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SUMMARY 

In this paper we study a non-linear system of differential equations arising in chemotaxis. The system 
consists of a PDE that describes the evolution of a population and an ODE which models the concen-
tration of a chemical substance. We study the number of steady states under suitable assumptions, the 
existence of one global solution to the evolution problem in terms of weak solutions and the stability 
of the steady states. 
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1. INTRODUCTION 

Chemotaxis is the ability of microorganisms to respond to chemical signáis by moving along 
the gradient of the chemical substance, either toward the higher concentration (positive taxis) 
or away from it (negative taxis). 

Over the last few decades a rich variety of mathematical models for studying chemotaxis 
has appeared. One of the first was presented by Keller and Segel [1,2]. It describes the density 
distribution of a type of bacteria 'Dyctyostelium discoideum' (denoted by p) and a chemical 
concentration, w, in a coupled system of partial differential equations 

dp 
-^ = Ap- di\(px(w)Vw) 

0 = Aw + (p-l) 
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After this study, there has been great interest in the analysis of similar models (see Refer-
ences [3-7] and reference there). 

In the last fifteen years another model, called reinforced random walks, has been devel-
oped to understand the mechanism of chemotaxis (see References [8,9] and reference there). 
Chemotaxis also appears in many other phenomena, such as for instance in the formation 
of capillary blood by endothelial cells. Recently, Anderson and Chaplain [10] and Levine 
et al. [11] have introduced several models for angiogenesis. These authors study the growth 
of tumors based on the analysis of the relevant biochemical processes and the methodology 
of reinforced random walks. 

Friedman and Tello [5] study the models proposed in Levine and Sleeman [9] and Othmer 
and Stevens [8] under suitable conditions in chemotactic coefficient and production terms. 

Fontelos et al. [4] study the model proposed in Reference [11]. This system of equations 
does not have a logistic growth term and non-constant steady states appear (see Reference [4]). 
Fontelos et al. [4] prove the existence of global solutions in the space Cxj'

 + ^ and analyse 
the asymptotic behaviour of the solutions and their stability. They consider that the production 
of the chemical substance depends on p and x. Therefore the production term is non-decreasing 
in w (essential assumption in the proof of the results of this paper). 

In this paper we consider the system 

-j- = div(ú?Vp - px(w)Vw) + rp(N - p) xett t>0 (1) 

dw 
— = h(p,w) xett t>0 (2) 

where d is the diffusion constant, x(w) is the chemotactic sensitivity and r, N are positive 
constants. h(p,w) represents the production of the chemical substance by the living organisms. 
Depending on the process, x(w) a nd h(p,w) can take different forms. The boundary conditions 
for p are 

^•-PXWir = 0 xedtt t>0 (3) 
dn dn 

where dp/dn is the outward normal derivative and initial conditions are 

p(x,0) = po(x), w(x,0) = wo(x) xett (4) 

As in Reference [12] we consider the logistic growth term rp(N — p) va. the equation which 
models the density of the population. 

Myerscough et al. [12] performed a numerical study of the steady states in case that w 
satisfies an elliptic equation of the type 

-Aw = h(p,w) xeü 

They focus on the role of boundary conditions and find spatially non-constant solutions for 
different boundary conditions and some non-linear functions h. 



X and h satisfy 

We assume throughout the paper that the positive constants q, p, w exist and satisfy 

q> max{po(x),N}, w> max{wo(x)}, p = qexp< / #(w)dw> (5) 
x£tt x£tt [JQ ) 

h(p,w) = 0 /z(0,0) = 0 (6) 

X, h belong to C2, for 0 < p ^ p , O^w^w (7) 

dh 
T - > 0 if O^p^p, O^w^w (8) 
op 

dh dh „ .„ „ _ „ 
pr^- + ^-<0 ífO^p^p, O^w^w (9) 

1 A dp dw r r> 

X(w')>0, for 0 < w < w (10) 

Q c R " (n<3) is an open and bounded domain with düeC2+íi (11) 

Assumption (10) means that the organisms move toward the higher concentration of the 
chemical substance. 

We also assume that the initial data satisfy 
0^po(x)eH1(n)nL00(n) 0^w0(x)eH2(n) and 

dp0 dw0 n - n -%- = -^— = 0 on dtt 
on on 

(12) 

Assumptions (7)—(10) are satisfied, for instance, 

h(p,w) = ¡xp — w ^ = constant (13) 

w P + w 
h( p,w) = un y = (14) 

VjP' ' ^ a + w A a + w v ' 
w y 

h(p,w) = up vw x=-7, (15) 
VjP' ' ^ a + w A p + w v ' 

for a range of parameters and some initial data. Several researchers in this área are particularly 
interested in the case (15) where x(w) appears in the literature in the form ln(^(w))' for 
(¡>(w) = (fi + w)y• In case (15) assumptions (5)-(9) hold and Theorems 1.1-1.3 can be applied 
if p satisfies N <p<vf¡a/yw where p and w are defined by (5), (6). 

Solutions to (2)-(4) which are biologically meaningful must satisfy 

0^p(x,t)<oc, 0 < w ( x , 0 < o o (16) 

Set ÜT = Ü x (0,7") (0<77 <oo). We will assume throughout the paper that d=\. 



The main results of this work are the following theorems: 

Theorem 1.1 
Under the assumptions (7)-( l l ) , the steady states (j?*,w*) of (2)-(4) satisfying (16) are 
constant and given by 

(0,0) or (N,^(N)) (17) 

where * ( # ) is the unique solution to h(N,^(N)) = 0. 

Theorem 1.2 
Under the assumptions (7)-( l l ) , there exists a unique global solution (p,w) to (2)-(4) 
satisfying 

p eL2(0, T :H2(Ü)) ni°°(Q r) weL°°(0, T :H2(Ü))nL00(ÜT) 

for any T<oo. 

Theorem 1.3 
If the initial valúes (po,w>o) satisfy 

sup \p0(x) - N\ + sup |w0(Jc)-*(iV)|<e (18) 
xGQ XGQ 

where e is small enough and (7)-( l l ) hold. Then, the solution (p,w) to (2)-(4) has the 
asymptotic behaviour 

p^N, w->*(#) when í->oo in Ls(ü) 

for any s < c» if « = 1, s<oo if « = 2 and s<6 if n = 3. 

Assumptions (8) and (9) define the behaviour of the solution. Following Levine and 
Sleeman [9] Equations (2)-(4) can be considered in the 'Hodograph plañe': applying the 
implicit function theorem to Equation (1) and as a result of (8) and (9) we obtain 

, dxl/ fdhY1 dé dh (dhY1 

p=^w'^ i^r\Tp) ^=-^{dp-) 

If Q = (0,L)c R, substituting it in (2) it results 

éWtw„ + éwwt - (\¡/Wtwxxt + éwwxx + 2éWtWrwxwxt) 

+%éwxx + x^w,wxtwx + (jéw + l'é)(wxf = ré(N - é) 

Consider now the second order operator 

g>(w) := w„éWt + (-éw + xx¡/)wxx + 2bwxt 



where b=\(—2\¡/WWlwx +x^w,wx). Then Equations (2), (1) become 

£C(w) = k(w,wx, wt, wxxt,t/$ \J/W, \J/m, t /w, ) (19) 

Since the discriminant 

b2 -il/m(-il/w + xf) = b2 dh 
dp 

dh (dh 

dw \dp + X<A 
dh_ 
dp 

dh , dh 
d^ + X% 

is strictly positive (by (9)) £C is clearly an hyperbolic operator. Assumption (9) implies that h 
is strictly increasing in w. If (9) is substituted by px(dh/dp) + dh/dw>0, there are no control 
on the type of the differential operator £C, and it could be parabolic, elliptic or hyperbolic. 
Then the arguments used to prove Lemma 3.2 cannot be applied and blow-up could occur 
(as in case r = 0 for some valúes of the parameters, see Reference [9] for details). 

2. ON THE STEADY STATES 

2.1. Proof of Theorem 1.1 

Let us consider the solutions to the stationary problem 

div(Vp - ])x(w)Vw) + rp(N — p) = 0 xeü 

h(p,w) = 0 xeü 

(20) 

(21) 

Since hp>(), hw<() (by (8) and (9)), we can apply the implicit function theorem to solve 
Equation (20) in the form p = ^>(w) and obtain 

* ' (w ) : > 0 and *(0) = 0 (22) 

Let (p*,w*) be a stationary solution, then h(p,,w,) = 0 and p* = ^(w*). Substituting this 
in (2) we get 

-div <j — (hw + p*x(w* )hPWw-, } + r*(w* )(N - *(w*)) = 0 in ü (23) 

with boundary conditions 

dn dn hn 
(K + P*X(w-*)hp)-^- = 0 

í.e. 

dw.,. 
dn 

-() xedü (24) 



Lemma 2.1 
Any solution w* to (23), (24) satisfying (16) belongs to Cx(ü). 

Proof 
Let us consider the function $ defined by 

*(w*)= [ ' h (y(s) s)(hwms),s) + ^(s)X(s)hpms),s))ds 

By (7)-(9) we know that «feC1 and $ '<0. Substituting this into (23) we get (assum-
ing (16)) 

- A $ ( W * ) G Í ° ° ( Q ) 

and then &(w*)eW2-00(Q)cC1(Q). By regularity of $ we get the desired result. Extra 
regularity can be obtained if % and h have additional regularity. D 

Let us consider the positive parí function defined by 

(s if s>0 

[ 0 otherwise 

Taking (N - ^(w*))+ as test function in (23), we obtain 

I f (hw + p*x(yv*)hp) -^77 [V(# - ^(w,))+f áa + f r^>(w,)(N - ^(w,))2
+ da = 0 

•Ja "p —** Ja 

By (22), (8) and (9) we get 

a 

henee, by (22) and (16), w* satisfies 

tf(w,) = 0 or ^(w,)^N (25) 

Integrating (23), (24) we get 

la 

By Lemma 2.1, continuity of ^ and (25), we deduce the desired result. • 

2.2. On infinitely many steady states (a simple example) 

If assumption (9) is not satisfied then infinitely many solutions to (20), (21) can occur. 



Let us consider a simple case where x is a positive constant and h(p, w) = ¡ip — w for 
HXN/2 = 1. Then w = ¡ip, and p satisfies 

-div{Vp - x/J-P^P} = fp(N - p) l e f l 

^ = 0 xedü 
on 

Let us define u = p — (l/N)p2 which satisfies the well known problem 

- Au = rNu xeü 

—̂ = 0 xedü 
dn 

Let rN = Xm (meN) be an eigenvalue of the Laplacian operator - A with zero flux on the 
boundary and um be the eigenfunction associated to Xm. Then 

is a solution to the problem for any C^C* :=(4/N)maxxea{\um\}. Notice that p>(). 

3. EXISTENCE OF SOLUTION (PROOF OF THEOREM 1.2) 

We introduce the function 

f(w)= exp 

and the unknown q defined by 

p = f(w)q (28) 

In terms of q and w the system (2)-(3) becomes 

dq 

X(s)ds 
o 

(27) 

dt ^q - X<»Vw • Vq 

= -qx(w)h(qf(w),w) + rq(N - qf(w)) xeü t>0 (29) 

d^- = h(qf(w),w) xeü t>0 (30) 

and 

dq 
. - 0 xedü t>0 (31) 
on 

The initial conditions (4) become 

q(x,0) = q0(x)= fo(X\ w(0,x) = w0(x) (32) 
J (w0(x)) 



Notice that 

f(w) • ¡£q = f(w) dft - div{/(w)V?} 

Denote the right hand side of (29) by g(q,w). 

Definition 3.1 
qeL2(0,T :H2(ti))C\Hl(0,T :L2(ti)) and weL°°(0,T :L2(Ü)) is a weak solution to 
(29)- (32) if 

/ / f(w)qtridadt+ f(w)VqVridadt = f(w)g(q,w)ridadt (33) 

for any neL2((),T :HX(^)) and 

wt = h(qf(w),w) a.e. 0<t<T xeü 

In order to establish the existence of a global solution, we consider the sequence q¡ defined 
as the unique solution to (29), (31) where w = w¡ and w¡ satisfies 

dw¡ 
-^- = h(q¡-if(Wi),Wi) xeü 0<t<T, w(x,0) = wo(x) 

Let us denote q¡ by q and w¡ by w, then 

Lemma 3.1 
q^O and 0<w<w>. 

Proof 
By the máximum principie we get q^O. Since dh/dq = f(w)dh/dp>0, we have /z(0,w)^wt < 
h(q,w). By (7) and (6) we conclude the result. • 

Lemma 3.2 

q(x,t)^q (34) 

Let us take f(w)(q — q)+ as test function in (29), then 

\ íf(w)(q ~ q)l dadt+U í f'(w)wt(q - q)\ dadt+í í f(w)(V(q - q)+f da dt 

2 J „ J ( i / /Y, . , . \( „_ ñ\2 f(w)g(q, w)(q -q)¿
+dadt + f(w0)(qo - q)+da dt 

ÜT Ja 

Since g(q,w)(q — q)+^0 provided that 0<w<w> we get 

íf(w)(q - qf+ da dt «S C f í (q - qf+ da dt 
Ja J JnT 

By Gronwall's Lemma we prove the lemma. D 



Provided that 0^q<q and 0^w<w, we show the foliowing a priori estimates: 

Lemma 3.3 

i q2 da + f f \Vq\2 dadt + f \Vw\2 da^C0(T + 1) 
Jü J JÜT Jü 

Proof 

From (1) we have 

Vwt = f(w)hpVq + (hpf(w)qx(w) + hw)Vw (35) 

Taking the scalar product with Vw, integrating over ÜT and using (8), (9) we find that 

\Vw\2da^df f \Vq\2dadt+ í\Vw0\
2da 

J JaT JÜ 'a 

Taking f(w)q as test function in (29) and integrating by parts, it follows 

j t \ j q2f(w)do +Jf(w)\Vq\2 da 

= - \ ! q2f(w)X(w)h(qf(w), w)da + / q2f(w)(N - qf(w))da< C2 LJü Jü 

and then 

\ f q2f(w)da+ ff f(w)\Vq\2dadt^C2T+-\ f q¡f(w0)da 
¿Jü J Jür LJü 2JQ j ja 

Since i O 0 , by (27) and (10) we get 

íq2da+[ i \Vq\2dadt^C2(T+V) 
Jü J JÜT 

j j q2dadt + í \Vq\2 da^C3(T + 1) 
J JÜT Jü 

(36) 

(37) 
lü J JÜT 

Substituting (37) into (36) we prove the lemma. • 

Lemma 3.4 

Proof 
Let us take f(w)qt as test function in (29), we obtain 

f(w)\qt\
2da- / (div f(w)Vq)qt da = f(w)g(q,w)qtda (38) 

n JÜ JÜ 



Since 

(dwf(wWq)qt da=\ ff(w) | \Vq\2 da 
a zJa 0l 

j t \ jf(w)\yq\2 da-1- Jf(w)X(w)wt\Vq\2 da 

jtlJf(w)\Vq\2da-1-Jf(w)x(w)h(qf(w),w)\Vq\2da 

and 

f(w)g(q,w)qtda^-f(w)\qt\
2da+- f(w)g2(q,w)da 

a LJa LJa 

then, substituting it into (38) we find 

f(w)\qt |2 da + j t \ Jf(w)\Vq\2 da - l-J" f(w)x(w)h(qf(w), w)\Vq\2 da^C 

Intégrate with respect to time to get 

fff(w)\qt\
2da+ff(w)\Vq\2da^C5\ff \Vq\2dadt+ff(w0)\Vq()\

2da + T 
J JaT Ja \_J JaT Ja 

By selection of / and Lemma 3.3 we obtain the desired result. • 

Lemma 3.5 
<? belongs to L2((),T :H2(Üj). 

Proof 
By the previous lemma we know that (l//(w))div{/(w)V^} belongs to L2(ÜT) i.e. 

/ / 72Lr(<M/(w)V<7})2d<7dí 
J JaT J (w) 

a, 
j^-^V/Xw) • Vqf + (Aqf ) dadt 

Then 

+ / / -¿-(Aq)(Vf(w)-Vq)dadt^C3(T+l) 
'aT J\w) 

-^-(Aq)(Vf(w)-Vq)dadt^(T+l) (39) 



Let us take -Aq as test function in (29) then: 

/ / (-Aq)qtdadt+ í í (Aqfdadt + í í -^-(Aq)(Vf(w)-Vq)dadt 

= í í g(q,w)(-Aq)dadt^^(max{g(q,w)}f +\ /í (Aqfdadt 

Then, integrating by parts on the left hand side of the equation and as a result of (39) we 
conclude 

U\Vq\2da 
T 1 

+ - / / (Aqfdadt^C4(T+l) 
o ¿J JÜT 

which proves the lemma. • 

Lemma 3.6 
¡ü\Vw\4da^C5(T+V). 

Proof 
As a consequence of Lemma 3.5 and (29) we obtain that Vq • Vw belongs to L2(ÜT) 
(using (10) and (7)). Multiplying by |Vw|2Vw in (35) and integrating over ÜT we con
clude the claim of the lemma. • 

Lemma 3.7 
weL°°(0,T:H2(üy). 

Proof 

By (30) we know that 

Awt = hqAq + hqq\Vq\2 + 2hqwVq • Vwhww\Vw\2 + hwAw (40) 

Multiplying by Aw in (40) and applying Holder inequality, one gets in view of (9) 

1 1 1 A w U T^T |A</|2 + l l IV^I4 + 4 ^ \Vq\2\Vw\2 + %*- |Vw|4 

ót 2 \hw\ \hw\ \hw\ \hw\ 

Integrating over ÜT we conclude the lemma. • 

Proof of Theorem 1.2 

Let us consider the sequence {p¡: = <7¡/(w¡)}¡=ii00. From Lemmas 3.1, 3.2 and 3.4 

Pi are uniformly bounded in Hl(0, T : i 2 ( í l ) ) n i ° ° ( Q r ) (41) 

and by Lemmas 3.5 and 3.6 

Pi are uniformly bounded in L2(0,T :H2(Ü)) (42) 

Let us consider 
f'W 

P = Pi- Pj, P-\ = Pi-\ - Pi-u y(w) = / x(s) ds and y = y(wi) - y(w/) 
Jo 



Then (p,f) satisfy 

dp 
dt Ap + div{pVy(wi)} + div{pjVy} = p(l - (p¡ + p/)') in üj 

dy 
•• x(wi)h(Pi-i,wi) - x(Wj)h(pj-i,w/) in Q r 

Take f(w¡)p as test function in (43), then 

1 

n T 

(43) 

(44) 

2 
f(Wi)p¿da y i f(w^d-§p2dc7dt+jj /(w/)iv¿i2d<7dí 

+ / / pVpVf(Wi)dadt- p2Vy(Wi)Vf(Wi)dadt 

f{Wi)pVy{Wi)Vpdadt í í fiwdpjVyVpdadt 
J JaT 

- / / pjpVyVf(Wi)dadt= pf(Wi)(g(Pi,m) - g(pi,w¡))dadt 
J JÜT J JÜT 

Since \(d/dt)Wi\^C, K / ( w ; ) < C and Vf(wi) = f(wi)Vy(wi), we obtain 

p da + / / \Vp\2dadt 
T J JÜT 

^P I I \Vy\\yp\dadt+ \p\\Vy\\Vy(Wi)\dadt + ko p2 + fdadt (45) 
'ür J JÜT J J O r 

Let us consider the integral 

pff IVylIV^ldcK^HVyl^ + ^IIV^II 

and 

~ l | 2 
LHüT) 

< 

|jp||Vy(w¿)||Vy|d(7d/'<||jp||i2(oir:i4(n))||Vy(w¿)||ic„(oir:i4(n))||Vy||i2(oir:i2(n)) 

^illÍ'lli2(0,r:ií1(O))ll^7)'ll¿2(0,r:i2(n))^7 WPWL^oj^un)) + ̂ i ll̂ 7?ll¿2(o,r;i
2{0)) 

Substituting it in (45) we get 

1 
2 p da + \ ¡ í \Vp\2dadt^k2( í í p2 + fdadt+íí \Vy\2dadt] (46) 

2 j JüT \J JÜT J JÜT J 
Notice that, as below, if t < T we obtain 

p da ^k2( ¡ í p2 + fdadt+ í í\Vy\2dadt 
t \Jo Ja Jo Ja 



and integrating again in time we get 

\ ¡ ¡ p2dadt^Tk2( Ií p2 + fdcjdt+[[ \Vy\2dadt 

Taking 77<l/4¿2 it results 

p2dadt^4Tk2( í í fdadt+í í \Vy\2dadt) (47) 

Then, by (46) and (47) p satisfies 

p2dadt+¡f \Vp\2dadt^(4Tk2 + 2k2(l+4Tk2)) ff ( f + |Vy|2)dcrdí (48) 

On the other hand, y satisfies: 

d_ 

dt 
y = hp\p^p_x +hy\p^y 

where p¡^p^pj or p¡g¡p¿¡p¡ and w¡^w^Wj or w¡^w^Wj and hy = hw/y'<0. 
Multiply by y, intégrate and apply Holder inequality to get 

/ fda ^k3 p2_1dadt + - hyfdadt 

í.e. 

¡ i fdadt^k3T i i p2_1dadt + ^ i' i' hyfdadt (49) 

Since Vy satisfies 

1 
dt 

^y = hP\p,yVp_i + hpP\piyp_-lVp 

+hPy\p,y(p-i^y + yVp) + hy\ptyVy + hyylp/yVy (50) 

taking Vy as test function and by Holder inequality we get 

/ |Vy|2d(7dí|í<¿4(||jp_illÍ2(or:iíi(n)) + ||y|||2(or:iíi(n))) 

and 

II |Vy|2d(Td^7l4(||^_1||Í2(o,r:iíl(n)) + l|y|IÍ2(0,r:iíl(n))) (51) 

Adding (49) to (51) we get 

11? WLH0,T:HHÜ)) < Tk5(\\p_] ll¿2(0,r:.ffi(")) + \\y\\mo,T:HHtt))) 

Taking T^l/2k¡ it results 

fdadt+lI \Vy\2dadt^2Tk5\\p_,\\2
LH()J:HHÜ)) (52) 



Substitute (52) into (48) 

í í p2dadt+í í |V^ | 2 d(Td^(471 2 + 2¿2( l+4712))2r¿5 | | i5_1 | | |2 ( 0 i r : i í l ( n ) ) 

Choose T small enough, then 

\\P\\LH0,T:HHÜ)) ** 2 l l^ - l lli2(0,r:iíi(O)) ( 5 3 ) 

Then p¡ is a Cauchy sequence satisfying p¡ —> p in Z2(0, T -.H^ü)). By (52) we get the same 
result for w¡ and y(w¡). Since {/>¡,y(w,¡)}°5?1 are uniformly bounded in 

[Z2(0, T: / /2(Q)) n/ Í^O, T : i 2 (Q) )n i ° ° (Q r ) ] 2 

there exists a subsequence (/'¡/^(wy)) such that (p¡j,y(Wij))->(p,y(w)) in [Z2(0,77:fF1-s(Q))]2 

for any s<c» if n=\, s<oo if «=2 and s<2n/(n—2) if «=3 and weakly in [HX((),T:L2(Ü))'\2. 
By (50) and a priori estimates, we obtain that y(w¡j)—>y(w) in Lr((),T :HX(Ü)) for arbitrary 
r<oo. 

Taking limits in the weak formulation 

^- pijf] dadt + Vpij • Vf? da dt 
ÜT ot J JaT 

PijVy(Wij )-Vtjdadt + g(pih wi} )t] da dt 
f i r J JÜT 

dt 
wiJ = h(pij,wij) 

we get the existence of weak solutions for small T. Repeating the process, starting now from 
T, we conclude the existence of solutions for arbitrary T > 0 by lemmata 3.1-3.7. 

Remark 3.1 
Uniqueness of solutions is a consequence of (53). 

4. ON STABILITY (PROOF OF THEOREM 1.3) 

Taking p - N as test function in (2) we get 

U (p-Nfda\l+í í \Vp\2dadt 
LJÜ J JÜT 

PX(w)Vp -Vwdadt + r / / p(p -Nfda dt 
aT J JaT 

Since Vwt = hpVp + hwVw, taking scalar product with yVw (for a positive constant y) and 
integrating over ÜT (as in Reference [5]) we find that 

1 
2./n 

\Vw\2da\l = y hw\Vw\2 da dt + y hpVp-Vwdadt 
J JaT J JaT 



Adding both expressions one concludes 

1 

2 n 
(p-Nyáa + [[ \Vp2dadt + ^ ¡ \Vw\2da -y í í hw\Vw\2dadt 

= r p(p - Nf da dt + / / (px(w) + yhp')Vp • Vwdadt + 0(1) 

By Schwarz's inequality, the last integral is bounded by 

( 1 - < 5 ) | | ¡Vpfdadt + ^ - y J J (pX(w) + yhp)
2\Vw\2dadt 

for any 1 > ó > O and y > 0. 
Consider the quadratic equation in y: 

(yhp + px(w)f + 4yhw = 0 

and denote its two roots by 

2 
hp 

By assumption (9) there exists y > 0 such that 

?i,2(p,w) = p {(-2hw - hppx(w)) ± [(2hw + hppx(w))2 - (pxÁwyfhp2]1'2} 

(yhP + px(w))2<4yhH 

Therefore 

(p-Nfda + r f f p(p-N)2dadt + f \Vw\2 da 
J Jttr Ja 

which implies 

+ S I \Vp\2dadt + s \Vw\2dadt^O(l) 
IQ.T J JQ.T 

\Vp\2dadt+ \Vw\2dadt^C 

Integrating the equation we get 

TT / pda = r f N p da - / p2 da 
St Ja V Ja Ja 

which implies that p = 0 is unstable, and we deduce that 

p^N and w^^(N) in Ls(ü) 

where s = oo if « = 1, s<oo if « = 2 and s < 6 if « = 3. 
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