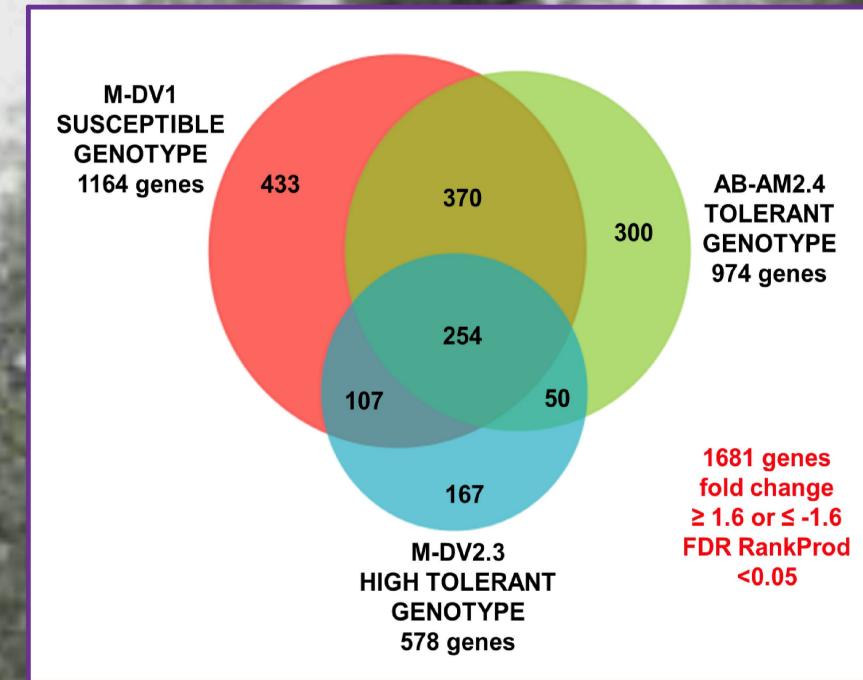
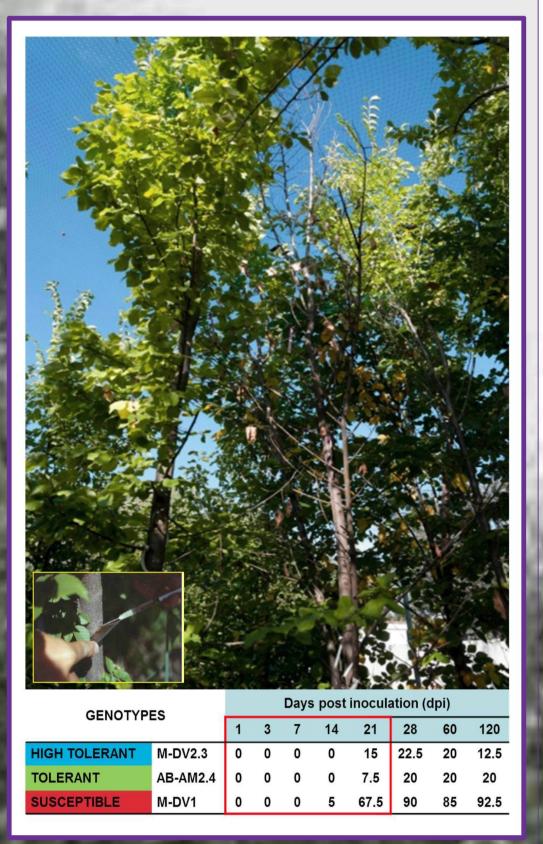
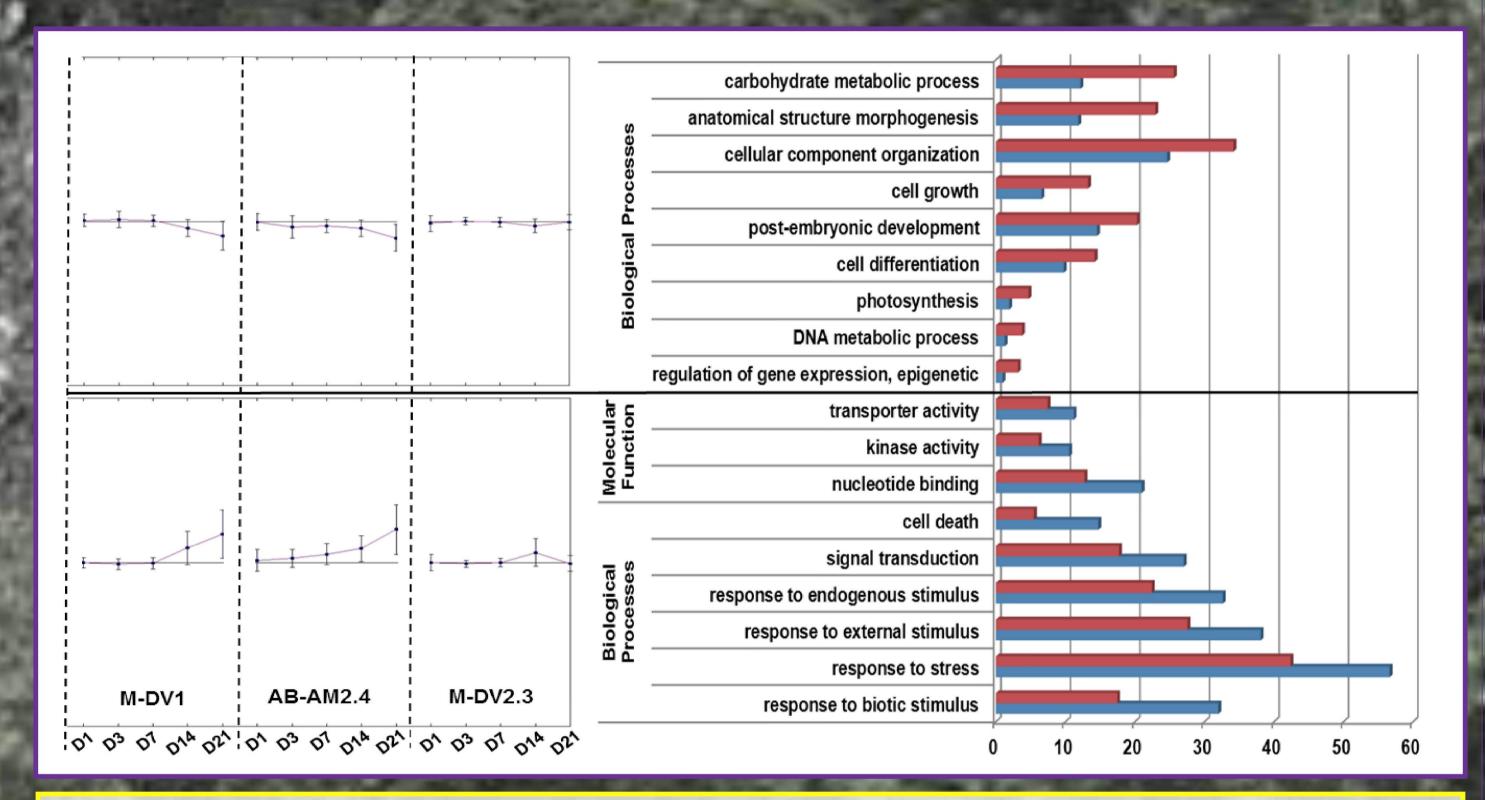

DISSECTING THE MOLECULAR RESPONSES POTENTIALLY INVOLVED IN THE TOLERANCE OF TWO *ULMUS MINOR* GENOTYPES DURING *OPHIOSTOMA NOVO-ULMI* COLONIZATION


Pedro Perdiguero^{a,b}, Martin Venturas ^{b,c}, Juan Sobrino-Plata^b, David Medel^b, Jorge Domínguez^b, Juan Antonio Martín^b, Luis Gil^b, Carmen Collada^b

^aiBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal ^bGENFOR. Grupo de investigación en Genética, Fisiología e Historia Forestal, Universidad Politécnica de Madrid. Madrid, Spain ^cBiology Department, University of Utah, Salt Lake City, USA

Dutch elm disease (DED) is a vascular wilt disease caused by two fungi, *Ophiostoma ulmi* and the more aggressive, *Ophiostoma novo-ulmi*. The outbreak of two pandemics during the last century severely affected North American and European elm populations. Nowadays, numerous trees are still dying due to the difficulties to control this highly virulent disease. The Spanish elm breeding programme has obtained seven highly tolerant *native U. minor* genotypes that are registered as forest reproductive material [1].


A selection of unigenes from a biotic stress library of *Ulmus minor* [2] was included in the microarray design (Agilent 8 x 60K, Agilent Technologies, CA, USA). A total of 1,681 unigenes significantly modified their level of transcripts in at least one sampling point in one genotype during *Ophiostoma novo-ulmi* infection. 300 genes were exclusively identified in AB-AM2.4, 167 genes in M-DV2.3 and 50 genes in both genotypes


Top upregulated genes exclusively found in AB-AM2.4 genotype at short and long-term after	8
inoculation with Ophiostoma novo-ulmi	

D_ISOTIG	DESCRIPCIÓN BLAST2GO	D1	D3	D7	D14	D21
sotig18444	acidic endochitinase-like	7650			659	14,7
sotig08555	udp-glucoronosyl udp-glucosyl transferase family protein	-1,64		-	POLS	9,59
sotig21148	thioredoxin-like protein		1000	PE	3,68	7,30
sotig07125	basic form of pathogenesis-related protein 1			7273	DYSN.	7,0
sotig08310	(-)-isopiperitenol (-)-carveol mitochondrial-like			1877	Prok!	5,9
sotig13236	NA					5,6
sotig20653	udp-glycosyltransferase 75d1-like		.00	1630	200.6	4,9
sotig13410	probable glutathione s-transferase	9 (4) 78		19 6	CO 2 3 1	4,9
sotig02505	probable Irr receptor-like serine threonine-protein kinase at1g53430-like	101	1995	A 4 DE	OF STREET	4,6
sotig02150	ethylene-responsive transcription factor rap2-12-like	-2,59	5000	S.A.S.	2,59	4,4
sotig07680	at5g56980 mhm17_10		5.25.2			4,3
sotig19684	cationic amino acid transporter 1-like	3/196	3/25	T. B. C.	25.00	4,0
sotig16541	probable s-adenosylmethionine-dependent methyltransferase at5g38100			M455	Market.	3,9
sotig10720	light-inducible protein cprf2-like	1	3500	No. of Street,	200	3,8
isotig15975	multiple c2 and transmembrane domain-containing protein 1-like	1,86	PHOS.	2 B 19 15	35.70	3,8
sotig12538	cellulose synthase-like protein g3-like	070	95.101			3,7
isotig04982	arabinogalactan peptide 20-like	2,08			10	3,7
isotig18079	transcription factor bhlh36-like	1,91				3,7
sotig05901	conserved hypothetical protein	2,10			2,10	3,2
contig08923	cell wall-associated partial			2,14		
isotig04660	cell wall-associated hydrolase			1,95		
isotig19859	outer envelope pore protein 16- chloroplastic-like			1,74		
sotig14781	ethylene-responsive transcription factor erf109-like	5,81		-1,73		
isotig18662	1-phosphatidylinositolbisphosphate	2,78				
sotig01174	probable xyloglucan endotransglucosylase hydrolase protein 23-like	2,50				-6-
sotig13783	abscisic acid receptor pyl4-like	2,40				
isotig13774	u-box domain-containing protein 21-like	2,35				
sotig16863	homeobox-leucine zipper protein athb-12-like	2,32				
sotig13964	e3 ubiquitin-protein ligase pub23-like	2,16				
isotig19668	hypothetical protein POPTR_0019s10350g	2,07				

				00000		(B)(0)(a)	
Year	2011	2012	2011	2012	2011	2012	
Time	% Wilting 30 d.p.i		% Wilting 60 d.p.i		% Wilting 90 d.p.		
M-DV2.3	1.7 ± 4.8	3.1 ± 7.7	1.4 ± 4.9	1.7 ± 5.4	3.3 ± 5.4	3.5 ± 5.4	
AB-AM2.4	36.5 ± 4.8	34.8 ± 7.7	31.9 ± 4.9	28.6 ± 5.4	32.3 ± 5.4	26.9 ± 5.4	
M-DV1	82.3 ± 4.8	58.9 ± 8.9	86.7 ± 4.9	80 ± 6.3	87.7 ± 5.4	81.7 ± 6.2	

Three Spanish elms with contrasted tolerance to DED were selected for this study (Table above shows canopy wilting percentage in a previous experiment). Inoculation was carried out about 15-30 days after full leaf development. Symptoms were visually assessed during four months after inoculation by estimating the percentage of leaf wilting (shown in Table bellow the image). Inoculated plants from susceptible genotypes showed the first symptoms in the crown at 14 days post inoculation, reaching 10-15% of wilting leaves. By 21 days after inoculation, tolerant genotypes inoculated with *Ophiostoma novo-ulmi* showed a low percentage of wilting (10-15%) whereas susceptible genotypes reached values exceeding 50%.

Differentially expressed genes follow two main trends; increase or decrease in transcript levels. Graphics on the left show the average trend for each genotype. An enrichment analysis indicated an increase of Gene Ontology (GO) terms related to "response to biotic stimulus", "response to stress" or "kinase activity" in genes upregulated (blue bars) whereas downregulated genes showed significant enrichment in GO terms related to anatomical structure morphogenesis, cell growth or cell differentiation (red bars).

Significant increases in level of transcripts of specific defence genes or transcription factors were identified specifically in tolerant

genotypes. These

results suggest that *U. minor* tolerance to *O. novo-ulmi* is related to the differential expression of these genes.

Top upregulated genes exclusively found in M-DV2.3 genotype at short and long-term after inoculation with *Ophiostoma novo-ulmi*

ID_ISOTIG	DESCRIPCIÓN BLAST2GO	D1	D3	D7	D14	D21
isotig00311	hypothetical protein POPTR_0002s22940g	9 250	400		1624	2,30
isotig04987	two-component response regulator arr9-like	88 7 7 7 9	2000		625	2,06
isotig20904	protease inhibitor seed storage lipid transfer family protein	1,91	1504		20,47	1,94
isotig09369	glutaredoxin family protein	-2,00	(all)			1,94
isotig20747	two-component response regulator arr5-like				-51	1,84
isotig17060	protein glutamine dumper 3-like	N CET				1,79
isotig08725	expansin a1					1,79
isotig17614	heavy metal-associated isoprenylated plant protein 26-like	146			2,07	1,77
isotig06888	probable rna-dependent rna polymerase 1		1016		2,63	
isotig01332	laccase-14-like	-1,60	-1,65		2,31	
isotig04713	PREDICTED: uncharacterized protein LOC103436664		500		2,26	
isotig18152	probable calcium-binding protein cml10-like	1,73	1 2 3		2,04	
isotig21152	NA	2,94	, 1			
isotig17069	probable xyloglucan endotransglucosylase hydrolase protein 23	2,30	- 0			
isotig18160	copper transporter 1-like	2,29				
isotig06364	udp-glycosyltransferase 85a2-like	2,00				
isotig18411	transcription factor bhlh30-like	1,96	BE T			
isotig20057	u-box domain-containing protein 19-like	1,88				
isotig20807	hypothetical protein POPTR_0001s10440g	1,83				
isotig10818	two-component response regulator-like prr95-like isoform x3	1,80				

References

- [1] Martín J, Solla A, Venturas M, Collada C, Domínguez J, Miranda E, Fuentes P, Burón M, Iglesias S, Gil L, (2015) Seven Ulmus minor clones tolerant to Ophiostoma novo-ulmi registered as forest reproductive material in Spain, *iForest Biogeosciences and Forestry 8, 172-180.*
- [2] Perdiguero P, Venturas M, Cervera MT, Gil L, Collada C. (2015). Massive sequencing of *Ulmus minor*'s transcriptome provides new molecular tools for a genus under the constant threat of Dutch elm disease., *Frontiers in Plant Sciences*, 6:541.

Acknowledgements

This research was funded by the Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA) and by the Spanish National Research Plan (AGL2012-35580). We would also like to express our gratitude to the Spanish Elm Breeding and Conservation Programme.