Photoelectrochemical properties of full composition In_xGa_{1-x}N/Si photoanodes

Pavel Aseev*, Žarko Gačević, Enrique Calleja ISOM, Universidad Politécnica de Madrid, Madrid, Spain Brian Seger, Peter C. K. Vesborg, Ib Chorkendorff Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark *e-mail: pavel.aseev@isom.upm.es

Recently $In_xGa_{1-x}N$ (x=0-1) thin films and nanostructures have attracted considerable interest in the field of solar assisted water splitting.¹ As a standalone photoelectrode it is very appealing due to its direct, tunable bandgap covering nearly the entire solar spectrum (Fig. 1a), high absorption coefficient and mobility, along with near-perfect band-edge potentials. Moreover, because of the special bands alignment it can be grown on p-Si photocathode and exhibit vertical conductivity without complex tunnel junction.² These facts open a possibility to achieve high efficiency, relatively cheap InGaN/Si-based two-photon tandem devices for water splitting.

Previously, we have demonstrated that high quality, compact, and chemically homogeneous $In_xGa_{1-x}N$ layers can be grown, over entire compositional range, directly on Si(111) by plasma-assisted molecular beam epitaxy.³ The performance of $In_{-0.4}Ga_{0.6}N$ -based photoanodes, the most important for tandem devices, was also evaluated.^{4,5}

In this work we study the photoelectrochemical properties of $In_xGa_{1-x}N/Si$ thin films over entire alloy composition range. A correlation between band gap and onset potential for compositions of x=0-0.45 is established (Fig. 1b). For higher x values, $In_xGa_{1-x}N$ suffers from a high unintentional n-type doping, which results in metal-like behavior. The use of magnetron sputtered Ni- and NiO-based catalysts is discussed.

Fig. 1. (a) Solar spectrum overlap with $In_xGa_{1-x}N$ band gap. (b) Onset potential of $In_xGa_{1-x}N$ film photoanodes as a function of the alloy composition.

References

- [1] Kibria, M.G. & Mi, Z., "J. Mater. Chem. A", 4, 2801–2820, 2016.
- [2] Hsu, L. & Walukiewicz, W., "J. Appl. Phys.", 104, 024507, 2008.
- [3] Aseev P., et al, "Appl. Phys. Lett.", 106, 072102, 2015.
- [4] Alvi N.H., Aseev P., et al, "Nano Energy", 13, 291, 2015.
- [5] Alvi N.H., Aseev P., et al, "Appl. Phys. Lett.", 104, 223104, 2014.