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Abstract
Multidimensional classification has become one of the most relevant topics in view of the many
domains that require a vector of class values to be assigned to a vector of given features. The
popularity of multidimensional Bayesian network classifiers has increased in the last few years
due to their expressive power and the existence of methods for learning different families of these
models. The problem with this approach is that the computational cost of using the learned models
is usually high, especially if there are a lot of class variables. Class-bridge decomposability means
that the multidimensional classification problem can be divided into multiple subproblems for these
models. In this paper, we prove that class-bridge decomposability can also be used to guarantee
the tractability of the models. We also propose a strategy for efficiently bounding their inference
complexity, providing a simple learning method with an order-based search that obtains tractable
multidimensional Bayesian network classifiers. Experimental results show that our approach is
competitive with other methods in the state of the art and ensures the tractability of the learned
models.

Keywords: Multidimensional classification; Bayesian network classifiers; MPE complexity;
learning from data.

1. Introduction

Classification is one of the main problems in machine learning nowadays. It consists of identifying
to which class an instance described by a set of features belongs. Such an instance must often be
assigned to a set of classes instead of to a single class. This is called multidimensional classification.
This problem is common in several domains like text categorization (a text can be assigned to
multiple topics), medicine (a patient may suffer from several diseases) or system monitoring (a
system may break down from multiple failures).

Multidimensional Bayesian classifiers (MBCs) (van der Gaag and de Waal, 2006) extend Baye-
sian network classifiers to the problem of multidimensional classification. An MBC is a Bayesian
network (BN) whose structure is partitioned into three subgraphs: a class subgraph, a feature sub-
graph, and a bridge subgraph (see below). The popularity of MBCs has grown in the last few years
because of their good performance in multiple domains and their expressive graphical representa-
tion, which explicitly shows the relationships among the variables of the models.

The main problem with using MBCs is that classification can be very computationally demand-
ing to perform, especially for large sets of variables. To address this problem, Bielza et al. (2011)
proposed a class of MBCs, called class-bridge decomposable (CB-decomposable) MBCs, whose
structure can be decomposed into multiple connected components, omitting the arcs between the
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features. In this paper, we demonstrate that MBCs can perform classification efficiently if the num-
ber of class variables in each of their components is bounded. We also propose a method for learning
tractable MBCs from data.

The rest of the paper is organized as follows. Section 2 includes the description of CB-decompo-
sable MBCs and reviews inference complexity and previous work on MBCs. Section 3 presents
the results with respect to the complexity of classification in MBCs, and describes the method
proposed for learning tractable MBCs. Section 4 reports the experimental results. Section 5 gives
our conclusions and suggests future research lines.

2. Background

2.1 Multidimensional Bayesian Network Classifiers

A Bayesian network B represents a joint probability distribution over a set of random variables V =
{V1, . . . , Vn}. It is composed of a directed acyclic graph (DAG) G that represents the conditional
dependences among the variables in V , and a set of parameters Pr(Vi|PaG(Vi)) (we use PaG(Vi) to
refer to the parents of Vi in G) that represent the conditional probability distributions (CPDs) of each
Vi ∈ V conditioned on its parents in G. The joint probability distribution encoded by B is given by

Pr(V1, . . . , Vn) =
n∏

i=1

Pr(Vi|PaG(Vi)) . (1)

Van der Gaag and de Waal (2006) introduced multidimensional Bayesian network classifiers as
an extension of Bayesian classifiers to multidimensional classification. MBCs are a special case of
Bayesian networks with a restricted structure topology. They are defined as follows:

Definition 1 An MBC is a Bayesian network B over a set of variables V = {V1, V2, . . . , Vn}, where
V is partitioned into two sets C = {C1, . . . , Cd}, d ≥ 1, of class variables and F = {F1, . . . , Fm},
m ≥ 1, of feature variables (d + m = n). The arcs in G are partitioned into three subsets, AC , AF ,
AB , such that:

• AC ⊆ C × C is composed of the arcs between the class variables having a subgraph GC =
(C, AC) –class subgraph– of G induced by C.

• AF ⊆ F × F is composed of the arcs between the feature variables having a subgraph
GF = (F , AF ) –feature subgraph– of G induced by F .

• AB ⊆ C×F is composed of the arcs from the class variables to the feature variables having a
subgraph GB = (V, AB) –bridge subgraph– of G induced by V connecting class and feature
variables.

Figure 1 shows an example of the structure of an MBC and its corresponding subgraphs.
An MBC performs classification by obtaining the most probable explanation (MPE) of the class

variables given an instance of the feature variables, which is given by

c∗ = argmaxc∈ΩCPr(c|f) = argmaxc∈ΩCPr(c, f) , (2)

where f is an instance of F and ΩC are the possible configurations of C.
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C1 C2 C3 C4 C5

F1 F2 F3 F4 F5 F6



Class subgraph
C1 C2 C3 C4 C5

Bridge subgraph
C1 C2 C3 C4 C5

F1 F2 F3 F4 F5 F6

Feature subgraph

F1 F2 F3 F4 F5 F6

Figure 1: MBC structure

2.2 Class-Bridge Decomposable Multidimensional Bayesian Network Classifiers

Bielza et al. (2011) introduced class-bridge decomposable multidimensional Bayesian network clas-
sifiers, a type of MBCs that can be decomposed into multiple connected components, where there
are no arcs belonging to the class or bridge subgraphs that connect two nodes in two different com-
ponents.

Definition 2 A CB-decomposable MBC is a BN B whose class subgraph and bridge subgraph are
decomposed into r maximal components such that:

1. GC ∪ GB =
⋃r

i=1(GCi ∪ GBi), where GCi ∪ GBi , i = 1, . . . , r, are its maximal connected
components.

2. ChG(Ci) ∩ ChG(Cj) = ∅, with i, j = 1, . . . , r and i 6= j, where ChG(Ci) and ChG(Cj) denote
the children of all variables in Ci and Cj respectively (the subsets of class variables in GCi

and GCj ).

Bielza et al. (2011) showed that exploiting the CB-decomposability of MBCs can reduce the
number of computations required to perform multidimensional classification. Specifically, they
showed that the MPE can be computed independently in each component, given that

max
c∈ΩC

Pr(c|f) ∝
r∏

i=1

max
ci∈ΩCi

∏
C∈Ci

Pr(c|PaG(C))
∏

F∈ChG(Ci)

Pr(f |PaGB (F ),PaGF (F )) , (3)

which means that it is possible to maximize over each maximal connected component indepen-
dently, therefore maximizing over lower dimensional spaces.

The MBC shown in Figure 1 classifies an instance f = (f1, . . . , f6) by obtaining the MPE of
(C1, . . . , C5) given f. As this MBC can be CB-decomposed into two connected components (see
Figure 2), Equation (3) shows that the MPE can be computed maximizing over (C1, C2, C3) and
(C4, C5) independently.
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C1 C2 C3 C4 C5

F1 F2 F3 F4 F5 F6

Figure 2: Connected components of the MBC shown in Figure 1

2.3 Inference Complexity in Multidimensional Bayesian Network Classifiers

Assuming that all the feature variables are observed, performing classification in an MBC B with
class variables C = {C1, . . . , Cd} and feature variables F = {F1, . . . Fm} is equivalent to ob-
taining the MPE of the class variables conditioned on an instance f of the features. If there are
unobserved feature variables, performing classification in B is equivalent to obtaining not the MPE
in (C1, . . . , Cd) but the maximum a posteriori hypothesis (MAP). This can be intractable even if the
treewidth of B is bounded (Park, 2002).

Existing research addresses the complexity of multidimensional classification in MBCs as the
complexity of computing the MPE. Thus, they implicitly assume that MPE queries will not contain
missing values (i.e., the values of all the feature variables will be given). Otherwise the resulting
MPE would provide the most probable instance not of (C1, . . . , Cd) but of (C1, . . . , Cd, Fm1 , . . . ,
Fmk

), where Fm1 , . . . , Fmk
are the missing features.

In this paper, we also focus on the case where all the feature variables are observed. Hence,
we consider that, to perform classification, an MBC obtains argmaxc∈ΩCPr(c, f). MPE is generally
NP-hard (Kwisthout, 2011), but it can be computed in polynomial time in any BN if the treewidth
of G is bounded (Sy, 1992), where G is the structure of B. Given MBC structural constraints,
further bounds on their inference complexity have been found. De Waal and van der Gaag (2007)
demonstrated that treewidth(G) ≤ treewidth(GF ) + d , where GF is the graph that contains the arcs
among feature variables and d is the number of class variables. This means that it is possible for B
to perform classification in polynomial time if the addition of the treewidth of the feature subgraph
and the number of class variables is bounded. Furthermore, if G is CB-decomposable the MPE can
be computed in polynomial time if the treewidth of GF and the number of class variables of each
component of G are bounded (Kwisthout, 2011).

Pastink and van der Gaag (2015) also suggested that the treewidth of an MBC with an empty
feature subgraph is given by the treewidth of the graph obtained after moralizing its structure and
then removing all its feature nodes from the moralized graph.

When computing the MPE in a BN given an evidence f, we can simplify the structure of the
network by pruning every arc Vi → Vj such that Vi appears in f. Pruning arc Vi → Vj for evidence
f from a BN means removing arc Vi → Vj and the parameters of Vj that are not compatible with f.
When the MPE of the class variables is computed in an MBC, the values of all the feature variables
are given.

As mentioned above, previous research uses the treewidth of G to bound the inference com-
plexity, exploiting the restrictions on the topology of G, but without considering the known query-
dependent information, that is, that all the feature variables are instantiated when we compute the
MPE in B. Here, we take advantage of the above to efficiently bound the complexity of multidi-
mensional classification in MBCs.
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2.4 Previous Work on Learning MBCs

The problem of learning MBCs from data has been addressed before. The literature contains meth-
ods for learning different families of MBCs, depending on the type of class and feature subgraphs
that they can obtain (trees, forests, polytrees or DAGs). Here we denote the family of the MBC
using class subgraph – feature subgraph (e.g., tree–DAG has a tree as the class subgraph and a DAG
as the feature subgraph).

Methods have been proposed for learning tree–tree (van der Gaag and de Waal, 2006), polytree–
polytree (de Waal and van der Gaag, 2007) and DAG–DAG (Bielza et al., 2011) MBCs. These
approaches do not explicitly consider the inference complexity of the learned models. Hence, they
may lead to MBCs where the MPE cannot be solved efficiently, unless the number d of class vari-
ables is very small.

There are also other approaches in the literature that consider the complexity of the MBCs
during the learning process. Corani et al. (2014) proposed a method for learning sparse MBCs with
a forest class subgraph and an empty feature subgraph, and Borchani et al. (2010) introduced the
first method to learn CB-decomposable MBCs, but neither of them provides guarantees regarding
the complexity of multidimensional classification in the models. Pastink and van der Gaag (2015)
proposed a method for learning tree–empty MBCs of bounded treewidth, providing an optional step
to learn a forest feature subgraph, and guaranteeing the tractability of the resulting models. The
method computes the treewidth of each candidate and rejects any that exceed the treewidth bound.
Computing the treewidth of the models can be very computationally demanding, specially if we aim
to learn (the most general) DAG–DAG MBCs.

In this paper we propose a strategy for efficiently bounding the inference complexity of CB-
decomposable MBCs with DAG–DAG structure. We use this strategy to learn MBCs where the
MPE can be computed in polynomial time. We show that even high treewidth MBCs perform
classification efficiently if the number of class variables per component is bounded.

3. Learning Tractable MBCs

Given that inference in a BN is tractable if the treewidth of its structure is bounded, most existing
algorithms for learning BNs with low inference complexity bound the treewidth of the networks
during the learning process, rejecting any candidates that exceed the treewidth bound.

In the case of MBCs, it is possible to exploit the restrictions on the structure of the network and
the information about the MPE queries sent to the MBCs. From the structure of MBCs, we know
that there are no arcs from the feature to the class nodes. We also know that each MPE query sent
to the network involves finding the most probable instance of the class variables given an instance
of the features. The complexity of the MPE in BNs is query dependent, given that the parameters
of a network can be updated with the value of the evidence variables before computing the MPE.

Definition 3 Let G = (C ∪ F ,AC ∪ AB ∪ AF ) be the structure of an MBC B. The pruned graph
of G is the result of moralizing G and removing the feature nodes from the resulting graph.

Theorem 4 states that performing classification in an MBC is tractable if the treewidth of its
pruned graph is also bounded. This transformation was used by Pastink and van der Gaag (2015) to
bound the treewidth of tree–empty MBCs. Here, we use it to bound the complexity of multidimen-
sional classification in DAG–DAG MBCs.
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Complete graph

C1 C2 C3 C4 C5

F1 F2 F3 F4 F5 F6

Pruned graph

C1 C2 C3 C4 C5

Domain of Before After
φC1 {C1} {C1}
φC2 {C1, C2} {C1, C2}
φC3 {C3} {C3}
φC4 {C4, C5} {C4, C5}
φC5 {C5} {C5}
φF1 {C1, F1, F2} {C1}
φF2 {C1, C2, C3, F2, F4} {C1, C2, C3}
φF3 {C3, F2, F3} {C3}
φF4 {C4, F4} {C4}
φF5 {C4, F4, F5, F6} {C4}
φF6 {C5, F1, F6} {C5}

Figure 3: MBC structure and pruned graph (left), and domain of the potential of each node before
and after they are updated with evidence f = (f1, . . . , f6) (right)

Theorem 4 Let G = (C ∪ F ,AC ∪ AB ∪ AF ) be the structure of an MBC B. If the treewidth of
its pruned graph G′ and the number of parents of each node that belongs to F are bounded, B can
perform classification in polynomial time.

Proof B performs classification by obtaining argmaxc∈ΩCPr(c, f), where f is an instance of F .
Suppose that the CPD of each node Vi ∈ C ∪ F is represented by a potential φi. φi is updated with
f by removing the entries that are not compatible with f. This can be done in linear time in the size
of φi, that is exponential in the number of parents of Vi in G. Hence, the nodes in F can be updated
with f in polynomial time if the number of parents of each node in F is bounded.

After updating G with f, the domain of each potential φf of Vf ∈ F is PaG(Vf ) ∩ C. There is
an undirected link in G′ between each node in PaG(Vf ) ∩ C. It is evident that the width of the best
elimination order for the resulting potentials is equal to the treewidth of G′. Hence, if the treewidth
of G′ is bounded, B can perform classification in polynomial time.

Figure 3 shows an example of the structure of an MBC and its pruned graph. It also illustrates
that all the variables belonging to the domain of the same potential φi ∈ {φC1 , . . . , φC5 , φF1 , . . . ,
φF6} updated with an instance f = (f1, . . . , f6) of the features are connected by a link in the pruned
graph (and vice versa). This means that the treewidth of the pruned graph is equal to the width of
the best elimination order in the updated potentials.

Although the treewidth of this graph G′ provides a tight upper bound on the inference complexity
of the models, computing the treewidth of a graph exactly is an NP-complete problem (Arnborg
et al., 1987).

We can compute whether the treewidth of a graph is less than or equal to a constant k in linear
time if k is fixed, but obtaining the solution of this inequality is super-exponential in the treewidth
(Bodlaender, 1993). Thus, it is intractable unless k is very small.

Fortunately, Collorary 5 shows that if the number of class variables of an MBC B is bounded,
then we can perform classification in B in polynomial time.
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Corollary 5 Let G = (C ∪F ,AC ∪AB ∪AF ) be the structure of an MBC B. If the number of class
variables d and the number of parents of each node in F are bounded, B can perform classification
in polynomial time.

Proof Let G′ be the pruned graph of G. As each node in G′ belongs to C, treewidth(G′) ≤ d. Hence,
from Theorem 4 we know that if the number of parents of each feature and d are bounded, B can
perform classification in polynomial time.

When the number d of class variables of B is not small, it is not so simple to decide if B can
perform classification efficiently. Nevertheless, if the classifier is CB-decomposable, we can show
that simply bounding the maximum number of class nodes per component also bounds the inference
complexity of the MBCs, as shown in Collorary 6.

Corollary 6 Let G = (C ∪ F ,AC ∪ AB ∪ AB) be the structure of a CB-decomposable MBC B. If
the number of class variables in each component of G and the number of parents of each node in F
are bounded, B can perform classification in polynomial time.

Proof Let G′ be the pruned graph of G. If G is CB-decomposable into r components G1, . . . ,Gr, then
G′ is composed of r unconnected subgraphs G′1, . . . ,G′r, such that V ′i = Vi ∩ C, i = 1, . . . , r, where
Vi and V ′i are the nodes in Gi and G′i, respectively. As treewidth(G′) = maxi{treewidth(G′i)} <
maxi |V ′i| = maxi |Vi ∩ C|, we know from Theorem 4 that if the number of parents of each feature
and the number of class variables in each component of G are bounded, B can perform classification
in polynomial time.

Figure 3 shows that the treewidth of the pruned graph is bounded by the maximum number of
class variables per component, given that there is no path from Ci to Cj in the pruned graph if two
class nodes Ci and Cj are in two different connected components.

As it is straightforward to establish the number of class variables per component of an MBC,
we can efficiently bound the inference complexity of MBCs during the learning process.

3.1 Learning Method

Next, we provide a method for learning CB-decomposable MBCs (with a DAG-DAG structure)
that guarantees the tractability of the resulting models. In order to efficiently bound the inference
complexity of classification, we limit the number of class variables per component. This strategy
can be used in combination with most score+search methods.

We adapt order-based search (OBS) (Bouckaert, 1992) to learn tractable MBCs. As the order
of the variables in greedy search restricts the structure of the learned networks (i.e., a node can only
be set as the parent of another node if it has been visited previously), OBS can be easily adapted to
learn MBCs by considering only those orderings of the variables where the class variables precede
the feature variables. In this manner, the parents of class variables must necessarily be other class
variables. This is consistent with the MBC structure.

To bound the inference complexity, we simply reject any candidates that exceed the bound of
class variables per component. We use Algorithm 1 to learn the structure of MBCs given an ordering
of the class (OC) and feature (OF ) variables and a bound on the maximum number of class variables
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per component k. We do not specify a definite scoring function because any score used to evaluate
BNs can be applied. We assume that the score must be maximized.

Data: Data D, ordering of class variables OC , ordering of feature variables OF , bound k
Result: MBC structure G

1 G ← empty DAG;
2 O← (OC ,OF );
3 for Vi ∈ O do
4 improve← true;
5 while improve do
6 Let Vj be the node that maximizes score(D, Vi,PaG(Vi) ∪ {Vj}), such that adding Vj

to PaG(Vi) does not exceed the bound k of class variables per component in G;
7 improve← false;
8 if score(D, Vi,PaG(Vi) ∪ {Vj}) > score(D, Vi,PaG(Vi)) then
9 PaG(Vi)← PaG(Vi) ∪ {Vj};

10 improve← true;
11 end
12 end
13 end
14 return G ;

Algorithm 1: Greedy search of tractable CB-decomposable MBCs (CB–OBS)

An effective strategy used to learn BNs in the space of orderings is to perform a greedy process
applying local changes among the orderings and picking the best change in each step (Teyssier and
Koller, 2005). A tabu list can also be used to reduce the computational cost, and random restarts
can be useful for avoiding local optima. We use this strategy to learn MBCs in the experiments.

4. Experimental Results

To test the performance of our approach, we compared it with other state-of-the-art methods, in-
cluding the tree–tree (van der Gaag and de Waal, 2006), polytree–polytree (de Waal and van der
Gaag, 2007) and pure filter (DAG–DAG) (Bielza et al., 2011) algorithms. We also compared it to
a version of the method proposed by Pastink and van der Gaag (2015) (small–tw). Instead of the
branch and bound approach that they propose, we learned the bridge subgraph using a greedy search
process that picks the best parents set that does not exceed the treewidth bound in each iteration,
given that the computational cost of the former is too high for this experimental framework. We
used the Bayesian information criterion (BIC) as the scoring function for our method. CB–OBS
will denote our approach.

We generated a dataset of 5000 samples from three real-world BNs. ANDES (Conati et al.,
1997) is an intelligent tutoring system for Newtonian physics, MUNIN1 (Andreassen et al., 1989) is
a network for the diagnosis of neuromuscular disorders , and DIABETES (Andreassen et al., 1991)
is an insulin adjustment system. We selected one third of the variables at random as class variables.
To select the features, we applied an information gain filter for each of the classes, generating a
subset of selected features for each class variable. The definitive subset of features is the union of
the subsets selected for each variable. The basic properties of the datasets are described in Table 1.
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Dataset Classes Features Instances
ANDES 74 82 5000
MUNIN1 62 86 5000
DIABETES 138 284 5000

Table 1: Basic properties of the datasets

Method τ τp size accM
CB–OBS 7.8±0.7 5.2±1.0 679±157 0.778±0.001∗
tree–tree 18.4±0.8 7.8±0.4 3710±724 0.779±0.002∗

polytree–polytree 21.8±2.4 8.2±0.4 5221±342 0.777±0.003
pure filter 25.2±1.2 9.2±1.2 8756±3542 0.776±0.003
small–tw 5.0±0.0 5.0±0.0 1382±171 0.764±0.004

Table 2: Performance of MBC methods in ANDES dataset

To test the performance of the methods, we used the mean accuracy of the classifiers, which
averages the accuracies of all the class variables individually, as described for N samples and d
classes below:

accM =
1

d ·N

d∑
i=1

N∑
j=1

δ(c′ij , cij) , (4)

where c′ij represents the predicted class label for variable Cj in instance i, cij is its true value, and
δ(c′ij , cij) = 1 if c′ij = cij , and 0 otherwise.

4.1 Results

Tables 2–4 show the performance of the compared methods estimated with 5-fold cross-validation.
For each dataset and method, we show the treewidth (τ ) of the learned models, obtained using the
Min-Fill algorithm, the treewidth (τp) of the pruned graph, the size of the factors induced by variable
elimination for solving the MPE, and the mean accuracy (accM ). The time complexity of variable
elimination is given by the size of the induced factors. In all cases, the bound on the number of class
variables per component k was set to 15. Small values of k usually returned MBCs with a very low
treewidth, which detracts from classification accuracy, while big values of k did not guarantee the
tractability of the learned MBCs. The bound in the treewidth τ for small–tw was set to 5. Other
small values of τ produced similar results. The best results are shown in bold, and we use ∗ to
denote a statistically significant improvement with respect to small–tw.

The treewidth and size of the pruned graphs (that bound the complexity of multidimensional
classification in MBCs) obtained with CB–OBS and small–tw were smaller than for the models
obtained with tree–tree, polytree–polytree and pure filter algorithms, especially in the case of the
DIABETES dataset, where the MBCs learned by tree–tree, polytree–polytree and pure filter were
unable to perform classification due to space and time limitations.

We compared the accuracy results in the ANDES and MUNIN1 datasets using a Friedman
aligned ranks test with p < 0.05 and Nemenyi’s and Holm’s procedures. Methods tree–tree and
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Method τ τp size accM
CB–OBS 5.8±0.4 3.6±0.5 391±27 0.757±0.001
tree–tree 14.2±1.9 7.6±1.2 2604±1226 0.758±0.001∗

polytree–polytree 19.8±2.9 9.0±1.4 6071±4146 0.756±0.001
pure filter 21.2±1.7 8.6±1.0 5861±3918 0.756±0.001
small–tw 5.0±0.0 5.0±0.0 1012±27 0.750±0.002

Table 3: Performance of MBC methods in MUNIN1 dataset

Method τ τp size accM
CB–OBS 72.2±2.9 5.4±0.5 2200±367 0.934±0.015∗
tree–tree 66.6±10.9 37.4±2.6 (5.183±8.999)× 1012 −

polytree–polytree 100.6±8.0 54.4±5.7 (3.216±3.950)× 1018 −
pure filter 93.0±3.2 55.8±2.5 (1.154±1.551)× 1018 −
small–tw 5.0±0.0 5.0±0.0 2802±179 0.931±0.016

Table 4: Performance of MBC methods in DIABETES dataset

small–tw were found significantly different in all the datasets by both procedures, and CB–OBS
and small–tw were also found significantly different in the ANDES dataset by both procedures.

As we only obtained accuracy results for CB–OBS and small–tw in the DIABETES dataset,
we compared both methods using a Wilcoxon test with p < 0.05, and the results obtained with
CB–OBS were found significantly better than the results obtained with small–tw.

Note that the treewidth of the pruned graph of the models was clearly smaller than the treewidth
of the entire structure in some cases (see the results of CB–OBS in the DIABETES dataset). This
shows that the treewidth of the networks does not have to be bounded to obtain MBCs whose MPE
of the class variables can be computed efficiently.

5. Conclusions and Future Research

In this paper, we addressed the problem of the complexity of multidimensional classification in
MBCs. We demonstrated that some MBCs can perform classification efficiently even if they have a
large treewidth. We provided upper bounds for the complexity of the models. Also, we showed that
CB-decomposability can be used to efficiently guarantee the tractability of MBCs. We proposed a
learning method that uses the above properties to ensure such tractability.

Experimental results showed that the proposed method is competitive with other state-of-the-art
methods in terms of accuracy, also ensuring that the learned MBCs can be solved efficiently. We
also observed that some models remain tractable even with a large treewidth.

The upper bound provided by the number of class variables per component has the advantage
of being able to be computed without increasing the computational cost of the learning process.
However, there are MBCs that have a pruned graph with low treewidth and also have components
with a high number of class variables. Thus, forcing the CB-decomposability of the models could
lead to the rejection of some tractable models during the learning process. Although computing the
treewidth for each candidate will often be an overkill, there are methods in the literature that learn
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bounded treewidth BNs (Elidan and Gould, 2009; Chechetka and Guestrin, 2008). We intend to
adapt these methods to learn MBCs where the treewidth of the pruned graph is bounded.

Finally, one of the main problems with models with latent variables is that exact inference usu-
ally has to be performed during the learning process to complete the values of the hidden variables
(e.g., structural expectation-maximization). We are interested in adapting the ideas described here
to reduce the learning complexity of these models without restricting their structure to trees or poly-
trees.
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