
Optimising the design of textured surfaces for reducing lubricated
friction coefficient

Javier Echávarri Otero*,†, Eduardo de la Guerra Ochoa, Irene Bellón Vallinot and
Enrique Chacón Tanarro

Grupo de Investigación en Ingeniería de Máquinas, Universidad Politécnica de Madrid, Madrid, Spain

ABSTRACT

Under operating conditions which are unfavourable for lubrication, such as high load and low velocity, the
use of textured surfaces significantly promotes the formation of a thick lubricant film and an improvement of
the friction coefficient. This paper relates to the manufacture of textures using a photolithography and
chemical etching process. Different surface geometries, texturing densities and depths were designed to
analyse the influence of these parameters. The friction coefficient was measured in a ball-on-disc tribometer
under different lubrication regimes, and the results have been used to develop an artificial neural network
with texturing optimisation potential. © 2016 The Authors Lubrication Science published by John Wiley
& Sons Ltd.
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INTRODUCTION

Many lubricated systems can end up operating under mixed and boundary regimes, especially in
contacts at high loads or low velocities. This is the case of point and line contacts in machines, such
as those that occur in bearings or gears. Under these conditions, friction can be reduced by modifying
the properties of the lubricant, as multiple references published in the past few decades show.1–4

The complexity of these studies is increased because of the usually limited knowledge about the
behaviour of the lubricant under high pressure and high shear rate conditions typical of point and line
contacts.5 This means that it is very difficult to accurately predict the thickness of the lubricant film5,6

and the potential existence of direct contacts between the lubricated surfaces.
In addition to the actions on the lubricant, many studies have been recently conducted on the

improvement of friction through the surface geometry of the bodies in contact, which includes the
surface finish, the coatings and the surface texturing.7–11 The present paper studies different types of
textures to find out which ones decrease the friction coefficient the most.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License,
which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial
and no modifications or adaptations are made.

© 2016 The Authors Lubrication Science published by John Wiley & Sons Ltd.

*Correspondence to: Javier Echávarri Otero, Grupo de Investigación en Ingeniería de Máquinas, Universidad Politécnica
de Madrid, Madrid, Spain.
†E-mail: jechavarri@etsii.upm.es

LUBRICATION SCIENCE
Lubrication Science 2017; 29:183–199
Published online 10 November 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/ls.1363

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148687687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.0/


More specifically, we analyse the textures based on small dimples acting as lubricant reservoirs,12,13

which play an important role under demanding lubrication conditions and facilitate the existence of a
fluid film separating both surfaces. Based on the thickness of the lubricant film h and the roughness of
the surfaces (σ1 and σ2), the specific film thickness14 is defined as follows:

λ ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22

p (1)

The values of this parameter allow the boundary, mixed and fluid film lubrication regimes to be
characterised,15 as shown in Table I. These regimes are depicted in the Stribeck curve (Figure 1),
which represents the variation of the friction coefficient with regard to the specific film thickness.
As Figure 1 shows, surface texturing modifies the curve and enlarges the fluid film lubrication

regime. Thus, the additive load and viscosity requirements of the lubricant can be reduced, while
achieving sufficient film thickness to keep friction low. In addition, the lubricant enters the dimples
and produces a local hydrodynamic wedge effect.16–18 Another function of surface textures is that of
trapping detached metal particles and impurities in general.12,13,17 This may contribute to the lubricant
retaining its properties for a longer time, which results in a greater tribological care of the system.
According to the references16,19–25, the parameters which are deemed to have a greater influence

during the design of textured patterns are surface geometry (texture shape, orientation and size), depth
and texturing density. However, these are not the only parameters which influence the final behaviour
of the contact since, e.g. the texturing method may affect the final quality.26

The references show tests with textures having a great variety of shapes, the most widely developed
being that based on circular dimples, as it achieves greater friction coefficient reductions than triangu-
lar or linear patterns.16,20 However, several authors point out the benefits of elliptical geometries, being

Table I. Lubrication regimes as a function of λ.

Boundary lubrication λ< 1
Mixed lubrication 1< λ< 3
Fluid film lubrication λ> 3

Figure 1. Modification of the Stribeck curve with the use of textures. [Colour figure can be viewed at
wileyonlinelibrary.com]

184 J. ECHÁVARRI OTERO ET AL.

© 2016 The Authors Lubrication Science published by John Wiley & Sons Ltd. Lubrication Science 2017; 29:183–199
DOI: 10.1002/ls



the orientation of ellipses with regard to the direction of sliding another parameter of influence.17 In
accordance with these references, elliptical textures whose major axis is perpendicular to the direction
of sliding attain a maximum reduction of the friction coefficient. A commonly employed ratio is 1× 4,
i.e. a major axis of the ellipse four times longer than the minor axis.
As far as size is concerned, Wakuda et al.19 show that for the case of circular patterns, the optimal

size of these textures is related to the Hertzian contact width. Consequently, this parameter is closely
related to the operating conditions since the load value has a great influence on contact width.
The texturing density, defined as the ratio of the area covered by the textures to the total surface area,

is considered to be a parameter which is less influential on friction than others.27 Several studies
disclose that the optimal value is between 5% and 20%19,21,23,28 and is very often lower than 10%.
Finally, depth is a parameter that is difficult to control and measure, which is why there are just a

few previous studies about it. The existing references19–22,25 focus on specific applications, so their
scope is limited, and it is difficult to draw any general conclusions from them. They include tests with
textures of depths ranging from 3.2 to 380μm.

TEXTURING THE SURFACES

The textures were created on a flat side of copper discs so as to subsequently test the point contact
between a steel ball and the discs in a tribometer under 5 and 20N loads, which correspond to the test
conditions used in earlier studies.28

There are many techniques for removing material on metal surfaces in a controlled manner.26,27 The
photolithography and chemical etching process has been chosen due to its simplicity and the efficacy
shown in previous analyses.28 The photolithographic equipment used was the SF-100 from Intelligent
Micro Patterning (www.intelligentmp.com), which is shown in Figure 2. The same figure depicts the
Olympus DSX 500 high-resolution opto-digital microscope (www.olympus-ims.com), which was
used to make a final inspection on the texturing.

Figure 2. Intelligent Micro Patterning SF-100 and Olympus DSX 500. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Stages of the process

The first stage consists in placing a photoresist (a light-sensitive film) on the surface which is going to
be textured by means of the application of heat and pressure (Figure 3a). The other parts of the
specimen are protected.
Once each test specimen has been prepared, the photoresist is exposed to monochromatic ultraviolet

light in the SF-100 by using different virtual masks (Figure 3b) generated by means of a computer-aided
design programme. Each mask contains two colours: white, where the photoresist hardens during expo-
sure and stays on the test specimen to protect it during the subsequent etching, and black, which does
not cure and is subsequently removed. To eliminate uncured areas, the photoresist layer is subjected
to a development in a Na2CO3 bath (0.85wt% in H2O). Thus, the photoresist only remains adhered
to those parts of the surface of the test specimen which are not to be textured, as shown in Figure 3c.

Figure 3. Outline of photolithography and chemical etching process. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Textures are created by chemical etching, for which the test specimen is submerged in a FeCl3 bath
(40wt% in H2O), as shown in Figure 3d. The temperature and time of said bath determine the depth of
the texture generated during etching. Subsequently, the protective photoresist is stripped, i.e. completely
removed, from the test specimen by putting it in a KOH bath (3wt% in H2O), as shown in Figure 3e.
Finally, the test specimen is thoroughly cleaned with water and alcohol and protected until it is tested.

Manufactured textures

As already mentioned, copper discs were selected to apply the photolithography and chemical etching
process. The use of a homogeneous base material like copper lets us achieve a very uniform surface
texturing after the chemical etching process. In contrast, etching other materials like steel leads to more
heterogeneous texture shapes and depths. Therefore, the copper specimens provide more reliable and
repeatable results when creating textures by chemical etching.
As stated earlier, the influencing parameters which were taken into account during the design of the

patterns were surface geometry (shape, orientation and size), depth and surface density.
An elliptical geometry was chosen for the textures, the major axis being orientated perpendicular to

the sliding direction, in line with the results of previous works.12,16 In addition to the 1× 4 ratio used in
several references23,24, textures based on 1×2 and 1×6 ellipses were also created to analyse their
effect on the friction coefficient.
The size was selected based on the half-width of the Hertzian contact a, which was calculated by

using the Equations 2 for the point contact, where W is the normal load, R is the radius of the ball,
E′ is the reduced Young’s modulus and p0 is the maximum Hertzian pressure.29

p0 ¼
3W
2πa2

a ¼
ffiffiffiffiffiffiffiffiffiffi
3WR
2E’

3

r
2
E’

¼ 1� υ21
E1

þ 1� υ22
E2

(2)

E1, E2 being the Young’s moduli of the materials in contact and v1, v2 the respective Poisson’s ratios.
Table II shows the properties of the materials used, which lead to steel–copper contact widths of 150
and 240μm according to Equation 2 for loads of 5 and 20N respectively.
Bearing in mind the previously mentioned influence of the texture size on the results, minor axis

sizes similar or larger than the Hertzian contact width were chosen for the case of the 5N load, whereas
in the case of the 20N load, sizes smaller and larger than Hertzian width were selected. Specifically,
patterns were created by using 150×300, 150×600, 150×900 and 250×1000μm ellipses.
The surface density ranged from 5 to 10%, according to the information available in prior

works.19,21,23,28 Likewise, different combinations of time (8–20min) and chemical etching tempera-
tures (25–40°C) were used, which allowed — in the absence of conclusive prior studies on depth —
a sufficient wide range to be obtained for analysis: 17, 35 and 78μm.

Table II. Properties of the materials.

Specimen Material E(GPa) υ R(mm)

Ball Steel E-52100 210 0.30 9.525
Disc Copper 117 0.34 ∞
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Table III summarises the range of the texturing parameters studied, whose combinations were used
to analyse the influence of the design of surface texturing on the friction coefficient by comparing the
results to untextured specimens.
Once the textured discs were created, the surface geometry, texturing density and depth were

inspected under the high-resolution microscope DSX 500. Figure 4 shows some results of images at
different scales, which have enabled us to verify that the dimensions match the intended ones, without
significant deviations.

FRICTION TESTING IN TRIBOMETER

Tribological test equipment

The tribological equipment used to test the textured discs was the Mini Traction Machine (MTM) from
PCS Instruments (www.pcs-instruments.com), which is shown in Figure 5. It measures the friction
coefficient on lubricated point contacts under a wide range of rolling and sliding conditions. The
following parameters can be controlled: the temperature of the lubricant bath, the normal load W,

Table III. Range of texturing parameters created.

Size (μm) 150 × 300, 150 × 600, 150 × 900 and 250 × 1000
Density (%) 5 and 10
Depth (μm) 17, 35 and 78

Figure 4. Examples of textures created: different scale views. (a) Ellipses 150 × 600μm, texturing density
10% and depth 78μm. (b) Ellipses 150 × 900μm, texturing density 5% and depth 78μm. [Colour figure can

be viewed at wileyonlinelibrary.com]
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the average velocity um and the slide-to-roll ratio (SRR), defined in Equation 3, where Δu is the
sliding velocity.

SRR %ð Þ ¼ Δu
um

100 (3)

The MTM works under all lubrication regimes, from fluid film to mixed and boundary lubrica-
tion; the latter two are the most important for this paper since a greater influence of the texturing
on friction is expected to take place in them, as shown in Figure 1.
In order to facilitate a comparison of the new results to those obtained previously, the materials

chosen and the conditions selected for tests in the MTM tribometer were those used in earlier studies28,
i.e. normal loads of 5 and 20N (equivalent to Hertzian pressures of 0.42 and 0.67GPa respectively),
PAO-6 lubricant at a constant bath temperature of 40°C, average velocities ranged from 100 to
3500mms�1 and SRRs ranged from 5 to 100%.
To perform approximate estimations of film thickness, the dynamic viscosity at atmospheric

pressure η0 and the viscosity-pressure coefficient α for this lubricant can be taken from reference30.
The values at 40°C are η0 = 25mPa · s and α=11.5GPa�1. The balls and discs used in the tests were
highly polished, and their surface roughness (RMS) was 12 and 24 nm respectively.
Figure 6a shows the location of the test conditions on the Hamrock-Dowson chart, based on the

viscosity parameter gV and the elasticity parameter gE
30 shown in Equation 4. They correspond to

the most general case: pressure-dependant viscosity (piezoviscosity) and existence of elastic deforma-
tion. Under these conditions, the classic Hamrock and Dowson formula6 can be applied to roughly
estimate the central film thickness by means of Equation 5.

gV ¼ αW3

η0umð Þ2R4
gE ¼ W8=3

η0umð Þ2E’2=3R10=3
(4)

Figure 5. Mini Traction Machine. Overview and detail of the ball-on-disc contact. [Colour figure can be
viewed at wileyonlinelibrary.com]
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h ¼ 1:55α0:53 η0umð Þ0:67 E’0:061R0:33p�0:2010 (5)

The specific film thickness results are shown in Figure 6b. Different lubrication regimes are
expected in the tests, bearing in mind that the combined surface roughness of the specimens is smaller
than 30 nm. In this way, we can analyse the effect of the textures both under fluid film (λ> 3) and
boundary/mixed (λ<3) conditions.

TEST RESULTS

The textured discs were tested in the MTM to obtain the friction coefficient under different operating
conditions. Over 1000 experimental records were obtained, which enabled us to assess the developed
texture designs.
Relevant graphs obtained experimentally are shown in Figures 7 to 11. They show the expected

shape according to the lubrication regimes of the Stribeck curve. The results have been depicted in
all figures versus an untextured disc and show that surface texturing is an effective alternative for
reducing the friction coefficient in point contacts, particularly at low velocities and high pressures,
which lead to boundary/mixed lubrication conditions.
Figure 7 shows the differences between the different surface geometries for a 5% density and 78μm

depth in a test at 20N and SRR=50%. It can be seen in this case how the trend towards very eccentric
ellipses provides an almost negligible friction improvement. Nevertheless, 150×600μm ellipses, i.e.
those with a 1× 4 ratio between the minor and the major axes, are the ones that cause a greater
reduction of the friction coefficient.
The graph of Figure 8a compares tests conducted under two loads on surfaces textured with

150×600μm ellipses. A reduction of similar magnitude is observed at 5 and 20N for
boundary/mixed conditions, whereas under fluid film lubrication, the curves for textured and

Figure 6. (a) Location of the test conditions in the Hamrock–Dowson chart (I-R: Isoviscous/Rigid, I-D:
Isoviscous/elastic-Deformation, P-R: Piezoviscous/Rigid, P-D: Piezoviscous/elastic Deformation). (b)

Distinction between lubrication regimes according to specific film thickness.
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untextured specimens come closer together, especially at 5N. From a practical point of view, this is an
advantage since it means that the texturing is effective for different loads under boundary/mixed
regime, regardless of the reference value used for load when designing the texture. Likewise,
Figure 8b shows the results for different SRRs and average velocity of 100mms�1, which corroborate
the friction behaviours observed in Figure 7 for SRR=50%. Consequently, in the successive analyses,
results are compared at 20N and SRR=50%.
As observed in Figure 8b, there is a slight variation of the percentage reduction of friction coefficient

with the SRR, e.g. between 23% and 29% for the elliptical geometry 150×600μm. The results show a
more stable trend than those obtained previously for circular geometries.19,28 Despite the depths of the
circular and elliptical dimples are slightly different, a preliminary comparison shows a better behaviour
of elliptical textures for higher SRR.

Figure 8. (a) Load effect on friction coefficient. SRR=20%, ellipses 150 × 600μm, texturing density 5%,
depth 35μm; (b) SRR effect on friction coefficient: percentage reduction with respect to untextured speci-
mens. Ellipses 150 × 600μm, W=20N, um= 100mms�1, texturing density 5% and depth 78μm. [Colour

figure can be viewed at wileyonlinelibrary.com]

Figure 7. Influence of surface geometry on friction coefficient.W= 20N, SRR=50%, texturing density 5%,
depth 78μm. [Colour figure can be viewed at wileyonlinelibrary.com]
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In regards to size, Figure 9 shows the results for two designs tested against an untextured disc, for a
1× 4 ratio between axes, a 78μm depth and a 5% density. The results indicate that the 150×600μm
size brings about a clear reduction of the friction coefficient, which for a 20N load corresponds to
the case of the minor axis being smaller than the Hertzian contact width. This result confirms the
dependence of the friction coefficient on the size of the pattern, as stated in several references19,28

for the case of the surfaces textured with circular geometries. Our tests for elliptical geometries indicate
that the use of minor axes of a size smaller than the contact width leads to a greater reduction of the
friction coefficient, in line with the results obtained by the authors for circular geometries.28

A higher density would apparently lead to an increase in lubricant reservoirs and, hence, a better
behaviour against friction, but this influence is a lot more complex because the flow lines described
by the lubricant are modified.23 Figure 10 shows that a density of 5% yields better results than higher
densities, thus corroborating the conclusions of references19,23,28 for other geometries.
If the friction results obtained for the three depths tested are compared, Figure 11 shows that the disc

with the greatest texturing depth (78μm) leads to a greater decrease of the friction coefficient with

Figure 9. Influence of size on friction coefficient. W=20N, SRR=50%, texturing density 5% and depth
78μm. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 10. Influence of texturing density on friction coefficient. W= 20N, SRR=50%, ellipses
150 × 600μm and depth 78μm. [Colour figure can be viewed at wileyonlinelibrary.com]
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regard to the untextured specimen. However, texturing to a very low depth does not show any
beneficial effects with regard to the untextured surface.
Table IV shows the maximum percentage reduction of the friction coefficient when textured and

untextured surfaces are compared. The results are referred to the best experimental result, i.e. the
150×600μm elliptical geometry, with a 5% density and a 78μm depth. A significant decrease in
friction is observed for different SRRs, which becomes more marked as the average velocity drops,
i.e. as the contact reaches a boundary/mixed lubrication regime. The texturing designs which can
contribute to maximising this reduction are analysed in the Optimising the Designs by Means of
Artificial Neural Networks section.
As it was observed in the case of circular textures,28 wear marks were found on the discs after the

tests, which is indicative of operation in areas of boundary/mixed lubrication. Figure 12 shows a
contact footprint, the width of the contact mark being of the expected order of magnitude for a Hertzian
contact under 20N load, i.e. 240μm. An increase of the contact width can be observed around the
dimple, which leads to a reduction in the contact pressure. Pressure drops in a piezoviscous regime
are accompanied by decreases in viscosity, which when combined cause increases in film thickness
and reductions of the friction coefficient.30 This effect contributes to delay the appearance of mixed
and boundary lubrication regimes. Likewise, Figure 12 shows pits in texture outlet, which can be
the result of the sudden film thickness drop at the outlet, as reported in reference31.

OPTIMISING THE DESIGNS BY MEANS OF ARTIFICIAL NEURAL NETWORKS

Network training using experimental results

From the experimentally obtained information, a search for a texturing design that optimally combines
the analysed characteristics for minimising friction was performed. To this end, an artificial neural
network (ANN) was developed as information processing system.
Artificial neural networks (ANNs) are simplifications of biological neural networks which try, like

the latter, to learn from input data to provide the right output.32 They enable highly complex or

Figure 11. Influence of depth on friction coefficient. W= 20N, SRR=50%, ellipses 150 × 600μm and
texturing density 5%. [Colour figure can be viewed at wileyonlinelibrary.com]
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non-linear problems to be solved in a relatively easy manner without having to model the physical
phenomena involved.33

Artificial neural networks (ANNs) are hierarchical and interconnected systems with elementary
processing units called neurons. They may consist of one or more layers, in each of which two or more
neurons are grouped together. Each neuron i of the layer j and the output k responds to an input xm,
according to Equation 6.

uj;ki xmð Þ ¼ f j ∑
∀m

Wj;k
i ·xm þ bj;ki

� �
(6)

where Wj;k
i is a weight matrix,fj is a transfer function and bj;ki is a matrix of constants (bias matrix).

The learning process is based on providing the network with some preliminary knowledge of system
responses to different inputs, which requires having many experimental results, as in our case. This
training involves using the MATLAB software34 to adjust the weight and bias matrices by means of
an iterative process that compares the outputs of the network to a series of experimental data for the
corresponding inputs. Then, the training is validated with a second data group that eliminates the
adjustment errors introduced in the preceding phase. Finally, a final data group is used to test the
overall behaviour of the ANN developed.
In this case, a simple type of ANN having a 20-neuron layer was selected, which received the input

data (average velocity, SRR, load, minor and major axis dimensions, depth and texturing density) and
the corresponding output (friction coefficient). The information from the MTM tests on circular
geometries of previous experiments28 and the new results for elliptical textures were used to create
the ANN. It was verified that the chosen network design ensures a good balance between calculation
time and accuracy.

Figure 12. Surfaces of the discs after the test at 20N. (a) Ellipses 150 × 300μm; (b) Ellipses 150 × 600μm.
[Colour figure can be viewed at wileyonlinelibrary.com]
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Once the network is trained using the described process, it can be used to predict the outputs of the
system to untested input conditions. This can be applied to search for an optimal texturing design
leading to the greatest reduction of the friction coefficient.28

Network results and optimisation possibilities

This section sets forth ANN-based simulations for quantifying the influence on friction of the surface
geometry and depth of the textures. To this end, different operating conditions were considered,
together with inputs in which only the design characteristics to be analysed were modified.
If the effect of depth is analysed individually (Figure 13), the created network suggests that the

friction coefficient decreases as depth increases, a minimum value being obtained in the 55–65μm
range. However, the trend is reversed at greater depths.
Furthermore, the behaviours of the major and minor axes of elliptical textures were simulated

separately. The size of the minor axis was simulated within an interval around the value of the Hertzian
contact width. Once the minor axis is selected, the size of the major axis is determined by the eccen-
tricity of the ellipse.
In view of the results of the network shown in Figure 14a, the size of the most favourable minor axis

corresponds to a wide range of 120 to 250μm. This circumstance leads one to question the degree of
influence of this parameter, which does not seem to be a strong determining factor in the studied inter-
val of operating conditions. In practice, this could mean an operational advantage since the textured
surface would have a beneficial effect on the friction coefficient in a wide interval of operating loads.
As can be seen in Figure 14b, the results for the major axis of the ellipse predict a range of values

between 400 and 700μm, i.e. eccentricities between 1×2.5 and 1×4.5, for a maximum decrease in
friction. As highlighted in the figure, elliptical patterns can lead to improvements with respect to
circular patterns.
Lastly, a combined simulation of the two previous parameters was carried out: surface geometry and

depth. Figure 15 shows that the most favourable results are obtained with ellipses having a ratio close
to 1× 4 and a depth between 50 and 80μm.

Figure 13. ANN simulation results of the effect of texturing depth in the friction coefficient. W=20N,
um= 300mms�1, SRR=50%, ellipses 150 × 600μm and texturing density 5%. [Colour figure can be

viewed at wileyonlinelibrary.com]
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Therefore, ANNs may contribute to the use of all the experimentally obtained information to predict
the combination of texturing parameters that optimise the lubrication conditions, minimising the
friction coefficient.

CONCLUSIONS

This paper sheds light on the benefits of texturing on the friction of lubricated contacts by means of the
design and manufacture of elliptical dimples with different surface geometries, depths and texturing
densities.
Each selected type was tested in a tribometer under a wide range of operating conditions, including

all lubrication regimes in a ball-on-disc contact. Thus, the influence of the textures on the friction
coefficient was analysed, maximum reductions being achieved in the mixed and boundary lubrication

Figure 14. ANN simulation results of the effect of axes size in the friction coefficient. W=20N,
um= 300mms�1, SRR=50%, texturing density 5% and depth 78μm. (a) Minor axis size for 600μm major
axis. (b) Major axis size for 150μm minor axis. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 15. Optimum texturing parameters. W=20N, um= 300mms�1, SRR=50%, texturing density 5%
and minor axis 150μm. [Colour figure can be viewed at wileyonlinelibrary.com]
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regimes. The benefits achieved by different combinations of major and minor axes, depths and texture
densities were quantified.
Aiming at a greater decrease in friction, an ANN was developed and trained with the experiments

for both the elliptical geometries analysed herein and the circular geometries studied previously. This
network was used as a simulation tool, with application to the optimisation of the texturing design,
showing benefits of several elliptical geometries with respect to the circular case.
One of the future challenges is to study the long-term behaviour of textured surfaces by analysing

aspects such as the contact deformation and surface damage, which might affect the life of textured
components.
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