
Evaluation of Q-Learning approach for HTTP
Adaptive Streaming

Virginia Martín, Julián Cabrera, and Narciso García

Abstract—We propose a Q-Learning-based algorithm for an
HTTP Adaptive Streaming (HAS) Client that maximizes the
perceived quality, taking into account the relation between the
estimated bandwidth and the qualities and penalizing the freezes.
The results will show that it produces an optimal control as other
approaches do, but keeping the adaptiveness.

I. INTRODUCTION

HAS is becoming a widely adopted solution to deliver
video streaming to end-users in highly dynamic networks. The
streaming client requests each content segment at the most
appropriate quality using its particular adaptation algorithm.
The standard Dynamic Adaptive Streaming over HTTP, also
known as MPEG-DASH [1], defines the format of the Media
Presentation Description and the segment format, however it
does not specify the control algorithm for the quality selection.
Several approaches have been proposed to solve the quality
decision in a scenario with a single HAS client. Miller et al. [2]
try to keep the buffer level close to a target value Bopt, being
its main priority to avoid playback freezes. Also the BBA-0
algorithm [3] controls the buffer occupancy, although it uses a
bandwidth estimation as well during the startup phase. Liu et
al. [4] compute a smoothed measure of the throughput in order
to detect network congestion. Juluri [5] includes the segment
size, due to the impact of variable bit rate encoding, in addition
to the estimated bandwidth and the buffer filling to predict
more accurately the download time of the next segment.

Other research studies model the problem as an optimization
control problem and use mathematical tools to solve it. In
that sense, Garcia et al. [6] propose an algorithm based on
Stochastic Dynamic Programming (SDP), known as DASH-
SDP. They compute off-line optimal control policies based on
a priori models of the system. Although this scheme produces
good results, it lacks of adaptiveness if there is a mismatch
between the priori model and the real system behavior. In
this paper, we present our adaptation algorithm based on Q-
Learning approach, DASH-QL. This reinforcement learning
technique [7] allows the client to learn, through its experi
ence, which qualities are the most appropriate in accordance
with several environment conditions. Previous researches have
addressed the use of these techniques [8] [9]. Our algorithm
uses a suitable number of states variables achieving to capture

This work has been partially supported by the Ministerio de Economía
y Competitividad of the Spanish Government under TEC2013-48453 (MR-
UHDTV)

the dynamics of the system. It also employs a novel reward
function that combines the main Quality of Experience (QoE)
factors: quality of the requested segments, quality switches
and freezes. In order to validate our formulation, we compare
our control logic with the SDP-based algorithm. The results
will show that our method produces an optimal control as the
SDP approach, but keeping the adaptiveness of the Q-Learning
approach.

II. DESCRIPTION OF THE DASH-QL ALGORITHM

Q-Learning [7] is a model-free reinforcement learning
technique that allows a dynamic system to learn which is
the most appropriate action for the next stage depending on
specific environment conditions at each time. It combines an
exploration mode where random actions are selected and the
algorithm learns from their outcome, and an exploitation mode
in which the logic selects the most suitable action according
to what it has learned up to that moment.

A. Elements of the DASH-QL approach

Below we describe the main elements of our formulation:
State, s: In our model, it contains the following information
about the environment at each stage k: sk = (bufk, bwk, qk-i)

• bufk is the level of the client's buffer in seconds.
• bwk is the estimated available bandwidth in Kbps.
• rjk-i is the bitrate of the previous requested quality in Kbps.
The updating of bwk (1) and bufk (2) through the stages is
computed as follows:

Q_k ' -L seg
lseg

bull
Aifc-

(!) bufk = bufk_1+Tseg-dk-Tl seg (2)

Tseg is the segment duration and dk is the number of segments
extracted from the buffer during the download time, Atk.

Action: The different available qualities of the segments.

Reward function: Indicates how good the decision taken is.
(3)

(4)

T* equality \ ^switches \ *^fr

where:
¿(•quality — 1.0 • bwk

1 + (bufk/Bovt)
3 - (bw-i/q-i) (Ik,

Rs itche -\qk-\~qk\ (5) Rfreezes = ~\bwk • fi\ (6)

Rquaiity(4), whose coefficients have been empirically selected,
aims at favoring the selection of higher qualities, but taking
into account the buffer level in relation to its optimal value

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148688568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
file://-/qk-/~qk/

{B0pt) and the relationship between the lowest bandwidth
and the lowest quality to control the freezes in the case
of the bandwidth is insufficient even for the lowest video
quality. Rswuches(5) penalizes the quality switches between
two consecutive requests depending on the jump magnitude.
Lastly, Rfreezes(6) is the penalization factor of the video
freezes taking into account their duration (/;).

Q-table, Q{sk, a): Indicates the learned benefit that the system
will get taking action a in state sk. In the exploitation mode,
the algorithm will select the action with the highest Q() value
for a given state, s. The updating of this matrix (learning
process) after each quality decision is described below (7):

r + j • maxbQ(sk+1,b) (7) Q(sk,a) -> (1 -a) -Q(sk,a) + a

where a is the learning rate, 7 weighs the contribution of the
immediate and future rewards and b is the action that produces
the highest Q-value for the next state sk+1.

III. EXPERIMENTAL RESULTS AND CONCLUSIONS

A. Experimental Setup

In this section, we describe the experiments that have been
carried out in order to compare the performance of DASH-
SDP and our proposed control strategy, DASH-QL. We have
conducted simulations of 150 episodes with 300 segments each
episode. However, results have been measured over the last 50
episodes in order to evaluate the performance of the DASH-
QL algorithm when its convergence has been achieved. We
have used the following parameter values: a typical segment
duration Tseg = 2 sec and each segment has been encoded at
Nq = 14 quality levels with bitrates Q¿ distributed between
100 and 4500 Kbps following a similar scheme to the distri
bution used in [6]. The buffer size (Bmax) is 6 sec and we
have determined experimentally that a reasonable target value
to keep during the streaming session is Bopt = 2/Z-Bmax = 4
sec. The available channel throughput has been modeled by
different Markov chains with Nbw quantified levels and a
remaining probability of p = 0.2 with the aim of having highly
dynamic channel instances. Regarding the fixed parameters of
Eq. (7), we have taken the values that Claeys describes as
the best configuration [9], a = 0.1 and 7 = 0.1. In order to
assess the performance of the algorithms, we utilize the QoE
measurement (8) defined by Claeys [8]:

QoE = 4.85 - Q - 4 . 9 5 - F - 1 . 5 7 - S + 0.5 (8)
where Q is the average segment quality, F is the penalization
by freezes and S captures the degradation by quality switches.

B. Comparison with DASH-SDP

In the first test, a single channel model has been used for the
training and simulation episodes, with Nbw = 15 states with
quantified values distributed between 100 and 4750 Kbps. As
can be observed in the Table I, the QoE values obtained by
both approaches are quite similar. This result validates our
formulation since we have obtained a comparable result to
that of [6]. Actually, DASH-QL obtains a slightly higher QoE
value, due to the fact that our algorithm reduces the number of
quality switches and their switch depth, hence a lower S value

is obtained. To that extent, our algorithm requests slightly
lower quality representations (Q value is lower for DASH-
QL) but it outperforms DASH-SDP in terms of QoE.

TABLE I
RESULTS WITH A SINGLE CHANNEL MODEL

Algorithm

DASH-SDP
DASH-QL

QoE

2.0228

2.1012

Q (%)

34.88

34.64

F (%)

0

0

S (%)

10.75

5.01

In order to evaluate the inherent adaptiveness of our QL
approach, we have conducted a second test in which we have
trained both algorithms with the previous channel model, but
we have measured their performance with a lower bandwidth
channel. More specifically, we have used for the simulation
phase a channel model with quantified values distributed
between 50 and 2100 Kbps. Results are shown in Table II.

TABLE II
RESULTS WITH DIFFERENT CHANNEL MODELS

Algorithm

DASH-SDP
DASH-QL

QoE

-0.093
0.0362

Q (%)

17.92

15.39

F (%)

27.39 [455]
24 [358]

S (%)

6.67
1.43

As can be observed, there is a significant drop of QoE for
both algorithms compared to the previous experiment. This is
consequence of having a lower bandwidth channel that forces
to request lower qualities and produces video freezes. Nev
ertheless, DASH-QL outperforms again DASH-SDP showing
the adaptiveness of the QL approach. During the simulation
episodes, DASH-QL is able to adapt to the new conditions
of the channel modifying its control policy (whereas DASH-
SDP follows the same policy). In that sense, DASH-QL aims
at decreasing the occurrence of freezes requesting significantly
lower qualities than DASH-SDP, preventing the video interrup
tions due to a greedy behavior that might lead to the buffer
starvation, but getting finally a higher QoE value.

REFERENCES

[1] Dynamic adaptive streaming over HTTP (DASH) - Part
1: Media presentation description and segment formats.
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html.

[2] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz, "Adaptation algorithm
for Adaptive Streaming over HTTP," in Packet Video Workshop (PV),
2012 19th International. IEEE, 2012, pp. 173-178.

[3] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, "A
Buffer-based Approach to Rate Adaptation: Evidence from a Large Video
Streaming Service," in Proceedings of the 2014 ACM Conference on
SIGCOMM, ser. SIGCOMM '14, 2014, pp. 187-198.

[4] C. Liu, I. Bouazizi, and M. Gabbouj, "Rate adaptation for adaptive
http streaming," in ACM MMSys 2011, Special Session: Modern Media
Transport, Dynamic Adaptive Streaming over HTTP (DASH, pp. 23-25.

[5] P. Juluri, V. Tamarapalli, and D. Medhi, "SARA: Segment Aware Rate
Adaptation Algorithm for Dynamic Adaptive Streaming over HTTP,"
June 2015.

[6] S. Garcia, J. Cabrera, and N. Garcia, "Quality-optimization algorithm
based on stochastic dynamic programming for mpeg dash video stream
ing," in Consumer Electronics (ICCE), 2014 IEEE International Confer
ence on, Jan 2014, pp. 574-575.

[7] A. G. Barto, Reinforcement learning: An introduction (Adaptive Compu
tation and Machine Learning). MIT press, 1998.

[8] J. F. T. W W. V. L. Maxim Claeys, Steven Latré and F. D. Turck,
"Design of a Q-Learning-based client quality selection algorithm for
HTTP adaptive video streaming," in Adaptive and Learning Agents
Workshop, part of AAMAS2013 (ALA-2013), 2013, pp. 30-37.

[9] M. Claeys, S. Latré, J. Famaey, T. Wu, W Van Leekwijck, and
F. De Turck, "Design and optimisation of a (FA) Q-learning-based HTTP
adaptive streaming client," Connection Science, vol. 26, pp. 25-43, 2014.

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

