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Abstract: We study a mathematical model for the growth of tumors
with two free boundaries: the inner boundary delaying the necrotic zone
and the outer boundary delaying the twmor. We consider the presence
of inhibitors and establish the existence and uniqueness of the solution
for the model under suitable conditions on the inhibitors interaction and
the tumor growth.
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1. Introduction

The growth of a tumor is a complicated phenomenon which involves
many different aspects, from the sub-cellular scale (gene mutation or
secretion of substances) to the body scale (metastasis). In the behav-
ior of the tumor cells there appear biological aspects such as necrosis



(death of cells caused by insufficient level of nutrients), apoptosis (nat-
ural cell death, it is an intrinsic property of the cell), mitosis (birth
of cells by cell division), diffusion of nutrients and inhibitors and vas-
cularization (contribution of nutrients through vessels). We study a
simple mathematical model for this process. Previous similar models
were considered by Greenspan [10], Byrne and Chaplain [4], Friedman
and Reitich [9] and Cui and Friedman [5], [6]. The tumor comprises a
central necrotic core, where the cells die as a result of necrosis, when the
concentration of nutrients & (oxygen, glucose, etc.) falls below a critical
level o,,. Then there is an early disintegration of the cells into simpler
chemical compounds (mainly water). These substances form a necrotic
core in the center of the tumor. This necrotic core is covered by a layer,
where apoptosis and mitosis occur. In the sindy of the internal mech-
anisms of the tumor growth two unknown free boundaries appear: the
outer boundary denoted by R(t) (limiting the tumor) and the inner free
boundary denoted by p() (separating the necrotic core of the remaining
part).

We consider the presence of Growth Inhibitor Factors (GIFs) as
chalones in the same spirit as the pioneering papers by Greenspan [10],
fL1]. Asin any tissue, the cell proliferation is controlled by chemical sub-
stances (GIFs) secreted by the cells, which reduce the mitotic activity.
Two different kinds of inhibitors appear, depending on the phase of the
cell cycle stage at which inhibition has been shown. The inhibitor can act
before DNA synthesis (as epidermal chalon in melanoma or granulocyte
chalon in leukemia) or before mitosis (see Attallah [2]}). The properties
of these chemical inhibitors have been studied in several works (see e.g.
Inversen [12], [13]).

The effectiveness of an anticancer drug delivered to the tumor can
be compared to therapy designed to administer the drug by diffusion
from neighboring tissue.

According to principle of conservation of mass, the tumor mass is
proportional to its volume %n‘R"(t], assuming the density of the cell
mass is constant. The balance between the birth and death rate of cells
is given as a function of the concentration of nutrients and inhibitors.

Let S be this balance, then after normalizing we obtain the law
d 4 ~

—(=mR*t)) = S(5(z Z 7. .
FEPw=[  SewnbEae 0

Depending on the author, the function S can be written in different



ways. Greenspan [10] studied the problem in the presence of an inhibitor,
and the possibility that this affects mitosis, when the concentration of
the inhibitor is greater than a critical level ﬁ He proposed S(cr ﬁ)
sH(g—a)H (6 ﬁ‘) where H(-) denotes the maximal monotone graph
of JR? associate with the Heaviside function, i.e. H(k) = 0if & < 0,
H{(k) =1if k£ > 0 and H(0) = [0,1]. Byrne and Chaplain [4] study
the growth when the inhibitor affects the cell proliferation and propose

5G,8) = sz - 3B - ﬁ) (for a positive constant s). In the absence
of inhibitors or in case that the inhibitor does not affect mitosis, they
choose §(3,8) = s6(¢ — &). Friedman and Reitich [9] and Cui and
Friedman [5] study the asymptotic behavior of the radius, R(t), with
the cell proliferation rate free of the action of inhibitors. They assume
that § = s(o — o), where so is the cell birth-rate and the death-rate is
given by so.

The transfer of nutrients to the tumor through the vasculature oc-
curs below a certain level op, and it is done with a rate ri. During the
development of the tumor, the immune system secretes inhibitors as a
immune response to the foreign body. The structure of inhibitor absorp-
tion is similar to the transference of nutrients (for a constant rg}. If we
agsume that the nutrient consumption rate is proportional to the con-
centrations of nutrients, the nutrient consumption rate is given by Ag.
Both processes, consumption and transference, occur simultaneously in
the exterior of the necrotic core, where cells are inhibited by ﬁ We
assume that the host tissue is homogenous and that the diffusion coefhi-
cient, dy, 18 constant. The reaction between nutrients and inhibitors can
be globally modelled by introducing the Heaviside maximal monotone
graph (as function of &) and some continuous functions ¢;{@, E) Then
¢ satisfies

%"? — d|AG € ri({0g = 5) — XG ~ E)H(Zr” —an) + 0 (7, E)- (1.2)

We also assume a constant diffusion coefficient for the inhibitor con-
centration E, dg. The model considers the permanent supply of in-
hibitors, modelled by f and localized on a small region wy inside the
tumor. This term f was introduced in Diaz and Tello [8] to control the
growth of the tumor. Then E satisfies

665 daAB = —r2BH(B — 04) + 52(8, B) + fXwo, (1.3)



adding initial and boundary conditions we obtain

5(z,0) =5, B(&,0)=5, |7 =R(D), (1.4)

(,0) = 0o(&), B(&,0)=Hl(&), |&| < R (1.5)

)

In this formulation, the presence of the maximal monoctone graph
H is the reason why the symbol € appears in equations (1.2) and (1.3)
instead of the equal sign (a precise notion of weak solution will be pre-
gsented later). Different constants appears in the equations and boundary
conditions which lead to a wide variety of special cases: ¢, is the level
of concentration of nutrients above which the cells can live (below this

level the cells die by necrosis), & and f are the concentration of nutrients
and inhibitors in the exterior of the tumor. The diffusion operator A is
the Laplacian operator and yx,, denotes the characteristic function of
the set wy (i.e. xwo{Z) =1, if £ € wy, and xu,(E) = 0, otherwise).

Notice that the above formulation is of global nature and that the
inner free boundary p(t) is defined implicitly as the boundary of the set
{r € [0, R(t)) : & < o, }. So, if for instance, the initial datum o satisfies
o9(&) = on on [0, pol, for some py > 0 and Gi(on, 5) € [0,71(0p — 04) —
Aoy] for any # > 0, the above formulation leads to the associate double
free boundary formulation in which & satisfies

% _ A6+ X6 =ri(op —3) +5.1(3.8), plt) <|F) < R(t),
G(Z,t) = o, %] < p(t),

G(#,t) = &, |Z| = R(t),

R(0) = Ry, p(0) = py,3(%,0) = 09(Z),  po <)E < Ryp.

The free boundary R(t) is described by the ODE presented in (1.1}.

We prove the solvability of the model equations: (1.1)-(1.5) and
establish uniqueness of solutions under additional conditions. The ex-
istence result is present in Section 2 and proved by using a Galerkin
approximation based on a weak formulation of the problem.

We have mentioned that the study of the approximate controllability
problem is considered in Diaz and Tello [8], where f is understood as
a local countrol and the goal is to made the final nutrient concentration
o(z,T) as closed as desired (in a suitable sense) to a given profile 4(Z).



2. Existence of Solutions

We shall assume that the reaction terins g; and the mass of the tumor
balance S satisfy:

g; are piecewise continuous, [gi(a,b)| < ¢y + ¢1(|al + |b}), (2.1}
S is continuous and ~ A < 5(a,b) < ¢y + 1 (la]? + [b]2), (2.2)

for some positive constants Ag, ¢g and cy.

The above agsumptions ((2.1) and (2.2)) do not constitute biological
restrictions, and previous models satisfy them provided ¢ and § are
bounded. They are infroduced in order to carry out the mathematical
treatment, and its great generality allows us to handle all the special
cases from the literature previously mentioned. They are relevant due to
its generality. It is possible to show that the absence of one {or both) of
the conditions implies the occurrence of very complicated mathematical
pathologies, and much more sophisticated approaches would be needed
for proving that the model admits a solution (in some very delicate
sense).

We introduce the variables

z

$:($17$2:$3) = R(t)a (23}

u{z,t} = G(R(t)z,t} — T (2.4)
and

v(z,t) = B(R()z,t) — B. (2.5)

The unit ball {z € IR®,|z| < 1} is denoted by B and we define the
(multivalued) functions from IR? to 2% by

-

{91(3—3@:—@::Tl((za—3)—A3-3)H£3—U) 51(3,B),
025 = 5.5 - B) = —raBH(E - 0u) + 32(5. 5),
(2.6)
N =2 = A aa o
S(@-a7,8-8):=—5(7,08) (2.7)



and
flz,t) = f(zR(t),t), & ={(z,t) € B x[0,T] such that R(t)z € wy}.

Problem (1.2) becomes

r% Au —it—)lm Vu € g1(u,v), zeBt>0,
aﬂ—m v—ﬁ(ﬁ)x-Vvegz(u,w)+fx{;%, zeBt>10,
| R)~TEY = s t>0,
u(z, t) = v(z,t) = O, r€dBt>0,

g R(O) = Ry, U(I,O) = u0($)1 U(:E’O) = UU(:L‘)) T € B.
(2.8)

We introduce the Hilbert spaces
H(B) := L*(B)?, V(B)=Hy(B),

and define inner products by

<®,0 PH(B= _/5; D - ‘I’td.’L',

< o, ¥ >v(B)== Z d,‘/;?(V‘I’i)t - V¥.dz,
i=1,2

for all & = (8, ®y), ¥ = (¥, T,).

For the sake of notational simplicity we use H = H(B) and V =
V(B). Given T > 0, we introduce U = (u,v), Uy = (ug,v) and define
G IR — 2R % 9 and F (0, T)xB—-—)IRz by

G(U) = (g1(u,v), 92(v,v)), F(t,2) = (0, f(t,2)xs5)-
We have:

IG(U)] = g1 (w, )| + |g2(w,0)| < Co + C1|U| = Cp + C: ([uf + Ivlg- )
2.9



Definition 2.1. (U, R) € L*(0,T : V) x WH™®(0,T : IR) is a weak
solution of the problem {2.8) if there exists ¢* = (g7, 95) € L*{0,T : H)
with g*(z,t) € G(U(z,1)) ae. (z,t) € B x (0,T) and

T T T
f _ < U,® >u dt+/ &(R(t),U,(b)dt:/ < g* ® >y dt
0 0 0

T
+<Ug,¢(0)>1{+[ < F(t),® >g dt,
0
Y& e L20,T: V)N HY0,T : H) with &(T") = 0, where

AR, U,®) = Tz?i(ﬂ <UD >y —%{g <z VU® > (210)

and R(t) is strictly positive and given by
Rt
R(t)_ld—di—) -:/ S(U(x,t))dx for t € (0,T).
B

Definition 2.2. (0,5, R} is a weak solution of (1.2) if

(R(t)

+F and B(&, 1) = v(=2— 1) + 3,

o(Z,t) = 0

for t € (0,7} and Z € IR3, || < R(t), where (U = (u,v), R) is the weak
solution of (2.8) for any 7' > 0.
Remark 2.1. The definition of weak solution and the structural

assumptions on (¢ hmply that 3U € L*(0,T : V/(B)) and the equation
holds in D'(B x (0, T)).

Theorem 2.1. Assume (2.1}, (2.2), Ry > 0 and aq, By € L2(0, Ry)
then (1.2) has at least a weak solution for each T' > 0.

Proof. We shall use a Galerkin method to construct a weak solution.
Let R(t) € W'*(0,T : IR) such that R(“)’ > —Xg ae. te(0,7). For
fixed t € (0,T), we consider the operator A(t) = A(R(t)) : V = V'
defined by

A(R(t))(v):( i Au = g Ve ’ )

dy R'(t
0 ﬂwAU H%%x V'U



A(t) defines a continuous, bilinear formon V x 'V
aft: ) VxV — IR,

for a.e. £ € (0,T) (see (2.10}). Since R(( )) > —Xg, aft, -, } satisfies

a(t, U, U) = 0 <UU >y — I;((:)) <z-VUU >g
g <UU v g <UL >m2 (o (RO VT

Ao
- 7||U||%{- O

Now we establish some ¢ priori estimates which will be used later.
In fact, those estimates can be applied even for other existence methods,
different from the Galerkin type one, as, for instance, iterative methods,
fixed point methods, stc.

Lemma 2.1. |[|U[|} < 2C3(exp{(3? + C1 +1) T} - 1)
+3 HFH 2(0,T:H) )+ HUD”H

Proof. Tnserting U*? as test function into the weak formulation of
(2.8), one obtains

d

ledL +a(R(t ),U,U)-l—f g (U z = / F.Uds
dt B JB

for some g* € L2((0,T) x B)? and g*(z,t) € G(U(z, 1)) for a.e. (z,t) €
B x (0, T). The definition of @ yields

1 d

Thus Young inequality and (2.9) imply

A 1 .
5 11— (32 + G+ 1)Ul < 5(C3 + | Fi).

0IIUII%I < (g™l + NFFa U . (2.11)

Tntegrating with respect to time, we get

1 1 . A
SIUIE = 51Tullr = (5 + G+ DIV 20
2 2 )

1
<3 (C3T + ||F |7 (0,7:8))



and by Gronwall Lemnma

[egl

MLP—'

(exp{( Sy + 1T - 1)
+ E“Flliz([),T:H)) +llr <C. O (212)

Remark 2.2. Since U is bounded in H (by (2.12))}, R satisfies

R(t) = Ry exp{/ot/; S(U)dzdt} < Reef1t, (2.13)

and
R(t) > Rypexp{~Aot}, (2.14)
consequently R € WH>(0,T).
Lemma 2.2. ||U||zz0 vy < K(T, F,G, Uq).
Proof. Selecting [/ as test function in (2.12), we have

D 2 2 2
22K 1Uz207v) — ‘Q—HU”L?(O,T:H) < ClUN 2o,

+ (Co + |F |20, m: 1)U | 20,7113 -
By (2.12) we get
102000y < K(F, G, Up, T). U (2.15)
Remark 2.3. By Lemma 2.2 and Remark 2.2 we get that
dl dz . .
— e LY0,T: L*(B)), v — malvE L2(0,T : L*(R)),
to obtain the extra regularity

U,, AU e [L*0,T: I*(B))}%. (2.16)

Now, as previously in the proof of Theorem 2.1, we consider the
approximate problem
aue
at

+ AR ()U = G(UY) + F(t) on B x (0,T),
UsB,z) =Up, U°=00ndB, (2.17)

€
1 dR /SUG



where G¢ = (g¢, g§) is a Lipschitz continuous function such that
G¢ — @ when e — 0 a.e. in IR

where H have been replaced by

0 ifs <0,

8 1

H(s)=4q = H0<s< o
1
1 ifs> .

€

Now, we apply the Galerkin method to the approximated problem.
Let A\, and ¢, € H}(B) for n € IN be the eigenvalues and eigenfunctions
associated to —A satisfying

“‘A‘?‘)n = }‘n,f}i)n-

We consider V;,, the finite dimensional vector space spanned by {¢;, -+,
b }. We search for a solution US, € L?(0,T : Vi) of the problem

%U’E” + A(RL, (YU, = GHUL) + F (1), {2.18)
with
RE () ‘”?E f S(US (2, 1))
Then

= Ry exp{f / (z, 8))dzds}

and the initial conditions U} (0} = P, (Uy) (where Fy, is the orthogonal
projection from L2(B) onto V;,) and F,, = P, (F).

Proposition 2.1. ({2.18) has a unique solution UE, for any T' < oo.

Proof. Problem (2.18) can be written as a suitable nonlinear ordi-
pary differential system. Let US, = (u$,,v5,) be defined by

W= S 0 (Bdn, )= > bE(téa,

n=1,...,m n=1,..,m



and denote

aem ( €T Em ), bf’ﬂb o (bi'ﬂ’b’ b;ﬂl bETn,),

al 1 Qg ey Gy THi
em em
Ao = (Mal™, . Amait)

and Ay = (A 5™, ., A bE). Then a™, b™ and RY, satisfy

m

;€T A Em € ey €Nt pLEm m €L JETILY __
a +(Re (t)}2+¢f( ST ET (@™, B) + g1t (@™, 5) = 0,
: Ap
bfm + v + ¢ € bEm Lm €m bfm + 6171.1 bE'H’L — F?’H t ,
(e ) 2 EI LR ) 4 g (0, 5 = )
RTE'H — (}55( €T b€1’n,)
"L( ) ' 1

where

pela™ H™) = /B S(US)de
LT (a™, 5oy — [B - Vil pmdz for n =1, ..., m
Ly (a ™ b} = /};m Vo ¢nde forn=1,...,m
grt (@™, b) = / 91 {ug, v5 )nde for n=1,.

gz (a", b™) _/ g3y, v, Ypdz forn =1,.

Since G, is a Lipschitz function we obtain that there exists a unique
solution a®™,b*™, R" to the system for T small enough. Moreover,
(2.12) and (2.14) hold, and we get the existence of a solution of (2.18)
for any T < co.



By (2.16} and (2.15) we obtain that {(U,, %Uﬁt}}mzl,m is uniformly
bounded in L?{0,T : V) x L*(0,T : V'). So, there exists a subsequerce
Ut € L*0,T : V) with 4U¢. € L*(0,T : V') such that

1 dt i

(U;Li,%U;n) - (Uf,%Uf) weakly in L2(0,T : V) x L%(0, T : V').

Taking limits when mi — oo we get the existence of solution to (2.17)
for any T < co.

To end the proof of Theorem 2.1, we take limits in the equation
when € — 0. We employ (2.12) and {2.14) and the compact embed-
ding H{(B) < L*(B) (for s < 6) in order to obtain the existence of a
subsequence U¢ such that

U = U in L2(0,T : [L°(B)]%)
and in particular
U — U in L0, T : H)
(see e.g. Simon [15]). Since
Hé(u* + ) = h € H{u + ¢) weakly in L2(0,T : L*(B})

and
v® — v strong in L2(0,T : L*(B))

(see Lemma 3.4.1 of Vrabie [16]) we have
G (U) = g* € G(U) weakly in L'(0,T : H).
Since |R'| < C there exists a subsequence R.;; such that
Reij = R weakly in WVP(0,T), p < o0,

By (2.11) we deduce that Re;; — R in C([0,T]). Finally, taking limits
in the weak formulation of the problem (2.12) we get

T T T
[ <Up, @ > dt + [ a(R(t), U, ®)dt +f <g', P>y dt
0 40 0

T
:f < F, ¢ >y dt,
0



for all @ € L2(0,7 : V) and moreover,

lm

R(t)~ / S(U(z,t))dz.

Notice that

T R,
/ EZJ / €T - Vuﬂj’l/)dﬂ,dt

ezg
/ E”/'uﬂjv,bdxdt / f”[uﬂ]a: Vipdadt
GZ_? ezg

/ GIJ / z - Vgipdedt
cz_y
/ i f Veijpdzdt — / s / VeisZ - Vipdadt.
Etj ﬂj‘

We conclude that (o, 8, R} defined by

R()

)+crandﬁ(t ) =vlt, =)+ 8

a{t, 7) = ult, ( ]

is a weak solution of problem (1.2). The additional regularity
—d| AF and ﬁt dgAﬁ e L2 (Ute[O ’T‘] (0, R(t)} x {t})

follows from of the fact that

oU

5 —(t) + A(R®)U) € L2(0, T : L*(B)%). O

3. Uniqueness of Solutions with Radial Symmetry

In this section we shall prove the uniqueness of radial symmetric weak

solutions. We start by pointing out that if, for instance, o, > :}j_f’\,

riop > 0, G1(7, E) is a decreasing function of @ and independent of 3




and the initial datwin og{#) is such that of{po) = of{p) = 0, then
it is possible to adapt the arguments of Diaz and L. Tello [7] in order
to construct more than one solution of problem (1.1)-{1.5). This and
the presence of non-Lipschitz terms at both equations clarify that any
possible uniqueness result will require an significant set of additional
conditions.

Cui and Friedman [5] prove uniqueness of solution for the non necrotic
case {l.e. linear functions g;).

As in previous section, we can prove that there exists at least o one
radial symmetric solution (7, 8) to (1.2). Wedefines =6-5, 3= 5-0
and r = |z|. Then (g, ) verifies

r%%—%g;(fzag)ejl(aﬁ] 0<r<R{)O<EtLT,
BB 22I8) € go(o,8), O0<r<RHO<t<T,
R(1)24R8 . (R (g B2y, 0<t<T,
9 %0,ty=0, Z(0,t) =0, 0<t<T, (3.1)
o(R(t),1) =0, B(R(1),8) =0, 0<t<T,
R(0} = Ry,
a(r,0) = ap(r), B(r,0) = Bo(r), 0<r < Ry,

by

where ¢; are given by (2.6} when §; = 0, ie.

g1(a,8) = =[(r1 + N0 +5) —riop + B+ B H(s + 7 —0,), (3.2)

92(e,8) = —r3(B + ). (3.3)

We will assume throughout this section that
S{o,B) € W2 (IR?), (3.4)
S 1s an increasing function in ¢ and decreasing in 3 (3.5)
npnons (3.



and the initial data (cq =7 — 7,8y = Bo — E) belong to H2(0, Ry) and
satisfy

98
or

dog

(0,8 =0,

0,8)=0 0<t<T, (3.7)

o(R(1),) =0, B(R(),t)=0 0<t<T. (3.8)

Theorem 3.1. There is, at most, one solution to (3.1).

Let us introduce the functions

_J s ifs>=0, o, | s ifs<0
To(s) _{ 0 otherwise L (%)= { 0 otherwise

which we will use in the proof of the theorem.

Lemma 3.1. Every solution (a, §) to (3.1) is bounded and satisfies
on < 0 < op and —E < B < max{fo} (provided o,, < oy < op and
-8 < Bo)

Proof. By the “integrations by parts formula” (justifying the mul-

tiplication of the equation by Ty(o — op) and posterior integration in
time and space, see Alt and Luckhaus [l] Lemma 1.5} we have

%/ [To(o — op)]? 2dr</ / g1 (o, 8)To(c — op)ridrds.
0

Since

~[(re + N0 +5) =108 + (B+ B)H(o +F — 00)To(0 ~ ap)
—{r + NTo(o—op)? = [(r1 + \Wop+7) —riop+ (8- B)To(c —op)
< ~[(Aop + (r + A)§+ (8+B)Th(c — o5)
< T8 + B)Tolo ~ o) < ([T”(ﬁ + B2+ [To(o — op)?)

we obtain

R(2)
f To(o — op)ridr
0

t pR{s) —
0 B2 —J 2?"2?"3- .
sfof [T + B)? + To(o — o) drds. (3.9)



In the same way, we consider 7%(3 + E) and since

ro(B+ D H(o +7 — 0)TY (8 + B) < ro[T(8 + B2,

it follows that
"R(t) — t pR(s) _
/ [T°(8 + B)*ridr < / / rTO(B + B)ridrds.  (3.10)
40 Jo Jo
Adding (3.9} and (3.10), we obtain thanks to Gronwall Lemma,
agagandﬁz—ﬁ.

Notice that g > ——E implies E > 0.
Let us consider ¢ > ( and take T%(o — 5,, — ¢) as test function in the
weak formulation, then

1 pRit) .
5 [ [To(cr — T~ e)lz'rzdr < Q.
Jo

Now, taking liinits as € — 0, one concludes

1 R(t) )
- / [T%(0 ~ on)]2r2dr <0,
2 Jo
which proves o > o,,.
Knowing ¢ and R, f is well defined as the unique solution of the
equation

08 da D, ,0 =
A(R(t),t) =0, %=0 on 0<t<T.
or
Since Gy > —E it results that
9 _dy 8

3
——{(r?—=p) <0
TR G R

and we obtain by maximum principle that 5 < max{5p}. 0
<

Corollary 3.1. There exists a positive constant M such that R(t)
RoeMt and R'(t) < RoMeMT.



Proof. The above result shows (o(r,t), 8(r,t)) € [op,08] x [—E,
max{fp}] and by (3.4) we get the conclusion. 0

Lemma 3.2. The solution (o, 3) of (3.1) satisfies

T
| s mge gy + 180y e < .

for all e > 0.

Proof. The pair (u(z,t),v(z,t})) = (o(R(t)|z],1), B{R(t)|z], 1)) is a
solution to (2.8) and so (u,v) € [L2(0,T : H'(B))}*. By (2.3) and

t
w0 = [ R, (3.11)

we obtain that 7(t) € C'. By the Implicit Function Theorem, ¢(7) € C'
and then (u,v) € L*(0,7 : H%(B))? (see e.g. Brezis [3]). Since (u,v)
are syminetric we define

G(|x|, t) = u(z,t) and o(|z|,t) := v{z, 1),

which belong to L*(0,T : H%*(ey, 1)) C L*(0,T : W (e, 1)) for all
ep > 0. Doing the change of variable r = R(t)|z] we obtain

T
[ Uty + 188w ey

Lt

T
aﬁﬁmmw%

()'

T
sﬁfmmmmmmﬂ+w@mmﬁﬁga

and the proof ends. [

Proof of Theorem 3.1. We argue by contradiction and assume that
(o1, B, R1) and (o9, 32, Re) are two solutions of the problem. Let
R(t) = min{R;(t), Ra(t)}, ¢ := o0y — 0w and f := f) — 32 be the



solution to

(% B 22 205) =g/(01,81) —gi(o2,B2) 0<r<R(H)0<t<T,
L~ B2 (r?Lp) =ga(01,81) — (02, B2) O<r <REO<t<T,
) Br(0,¢) =0, 2(0,t)=0 0<t<T,
a(R(t),t) = a1{R(1), 1} - o2(R(t), 1) 0<t<T,
B(R(t),t) = Bi(R(2). 1) — Ba(R(D), 1) 0<t<T,
L o(r,0) =0, B(r,0} =0 0<r< Ry

(3.12)

Now, we state a technical lemina,

Lemma 3.3. |[| takes the maximum on the boundary R(t) and o
satisfies

Al 2.2 2
/0 [To(o — a®)]*r7dr < TC[tléI[l%{ﬁ}] \

where

ot = tg[l%{ff(R(f), t)}

Proof. Let us cousider 4, = min{0, 3(X(t),t)} and

2(B1) — ga(B2) = —ral(B1 — B) ~ (B2 ~ B)] = —ra8,
then
(92(81) ~ g2(BNTY(B — Bs) = —mBT°(B — B) < 0.

Multiply the equation by T°(8 — B,), we get

)
/ [T9(8 — B.)2rdr <0
0

and obtain g > f.. In the same way, we prove that J takes its maximum
on R(t).



91(01,81) = 91(02, f2) = ~({fr1 + V(1 +5) 105 + (51 + )
X H(o| +5 — 05) = [(r1 + A (02 +5) ~rop + (B + B)|H{o3 + 5 — 0a))
=—(m+A{e1+&—~on)H(o1 +F~0on) — (0247 — 0u)H (02 +7 ~ 0y,)]

+ (=(r + XNon + 108 -E)(H(UI +7 —0,) — H(o2+ 7 — on))
—[81H{o1 + T — 0p) — f2H(o2 + T ~ 03)).

Since (0 + & —0y,)H(o + 7 — 0y,) is an increasing function of o, we obtain
that

— (o1 +T —on)H(a + 0 ~ 0g)
— (0’2 +§——O’n)H(O’2 +§— O'n)]Tg(Cﬁ — 02 —O'*) < {.

Since —(r; + Ao, + 0B — E <0, it follows that

(=(r1 + Moy +riop — B)(H{o) + 5 - o)
—H(oy+ 6 = 03))To{o1 —02—0") 0.

Then

[g1{o1, B1) — g1(o2, B2)|To (01 — 02 — 0™)
< —[B1H{o1 +T — o) — BoH (o2 + 0 — 0,)|To(o1 =~ 02 — 0¥)
< —(p1 = B2)H (o2 +T — on)Tp(01 — 02 — o)

< =T%B: — B2)To(01 — 02 — 0*) < =B Ty(o1 — 02 = o).

Multiplying the equation, as before, by Tp(c — o*), we get

R(t} t pR(s) a oL
/ [To(o — o*))*rPdr + / f [-~To(o — o*)Pridrds
] o Jo ar

t rR(s)
= / / (3101, 1) — gilo2, B2)To (o — o*)ridrds
0o Jo



t pR(s) .
< —f / BuTo{o — " yridrds
0 Jo

TO t rR{s) o
= _gﬁf * A/ / [To(o1 = 03 = o*)*r2drds.
0 Jo

Now, choose A such that

R{s) )
X/ [Tyl — o9 — o™ Pridr
0

Ris) g
_/ [ -Tolo = " )Prdr <0 ae te(0,7),

then
Rt} )
f [Tu(o — o™)2ridr < TCP?
0

holds, which ends the proof.
End of the proof of Theorem 3.1. Let us define

6= tie?%{iﬂl(t) — Ra(t)f} 2 0,

and consider
) R{t) ‘
RAOR(O) ~ RAORAD = [ (5001, 61) = Slow, pa))r?ar
(3.13)

R(t) ’0(2(0

+/ S(Ul,ﬂ1)T‘2dT - / S(oa, ﬁg)?“gdr.
R(#) R(t)

By (3.5) and Lemma 3.1, we obtain

R;(8)
| S(o:, Biyridr) < M (fori=1,2),

R{t)

(3.14)

where

M = max{S(c, 8) for any (7,0) € [on, o8] X [E, max{fs}]}.

(3.4) and (3.5) imply
R{t) R{t)
fﬁ (S(o1,81) = S(a, B2))r2dr < C/U (To(o) — T°(8))rdr.



Since Tp{0) < Ty(o — 0*) + o* and —T%(B) < —5, then

R(t) \
[ 618 - Stou prar
0
R(t) ,
< C’/ (To(o ~ o*) + 0* — B )ridr
0
-R(t) |
< C’([/ To(o — o*)2ridr]? +0* — B,).
0
By Lemma 3.3 it follows that
R(t} ) L
c’([/ To(o — o")2rdr]2 + ¢* — B,) < C"(0* — (T + 1)B,).
Jo
Since a;(Ri{t),t) = 0 {(for j = 1 or 2), ¢ and J satisfies
(R, ] < (D Hoillwreo(reey, rogeyy )| B (2) — Ralt)],
i=1,2
BR(E), 1) < (D 18:llwres reey, i) I B (8) — Ra(2))]
i=1,2
and then
R(t) ‘
| 8-S pytir<cmeni. (315)
0
Integrating in thne in (3.13), we get thanks to (3.14) and (3.15) that
R(t) — Ry(t) < TC(T + 2)6 + 2T M. (3.16)
On the other hand, one has
Ri(t) ~ R3(t) = (R (t) = Ro(t)) (R} + Ry Ry + RY).

We can assume without lost of generality that § = R (to) — Ba(to)
{for some ty € [0,T)), hence

R3(t) — R3(t} > 4R%s.

Substituting this into (3.16) leads to d < kdT. Furthermore, taking
T < ﬁ necessitates R, (¢} = Ry(t) for any ¢t € [0,71]. Since |5] takes its



maximum at R(t) = R () = Rs(t) (and this maximum is 0), we get that
B = 0. Substituting in (3.12) and taking ¢ as test function we obtain

R{(#) t rR{s) .
/ o?ridr < / / (91{01,0) — g1 (o2, 0))or?drds.
J0 ¢ JO

As in Lemma 3.3, since (o; + 7; — 0y,)H{0; + & — 0v,) is a increasing
function of ¢ we obtain by (3.5) that (g, (01,0) — g1(2,0))o < 0, which
prove g = 0.

Repeating the above process, starting now from Ti, we get the
uniqueness of solutions for arbitrary 7' > 0, provided R(T} > 0. 0
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