
Performance Analysis of Persistence

Technologies for Cloud Repositories of Models

Juan Pablo SalazarÁlvarez1, Elena Gómez Mart́ınez1, and Miguel de Miguel1,2

1 Center for Open Middlewarre, Universidad Politécnica de Madrid (UPM), Pozuelo
de Alarcón - Madrid, Spain

2 DIT, Universidad Politécnica de Madrid (UPM), Madrid, Spain

Abstract. The growing adoption of Model Driven Development (MDD)
in companies during last decade arises some model interchange prob-
lems. Companies need support to interchange models and reuse parts
of them for developing new projects. Traditional tools for model edition
and model interchange have different performance issues related to the
models storage. There are mainly two styles to organize the persistence of
models into repositories: a complex and large model or a large amount of
small models. This last approach is common in companies that generate
software from models. In this paper, we analyse performance properties
of different persistence technologies to store small/medium-scale models,
the analysis results should be considered in the design of model repos-
itories in the cloud. With this aim, we have designed and developed a
generic architecture to evaluate each persistence technology under simi-
lar situations.

1 Introduction

During the last decade, Model Driven Development (MDD) has been acquired
by companies to improve quality, productivity and the reuse of their software
development. Models are not only an abstraction of the system under develop-
ment, but also the system is generated from them. This reuse process is especially
important in MDD approaches that generate automatically software code from
models. Besides, multinational companies build development teams that are ge-
ographically dispersed. MDD developers require virtual model interchange sup-
port, which, currently, is well supported for programming languages, but not yet
for models. Tools for managing and sharing these models are needed in order to
reuse models in a collaborative industrial development ecosystem. Collaboration
is usually supported by model interchange and versioning supported in a model
repository. Therefore, apart from version control, querying and transformation,
one of the key functionality of these tools is the persistence.

In this paper, a model repository in the cloud provides the storage of models
with the possibility of accessing and updating such models [3]. The model repos-
itory supports any modeling language, even a coexistence of them. To organize
models persistence, there are chiefly two styles: either a unique very complex or



large model that contains all the elements or a great number of small models
with partial functionality. But also there is a lot in between, a particular exam-
ple is model fragmentation for large models; in [25], large models can be split
and persisted in fragments as small-scale models. There are several works in the
literature [3, 4, 10, 11, 14] that evaluate repositories for large-scale models. Nev-
ertheless we focus on the persistence technologies used by those companies that
have developed lots of small/medium-scale models. This approach is common in
companies that generates software from models. At these companies, the amount
of models and their relationships (cross-references) are becoming a problem to
be concerned with. Furthermore, maintenance systems are also a weak point in
these companies, due to the amount of reused elements among models.

There are two factors that make very complex the construction of applications
into a large-scale model: the size of generated software from models (more than
20 times the size of model) and the model accuracy level (because models are
the inputs for the construction of executable applications). At this situation,
developers tend to decompose their applications into small/medium-scale models
(size less than 1M). Santander Group3 is an example of company that have been
using MDD approach for the construction of banking web applications during
last decade. Several thousand engineers in different locations use domain specific
languages (DSL) for developing software applications. The medium size of these
DSL-based models is less than 100K. But each application includes hundreds of
models.

There are different alternatives to persist models. By default, modeling tools
store models in a standard file approach. They tipically uses XML/XMI for
interchange aim. However, other persistence layers have emerged in last years,
such as relational databases and NoSQL databases. The relational databases
provide mechanisms to index and access objects with SQL queries. The NoSQL
databases are based on several schemaless database paradigms, among them
document or graph.

The ultimate aim of our research is to achieve a framework to share cloud-
based small/medium-scale models developed collaboratively whichever modeling
language they use. As a first step, we analyse different persistence technologies
for performance perspective in this work. For this purpose, we have designed
a generic architecture in order to abstract each persistence layer details. The
architecture also abstracts the modeling language details. Moreover we have im-
plemented five persistence backends: two file-based solutions and three databases
(a relational, a document-based and a graph-based one).

Concerning performance evaluation, we have executed a case study with two
usage scenarios to analyse them by means of testing techniques. As performance
metrics, we have followed those proposed in Software Performance Engineering
(SPE) [26]. Thus, we focus on response time, scalability and storage cost.

The rest of the paper is organized as follows. Firstly, Section 2 outlines the
basic concepts and state of the art. Section 3 describes a case study which is
analysed in Section 4. Finally, Section 5 states some conclusions.

3 http://www.santander.com



2 Background and State of the Art

This section defines some concepts related to Model-Driven Development, mod-
eling languages and persistence technologies that will be used in the remainder
of the paper. We also outline some collaborative MDD tools.

MDD aims to overcome the complexity of systems and their development by
abstracting relevant information, by working at the model instead of the code
level. In MDD, models specify the structure, behaviour and requirements of a
system. A metamodel provides the syntax specification of a language; it de-
scribes the concepts and relationships of a certain domain [10]. Thus, a model is
an instance of its corresponding metamodel. Some modeling languages are Busi-
ness Process Model and Notation (BPMN) [21], the Unified Modeling Language
(UML) [20], Meta-Object Facility (MOF) [22] and Ecore [28], among others.

Eclipse Modeling Framework (EMF) [28] is a modeling framework, integrated
in Eclipse, for building tools and other applications based on a structured meta-
model. EMF facilitates the definition and instantiation of metamodels and run-
time support for the models including change notification, persistence imple-
mentation and manipulation of EMF objects.

In some sections we use UML and MARTE (Modeling and Analysis of Real-
Time and Embedded systems) profile [19] to provide performance information of
our benchmarks. MARTE includes the sub-profile Generic Quantitative Analysis
Model (GQAM) designed for performance analysis purposes.

2.1 Model Persistence Technologies

There are three chief approaches to store models and metamodels: XML/XMI
files, relational databases through object relational mappings and model repos-
itories. In the following, we outline some of them.

Models are typically stored using XML-based formats, like XMI (XML Meta-
data Interchange) [23], which have to be parsed to build in-memory models.
XML parsers are in charge of accessing to its data content and modifying its
content or its structure. Parsers carry out two main processes: serialization and
deserialization. Serialization process converts an in-memory object into an XML
stream. Reversely, deserialization converts XML streams in wire-format objects
in memory.

EMF defines the Resource interface to represent a physical storage loca-
tion [28]. The EMF Resource provides four basic operations involved in mov-
ing models between memory and persistence: load, save, update and delete.
XMLResource is the interface created by EMF capable for serializing any model
into a XML file. In a similar manner,XMIResource, inherited fromXMLResource,
is used to serialize any model using XMI 2.0. This is the default serialization
adopted by EMF. EMF also provides a simple serialization of the models through
BinaryResource, which saves the models in binary files.

Teneo [29] is a model-relational mapping and runtime database persistence
solution for EMF. Teneo integrates Hibernate and EclipseLink. So, it derives a



relational schema and an object-oriented API from an Ecore metamodel. Re-
lational databases provide mechanisms to index and access objects via SQL
queries. Teneo can use MySQL [24], among others, as target database.

Concerning model repositories, Connected Data Objects (CDO) is a de facto

standard solution to handle models and metamodels in EMF. CDO is both a
development-time model repository and a runtime persistence framework [30].
CDO allows models to be persisted into all kinds of database backends like major
relational databases or NoSQL databases. However, in practice, only relational
databases are commonly used.

Morsa [10,11] is a prototype of a model repository of large scale EMF models
based on a non relational database. Morsa uses a document-oriented database
as persistence backend, specifically MongoDB [2, 16]. It therefore stores EMF
models as collections of documents. The work of Espinazo-Pagán et al. [10, 11]
also compares Morsa with CDO and XMI files. As shown, Morsa exhibits better
performance than other approaches for large-scale models.

Neo4EMF is a model repository built on the top of the NoSQL graph-based
database Neo4j [17]. In Neo4EMF, EMF-based models can be described in terms
of graphs concepts, since there is an immediate mapping between the two repre-
sentations, described in [4]. As the aforementioned model repositories, Neo4EMF
aims to scale large scenarios. In [4], a comparison between EMF standards pa-
rameters (XMI files), CDO and Neo4EMF is done. The experiments are per-
formed over the Java MoDisco Metamodel [31] and focused on large-scale sce-
narios. Their results show that Neo4EMF outperforms other alternatives for this
kind of scenarios.

EMFStore [14] is a operation-based framework for versioning EMF mod-
els, that includes a model repository. Therefore, unlike the above approaches,
EMFStore supports model evolutions. Internally, EMFStore handles XMI files
that envelopes internal models for operations and changes. EMFStore lacks a
mechanism to solve cross-document references between models that have been
developed with any other tool.

In this paper, our main objective is the evaluation of persistence mechanisms
for large amounts of small-scale models. We have then analysed some of the
persistence technologies outlined in this section. Specifically, we have evaluated:

– File-based mechanisms: By means of EMF Resource, we have developed two
model repositories. The first one uses XMI (XMIResource). The second one
is a model repository with binary files (BinaryResource).

– Relational database-based mechanisms: Since Teneo connector is more sim-
plified than CDO, we have studied Teneo with MySQL database.

– Non-relational databases mechanisms:We have analysed the document-based
Morsa and the graph-based Neo4EMF.

We have not evaluated EMFStore, since it was not sufficient mature when im-
plementation phase was carried out.



2.2 Collaborative MDD tools

Insofar our ultimate aim of our research is to achieve an efficient tool for col-
laborative model-driven development, we briefly outline some of these tools.
Although, our aim does not deal with editing, many of these tools also offers a
model editor tool among their functionalities.

ModelBus [12] is a tool integration platform for addressing the functional
connection of services provided by different modeling tools, such as editing or
transformation among others [5]. It is based on a virtual bus-like service-oriented
architecture. It allows therefore the data exchange between models in a collab-
orative environment. As pointed out in [10], the ModelBus repository is a web
service application that manages an embedded Subversion engine which imple-
ments the actual repository. However, it does not allow partial access to models.

Modelio is an enterprise-level open source modeling solution to develop UML-
based models [27]. It supports requests, extraction and modification of models,
which can be accessed through a Java API. Modelio uses Teamwork Manager
tool to endow collaborative development environment [7]. This module provides
a model repository with a central storage area, which is locally replicated by
each user. It internally integrates a Subversion repository [1] in order to share
modeling projects. Unlike our proposal, EMF is not supported by Modelio [7].

MagicDraw [18] is a commercial modeling framework based on UML stan-
dard. By means of Teamwork Server, it provides a central repository for storing
models. Models can be accessed, reviewed or modified. Internally, Teamwork
Server uses an internal proprietary code to implement a native versioned file-
based repository. MagicDraw supports EMF through a conversion into UML.

MetaEdit+ [15] is a commercial domain-specific modeling environment com-
posed of two products: MetaEdit+ Workbench for creating modeling tools and
generators and MetaEdit+ Modeler for editing models with multiple users,
projects and platforms. It also provides a repository for storing models.

Obeo Designer [9] is a commercial model-driven approach to specify models.
It is based on EMF and plugged into Eclipse Platform IDE. Obeo Designer relies
on a central CDO repository to facilitate collaborative work [6].

GenMyModel [8] is a commercial modeling platform. It allows to diagram
models through web editors among other functionalities, such as to provide a
model repository. It focusses on UML, although other languages are available.

3 Case Study: A Generic Architecture

In order to compare the target persistence technologies, a software architecture
has been designed for a generic repository. In the following, this architecture and
its usage scenarios are described.

3.1 Architectural Design

We have developed a software architecture for a generic repository. The purpose
of this architecture is to abstract any modeling language, as well as any persis-
tence solution. The architecture plays with abstract elements to define the same



characteristics and behaviours for different implementations. Thus, the obtained
results can be compared without benefit or harm to any technology.

dataModel

-type : String

+loadInMemory() : boolean

+saveFromMemory(Object) : boolean

+getType() : String

+setType(type : String) : void

<<Interface>>

ModelingLanguage

-language : ModelingLanguage

-metamodelList : String

-path : String

-URLList : String

+loadInMemory() : Object

+saveFromMemory(Object) : boolean

+getLanguage() : ModelingLanguage

+setLanguage(language : ModelingLanguage) : void

+getMetamodelList() : String

+setMetamodelList(metamodelList : String) : void

+getPath() : String

+setPath(path : String) : void

+getURLList() : String

+setURLList(URLList : String) : void

StudyCase

+loadInMemory() : boolean

+saveInMemory(Object) : boolean

EMF

+loadInMemory() : boolean

+saveInMemory(Object) : boolean

UML

server

system

-case : StudyCase

GUI

-technology : String

+upload(case : StudyCase) : boolean

+download(case : StudyCase) : boolean

#getStorer() : Storer

+getTechnology() : String

+setTechnology(technology : String) : void

SystemService

-source : URI

-type : String

+getSource() : URI

+setSource(source : URI) : void

+getType() : String

+setType(type : String) : void

+write() : boolean

+read() : boolean

-prepareModel() : boolean

-writeModel() : boolean

-readModel() : boolean

Storer

FileStorer

DBStorer

utils

+notify(notification : String) : void

Log

HybridBD

-source : URI

+getSource() : URI

+setSource(source : URI) : void

+write() : boolean

+read() : boolean

-prepareModel() : boolean

-writeModel() : boolean

-readModel() : boolean

-source : URI

+getSource() : URI

+setSource(source : URI) : void

+write() : boolean

+read() : boolean

-prepareModel() : boolean

-writeModel() : boolean

-readModel() : boolean

Relational

-source : URI

+getSource() : URI

+setSource(source : URI) : void

+write() : boolean

+read() : boolean

-prepareModel() : boolean

-writeModel() : boolean

-readModel() : boolean

XMLNativeDB

-source : URI

+getSource() : URI

+setSource(source : URI) : void

+write() : boolean

+read() : boolean

-prepareModel() : boolean

-writeModel() : boolean

-readModel() : boolean

XMLStorer

-source : URI

+getSource() : URI

+setSource(source : URI) : void

+write() : boolean

+read() : boolean

-prepareModel() : boolean

-writeModel() : boolean

-readModel() : boolean

BinaryStorer

Fig. 1. Class Diagram of the architecture for any repository abstracting persistence.

The generic architecture is depicted in the UML Class Diagram in Figure 1.
Its modules are:

system, which contains the graphical user interface (GUI) and the SystemSer-

vice that can be accessed through the GUI. The technology is also selected
in the SystemService.

dataModel, whose main class is StudyCase which represents the models sets,
as well as the modeling language that they support. Thanks to the interface
ModelingLanguage is possible to unify the behaviour of each language.

server, that contains the Storer and their corresponding implementations con-
sidered in our analysis, one per each persistence technology. Each storer im-
plements these main functions: readModel (recover the model), writeModel

(persist the model) and prepareModel (adapt the model to persistence tech-
nology). Eventually, the differences between storers were reduced.

utils, that contains the log for obtaining the metrics.

3.2 Usage Scenarios

According to Smith and Williams [26], performance scenarios are those Use
Cases of a software system that are executed frequently or are critical to the
user’s perception of performance. To compare each technology, we have selected



two main basic usage scenarios of the generic repository as storage location:
Upload and Download scenarios. Firstly, a model developer is able to upload to
the generic repository a large number of small-scale models (Upload); secondly, a
model developer is able to download from the generic repository a large number
of small-scale models (Download).

Figure 2(a) depicts the UML Sequence Diagram4 describing the Upload sce-
nario. This scenario involves the following steps: i) the user selects the persistence
technology and, consequently, ii) the system initializes it taking into account the
targeted modeling language; iii) it thus reads the XMI files containing the mod-
els, iv) parses them and loads them in memory as EMF eObjects ; v) it then
writes each model to the specific persistence technology in sequence. Previously,
each model must be prepared (or processed) according to the specific storer.

sd upload

loop

ref

initialization

[for each model]

: GUI : SystemService : ModelingLanguage: StudyCase

Actor

: Storer

write()

loadInMemory

upload()

setType

prepareModel()

writeModel()

sd download

ref

initialization

loop [for each model]

: GUI : SystemService

Actor

: ModelingLanguage: StudyCase : Storer

saveFromMemory
saveFromMemory

download()

read()

setType

readModel()

prepareModel()

(a) Upload (b) Download

Fig. 2. UML Sequence Diagram describing the Upload and Download scenarios.

We use the Download scenario for the load performance in persistence tech-
nologies; the scenario is depicted in the UML Sequence Diagram (SD) of Fig-
ure 2(b). This scenario consists of the following steps: i) the initialization of the
persistence technology by the user selection; ii) the user chooses the modeling
language to recover the stored models. iii) Each model is then read from the
specific persistence technology in sequence, iv) recovered and load in memory
as an EMF eObject ; v)then they are copied to XMI files according to the above
selected modeling language.

In both scenarios, during step iv) the models are fully load and resolved in
order to be able to allow the system to exchange the persistence technology, from
the XMI file to the persistence technology selected and vice versa.

As observed, Figures 2(a) and 2(b) are annotated with performance infor-
mation according to the MARTE profile [19]. These annotations indicate the
actions duration collected by experimental tests, as detailed in Section 4.

4 The reader should note that we have added some grey notes (SD) in the UML dia-
grams. They are performance annotations that will be briefly outlined in Section 4.



4 Empirical Evaluation

This section compares the selected persistence technologies from software per-
formance viewpoint. For this purpose, the execution environment of the exper-
iments are firstly determined. Then, we define those performance metrics to be
evaluated, as well as the experiments results.

4.1 Execution Environment

At this point, we will present results in this section based on two well-known
metamodels for benchmarking the selected persistence technologies: Extended
Purchase Order (EPO), a metamodel proposed in [28] based on the well-known
example from XML Schema Part 0: Primer Second Edition5; and Extended Li-
brary (LIB), a metamodel taken from an Eclipse tutorial6. The two metamodels
cover as many features and data types from those available in EMF. In this
article we use these metamodels for benchmarking purposes, but we have done
similar evaluations and obtained similar results with some other languages such
as the Notation metamodel that uses Graphical Modeling Framework (GMF) in
Eclipse to represent diagrams concepts. We like to emphasize that the metamod-
els characteristics such as depth of containment tree, number of cross references
are irrelevant in the approach of these experiments since the repository is ori-
ented to store models from modeling languages of any kind.

The model instances (models) are automatically generated by Generators
which exploits all the attributes and relationships in the metamodels. We have
generated two default testbed with 2000 models of EPO and LIB for each one.
The number of elements per model are 211 and 313, respectively; the model size
is 30 KBytes in EPO metamodel and 47 KBytes in LIB metamodel.

The generic repository has been deployed in a laptop computer running
Windows 7 Professional (64 bits) operating system. The computer system char-
acteristics are Intel Core i7 processor 3720QM(2.60GHz) with 16 GB RAM of
DDR3 SRAM(1866MHz). Experiments have been executed on Eclipse Helios via
Java Application (when it was possible, if not, an Eclipse Application) running
Java SE Runtime Environment version 1.7. The Java Virtual Machine (JVM) has
been restarted for each measure as well as for each repetition of each measure.

Concerning each specific persistence technology, for all the technologies the
default configuration has been used, whenever it was possible and barring error.
In particular, we have implemented Teneo/Hibernate with a relational database,
MySQL Workbench Community (GPL) for Windows version 6.1.4. As NoSQL
databases, we have tested a document-oriented database MongoBD through
Morsa [10,11] version 1.0.0 and a graph database named Neo4j via Neo4EMF [4]
version 0.1 (November 2013).

5 http://www.w3.org/TR/smlschema-0/
6 http://help.eclipse.org/luna/nav/21 1



4.2 Performance Results

We have compared each persistence technology by considering the following per-
formance properties proposed in [26]: response time, scalability and storage cost.
Although there are others, we focus on those critical ones for our aim, a collabo-
rative framework development to share models. In the following, we describe our
experiments and the obtained performance metrics in order to analyse them.

Response time Response time is the time interval between a user request of
a service and the response time of the system [13]. In this paper, the response
time can be defined as the scenario duration for each persistence technology.

Performance information concerning atomic actions and scenario durations
has been collected in experimental tests. According to MARTE profile, atomic
actions are represented by <<GaStep>> stereotype, where hostDemand tag spec-
ifies its corresponding average measured execution time; and scenario durations
are specified using <<GaScenario>> annotation, as illustrated in Figure 2. Sec-
onds are the measurement unit and mean is the statistical measure.

Figures 3 (a) and (b) illustrate the average response time of Upload and
Download scenarios for each persistence technology. We have analysed the se-
lected persistence technologies considering these situations: i) how it performs
depending on the model size; and, ii) how it performs each scenario using the
same metamodel. We have obtained these results with the two default testbeds.

As observed in Figures 3 (a) and (b), file-based persistence solutions perform
better than database-based ones for both scenarios. Focusing on Upload scenario
in Figure 3 (a), EMF Resource/XMI outperforms the rest of persistence tech-
nologies. Specifically, Upload scenario EMF Resource/XMI spends 38.35 seconds
and 65.80 seconds for EPO and LIB respectively. As observed, the response time
of Teneo/MySQl is the most affected by model sizes, since it is multiplied by 7.5
with LIB models. Remark the values obtained with Neo4EMF/Neo4j, in spite of
EPO model size is smaller than LIB one, its Upload scenario with LIB models
performs better. We guess that this response time is due to Neo4EMF resolves
the interrelations within models during the Upload scenario.

EPO LIB

0

5

10

15

20

25

30

35

40

45

50

EMF Resource/

XMI

EMF Resource/

Binary

Teneo/

MySQL

Morsa/

MongoDB

Neo4EMF/

Neo4j

R
e

sp
o

n
se

 T
im

e
 (

m
in

)

0

5

10

15

20

25

30

35

40

45

50

EMF Resource/

XMI

EMF Resource/

Binary

Teneo/

MySQL

Morsa/

MongoDB

Neo4EMF/

Neo4j

R
e

sp
o

n
se

 T
im

e
 (

m
in

)

(a) Upload Scenario (b) Download Scenario

Fig. 3. Response time for each persistence technology by injecting default testbeds.



Concerning Download scenario depicted in Figure 3 (b), file-based persis-
tence mechanisms are the fastest solutions. In the case of EMF Resource/Binary,
the response time is proportional to the model size. However, response time is
not affected by the size in EMF Resource/XMI. As in the previous scenario,
Teneo/MySQL performs poorly for LIB models. Furthermore, the response time
is almost multiplied by 10 comparing with EPO and LIB models. Note that
Morsa/MongoDB has not been performed since prototype could not be run suc-
cessfully. In the case of Neo4EMF/Neo4j, it was not possible to recover a full
load of a model from the repository, so the measures had to be dismissed.

If the same persistence technology are analysed comparing the results in
the two scenarios, we observe that Upload scenario requires more time than
Download scenario in file-based mechanisms. An exception is Teneo/MySQL that
spends similar response time for both scenarios.

From the response time point of view, we observe that the best persistence
solutions (for a very populated model repository of small-scale models) are those
based on files. Moreover, it would need to determine what scenarios are the most
executed. If we upload more frequently, EMF Resource/XMI performs better
than EMF Resource/Binary. If we do not know that information, EMF Re-
source/Binary behaves more linearly.

Scalability Scalability is defined as the ability of a system to continue to meet
its response time as the demand for the software function increases [26].

In this paper, the scalability is studied in terms of the time that a testbed
needs to perform the Upload scenario as the number of models increases. There,
we have studied the scalability by varying the number of models injected into
each selected persistence technology. Figures 4 (a) and (b) depict the response
time when number of models varies from 1000 to 10,000 models of EPO and
LIB, respectively.

As can be observed in Figures 4 (a) and 4 (b), EMF Resource/XMI slightly
outperforms EMF Resource/Binary files for EPO models. Teneo/MySQL per-
forms significantly poorly compared to file-based mechanisms for both testbeds.
Conversely, for LIB models, the response time taken to upload into EMF Re-

EMF Resource/XMI EMF Resource/BIN Teneo/MySQL

0

20

40

60

80

100

120

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
e

sp
o

n
se

 T
im

e
 (

m
in

)

Number of model instances

0

20

40

60

80

100

120

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
e

sp
o

n
se

 T
im

e
 (

m
in

)

(a) EPO (b) LIB

Fig. 4. Response time for Upload scenario by varying the number of models injected
into each persistence technology.



source/XMI is less than the taken to upload into EMF Resource/Binary. If
we analyse how each persistence technology considered in isolation performs,
we observe that the response time is linearly with respect its corresponding
model size for all solutions. As in previous experiments, Morsa/MongoDB and
Neo4EMF/Neo4j have not been included since prototypes could not be run prop-
erly for the very populated testbeds. However, these technologies followed the
trend set by Teneo/MySQL in the least populated testbeds (for Upload scenario).

This set of experiments shows that the best option for large repositories with
small-scale models are those based on file, both XMI and EMF Resource/Binary
considering the scalability dimension.

Storage cost We define storage cost as the amount of disk space used by the
system (or technology) in the persistence. The property can also be used to
define the space occupied by the system in memory during runtime. Obviously,
this property is related to the capacity cost in the case of persistence technologies
deployed on a network (cloud-based deployment), since the transmission time of
a persisted repository through a network is directly proportional to its size.

To analyse storage cost, we have carried out two set of experiments. The first
one compares the storage cost by injecting the two default testbeds into each
persistence technology. As second set, we have also studied the impact in the
storage cost of increasing the number of models uploaded.

The results obtained in the first set of experiments are shown in Figure 5.
They demonstrate that Morsa/MongoDB consumes a lot more disk space than
the rest of technologies, specifically two times larger than Neo4EMF/Neo4j and
four times larger than Teneo/MySQL. Nevertheless, Morsa/MongoDB uses the
same space disk for both metamodels. We guess that it is due to Morsa internally
reserves the disk space by blocks. Although it cannot be seen due to the graphic
scale, binary files occupy half disk space used by EMF Resource/XMI files.

Figure 6 shows the second set of experiments. It analyses how each persistence
technology grows in size when we injected from 1000 to 10,000 models. As can
be observed, the storage cost increases linearly in all cases. As aforementioned,
two sets of experiments for Morsa/MongoDB and Neo4EMF/Neo4j were not
completed, so they have not been included.

Considering the storage cost, the best persistence mechanism for a very pop-
ulated repository with small-scale models is EMF Resource/Binary, since much
less disk space is used.

0

500

1000

1500

2000

2500

EMF Resource/

XMI

EMF Resource/

BINARY

Teneo/

MySQL

Morsa/

MongoDB

Neo4EMF/

Neo4j

M
B

y
te

s

EPO

LIB

Fig. 5. Storage cost of each persistence technology by injecting default testbeds.



EMF Resource/XMI EMF Resource/BIN Teneo/MySQL

0

250

500

750

1000

1250

1500

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
iz

e
 (

M
B

y
te

s)

Number of model instances

0

250

500

750

1000

1250

1500

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
iz

e
 (

M
B

y
te

s)

Number of model instances

(a) EPO (b) LIB

Fig. 6. Storage Cost by varying the number of models injected into each persistence
technology.

4.3 Discussion

The execution of the experiments carried out therefore leads us to determine
the best solution for very populated repositories of small/medium-scale models
will depend on its use. From the analysis, we have therefore identified the fol-
lowing parameters: i) mean size of metamodels and models, ii) scenarios used
frequently; and ii) deployment of the model repository. These three parameters
are interrelated, since their variation affects the performance of the others.

Concerning the mean size of metamodels and models, our experiments are
focused on small/medium-scale models. As can be observed, file-based solutions
outperform database-based ones. Nevertheless, if we compare our results with
those obtained in [3, 4, 10] for large-scale models, this kind of file-based mech-
anisms performs very poorly. Furthermore, since a SAX parser fully reads the
XMI file and builds the entire model in memory at once, large models may not
be fully kept in memory, causing the parser to overflow the client, as mentioned
in [10, 11]. In that cases, a model fragmentation approach as [25] could be con-
sidered.

If we take into account what scenario is executed most frequently, response
time of Upload scenario is slower than Download. The former scenario should
be scheduled in batch processing at night depending on the persistence solution.
For small-scale models, the best solutions are based on XMI and Binary files.

Regarding the deployment of the repository, whether a model repository is
deployed onto a network or in the cloud, as a client/server architecture or a web
service application, a key aspect is the storage cost of each persistence technology.
The time spent to transmit a model to the repository is proportional to its size.
As demonstrated, the same models do not consume the same storage cost. In
that case, EMF Resource/Binary file as distributed persistence solution is the
best option.

We therefore conclude that EMF Resource/Binary file-based mechanism is
the best solution for a very populated model repository with small-scale models
where the scenario used frequently is Download scenario (leaving Upload scenario
for batch processing).



5 Conclusions and Further Work

Performance constitutes a key aspect of repository-based collaborative modeling
to guarantee non-functional requirements, such as response time or scalability.
Although there are works in the literature that reporting the comparison of dif-
ferent approaches of model repositories, they only focused on large-scale models.
Nevertheless, to the best of our knowledge, we have not identified any work which
analyses model repositories to persist large numbers of small-scale models.

In this paper, we explore different persistence technologies and compare from
performance perspective. For this purpose, we have designed and implemented
a model generic repository to abstract different persistence mechanisms and
different modeling languages. This generic architecture allows each persistence
technologies to be compared under the same situations.

For future work we have identified a further promising line of research. We
aim to implement not only other persistence technologies in our generic archi-
tecture, such as XML-native database or EMFStore [14]; but also, other perfor-
mance issues, such as concurrency or Brewer’s Theorem (consistency, availability,
partition tolerance). In addition, we have planned to include new functionalities,
such as a search engine, a version control system, merge functions and resolution
of cross-document dependencies between persisted models. Finally, the obtained
results in this paper allow persistence technology to be selected to achieve a
collaborative MDD framework for small/medium-scale models.

Acknowledgments The work for this paper was supported by funding from
ISBAN and PRODUBAN, under the Center for Open Middleware initiative.

References

1. Apache Subversion, 2015. Available at: https://subversion.apache.org/.
2. K. Banker. MongoDB in Action. Manning Publications Co., 2011.
3. K. Barmpis and D. S. Kolovos. Comparative Analysis of Data Persistence Tech-

nologies for Large-scale Models. In Procs. of the 2012 Extreme Modeling Workshop,
XM ’12, pages 33–38, 2012.

4. A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and D. Launay. Neo4EMF, A Scalable
Persistence Layer for EMF Models. In Modelling Foundations and Applications,
volume 8569 of LNCS, pages 230–241. Springer-Verlag, 2014.

5. X. Blanc, M.-P. Gervais, and P. Sriplakich. Model Bus: Towards the Interoper-
ability of Modelling Tools. In Model Driven Architecture, volume 3599 of LNCS,
pages 17–32. Springer Berlin Heidelberg, 2005.

6. H. Brunelière, J. Cabot, S. Drapeau, F. Somda, W. Piers, J. D. Villa Calle, and J.-
C. Lafaurie. MDE Support for Enterprise Architecture in an Industrial Context:
the TEAP Framework Experience. In TowArds the Model DrIveN Organization
(AMINO 2013) workshop - a MODELS 2013 Satellite Event, 2013.

7. M. A. Almeida da Silva, A. Abherve, and A. Sadovykh. From the Desktop to the
Multi-clouds: The Case of ModelioSaaS. In 15th Int. Symp. on Symbolic and Nu-
meric Algorithms for Scientific Computing, SYNASC 2013, pages 462–469. IEEE
Computer Society, 2013.



8. M. Dirix, A. Muller, and V. Aranega. Genmymodel: An online uml case tool. Joint
Proceedings of Tools, Demos & Posters, page 14, 2013.

9. A. El Kouhen, C. Dumoulin, S. Gerard, and P. Boulet. Evaluation of Modeling
Tools Adaptation. Technical report, 2012.

10. J. Espinazo Pagán, J. Sánchez Cuadrado, and J. Garćıa Molina. Morsa: A Scalable
Approach for Persisting and Accessing Large Models. In Model Driven Engineering
Languages and Systems, volume 6981 of LNCS, pages 77–92. Springer-Verlag, 2011.

11. J. Espinazo Pagán, J. Sánchez Cuadrado, and J. Garćıa Molina. A repository for
scalable model management. Software & Systems Modeling, pages 1–21, 2013.

12. Fraunhofer. ModelBus, 2015. Available at:
http://www.modelbus.org/.

13. R. K. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley professional
computing. John Wiley, 1991.

14. M. Koegel and J. Helming. EMFStore: A Model Repository for EMF Models. In
Procs. of the 32Nd ACM/IEEE Int. Conf. on Software Engineering - Volume 2,
ICSE ’10, pages 307–308. ACM, 2010.

15. MetaCase. MetaEdit+ Domain-Specific Modeling Environment .
Available at: https://http://www.metacase.com/products.html.

16. MongoDB Developers. MongoDB. Available at: http://www.mongodb.org/.
17. Neo4j Developers. Neo4j. Available at: http://neo4j.com/.
18. No Magic. MagicDraw, 2015. Available at:

http://www.nomagic.com/products/magicdraw.html.
19. OMG. A UML profile for Modeling and Analysis of Real Time Embedded Systems

(MARTE), 2011. Version 1.1
Available at: http://www.omg.org/spec/MARTE/1.1/.

20. OMG. Unified Modeling Language (UML), 2012. Version 2.4.1
Available at: http://www.omg.org/spec/UML/2.4.1/.

21. OMG. Business Process Model And Notation (BPMN), 2013. Version 2.0.2
Available at: http://www.omg.org/spec/BPMN/2.0.2/.

22. OMG. MetaObject Facility (MOF), 2014. Version 2.4.2
Available at: http://www.omg.org/spec/MOF/2.4.2.

23. OMG. XML Metadata Interchange (XMI), 2014. Version 2.4.2
Available at: http://www.omg.org/spec/XMI/2.4.2/.

24. Oracle. MySQL. Available at: http://www.mysql.com/.
25. M. Scheidgen, M. Zubow, J. Fischer, and T. H. Kolbe. Automated and transparent

model fragmentation for persisting large models. InModel Driven Engineering Lan-
guages and Systems - 15th International Conference, MODELS 2012, Innsbruck,
Austria, September 30-October 5, 2012. Proceedings, pages 102–118, 2012.

26. C. U. Smith and L. G. Williams. Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software. Addison–Wesley, 2002.

27. SOFTEAM. Modelio, 2015. Available at:
http://www.modelio.org.

28. D. Steinberg, F. Budinsky, M. Paternostro, and Ed Merks. EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

29. The Eclipse Foundation. Teneo.
Available at: http://eclipse.org/modeling/emft/?project=teneo.

30. The Eclipse Foundation. The CDO Model Repository.
Available at: https://eclipse.org/cdo/.

31. The Eclipse Foundation. MoDisco Eclipse Project, 2014.
Available at: https://eclipse.org/MoDisco/.


