1, 2], we 
could consider a set of users being scheduled by the base sta­
tion and improve the system capacity instead of limiting it. 
Scheduling strategies may follow two different approaches. 
The base station example is a centralized approach, given that 
there is a network element that schedules the different users 
in a coordinated way under some particular knowledge about 
the network state. Decentralized approaches would leverage 
the network burden given that a set of network elements de­
cide their own scheduling strategies based on whatever infor­
mation they have available. The decentralized approach in­
trinsically underperforms the centralized approach, however 
the information needed for the scheduling of the users maybe 
significantly lower. 

In both cases, we need to set, for each of the users, a utility 
function to be maximized, knowing that the utility functions 
depends on the users transmission strategies or actions. Under 
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a scheduling umbrella, a reasonable choice for the user utility 
function is any that depends on its achievable rate. Under a 
normalized noise, this is defined as 

R¡ = log 

where for user i at time t, h\ is the fading channel and u\ is 
the power transmitted. 

Decentralized scheduling strategies can be solved by 
means of the definition of a non cooperative game that would 
norm what resources should each user access. Decentralized 
scheduling strategies need to be provided, among others, in 
scenarios such as ad-hoc networks [3, 4], cognitive radio 
scenarios [5, 6], uplink [7] and distributed scenarios [8]. 

System evolution and finite resources lead in many cases 
to dynamic scenarios where for example the channel, batter­
ies or even the utility function change with time. In these 
cases special attention should be given to the formulation of 
the game by means of a dynamic game and several results 
are already available in the literature for access methods [9], 
network selection [10] or packet delivery ratio [11]. 

In this work we aim to implement distributed schedul­
ing in a changing environment and we will formulate the 
process as a competitive dynamic game. The approach we 
propose is quite novel compared to previous applications of 
dynamic games to wireless communications because we are 
able to include any kind of dynamics (channel varying char­
acteristic, utility variation or system dynamics) to consider 
more realistic scenarios. Unfortunately, these games are quite 
complicated because each user has to solve the correspond­
ing optimum control problem as best response to other users 
strategies in an iterative game. We propose to follow here 
a different approach and extend the concept of (static) po­
tential games to include dynamics (dynamic potential game, 
DPG). With this aim we formulate an extended Euler equa­
tion in term of states and actions and relate the existence of an 
equivalent Multivariate Optimum Control Problem (MOCP) 
to the integrability or conservativeness of an associated vec­
torial field. This approach extends our previous work [12] by 
allowing system and utility function dynamics. The resulting 
non stationary problem is solved using an MOCP, augmenting 
the dimension of the state vector including time, to perform a 
discrete solution of the Bellman equation. 



2. PROBLEM STATEMENT 

In a dynamic game we have a set of players Q = { 1 . . . Q}, 
where for each player i its utility function at discrete time 
t is given by a1 (x i ? ut, t), and it depends both on the sys-

tem state x t = Q with xl G X%, and on 

the set of actions of all players, denoted in vector form as 

ut = ( u \ . . . u\... uj° ) with u\ e l / 1 . It can be noticed that 

in the most general case, both the utility function and the sys­
tem equation are time dependent. The discrete time dynamic 
game can be represented Vi as: 

oo 

V1 (xo) = max y , P ^% (xí> uí j t) 

s.t. : xf-i-i = / (xt, u i ? t), gi (xt, u t , i ) < 0, xo known 

where x i + i = / (x i ? ut, t) is the system state equation with 
components x\+1 = f1 (xt,ut,t) defining a Markovian 
model, parameter ¡3 < 1 is the discount factor and some extra 
constraints are included <?¿ (x t ,u t , t ) < 0 because in most 
of the applications states and actions are constrained. Each 
user i intends to find the optimum sequence of actions {«¿I 
that maximizes its value function V1 (xo) expressed in terms 
of its own current and future (discounted) utility function 
7T* ( x t , u t , i ) . Solving these problems requires finding the 
sequence of actions { u | } that provides a Nash equilibrium, 
whose definition is similar as in static games: 

y ¡i1^1 (5 
t , u t , u t \ í ) > / fí1^1 (xí>WÍ>ui \ í ) v ¿ 

i = 0 i = 0 

where the equation must hold Vw¿ G Ui and where u\% G U% 

represents the optimum action of user i at time t and u¿ ~* is 
the same concept for all users except i . 

The objective of this paper is to show that, under some 
hypotheses, the open loop game in (1) is in fact a DPG and 
can be solved by an equivalent non stationary MOCP 

00 

V(xo) = max 5^/3*11 (x t , u t , i ) 
{ut} i=0 

s.t: xf-i-i = / (xt, u i ? t), gi (xt, u i ? i) < 0 V«,xo known 

giving some new insights about the existence and relationship 
between potential functions such as I I (x t , ut, t) and conser­
vative vector fields. To the best of our knowledge, our deriva­
tions follow a quite different path from previous results in the 
literature, providing very general results. 

A reduced form for the system state equation in (1) is pos­
sible when the action set can be expressed in terms of the cur­
rent and next states, i.e. u\ = C (xt, xt+í, u^*, t ) . In [13,14] 
a rigorous description of the game in this reduced form is 
given and by means of the Euler equation (EE) the concept 
of dynamic potential game shows up as a reformulation of the 
original papers by Dechert [15]-[17]. However, under a gen­
eral perspective, it may not be possible to find the reduced 

form and therefore, a more general theory is highly desirable. 
In [16], this scenario is considered and the conditions are pre­
sented from a Hamiltonian perspective. More recently, [18] 
shows rigorously the general procedure for the continuos time 
model also exploiting the Hamiltonian perspective. Our con­
tribution follows a different approach starting with the pro­
posal of a more general Euler equation (GEE) that is able to 
represent utility functions in terms of states and actions in­
stead of the reduced form just in terms of states. In chapter 
6 of [19] some hints about this formulation for the continuos 
time optimum control problem are given. Our second impor­
tant contribution follows the conservative vector field frame­
work established by Monderer/Shapley [20] and Slade [21] to 
define static potential games, to further generalize and extend 
the potential game scenario to a dynamic environment. 

2.1. Euler equation in general form: solving the game 

Following Sage’s framework [19] (defined for control prob­
lems but also applicable to games) we define the Lagrangian 
of the value function in (1): 

00 

L I x t , ut, \ t , \ t , t = y p (IT ( x t , u t , t ) + 
i = 0 

\ 

+ /_. "^t+1 ( ~Xt+l + fJ (x*' uij^) J 

For simplicity, the constraints <?¿ (x í? u í ? í) < 0 V» are not 
considered in this analysis as the game and the MOCP share 
the same constraint set. The general Euler equation is a set of 
two equations: 

d-K1 (x t , ut, t) 
+ ¿1 ^H+1 

ij dp (xí> uí> t) 
— A" = 0 (2) 

d-K1 (xf, u f , í ) 
+ / ^í+i 

Vj 

dfi (xt, ut,i) 
= 0 (3) 

2.2. Euler equation in general form: solving the MOCP 

If we proceed in a similar way analyzing the MOCP we have: 

00 

C (xt, ut , Aj, i) = 2_j¡i (II (xt, ut , i) + 
i=0 

+ / ^t+1 ( — x i + l + / * (xÍJ u Í J ^ ) ) 
Vi 

The general Euler equation is also a set of two equations that 
can be solved given: 

9 n ( x t , u t , t ) j / * ( x t , u t , i ) j 
+ A At = 0 dxl H+l dxl 

9 I I ( x t , u t , i ) j f1 (xt,ut,t) 
7i : h A : = 0 
du\ t+1 du\ 

(4) 

(5) 



2.3. Conservative vector field 

The concept of conservative vector field is the core of the 
analysis of games modeled as potential functions. It converts 
the game into a standard optimization problem in the static 
case and into an MOCP for the dynamic case game. Follow­
ing the pioneering works of [20] and [21], the definition of a 
static game is given by 

max nl (u1, u _ i ) Vi, 

the condition for this game to be of the potential is: 

3.1. Proportional Fair Scheduling 

Proportional Fair (PF) schemes provides a good balance be­
tween system throughput and fairness, and serves first to those 
users whose average achieved rates are below their requested 
rate. We propose a game under this same philosophy: 

927r* (u) 927rJ (u) 
— 

duldrw> duldrw> 

yi,j 

and the potential function can be found by solving the line 
integral 

Q 

n (u) = 
i 

d-K1 (u ) 

dul dul 

Roughly speaking, in [20, 21] it is stated that the condi­
tion of existence of a potential function is that the set of in­
dividual utility functions is in fact a conservative vector field 

F (u) = ( ^T &*• ••• ^-,-r ) and the existence of the 

potential function is related to the integrability of this field 
that is guaranteed as it is conservative. The extension to dy­
namic games is conceptually straightforward: instead of the 
optimization conditions (zero gradient) already stated we can 
apply optimality conditions in terms of the GEE and the po­
tential function would lead to an equivalent MOCP. 

2.4. Equivalence between the game and the MOCP 

If we compare (2)-(3) with (4)-(5) we reach a preliminary 
conclusion: A]3 must be irrelevant in the optimization pro­
cess. This is the first condition that Dragone [18] states, now 
confirmed by our analysis. Furthermore, we can establish that 
the equivalence between the dynamic game and the control 
problem is related to the existence of a conservative vector 
field such that the gradient of the potential function: 

vn (xt, ut,í) = dir dir ^ dir 
du\ 

dir ^ 
du? 

The conditions for this existence were defined by Dechert in 
[16] and reproduced in [12]. The equivalent MOCP is ob­
tained solving the corresponding line integral: 

max > ¡3 
{ut} i=0 

t ~.i> s.t. :x t+ 

( 1 
1 — J_ — — 

V t 

1 

0 < ul < Ul 

1 x\ -\—Rl 
t 

— i 

where basically each user intends to maximize its average 
rate, that is the actual state x\. Taking into account that dif­
ferent users have uncorrelated fading, it is expected a certain 
degree of fairness. It is straightforward to show that this game 
fulfills Dechert conditions [16, 12] and the equivalent MOCP 

max 2, P -*-* 
1 " i = 0 ¿=1 

Q 

x\ s.t. : x i ( ^ \ 

V t 
i 1 ™ 

xt H — R t , 
t (6) 

o < u\ < w^a x , XQ = xini y i 

3.2. Equal-Rate scheduling algorithm 

Considering now that the actual state of user i is the accumu­
lated rate, we define a strategy where we try to keep the user 
rates as close as possible performing some kind of equal rate 
(ER) optimization: 

max 

oo ( 2 

(1 — a) R\ + <*)_. x\ ~ xt ) 

s.t. :xj_|_1 = x\ + R\, 0 < u\ < M^ax, XQ = Xi n i Vi 

where a weights different contributions according to the de­
sign priorities. The equivalent MOCP is given by 

oo / / Q \ 

/ /3* (1 — CK) log 1 + / \h\\ ul
t 

t = o ¿ = i 

Q 

+ 

-\-aS y Ixl — Xf) s.t. : x\+i = x\ + R\, 
(7) 

i=l j>i 

o < u\ < w^a x , x0 = xi ni y i 

n (xt, u í? t) = 
Q 

¿ = i 

cm [xt,ut,t) ^ / cm (xt, ut,¿J^M¿where the first equivalence is show in [12] and the second is 
dxl straightforward. 

3. SCHEDULING SCENARIOS MODELLED AS DPG 4. COMPUTATIONAL METHODS AND RESULTS 

We propose next two utility functions as interesting candi­
dates for decentralized dynamic schedulers. Furthermore, as 
both games are shown to be DPG, the analysis is affordable. 
In any of the proposed scenarios each user is allowed a maxi­
mum transmitted power W^ax and the starting rate is given by 
X . 

There are two main difficulties to numerically solve the 
MOCP in (6) and (7) i) they are non stationary as they include 
time dependent parameters and also ii) the users operate in 
a state space and have utility functions that are continuous. 
However, we can overcome the non stationary issue by aug­
menting the state space to include the time as a new feature 



of the state [22]. We define a state x that belongs to the state 
space X = (X1... X1... X®). The augmented state space 

becomes X = (X,fC), where K denotes the set of nonnega-
tive integers, and x = (x, t) = (x1... x%... x®, t) € X is 
the augmented state. 

Now, if we assume that the cost per stage is bounded, 
|II(x, u)| < M, for all (x, u) G X x U with U = 
(JJ1...Ul.. .LI®) and some scalar M, and the discount 
factor satisfies 0 < (3 < 1, then we can use Dynamic Pro­
gramming (DP) methods [22] to find the optimal actions for 
these problems. For that we reformulate the MOCP using the 
Bellman equation for every possible state: 

V(x) = max n(x, u) + ¡3V ( / (x, u)) 

where it should be noted that now both I I (x, u) and / (x, u) 
are defined over the extended state space. Still, i f the state 
space and the utility function are continuous, then DP meth­
ods becomes impractical. Two common approaches for deal­
ing with continuous state spaces are: to define an appropriate 
grid on the continuous space or to find a parametric approx­
imation of the value function V(x). Given that V(x) is not 
available, the grid approach is more effective. Thus we sam­
ple the state space with cardinality S, and then apply a spe­
cific DP method to numerically solve the MOCP. We choose 
the Value Iteration (VI) algorithm for its reduced complexity 
per iteration, which is especially relevant when the state-grid 
has fine resolution. In the algorithm we define the operator 
[•] as the closest space point. 

Algorithm 1: Value Iteration algorithm 

Inputs: number of states S, threshold e 
Convert augmented space X into a grid of S states 
Initialize A = oo, k = 0 and Vo(xs) = 0 for 
s = 1 . . . S 
while A > e 

for every state s = 1 to S do 
x s <— the s-th point on the grid 
</>(xs) = argmaxu II(xs, u) + fiVk{\f (xs, u)]) 
Vfc+i(xs) = II(xs, </>(xs)) + /?Vfc(|~/ (xs, </>(xs)])) 
k = k + 1 

end for 
A = maxs |Vfc+i(xs)) - V fc(xs))| 

end while 
Return: Vfc+ i(xs) Vs 

Userl User2 

2 4 6 8 10 12 14 16 18 20 

Time 

Fig. 1. Channel coefficients \h\\ . 

steps. Hence, the augmented state space has S = 202 x 20 = 
8000 states. We run the V I algorithm over the two schedul­
ing schemes given in (6) and (7). The numerical experiments 
illustrate how the control framework can efficiently solve the 
complicated dynamical game theoretic formulation. For the 
equal-rate problem, the utility function uses a = 0.9. 

Transmitted Power u\ 
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Fig. 2. Proportional fair. 
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Fig. 3. Equal rate. 

The solution of the PF game leads to an efficient solution 
(see Fig. 2), in which both users try to minimize interference 
and, hence, they approach their maximum rates. In Fig. 3, we 
observe that the agents achieve very similar rates. The trend 
is that the user with a channel with less average gain (User 2) 
tries to achieve its maximum rate, while the user with higher 
average gain channel (User 1) reduces its transmitting power 
to match the rate of user 2. In other words, the user with 
poorest channel sets a bottleneck for the other user. 

For illustrative purposes, we simulate a simple scenario 
with Q = 2 users. A correlated fading scenario is modeled 
by means of sinusoids with different frequency and ampli­
tude for each user (see Fig. 1). The maximum transmitted 
power is i / m a x = 5 Vi, with 20 possible power levels per 
user, which amounts to 400 possible actions. The discount 
factor is ¡3 = 0.9. We discretize the rate into a grid of 30 
points per user. The non stationarity of the environment is 
surmounted by augmenting the state space with T = 20 time 

5. CONCLUSIONS 

In this work a general framework for solving a DPG that norm 
a decentralizing scheduling algorithm is proposed. Additional 
degrees of time-dependability are included, taking into ac­
count both, possible time variations of the utility function and 
also non stationarity of the system state function. The pro­
posed scheduling games are shown to turn into an MOCP that 
is effectively solved by means of a Value Iteration algorithm. 

0.5 

10 

5 

2 

0 

10 

0.5 



6. REFERENCES 

[1] A. Lozano, “Enhancing UMTS High-Speed Down­
link Packet Access with Dual-Antenna Terminals,” 
in IEEE Global Telecommunications Conference 
(GLOBECOM’02), Nov. 2002, vol. 21, pp. 732–736. 

[2] P. Viswanath, D. M. C. Tse, and R. Laroia, “Oppor­
tunistic Beamforming Using Dumb Antennas,” IEEE 
Transactions on Information Theory, vol. 48, no. 6, pp. 
1277–1294, June 2002. 

[3] Yongkang Xiao, Xiuming Shan, and Yong Ren, “Game 
theory models for IEEE 802.11 DCF in wireless ad hoc 
networks,” IEEE Communications Magazine, vol. 43, 
no. 3, pp. S22–S26, March 2005. 

[4] V. Srivastava, J. Neel, AB. MacKenzie, R. Menon, L.A 
Dasilva, J.E. Hicks, J.H. Reed, and R.P. Gilles, “Using 
game theory to analyze wireless ad hoc networks,” IEEE 
Communications Surveys Tutorials, vol. 7, no. 4, pp. 46– 
56, Fourth 2005. 

[5] Zhu Ji and K.J.R. Liu, “Cognitive radios for dynamic 
spectrum access - dynamic spectrum sharing: A game 
theoretical overview,” IEEE Communications Maga­
zine, vol. 45, no. 5, pp. 88–94, May 2007. 

[6] D.B. Rawat and S. Shetty, “Game theoretic approach 
to dynamic spectrum access with multi-radio and QoS 
requirements,” in IEEE Global Conference on Signal 
and Information Processing (GlobalSIP), Dec 2013, pp. 
1150–1153. 

[7] G. Scutari, S. Barbarossa, and D.P. Palomar, “Potential 
games: A framework for vector power control problems 
with coupled constraints,” in ICASSP 2006 Proceedings, 
2006, vol. 4, pp. IV–IV. 

[8] Hui Zhou, Pingyi Fan, and Jie Li, “Global propor­
tional fair scheduling for networks with multiple base 
stations,” Vehicular Technology, IEEE Transactions on, 
vol. 60, no. 4, pp. 1867–1879, May 2011. 

[9] Guopeng Zhang and Hailin Zhang, “Modelling ieee 
802.11 dcf in wireless lans as a dynamic game with in­
completely information,” in Wireless, Mobile and Mul­
timedia Networks, 2008. IET International Conference 
on, Jan 2008, pp. 215–218. 

[10] D. Niyato and E. Hossain, “Dynamics of network selec­
tion in heterogeneous wireless networks: An evolution­
ary game approach,” IEEE Transactions on Vehicular 
Technology, vol. 58, no. 4, pp. 2008–2017, May 2009. 

[11] D.B. Smith, M. Portmann, Wee Lum Tan, and 
W. Tushar, “Multi-source-destination distributed wire­
less networks: Pareto-efficient dynamic power control 
game with rapid convergence,” IEEE Transactions on 
Vehicular Technology, vol. 63, no. 6, pp. 2744–2754, 
July 2014. 

[12] S. Zazo, J. Zazo, and M. Sá nchez-Ferná ndez, “A control 
theoretic approach to solve a constrained uplink power 
dynamic game,” in Proceeding of the European Signal 
Processing Conference, EUSIPCO 2014, 2014. 

[13] O. Herna´ndez-Lerma and D. Gonzá lez-Sá nchez, Dis­
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