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Abstract—We propose a Q-Learning-based algorithm for an 
HTTP Adaptive Streaming (HAS) Client that maximizes the 
perceived quality, taking into account the relation between the 
estimated bandwidth and the qualities and penalizing the freezes. 
The results will show that it produces an optimal control as other 
approaches do, but keeping the adaptiveness. 

I. INTRODUCTION 

HAS is becoming a widely adopted solution to deliver 
video streaming to end-users in highly dynamic networks. The 
streaming client requests each content segment at the most 
appropriate quality using its particular adaptation algorithm. 
The standard Dynamic Adaptive Streaming over HTTP, also 
known as MPEG-DASH [1], defines the format of the Media 
Presentation Description and the segment format, however it 
does not specify the control algorithm for the quality selection. 
Several approaches have been proposed to solve the quality 
decision in a scenario with a single HAS client. Miller et al. [2] 
try to keep the buffer level close to a target value Bopt, being 
its main priority to avoid playback freezes. Also the BBA-0 
algorithm [3] controls the buffer occupancy, although it uses a 
bandwidth estimation as well during the startup phase. Liu et 
al. [4] compute a smoothed measure of the throughput in order 
to detect network congestion. Juluri [5] includes the segment 
size, due to the impact of variable bit rate encoding, in addition 
to the estimated bandwidth and the buffer filling to predict 
more accurately the download time of the next segment. 

Other research studies model the problem as an optimization 
control problem and use mathematical tools to solve it. In 
that sense, Garcia et al. [6] propose an algorithm based on 
Stochastic Dynamic Programming (SDP), known as DASH-
SDP. They compute off-line optimal control policies based on 
a priori models of the system. Although this scheme produces 
good results, it lacks of adaptiveness if there is a mismatch 
between the priori model and the real system behavior. In 
this paper, we present our adaptation algorithm based on Q-
Learning approach, DASH-QL. This reinforcement learning 
technique [7] allows the client to learn, through its experi
ence, which qualities are the most appropriate in accordance 
with several environment conditions. Previous researches have 
addressed the use of these techniques [8] [9]. Our algorithm 
uses a suitable number of states variables achieving to capture 
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the dynamics of the system. It also employs a novel reward 
function that combines the main Quality of Experience (QoE) 
factors: quality of the requested segments, quality switches 
and freezes. In order to validate our formulation, we compare 
our control logic with the SDP-based algorithm. The results 
will show that our method produces an optimal control as the 
SDP approach, but keeping the adaptiveness of the Q-Learning 
approach. 

II. DESCRIPTION OF THE DASH-QL ALGORITHM 

Q-Learning [7] is a model-free reinforcement learning 
technique that allows a dynamic system to learn which is 
the most appropriate action for the next stage depending on 
specific environment conditions at each time. It combines an 
exploration mode where random actions are selected and the 
algorithm learns from their outcome, and an exploitation mode 
in which the logic selects the most suitable action according 
to what it has learned up to that moment. 

A. Elements of the DASH-QL approach 

Below we describe the main elements of our formulation: 
State, s: In our model, it contains the following information 
about the environment at each stage k: sk = (bufk, bwk, qk-i) 

• bufk is the level of the client's buffer in seconds. 
• bwk is the estimated available bandwidth in Kbps. 
• rjk-i is the bitrate of the previous requested quality in Kbps. 
The updating of bwk (1) and bufk (2) through the stages is 
computed as follows: 
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Tseg is the segment duration and dk is the number of segments 
extracted from the buffer during the download time, Atk. 

Action: The different available qualities of the segments. 

Reward function: Indicates how good the decision taken is. 
(3) 
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Rquaiity(4), whose coefficients have been empirically selected, 
aims at favoring the selection of higher qualities, but taking 
into account the buffer level in relation to its optimal value 
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{B0pt) and the relationship between the lowest bandwidth 
and the lowest quality to control the freezes in the case 
of the bandwidth is insufficient even for the lowest video 
quality. Rswuches(5) penalizes the quality switches between 
two consecutive requests depending on the jump magnitude. 
Lastly, Rfreezes(6) is the penalization factor of the video 
freezes taking into account their duration (/;). 

Q-table, Q{sk, a): Indicates the learned benefit that the system 
will get taking action a in state sk. In the exploitation mode, 
the algorithm will select the action with the highest Q( ) value 
for a given state, s. The updating of this matrix (learning 
process) after each quality decision is described below (7): 

r + j • maxbQ(sk+1,b) (7) Q(sk,a) -> (1 -a) -Q(sk,a) + a 

where a is the learning rate, 7 weighs the contribution of the 
immediate and future rewards and b is the action that produces 
the highest Q-value for the next state sk+1. 

III. EXPERIMENTAL RESULTS AND CONCLUSIONS 

A. Experimental Setup 

In this section, we describe the experiments that have been 
carried out in order to compare the performance of DASH-
SDP and our proposed control strategy, DASH-QL. We have 
conducted simulations of 150 episodes with 300 segments each 
episode. However, results have been measured over the last 50 
episodes in order to evaluate the performance of the DASH-
QL algorithm when its convergence has been achieved. We 
have used the following parameter values: a typical segment 
duration Tseg = 2 sec and each segment has been encoded at 
Nq = 14 quality levels with bitrates Q¿ distributed between 
100 and 4500 Kbps following a similar scheme to the distri
bution used in [6]. The buffer size (Bmax) is 6 sec and we 
have determined experimentally that a reasonable target value 
to keep during the streaming session is Bopt = 2/Z-Bmax = 4 
sec. The available channel throughput has been modeled by 
different Markov chains with Nbw quantified levels and a 
remaining probability of p = 0.2 with the aim of having highly 
dynamic channel instances. Regarding the fixed parameters of 
Eq. (7), we have taken the values that Claeys describes as 
the best configuration [9], a = 0.1 and 7 = 0.1. In order to 
assess the performance of the algorithms, we utilize the QoE 
measurement (8) defined by Claeys [8]: 

QoE = 4.85 - Q - 4 . 9 5 - F - 1 . 5 7 - S + 0.5 (8) 
where Q is the average segment quality, F is the penalization 
by freezes and S captures the degradation by quality switches. 

B. Comparison with DASH-SDP 

In the first test, a single channel model has been used for the 
training and simulation episodes, with Nbw = 15 states with 
quantified values distributed between 100 and 4750 Kbps. As 
can be observed in the Table I, the QoE values obtained by 
both approaches are quite similar. This result validates our 
formulation since we have obtained a comparable result to 
that of [6]. Actually, DASH-QL obtains a slightly higher QoE 
value, due to the fact that our algorithm reduces the number of 
quality switches and their switch depth, hence a lower S value 

is obtained. To that extent, our algorithm requests slightly 
lower quality representations (Q value is lower for DASH-
QL) but it outperforms DASH-SDP in terms of QoE. 

TABLE I 
RESULTS WITH A SINGLE CHANNEL MODEL 

Algorithm 

DASH-SDP 
DASH-QL 

QoE 

2.0228 

2.1012 

Q ( % ) 

34.88 

34.64 

F ( % ) 

0 

0 

S ( % ) 

10.75 

5.01 

In order to evaluate the inherent adaptiveness of our QL 
approach, we have conducted a second test in which we have 
trained both algorithms with the previous channel model, but 
we have measured their performance with a lower bandwidth 
channel. More specifically, we have used for the simulation 
phase a channel model with quantified values distributed 
between 50 and 2100 Kbps. Results are shown in Table II. 

TABLE II 
RESULTS WITH DIFFERENT CHANNEL MODELS 

Algorithm 

DASH-SDP 
DASH-QL 

QoE 

-0.093 
0.0362 

Q ( % ) 

17.92 

15.39 

F ( % ) 

27.39 [455] 
24 [358] 

S ( % ) 

6.67 
1.43 

As can be observed, there is a significant drop of QoE for 
both algorithms compared to the previous experiment. This is 
consequence of having a lower bandwidth channel that forces 
to request lower qualities and produces video freezes. Nev
ertheless, DASH-QL outperforms again DASH-SDP showing 
the adaptiveness of the QL approach. During the simulation 
episodes, DASH-QL is able to adapt to the new conditions 
of the channel modifying its control policy (whereas DASH-
SDP follows the same policy). In that sense, DASH-QL aims 
at decreasing the occurrence of freezes requesting significantly 
lower qualities than DASH-SDP, preventing the video interrup
tions due to a greedy behavior that might lead to the buffer 
starvation, but getting finally a higher QoE value. 
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