
1. Introduction 
 

Laser Shock Processing (LSP) was initially developed as an alternative technology to classical treatments for 
the  improvement  of  surface  properties  of  metallic  alloys  involving  the  fatigue  life  of  critical  components. 
Especially  wear  resistance,  stress  corrosion  cracking  susceptibility  and  crack  propagation  rate  seem  to  be 
material properties specifically improved by LSP treatments (see Fairand et al., 1972; Yang, 1974; Fairand and 
Clauer, 1979; Sano et al., 1996). 

In the most recent years, and profiting by the availability of laser sources able to provide intensities exceeding 
the  GW/cm2   level,  the  LSP  technology  is  aimed  to  be  developed  from  an  industrial  point  of  view  for  the 
improvement of the fatigue cracking resistance and other surface properties of materials used in the aerospace, 
nuclear, automotive and biomedical applications, such as Al and Ti alloys and different types of stainless steel 
(see Dane, 1998; Sano et al., 1997). 

Although, as a consequence of the inherent physical complexity of LSP processes, specifically stemming on 
the coexistence of different material phases (including plasma) developing and interacting under the action of the 
high-intensity  laser  beam,  very  limited  attempts  have  been  developed  in  the  way  of  full  comprehension  and 
predictive   assessment   of   the   characteristic   physical   processes   and   material   transformations,   previous 
contributions by the authors (see, i.e. Ocaña et al. 2000, 2004a, 2006; Morales et al., 2010) have been able to 
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Abstract 
 
Laser Shock Processing (LSP) is as an  effective technology for the improvement  of surface and  mechanical  properties of 
metallic  alloys  and  is  an  emerging  technology in  its  way to  production  engineering  in  direct  competence  with  other  well 
established technologies as, i.e. shot peening. The technique is based on the application of a high intensity pulsed laser beam 
on a metallic target forcing a sudden vaporization of its surface into a high temperature and density plasma that immediately 
develops inducing a shock wave propagating into the material. 
 
The main advantage of this technique consists on its capability of inducing a relatively deep compression residual stresses 
field  into  metallic alloy pieces allowing an  improved  mechanical  behaviour,  explicitly,  the life improvement  under cyclic 
load connected with improved wear and corrosion resistance. The laser shock effects achieved by this method are comparable 
to those of shot-peening: that is, a local material compression linked to the generation and displacement of defects, surface 
state modification and, most important, a compressing residual stress field whose magnitude and depth into the material is 
generally associated with large improvements in fatigue resistance. 
 
Along  with  a  description  of  the  theoretical/computational  and  experimental  methods  developed  by  the  authors  for  the 
predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles 
and associated surface properties modification successfully reached under different LSP irradiation conditions in typical high 
strength materials will be presented in this paper. 
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the LSP treatment. These dislocations are considered to be, in turn, the responsible for the observed higher 
microhardness and high level of compressive residual stresses fields following the material deformation and, 
finally, the responsible for the integral enhancement of the surface properties (including corrosion resistance and 
crack initiation/propagation resistance) finally improving the overall fatigue resistance. The observed fact of the 
maintained stability of a noticeable level of residual stresses after aggressive thermal aging treatments strongly 
supports this hypothesis. 

On the other hand, provided that the described LSP treatments are able to induce the described 
transformations over material depths generally higher than those typical corresponding to competing treatments 
(as, i.e. “shot peening”), it is considered that LSP arises as a powerful industrial technology for the treatment of 
high reliability components once the engineering aspects concerning process predictive assessment and design 
are addressed. Additionally, the essentially “clean” character of the technique (not involving residuals or material 
recycling needs) confers the LSP technique a clear character of sustainability-supporting technique as far as the 
whole life cycle of critical components is considered. 
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