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Abstract—Human-computer Interaction systems based on 
hand-gesture recognition are nowadays of great interest to es­
tablish a natural communication between humans and machines. 
However, the visual recognition of gestures and other human poses 
remains a challenging problem. In this paper, the original volu­
metric spatiograms of local binary patterns descriptor has been 
extended to efficiently and robustly encode the spatial and tempo­
ral information of hand gestures. This enhancement mitigates the 
dimensionality problems of the previous approach, and considers 
more temporal information to achieve a higher recognition rate. 
Excellent results have been obtained, outperforming other existing 
approaches of the state of the art. 

Index Terms—Color cameras, hand-gesture recognition, 
spatiotemporal descriptors, support vector machine (SVM) 
classifier, vision based. 

I. INTRODUCTION 

IN the last decades, there has been a great interest in human-
computer interaction (HCI) systems to achieve enhanced in­

terfaces that make the communication with computers as natural 
as the interaction among humans. There is a tendency toward 
interfaces that are more natural, intuitive, and user friendly, min­
imizing the learning process required by the user. In this sense, 
hand gestures play an important role since they can be seen as 
the most intuitive way to establish a communication with a com­
puter. Interfaces based on hand-gesture recognition represent an 
attractive and natural alternative to traditional HCI devices [1], 
since they are less intrusive [2] and more convenient to interact 
with 3-D spaces [3]. 

To recognize hand gestures or body gestures in a vision-based 
environment, most popular approaches adopt a feature extrac­
tion stage to address several challenges, such as illumination 
changes, rotations, different viewpoints, occlusions, and so on. 
Many spatiotemporal descriptors have been proposed for dy­
namic gesture recognition. Most of them are spatiotemporal 
extensions of image descriptors, such as 3-D-Histogram of Ori­
ented Gradients (HOG) [4], 3-D-Scale Invariant Feature Trans­
form (SIFT) [5], 3-D-Speeded-Up Robust Feature (SURF) [6], 

volume local binary pattern (VLBP), and local binary pattern 
(LBP) from three orthogonal planes (LBP-TOP) [7]. 

For classification, two of the most popular approaches for 
hand-gesture recognition are those based on machine learning 
techniques and template matching. Thus, in [8], the hand pose 
is described by its contour shape, and then, classified by us­
ing template matching through a shape distance metric called 
finger-earth movers distance (FEMD). The work in [9] trans­
forms the depth map of a hand pose into a point cloud, which is 
characterized by the ensemble of shape function (ESF) descrip­
tor, and classified by a multilayered random forest (MLRF). 
In [10], the hand shape features are based on Gabor filters 
computed over intensity and depth images, and the classifi­
cation task is carried out by a multiclass random forest. A 2-D 
volumetric shape descriptor along with a support vector ma­
chine (SVM) is presented in [11] for hand posture classifica­
tion using depth imagery. More recently, the work in [12] uti­
lizes depth and intensity channels with 3-D convolutional neural 
networks. 

Unlike template matching, machine learning algorithms re­
quire a training stage to create a classification model from fea­
ture samples. In general, a very large number of training samples 
is needed for the classifier to appropriately learn the input fea­
tures. This fact poses practical issues since the memory require­
ments for the training stage can be prohibitive. And this is even 
worse for high-dimensional feature vectors. To deal with this 
problem, methods such as principal component analysis [13], 
and random projection [14] have been employed. Other works 
just try to design efficient descriptors that achieve a tradeoff 
between recognition rate and feature dimensionality. 

In this study, a new descriptor for hand-gesture recognition in 
video sequences is proposed. It extends and solves the problems 
of the hand-gesture recognition system described in [15] that 
introduced the volumetric spatiograms of LBP (VS-LBP). This 
feature descriptor could be impractical for some applications 
due to its excessive large dimensionality. The new descriptor, 
called temporal pyramid matching of local binary subpatterns 
(TPM-SLBsP), has two main advantages. First, it achieves a 
significant reduction in the descriptor dimensionality by intro­
ducing the concept of local binary subpatterns (LBsP). The 
second advantage is the adaption of the spatial pyramid match­
ing (SPM) concept [16] to the temporal domain, which has 
been called temporal pyramid matching (TPM). This strategy 
encodes the temporal information in a very compact fashion, 
and allows to recognize gestures of different temporal length. 
As a result, the final video descriptor efficiently combines lo­
cal and global spatial information to achieve a high discrimi­
native hand-pose representation, also including multiresolution 



temporal information to be able to recognize both static and 
dynamic gestures. 

II. TPM-LBsP VIDEO DESCRIPTOR 

The VS-LBP descriptor implemented in [15] suffers from a 
dimensionality problem that could limit its practical applica­
tion due to memory requirements. If less spatial and temporal 
information is considered, the dimensionality of the VS-LBP 
descriptor decreases, but at expense of a lower discriminatory 
ability. 

To overcome these disadvantages, the VS-LBP descriptor 
has been improved by globally reducing its dimensionality, 
and considering more temporal information. This new approach 
consists of three steps. In the first one, a segmented video se­
quence is analyzed frame by frame to extract local spatial fea­
tures, which are compactly represented by a histogram of LBsP 
(H-LBsP). The second step is based on generating global spa­
tial histograms containing information about the location of the 
previously computed local features. This global spatial informa­
tion is represented by the spatiograms of LBsP (S-LBsP). In the 
third step, the video sequence is analyzed in the time domain 
to introduce temporal information. TPM is applied to generate 
a collection of multitemporal histograms containing both spa­
tial and temporal information from different subsequences. The 
concatenation of these histograms is the final representation of 
the video sequence. 

A. H-LBsP 

A new extension of the LBP descriptor [17] is proposed to 
extract local spatial information from each frame. It is called 
LBsP, and its main objective is to reduce the dimensionality of 
the final histogram (H-LBsP). Both LBP and LBsP are described 
later to better understand the principal differences between them. 

1) LBP: This descriptor thresholds the neighborhood of a 
pixel by the intensity value of the center pixel, and forms a 
binary number that is finally converted to decimal. The resulting 
LBPpifi pattern is defined as 

(b) 

L B P R B E 
p = 0 

s{gP - 9cW (1) 

where gc corresponds to the gray value of the center pixel of 
the local neighborhood, gp (p = 0, . . . ,P - 1) corresponds to the 
gray values of P equally spaced sampling points on a neigh­
borhood with radius R, and s(x) is the sign function defined 
as 

s(x) = 
1, x > 0 

0, x<0. 
(2) 

Finally, all the LBP patterns from a given image region are 
used to generate a histogram of 2P labels or LBP types. An 
illustrative example is shown in Fig. 1, where the LBP compu­
tation is carried out in a 3 x 3 neighborhood, where the radius 
is R = 1, and the number of neighbors is P = 8. 

2) LBsP: The LBsP descriptor follows the same strategy. 
It thresholds the neighborhood of each pixel and concatenates 
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Fig. 1. Computation of the LBP operator, (a) 3 x 3 gray scale neighborhood, 
(b) Differences between the center pixel and its neighbors, (c) Thresholded 
neighborhood, binary pattern representation, and decimal conversion to obtain 
one LBP. (d) H-LBPs obtained from the considered region. 
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Fig. 2. LBsP computation. The LBP type 00 111 111 is divided into the LBsP 
types 0 011 and 1111 , each one contributing to a different histogram. The two 
resulting histograms are concatenated to form the H-LBsP histogram. 

them to form a P-bit binary number. However in this case, the 
P-binary number is divided into n subpatterns of P/n bits, 
which are defined as 

LBsP P,R,n 

(£0-1 

P = f ( i " l ) 

3)2(p mod (3) 

where i = 1, ...,n, and a mod b is the modulus operator or 
remainder after division between a and b. 

Then, every LBsPp R n subpattern contributes to a different 

histogram so that n histograms of 2^ bins are generated for the 
given image region. Finally, they are concatenated to form the H-
LBsP. Fig. 2 shows the computation of the LBsP descriptor for a 
3 x 3 neighborhood, P = 8 neighbors, and n = 2 subpatterns. 

To summarize, while the LBP descriptor extracts only one 
pattern per pixel, and can generate 2P different patterns per im­
age region, the LBsP descriptor extracts n patterns per pixel, and 
can generate 2^ different patterns per image region. Therefore, 
this approach reduces the dimensionality of the final histogram 
from 2P bins down to n2^~ bins. This is particularly interesting 
when using neighborhoods with a large number of sampling 
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Fig. 3. S-LBsP computation. Red-colored dots correspond to the M x N 
lattice points. The colored pixel is an example, from which n = 2 LBsP are 

p_ 
extracted: types 3 and 2 2 — 1. The coordinates of each LBsP type contribute to 
four bins within its respective spatiogram. Finally, all of them are concatenated 
along with the H-LBsP to generate the S-LBsP descriptor. 

points, since the length of the histograms grows exponentially 
with P. 

B. S-LBsP 

To complement the local information obtained in the previous 
step, the "spatiogram" (spatial histogram) concept [15] gathers 
global spatial information from each frame by representing how 
the LBsP patterns are spatially distributed. 

Anewsetof 2p/ re spatial histograms (one per each LBsP type) 
is computed as follows. For each frame, an orthogonal sublattice 
of M rows by N columns is overlaid on the image pixels (red 
dots in Fig. 3), and is represented by the spatial histograms 
with M x N bins. Lattice points serve as gathering knots for 
the spatial information so that the location of every previously 
computed LBsP pattern is defined by them. In particular, to 
keep a reasonable compromise between rich description and 
efficiency, the location of every LBsP pattern is defined by its 
four closest lattice points, which contributes to only four bins 
within the corresponding spatial histogram. This contribution is 
weighted using a bilinear interpolation among the four closest 
lattice points, as shown Fig. 3. This approach increases the 
robustness against slight image translations, and the grid effect. 

In this process, a spatial histogram per each LBsP pattern is 
obtained. The final feature descriptor is obtained by concate­
nating all the spatial histograms with the H-LBsP histogram, 
which is called Spatiograms of LBsP, and whose notation is 
S - LBsPp. R,U,M,N- The dimensionality of this new S-LBsP 

P 
descriptor is 2^(n + M x N), lower than in the original S-
LBPdescriptor [15], which is2p(l + M x N). 

C. TPM 

The last step consists of adding temporal information to the 
previously computed spatial features. To that end, the SPM 
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Fig. 4. TPM. For each level /, the video sequence is partitioned into 2 sub­
sequences. S-LBsP descriptors extracted from each subsequence are averaged 
by means of the average pooling function. The resulting z¡j histograms are 
concatenated to form the final feature vector representing the video sequence. 

concept [16] has been extended to the time domain, and called 
TPM. To do so, the video sequence is represented as a time-
ordered collection of S-LBsP image descriptors, one per frame. 
The TPM method (see Fig. 4) represents a video sequence as a 
multiresolution temporal pyramid, where each pyramid level is 
partitioned into 2l subsequences. For each subsequence a feature 
vector is computed by applying the average pooling function to 
the set of S-LBsP descriptors derived from the frames of the 
considered subsequence. Finally, all feature vectors z¡j from 
all subsequences and pyramid levels are concatenated to form 
a multitemporal representation of the video sequence, whose 
notation is TPM - S L B S P P ^ ^ M , » , ; -

The average pooling function is defined as 

Zlj 
1 E 

keXi, 

Xk (4) 

where Ki is the number of frames of each sub-sequence in the 
level /, Xij is the set of frames belonging to the jth subsequence 
in pyramid level /, and xk is the S-LBsP descriptor extracted 
from the k\h frame in its corresponding Xij set. 

In the previous approach [15], the temporal information was 
extracted from a few specific temporal instants to keep the di­
mensionality of the final VS-LBP descriptor low. However, the 
new approach extracts temporal information from all the instants 
without discarding any frame. This way, not only the most rep­
resentative states are considered, but also the whole evolution 
of the hand gesture along time. In addition, the multitemporal 
resolution scheme allows to detect hand gestures with different 
lengths in time. Moreover, as S-LBsP descriptors are averaged, 
histograms z¡j keep the same dimensionality as S-LBsP, offering 
a scalable solution. 

III. EXPERIMENTS 

The proposed approach has been validated on three datasets: 
hand-gesture database [15], created for HCI, and American 
Sign Language (ASL) Fingerspelling [10] and Nanyang Tech­
nological University (NTU) [8], related to sign language. For 
classification, a bank of SVM classifiers was used under the 
one-versus-all strategy. The metric used to compare the dif­
ferent approaches is the Average accuracy metric, defined as 
Total number of correct gestures 

Total number of gestures 



TABLE I 
COMPARISON OF THE ACCURACY AND DIMENSIONALITY A M O N G DIFFERENT STATE-OF-THE-ART M E T H O D S USING THE H A N D - G E S T U R E DATABASE 

Method 

VLBP4,i,i [7] 
L B P - T O P 8 J 8 J 8 J 1 J 1 J 1 [7] 

V S - L B P 8 J 1 J 4 J 1 0 > 5 [15] 

V S - L B S P 8 J I J 2 J I 0 J 8 J C 

TPM-SLBPg.i.io.g.a 
T P M - S L B S P 8 J 1 J 2 J 1 0 J 8 J 3 

Seq_l 

0.720 
0.507 
0.949 
0.984 
0.974 
0.980 

Seq_2 

0.765 
0.521 
0.961 
0.972 
0.961 
0.957 

Seq_3 

0.711 
0.535 
0.935 
0.946 
0.976 
0.981 

Seq_4 

0.695 
0.487 
0.923 
0.934 
0.960 
0.972 

Seq_5 

0.689 
0.485 
0.897 
0.908 
0.926 
0.924 

Seq_6 

0.770 
0.510 
0.959 
0.970 
0.975 
0.974 

Mean Accuracy 

0.725 
0.507 
0.937 
0.952 
0.962 
0.965 

Dimension 

16384 
768 

52480 
11808 
145152 
9184 

TABLE II 
COMPARISON ON THE ASL FINGER-SPELLING DATASET 

Method 

DL + SVM[11] 
SCF[18] 
ESF descriptor + RF [9] 
ESF descriptor + MLRF [9] 
GR+ RF (depth) [10] 
GR+ RF (color) [10] 
GR + RF (depth + color) [10] 
VS-LBP + SVM [15] 
VS-LBsP + SVM 
TPM-SLBP + SVM 
TPM-SLBsP + SVM 

Accuracy 

0.962 
0.978 
0.850 
0.870 
0.690 
0.730 
0.750 
0.975 
0.985 

-
0.995 

Dimension 

256 
1000 
640 
640 
1024 
1024 
2048 
52480 
11808 

145152 
9184 

Table I shows a comparison with other methods on the hand-
gesture database [15], where optimum parameter configurations 
have been selected for each one. The V S - L B S P P ^ ^ M . W . S and 
TPM-SLBPp. 

R,M,N,I show independently the efficiency of the 
LBsP and TPM concepts. The first one employs the spatial de­
scriptor S-LBsP and the temporal sampling scheme proposed 
in [15]. The second one combines the spatial descriptor S-LBP 
proposed in [15] with the TPM approach. The proposed ap­
proach outperforms those in the state of the art, that is VLBP, 
LBP-TOP, and VS-LBP, in terms of recognition rate. Regarding 
dimensionality, only LBP-TOP would be the shorter one fol­
lowed by TPM-SLBsP, however, it has a poor recognition rate. 
Therefore, TPM-SLBsP is still the best candidate. 

Notice that both TPM-SLBsP and TPM-SLBP achieve com­
parable recognition rates. However, the dimensionality of TPM-
SLBsP is much lower (a reduction of 93.67%). Comparing the 
temporal schemes (TPM-SLBsP and VS-LBsP), TPM achieves 
a slightly better improvement in accuracy. Moreover, it gener­
ates a shorter feature vector. This is attributed to the fact that 
TPM takes into account all frames in the video sequence for 
temporal analysis in a very compact fashion, while temporal 
sampling approach only considers a few of them. 

Table II compares different state-of-the-art approaches with 
published results on the ASL fingerspelling dataset. In this 
dataset, 3 subjects perform 24 signs from the ASL language, 
where 250 frames have been collected for every sign. There­
fore, this is an example of a large dataset, where half of the data 
have been considered for training and the other half for testing. 
As can be observed, the proposed approach outperforms all the 
methods. Notice that some of them use depth and intensity in­
formation, unlike the proposed one, that only use intensity. In 
terms of dimensionality, the length of the feature vectors for 
most of the descriptors are lower than for TPM-SLBsP. These 

TABLE III 
COMPARISON ON THE NTU DATABASE 

Methods Based on Template Matching Accuracy 

Shape context with bending cost [8] 0.791 
Shape context without bending cost [8] 0.832 
Skeleton matching [8] 0.786 
Thresholding Decomposition + FEMD [8] 0.932 
Near-convex Decomposition + FEMD [8] 0.939 

Methods Based on Classifiers Accuracy 

DL+ SVM [11] 
S-LBP + SVM [15] 
S-LBsP + SVM 

0.971 
0.973 
0.979 

descriptors use high-level features for representing the hand ges­
tures, mainly related to the hand shape, leading to shorter fea­
ture vectors. However, this also implies lower recognition rate, 
especially in [9] and [10]. In the case of the TPM-SLBP de­
scriptor, it has not been possible to perform the training process 
with optimum parameter configuration due to its high memory 
requirements. 

Table III shows the results for the NTU dataset, which only 
contains single-image static gesture samples. For this reason, 
only the S-LBsP strategy is used and compared with other ap­
proaches, since TPM (or other temporal strategy) is not appli­
cable. For this dataset, half of the data have been considered for 
training and the other half for testing as well. In general, both 
template matching and machine learning techniques achieve 
high recognition rates for static hand gestures since it is an 
easier problem than with dynamic gestures. Once again, the 
proposed approach, that is S-LBsP + SVM, is slightly better in 
spite of using only intensity information. It is closely followed 
by S-LBP+SVM that only uses intensity information as well, 
and DL+S VM that uses both intensity and depth information. 

IV CONCLUSION 

A new descriptor for hand-gesture recognition has been pro­
posed to increase the discriminative power and mitigate its 
dimensionality problems. The combination of both local and 
global spatial features makes it highly discriminative at frame 
level. Moreover, as the dimensionality of the final image de­
scriptor that encodes these spatial features has been reduced, a 
new scheme for extracting more temporal information has been 
considered, which also introduce multiresolution temporal sup­
port. This increases the discriminatory ability of the final video 
descriptor to recognize dynamic hand gestures, and be more 
flexible regarding memory requirements. 
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