
In support of extending the Ravenscar profile 

Jorge Garrido Beatriz Lacruz Juan Zamorano 

Juan A. de la Puente 

Abstract 
This paper discusses different approaches for implementing an EEPROM memory driver 

which is part of the UPMSat2 satellite on-board computer software. The Ravenscar profile re
strictions are to be observed in order to ensure the analysability of the system, and therefore the 
approaches are evaluated against the profile. Results of this evaluation as well as considerations 
on a possible extension of the Ravenscar profile with respect protected entries are presented. 

1 Introduction 

The Ravenscar profile [1, D.13] allows a restricted subset Ada tasking in certain kinds of critical 
systems where predictability, efficiency, and static analysis are required. It has been successfully 
used in many real-time applications, and has enabled concurrency to be used in many situations 
where full Ada tasking is not allowed. 

However, there are some cases in which using the profile is difficult and can lead to complex 
programs and abstraction inversion. At the last IRTAW meeting Rogers, Ruiz, and Gingold [3] 
proposed relaxing some of the restrictions while still keeping the advantages of predictability and 
efficiency. The rationale behind their proposal is that the current specifications in the Real-Time 
Annex make it possible to implement some additional tasking features in a predictable way. In 
particular, they showed how an implementation of an extended profile with a bounded number 
of protected entries and bounded entry queues can be implemented in the Ravenscar GNAt run
time while keeping the worst-case execution time (WCET) and memory space bounded, with an 
acceptable amount of overhead in execution time. 

The purpose of this position paper is to support this proposal by showing a real example in 
which the use of the Ravenscar profile leads to unnecessary efficiency, whereas an extended profile 
allowing multiple entries in a protected object enables a much better implementation. The example 
is a subset of an EEPROM driver which is part of the UPMSat2 on-board software [2]. 

2 EEPROM memory in UPMSat2 

EEPROM (Electrically Erasable Programmable Read-Only Memory) is a type of non-volatile mem
ory that can be erased by means of electrical pulses. The On-Board Computer (OBC) of the UPM-
Sat2 satellite has two EEPROM chips, each one with a size of I MB, making up 2 MB. The first 



half of the memory space is used to store the executable OBC code, and the rest is used to store 
parameters and data. This part of the memory is divided into blocks of two different sizes. There 
are 16 blocks of 512 B, which are used to store configuration parameters, and 4032 blocks of 128 B, 
which are used to store telemetry and telecommand messages. 

Due to the technical specifications of the EEPROM, a minimum wait interval of 15 ms must be 
kept after a write operation before starting a new read or write operation, in order to prevent the 
written data to be erased. In order to obtain the required bandwidth, the EEPROM block mode, 
allowing up to 128 consecutive word write accesses, is used. It must be noted that block writes 
must be atomic. 

3 Ravenscar EEPROM drivers 

3.1 Basic design 

The EEPROM driver is to be accessed by different software tasks, and therefore a basic approach 
is to use a protected object to ensure mutual exclusive access: 

protected EEPROM 
with Priority => System.Interrupt_Priority'Last; 

is 
procedure Write (B : in Memory_Block); 
— includes an active wait loop 

procedure Read (B : out Memory_Block); 
end EEPROM; 

However, there are two main issues with this design: 

- As stated before, a delay of 15 ms has to be enforced at the end of the Write operation. Since 
blocking operations are not allowed in the body of protected operations, delay may not be 
used to this purpose. The immediate solution is thus to implement the delay by means of an 
active wait loop. 

- Write operations must be executed in an atomic way. In order to avoid interrupts from 
other devices to interfere wit them, the priority of the protected object must be set to 
System. Prior i ty 'Last, as above shown. This is enough to inhibit all interrupts on a mono-
processor platform, as is the case in the UPMSat2 OBC. 

In consequence, a call to the Write procedure may block any other task for up to 15 ms, while 
the procedure is executing the active wait loop. This is clearly undesirable, and therefore a better 
solution has to be found. 

3.2 A dissociated design 

A better solution, which is currently used in UPMSat2, is to dissociate the active wait from the 
Write operation. Two protected objects are used, an external object which implements the external 
interface and the active wait loop, and an internal object which carries out the write operation. 

protected EEPROM — internal object 
with Priority => System.Interrupt_Priority'Last; 

is 
procedure Write (B : in Memory_Block); 



— no active wait 

procedure Read (B : out Memory_Block); 

end EEPROH; 

protected EEPROH_Interf ace external object 

with Priority => ... — set to priority ceiling of callers 
is 

p r o c e d u r e W r i t e (B : i n Memory_Block) ; 
— c a l l s EEPROM. W r i t e and t h e n e x e c u t e s and a c t i v e wa i t loop 

— t h e Read p r o c e d u r e dos not need to be wrapped 
— as i t does no t have to be a to mic 

end E E P R O H _ I n t e r f a c e ; 

This approach provides the benefit of not executing the active wait at the highest priority. 
However, as stated before, the EEPROM_Interf ace object is called from many tasks in the system, 
thus inheriting a high executing priority under the ceiling priority protocol. As a result, although 
the priority at which the active wait loop is executed has been reduced, most tasks in the system 
are still experiencing long blocking times. 

4 Extended Ravenscar drivers 

4.1 Synchronized task approach 

A third approach would be to do the wait after block writings outside any protected object, thus 
being able to use a delay statement in a low priority server task rather than an active wait. This 
approach would highly reduce the interference caused by the writing delay. However, it requires a 
more sophisticated synchronization mechanism for writing and reading operations. This is usually 
achieved in Ada by means of protected entries. 

However, Ravenscar restrictions do not allow any possible implementation with a reasonable 
level of complexity. Neither a solution with a single entry queueing the calls nor a set of entries 
discriminating operations and tasks are acceptable under the profile. 

It could be claimed that a solution with a single entry for activating the server task and proce
dure operations for queueing requests may be achievable even with the Ravenscar profile restrictions. 
But several issues arise at this point, the most relevant one being the complexity of implementing 
the queueing protocol. Furthermore, this implementation would be redundant, as the runtime has 
already implemented a queueing mechanism for entry calls. 

4.2 A better solution 

In fact, the most desirable approach for the EEPROM driver implementation would be to have 
a protected object with two entry queues, one for Write operations and another one for Read 
operations. As shown by Rogers et al. [3], this would not compromise the schedulability analysis, 
or add a significant timing overhead. 

The code scheme for this approach is listed below. 

1 package EEPROH is 
2 type Hemory_Block is ... ; 
3 procedure Read (B : out Hemory_Block ); 
4 procedure Write (B : in Hemory_Block ); 



5 end EEPROH; 

1 with System ; 
2 with Ada.Real_Time ; 
3 use type Ada.Real_Time.Time_Span; 
4 
5 package body EEPROH is 
6 
7 protected EEPROH 
8 with Priority => 
9 is 
10 procedure Write 
11 
12 end EEPROH; 
13 
14 task Server 
15 w i t h P r i o r i t y => S e r v e r _ T a s k _ P r i o r i t y ; — A low p r i o r i t y t a s k 
16 
17 p r o t e c t e d E E P R 0 H _ I n t e r f a c e 
18 w i t h P r i o r i t y => E E P R 0 H _ C e i l i n g 
19 is 
20 entry Write (B : in Hemory_Block); 
21 entry Read (B : out Hemory_Block) ; 
22 entry Start_Server_Task (Busy_Period_Start : out Ada.Real_Time.Time); 
23 procedure Finish_Wait; 
24 private 
25 Busy : Boolean := False; 
26 Busy_Period_Start : Ada.Real_Time.Time; 
27 end EEPR0H_Interface; 
28 
29 procedure Read 
30 begin 
31 E E P R 0 H _ I n t 
32 e n d R e a d ; 
33 
34 p r o c e d u r e W r i t 
35 b e g i n 
36 E E P R 0 H _ I n t 
37 e n d W r i t e ; 
38 

39 protected body EEPR0H_Interface is 
40 
41 entry Writ 
42 begin 
43 Busy : 
44 EEPROH 
45 end Write ; 
46 
47 entry Read (B : out Hemory_Block) when not Busy is 
48 begin 
49 — R e a d a b l o c k f r o m EEPROM 
50 n u l l ; 
51 e n d R e a d ; 
52 
53 e n t r y S t a r t _ S e r v e r _ T a s k 
54 when B u s y i s 
55 b e g i n 
56 B u s y _ P e r i o d _ S t a r t : 

System.Interrupt_Pri ority 'Last 

(B : in Hemory_Block ; 
Busy_Period_Start : out Ada.Real_Time.Time); 

(B : out Hemory_Block) is 

erface.Read (B); 

e (B : in Hemory_Block) is 

erface.Write (B); 

e (B : in Hemory_Block) when not Busy is 

= True ; 
.Write (B, Busy_Period_Start); 

(Busy_Period_Start : out Ada.Real_Time.Time) 

Busy_Period_Start; 



57 e n d S t a r t _ S e r v e r _ T a s k ; 
58 
59 p r o c e d u r e F i n i s h _ W a i t i s 
60 b e g i n 
61 Busy := F a l s e ; 
62 e n d F i n i s h _ W a i t ; 
63 e n d E E P R 0 H _ I n t e r f a c e ; 
64 
65 t a s k b o d y S e r v e r i s 
66 B u s y _ P e r i o d _ S t a r t : 
67 b e g i n 
68 l o o p 
69 E E P R O H _ I n t e r f a c e 
70 d e l a y u n t i l B u s y 
71 EEPROH_Inte r face 
72 e n d l o o p ; 
73 end Server; 
74 
75 protected body EEPROH is 
76 
77 procedure Write (B : in Hemory_Block ; 
78 Busy_Period_Start : out Ada.Real_Time.Time) is 
79 b e g i n 
80 — p e r f o r m a n EEPROM b l o c k w r i t i n g 
81 B u s y _ P e r i o d _ S t a r t := A d a . R e a l _ T i m e . C l o c k ; 
82 e n d W r i t e ; 
83 

84 e n d EEPROH; 
85 
86 e n d EEPROH; 

5 Conclusions 

The Ravenscar profile imposes some restrictions on the Ada tasking model that have been previously 
recognised as too strict. Previous work has shown that it is possible to relax some of the restrictions 
without incurring significant penalties in terms of performance and predictability. 

Here we have presented a realistic case study where such restrictions impose an inefficient 
implementation. We have shown how some of the proposed extensions to the Ravenscar profile 
may improve the quality and performance of the solution. The case study can be extended with 
other hardware drivers in the UPMSat2 system that have similar problems. 

References 

[1] ARM12. ISO/IEC 8652:2012(E): Information Technology — Programming Languages — Ada, 
2012. 

[2] J. Garrido, J. Zamorano, J. A. de la Puente, A. Alonso, and E. Salazar. Ada, the programming 
language of choice for the UPMSat-2 satellite. In Data Systems in Aerospace — DASIA 2015. 
Eurospace, 2015. 

[3] P. Rogers, J. Ruiz, and T. Gingold. Toward extensions to the Ravenscar profile. Ada Letters, 
35(l):32-37, April 2015. 

Ada.Real_Time.Time; 

.Start_Server_Task (Busy_Period_Start); 
_Period_Start + Ada.Real_Time.Hilliseconds (15); 
.Finish_Wait; 


