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Stability of steady states of the Cauchy problem
for the exponential reaction—diffusion equation

J. Ignacio Tello

Abstract
We consider the Cauchy problem
{ut:Au—l—e”, xeRY 1€, 1),

u(x, 0y =ug, xERN,

where ug € C (BRNy and T > 0. We first study the radial steady states of the equation and the number of
intersections distinguishing four different cases: N =1, N =2,3 < N <9 and N > 10, writing explicitly
every steady state for N =1 and N = 2. Then we study the large time behavior of solutions of the parabolic
problem.
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1. Introduction and main results
In this paper we consider the following Cauchy problem:

{ut:Au+e”, xeRN, 1e,T), (1.1)

u(x,0) =up(x), xeRN,
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where u = u(x,t), A is the Laplace operator in x and u( belongs to the space of continuous

functions C(R™M). It is well known that for any initial data uo, satisfying ke P Cuox) < ¢
for ¢, k > 0 there exists T = T (uo) > 0 such that (1.1) has a unique classical solution u(x, #; ugp)
in CZ1 RN x 0, THNCRY x [0, T)).

In Section 2 we study the stationary states of (1.1) under the assumption of radial symmetry,
ie.

U= L?(|x|).

For simplicity we drop the tilde and denote |x| = r, then u satisfies the equation

Uy + u, +e*=0, r>0. (1.2)

In that section we also study the number of intersections between the steady states. This result is
enclosed in the following theorem:

Theorem 1.1.

(i) For N =1, every solution to (1.2) is of the form

Uy (r):=a —2log <COSh<§e“/2r))’

Jor a € R, and every two solutions intersect each other once.
(i) For N =2, every solution to (1.2) is of the form

ugp(r) :=a + (B —2)logr —210g<1 + ;—f;ﬂﬁ)’

Jora eRand B >0, and
(a) Uy, p, intersects uq,p, twice if B1 # B2,
(b) ug, g, intersects uq,p, once if f1 = Po, a1 # as.

(ili) For 3 < N < 9 there exists one singular solution and every regular solution intersects the
Singular one infinitely many times. Every two regular solutions intersect each other infinitely
many times.

(iv) For N > 10, there exists one singular solution to (1.2) and solutions do not intersect each
other.

The singular solution to (1.2) for N > 2 is given by

" (r) = —2logr +1log(2N —4). (1.3)

For N > 2, we denote by u,, the regular solutions to

up+e* =0,  u®=ca,  u0)=0. (1.4)

Urr +
In Section 3 we study the parabolic problem and the blow up, of solutions in the sense:

— the solution “blows up to —o0” if

lim max u(x,t;ug) = —o0, forT < o0;
t—=T xeRN



— the solution “blows up to oo™ if

lim max u(x,t;ug) =00, forT < o0
t—=T xRN

and prove the following results:

— under the assumption
My 2 .
—c&echxl +cf Sup(x) < —c1e2PF 4 e5, for ci>0(@=1,2)and c3, c; R,

the solution blows up to —og;
— if ug satisfies

colxPe
b

up(x) = —cie for c1,cp > 0and € € (0, 1),

the solution remains bounded below in every compact sub-set of RY x [0, 00);
— Theorem 1.2. Suppose that N = 1 or 2 < N < 10, and consider uo(x) > —c1e2WF™ for
€ > 0 and some positive constants c1 and cp. Then the following conclusions hold.
(1) If uo <uy and ug # uy, for o € R, the solution is global and

max u(x,t) — —00 ast— 0.
xeRN

(1) If uo 2 uy and uo # uy, then u blows up at finite time to co.
(iii) For N =2, if ug Suyp for p €(0,2), the solution is global and

max u(x,t) — —00 ast— 0.
xeRN

In Section 4 we study the stability of the radial steady states for N > 10 with respect to the
norms ||| - ||| and || - || defined by
(L +Jxp* -
gl = sup ————|¢(x)| and [¢ls= sup (1+|x])"" | (x)

xeRY 10g(2 + |x|) xeRY

’

for s € R. These results presented in Theorems 1.3—1.5 concern stability and weak stability. For
readers convenience we give definitions of stability and weak asymptotic stability.

Definition 1.1. A stationary solution u,, is stable with respect the norm || - ||, , if for € > O there
exists 8 > O such that ||up — uyllx, <& then |lu(t, -, up) —uylla, <€ fort > 0.

Definition 1.2. A stationary solution u, is weak asymptotically stable with respect the norm
Il - lla,, if there exists § > O such that for [lug — uq|ls, < 8 then |Ju(f, -, up) — uyllyy — O as
t — oo for A > Ag.

Theorem 1.3. Let Ay and h_ be defined by

At = %(—N—i-Zj:«/N—Z«/N —10),

then:

(i) If N =10, any radial steady state uy is stable with respect to the norm || - ||| and is weakly
asymptotically stable with respect to the norm || - ||, for A = —4.



(ii) If N > 10, any radial steady state u, is stable with respect to the norm || - |;., and is weakly
asymptotically stable with respect to the norm || - ||a_.

Theorem 1.4. Let ag, a1, oy € R such that ag < a1 and ay < ag. Assume vy, ug € CRYN) for
N > 10 satisfying

MC(O <MO<MC(17 (15)
Uey S o+ vo < PF, (1.6)

lim |x|’|vo(x)| =0, wheres=4for N=10ands=—)y for N > 10, (1.7)
|x]—c0

then u(x,t; ug + vo) is a global solution and satisfies

||u(~, tiug+vg) —u(t; ”O)HLOO(RN) —>0 ast— o0. (1.8)

Theorem 1.5. Let N > 10 and ug € C(RYN) satisfy
—c1e2P 7 Cug () < D (Ix]). xRV, (1.9)
Jorcy, cp >0ande €(0, 1),

|X|4 U{‘N: 10’

lHm ¢ (x)|@*(|x]) —uo(x)| =0, for(x)={ ekl (1.10)
|00 lx|=*+, if N > 10,
then the solution u(x, t; ug) is global and satisfies
lim u(-,t; up) = D*. (1.11)

—00

2. Steady states: Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1 concerning the steady states and the number
of intersections between them.

The proof for the cases N > 10 and 3 < N < 9 follows the ideas of Joseph and Lundgren [4]
developed to study the Dirichlet problem. See also [2,3,9].

Proof of Theorem 1.1.

Case (N =1). Explicit solutions of the problem are well known (see [1,7]):

u(r)=«oa — 210g<cosh<\/7§e“/2r)).

To prove the non-existence of singular solutions, we multiply (1.4) by «’ and integrate over (¢, 1)
to obtain

1 1

E[M/(G)]Z + eu(e) — E[M/(l)]z + eu(l).
Then

Ju'(e)] < [(' (1) + 26D

which proves the boundedness of # in every bounded sub-set of R and the non-existence of
singular solutions.

1/2



To see that every two solutions intersect each other once, we consider u;, satisfying u; (0) = «;
(fori =1,2 and o1 > «2), and define f by

S)i=ui(r) —ua(r).
Notice that

fO=a1—a2>0,  lim f(r)=—cc and f'(r)<0.

By continuity and monotonicity of f we obtain (i).
Case (N =2). There exists a two parameters family of solutions defined by
el)f
Up(r) :==a + (8 —2)logr —2log <1+2—ﬁzrﬁ) 2.1)

for « € R and B € (0, c0). The explicit solutions were already known for the unit ball with
Dirichlet boundary conditions, see [5]. Notice that, if 8 =2, uyg is a regular solution and if
B # 2, uyp is singular and satisfies

. o0, 0<pB <2,
im =
0P T —oo, B2
For simplicity we will denote by u,, the solution uqg for g =2.
To prove that every solution is of the form u,g, we consider the Cauchy problem

pP=q, r>rp>0,
g'=%—e, r>ry>0, (2.2)

p(ro) =a, qro) =0,

for ro = 1. For every a, b € R, uyg is a solution to (2.2) for « and 8 defined by

a=a+2log2, B=(2")"" ith=—2,

(b+2)(1+k)

a=at2logl+k). p=—"

ith £ -2,

where k satisfies

e (14k)? 2%\
s8) =2y <1_1+k) —k=0.

Notice that g(1) = —1 and

g0) >0, ifb> -2, and lim g(k) >0, ifb> =2,
k— o0

which guarantees the existence of £ > 0. By uniqueness of (2.2) we obtain that every solution is
given by (2.1).
To study the intersections between two solutions uy, g, and u,p, we distinguish two cases:



(a) By > Bo. Let h be defined by
h(r, a1, 2, .317 .32) = U By (r) — Uy B, (r)

2,32
1+ ﬂrﬁl
267

1—}—‘30[—22r/82
=a1—a2+(ﬁ1—ﬁ2)10gr+210g{ }

Notice that
lim A(r, a1, a2, B1, B2) = lim h(r, a1, a2, B1, B2) = —00, o1, a2 € R. (2.3)
r—0 F—00

We consider first the case «; = log(Zﬁiz). Since h(1, a1, a2, B1, B2) > 0,

oh
= FO[Br = BOrP 28, —2p17P17 2],

7

B2l
(14721 +rPry’

and there exists a unique ro > 0 such that 3k (rg)/dr = 0, we obtain that x has two zeros (for
o =10g(282)).

By using the previous case and continuous dependence, we prove by contradiction the gen-
eral case. We assume there exist &1, &2 € R such that the number of zeros of % is different
from two. Let ; be the compact interval [log(28?), &;] if &; > log(28?) and [&;,log(28?)]
ifa; < 10g(2,3i2), fori =1, 2. Since |0h/de;| < 1 and by (2.3), there exist rg, ry, satisfying
0 <ro<1<r; < oo,such that

fr) =

h(r,a1, 02,81, B2) <0, forr <rg (a1, az) € 1 x Iy,
h(r,ay1,02, 81, B2) <0, forr >ry (a1,a2) € 1 x Ip.

Then, there exist o} € Iy, o} € I and r* € (ro, r1) such that h(r*, o, a3, B1, B2) = 0 and
oh(r*)/or =0. Then

Uglpy (r*)zua;ﬁz(r*), M/Otl*/sl (r*)zu/ot;ﬁz(r*),

by uniqueness of (2.2), 1 = B, which contradicts 81 > B2 and proves (a).
(b) B1 = B = B. We consider the function v defined by

&2 B
1+ 2/32”
v(r, o, a2, B) 1=t p(r) — e, p(r) = oy —as +2log i |
1+ Z‘ﬁr
Since
o_ (G5

I o o <07

dr (1+%rﬁ)(l+%rﬁ)

v(0, 1,02, ) =1 —ap and  lim v(r, aq, a2, B) = oz —ay,
r—00

we obtain (b), for a1 # ap.



Case (3 < N <9). In order to prove (iii), we introduce s and w defined by

s:=logr and w:=uy, — D (2.4)
Then, Eq. (1.2) is converted into the following one:

w”—i—(N—Z)ws—i—Z(N—Z)(ew— 1):0, —00 < § < 00. (2.5)
We now rewrite the above equation as a system of ODEs:

w' =gq, q'=—2(N =2)(e” —1) — (N —2)q. (2.6)

In the w—q plane, (0, 0) is the unique steady state. Since the general solution of the linearized
system

W' =0, Q'=-2(N-2)W — (N -2)0Q, 2.7
is given by
W(s) = k1" + kpet*,
for
Ai:%(—N—i—Zim\/M), (2.8)
we obtain that (0, 0) is a stable focus.
Multiplying (2.6) by (2(N — 2)e" — 1, ¢) and adding both equations we get

/

1
2N = 2)(e” —w) + E(qﬂ) = —(N —2)¢>. (2.9)
Integrate (2.9) over (0, s) to obtain
1
2(N = 2)(e” — w) + qu <k,

which proves the boundedness of the solution.
Notice that, from (2.9), we also deduce that there is no periodic solutions (apart of (0, 0)).
Then, (w, g) — (0,0) as s — co. Since (0, 0) is a focus we get that w has infinitely many zeros.
To see that there exist infinitely many intersections, we argue by contradiction. We consider
two solutions w and w which satisfy:

w”—i—(N—Z)ws—l—Z(N—Z)(ew—1):O, —00 < § < 00, (2.10)
w”—i—(N—Z)ws—l—Z(N—Z)(ew—1):O, —00 < § < 00, (2.11)
[w| <1 and |w|<1l, Sp<s<o0. (2.12)

We assume that w > w for s > §1 > Sp (i.e. there is no intersection after Sy). Since w is oscilla-
tory, there exist sg, s1 > S1 such that w(so) = w(s;) =0 and w > 0 at (so, s1). Multiplying (2.10)
by w and (2.11) by w, and subtracting both expressions, it results

(Wysw — wesW) + (N — 2)Wsw — Wwy) +2(N —2)(e”w — %) =0,
since (¥ — DHw — (e2 — )W) < 0 for s > Sp, multiplying by e =2 we have
(V=25 (w,w — ww,)), > 0.
Integrating over (sp, s1) we obtain

—eN g (s ws) + eV 0w, (so)wiso) > 0, (2.13)



since w;(s1) < 0 and wy(sg) > 0, from (2.13) we have that w(sg) > 0 or w(s;) > 0, which
contradicts w > w for s > S1, and (iii) is proven.

Case (N > 10). We first consider the solution to (2.6), which satisfies
lim w(s)=—0o0, lim g(s)=2.
§——00 §—>—00
In the w—g plane, we have:
(1) there is no steady state (apart of (0, 0));

(2) there is no periodic solution (see case 3 < N < 9);
(3) atg =0, w <0, wehave w' =0, ¢’ > 0;

(4) at the half-line ¢ = —%w, w < (), it results
q’ ev —1
w w
since (¢ — 1)/w < 1 for w < 0 we have

q’ Ni6< N-=-2

— < — <——.
w’ 2

N=2

Consequently, the region ¢ < 0, w < 0 and ¢ < —=5=w is invariant, w — 0 as s — oo and the
case N > 10 is proven.
To see that there is no intersection, we consider two solutions, (wy, g1) and (wy, g;), satisfy-
ing
lim w) =y, lim Wy = oy fOI‘Oll < oy,
§S—>—00 §S—>—00
We define w := wy — wy, q := q1 — g which satisfies
w' =gq, g =—(N—2)qg —2(N — 2)e”w, (2.14)

for some w € (wy, wy) if w; < wy and w € (wy, wy) if wy > wy (notice that in both cases
w < 0).
In the w—g plane, we have, as before:

e (0, 0) is the unique stationary state;
e atg=0, w<Owehave w' =0, ¢ > 0;

e at the half-line ¢ = —%w, w < 0, we have
q/ » N — 2
—=—(N-2)+4e" <-N+6<———.
w 2
As before, we deduce that the region ¢ <0, w <0 and g < —%w is invariant and w remains

negative for s < oo which ends the proof of the theorem. 0O
Lemma 2.1. Let u be a solution to (1.2) for N > 10, then:

() If N =10,
u(ry=—2logr +log(16) +r~*(alogr +b) + r*(c(logr)* + dlogr) + O(r %),

as r — oo, for some constanits a, b, ¢ and d.



(ii) If N > 10,
u(ry=—2logr +log2N —4)+ ar™ + br* + or?M dr e O(rZ)“*),
Jor
1
Ay = E(—N—i—Z:I:«/N —2+/N — 10),

as r — o0, and some constants a, b, ¢ and d.

Proof. We start with the proof of (ii). We consider w, the solution to (2.5) and
W(s) = ki 4 kpe**,
the solution to the linearized equation.
By standard arguments, as in [8], we get

w(s) = ae™® + bt

(e8]
2N —2)
Ay — A

§

(20750 G (6D _w(sh)) ds’. (2.15)

Since
n=c

1
eV —1—w= —w"
n!

n=2

and w(s) = ae* + O(e**), we have ¢ — 1 — w(s) = %62)‘“ + O (e++2-)5) Then, by
(2.15) we have

w(s) = ae* f-bet " 4 e O (e, (2.16)
Substituting again in (2.15) we have

w(s) = ae’* +bet=* 4 e+ 4 deP+ TS 4 0. (2.17)
Introducing the variables, r and u, we obtain

u(r) = —2logr +10g2N —4) +ar* + br*= + cr®+ 4 dr*+ = 4 0 (r**-).

In the same fashion we prove (i). O
3. The parabolic problem

In this section we study the blow up of solutions under suitable assumptions. We present first
a necessary and sufficient condition in order to obtain blow up in the sense

lim max u(x,t) = —00,
t—T xcRN

for T < co. The proof of Theorem 1.2, which follows the ideas of Gui, Ni and Wang [8], is also
enclosed in this section. See also [6,11].

Lemma 3.1. If uy > uo > —c1e02|x|27€,f0r €€ (0,1), c1 >0, ¢y >0 and ug is a regular steady
state, the solution to (1.1) remains bounded in every compact sub-set of RY x [0, 00).



Proof. Since u, > up, we obtain, by maximum principle, that # < u,. In order to prove the
lemma, we argue by contradiction and assume the solution blows up at t = T < oo. Let us
consider the function

_ ) 2 1—¢/2
u= CleXp<7l—t/(T+l)(|x| +c3) ),

e\ 2 . 2e
for 03:<(T—|—1)<02<1—§) +2N<1—§))) > 1.

After routine computations, by selection of ¢z, we have that u is a sub-solution to the problem.
Since u remains bounded in every compact sub-set of RY < [0, T + 1), we obtain a contradiction
which proves the lemma. 0O

Proposition 3.1. Suppose
/1412 2
—c&echxl +cf Sup(x) < —12P L es for ci>0(@G=1,2)andc3,c5 €R.

Then, the solution u blows up at finite time T < 1/(4c), for ¢ .= min{e‘CS‘l/(4c1), cp}, in the
sense

lim max u(x,t) = —oc.
t—>T xecRN

Proof. We consider the function

_ cx? t 1
u(x,t) = —cyexp 4 e + c3, fortg—c.

After routine computations, we have
u; — Au — & > 0,
which implies that # is a super-solution to the problem and « < u. Since

lim max u(x,t) = —o0,
t—=T xeRN

at finite time T = 1/(4c) we get the desired result. O

Proof of Theorem 1.2. In order to prove (i) we assume, without loss of generality, that

uo(x)<ua(|x|), xRV, 3.1
If uo(x) = uy(Jx|) at some point, we consider up(x) = u(x, to) for o > 0 that, by the strong
maximum principle, satisfies (3.1).

We consider ug, the solution to (1.2), and ro(f) defined as the first intersection point of ug
and u,. Since ug — uy a8 f — o uniformly in any compact sub-set [0, k] and ug < uy, there
exists Bp < « such that the function 1 defined by
up,(1x), if |x] < ro(Bo),
ug(|x)), if |x| 2 ro(Bo),

satisfies ug < vrq. Since u(x, -; 1) is monotone decreasing and every steady state u,, intersects
Yy for @ < Bo (see Theorem 1.1 for N < 10), we have

1ﬁl(x):{

lim max u(x,t; 1) — —oc.
t—)ooxeRN



By standard comparison arguments we have that u(x, £; ¥1) = u(x, t; up). Now, (i) follows from
Lemma 3.1.

In order to prove (ii), we define the function
ug, (Ix), if |x| <ro,

Yra(x) :{

ug(|x)), if |x[ = ro,

where rg is the first intersection point between u, and ug,, for 1 > o sufficiently close to o.
We may assume that ug > ¥ and v, is a sub-solution to the problem. Since u(x,-; ¥p) is a
monotone increasing function and every radial steady state ug intersects ¥, for 8 > B (see
Theorem 1.1 for N < 10), we have

lim max u(x, t; ¥p) — oo,

t—T XERN
for some T < oo. To prove T < 0o, we consider first the case in which the blow up set contains a
neighborhood “B” of the origin and use a standard Kaplan’s argument. Let A1 be the first eigen-
value of —A in HOI(B) and wq the positive and normalized in LY($2) associated eigenfunction.
We define

U::/uwldx,

B
then

U+iUzeY, U=k,

for ¢y large, such that k is bigger than the larger root of the equation e® — A1s = 0, we obtain finite
time blow up for U, which proves T < oo. If the blow-up set of u(x, £; ¥rp) is a single point, the
radially symmetric function v defined by

v(lxl) = sup u(x,t; ¥2)

t€[0,00)

is a singular steady state satisfying v > ¥» > u,, which contradicts Theorem 1.1.

In order to prove (iii) we argue as in (i) and assume, without loss of generality, that up < ug.
Consider now uqg+ for p* > B, and r1 > 0 such that uup: (r + €) > ug(r) for r € (0, r1) and
uyp(r1 +€) = uqg+ (1) for € small enough, such that, the function
ugpr (x| +€), if x| <rp,
ugp(lx|), if |x| > 7y,

Pr3(x) :{

satisfies uo < ¢3. As in parts (i) and (ii), we can see that u(x, -; ¥3) is monotone decreasing and

lim max u(x,t; {¥3) — —oc.
[—00 xRN

Since u(x, t; ug) < u(x,t; yr3) and thanks to Lemma 3.1 we obtain (iii). O
4. Stability of solutions for N > 10

In this section we study the stability of solutions for N > 10. Theorem 1.3 concerns the
stability of steady states and the weak asymptotic stability, the proof follows the ideas of Gui, Ni
and Wang [8] developed to study

wr=Au+uf, xeRY, te,T). 4.1)



Theorems 1.4 and 1.5 concerning asymptotic stability are proven in a similar fashion as Theo-
rems 4.2 and 6.1 in Pol&Cik and Yanagida [10] concerning (4.1).

Proof of Theorem 1.3. First we show that u, is stable with respect to the norm | - |5, for
N = 10 and with respect to the norm ||| - ||| for ¥ = 10. We divide the interval (0, co) in two
parts [0, Ryc] and (Ry., 00), where Ry will be defined later. By continuous dependence on «
we have that

lim  sup |ug —uq| =0. 4.2)
B=0 g0, Ry

Then, if N > 10,
o (r) = —2logr +10g2N — 4) + A()r** + O (r*"),
where A(a) is continuous and increasing in «. We choose R, such that
_ €
sup |(Lloz(r) —ug(r)r k+| < |A(a) — A(ﬁ)| + 3 4.3)
€[ Rye, 00
for |8 — o] < «/2. Taking B4 > « > B_, such that |A(«¢) — A(B+)| < €¢/3, and
€
sup |M/3i(r) - ua(r)| < 3
r€[0, Ry

we get
g (1x1) = wa(Ix1) [, <. wa

Then, for any € > O there exists § > 0, such that if [up(x) — ua(Jx]ll5, < 3, there exists Bt
such that ug_ (|x]) < uo(x) < ug, (|x|) and (4.4) holds. By comparison, we have ug_(|x]) <
u(x, t; up) <ug, (|x]), which proves the stability of u,.

The case N = 10 may be proven in the same way.

To see that u, is weakly asymptotically stable we introduce the next proposition.

Proposition 4.1. For each radial solution u, and for N > 10 there exists a sequence of radial
strict super-solutions u and sub-solutions u® such that

=1 _ =2 2 1

Uy > Uy > oo > Uy >0 > Uy > Uy,
and uy is the unique solution in the interval L_t’; > Uy > g’;. Moreover, for k e N

| llgnOo |L_t§ — ua||x|_)‘* > 0, | 1|1_r)nOo |g§ — ua||x|_)‘* > 0. 4.5)
X X

The proposition may be proven in the same fashion that Theorem 4.1 in [8], by using the
auxiliary problem

ny N—=1 v :
{u + 50+ (I h)e? =0, in (0, 00), (4.6)
v(0) =8, v'(0) =0,
where £ is a non-negative and non-trivial regular function with compact support.
In order to finish the proof of Theorem 1.3 we consider a sub-solution u = g’; and a super-

solution u := L‘t’; (which existence is shown in Proposition 4.1). From (4.5) we have that there
exists § > O such that

Juo) —ua ()14 )T =8, i) —ua (k)L + 1) 7 > 6,



for N > 10. Then, if ||ug — uyllx_ < 8, we have u < up < u and
u(x) Sulx, t;u) <ulx, t;u0) < ulx, 1;u) <ux).

By monotonicity of u(x, -; u) and u(x, - ; u) and Proposition 4.1, we have
tgr(r)lou(~, Lu)=uy,= tl_l)rgo u(-, t;u).

Then, for A’ < A_ and R > 0, we have

(1 + x1) ™ (s £ 10) — g (1x1)) |

<{ca-%uo—”uﬂ, if [x| > R,
Sle@+ B ux, 13 u0) — g (xD oo p)s  if x| < R,
- {CR_)“/—H“, if |x| > R,
Sl + By lux, 5 uo) — ua (XDl r),  if |x] < R,

and taking limits, we obtain

Ny < CR_)L/+)L7 .

lim sup ||u(~, 1 ug) — Uy
[— o0

Since R is arbitrary, we conclude the proof for N > 10. The case N = 10 can be proven in the
same fashion. 0O

Before giving the proof of Theorem 1.4, we introduce Lemma 4.1 and Proposition 4.2.
The proofs are given for reader’s convenience, the proof of Lemma 4.1 follows the proof of
Lemma 3.3 in Pol4Cik and Yanagida [10] and the results of Proposition 4.2 are enclosed in Propo-
sition 4.1 and Lemma 4.3 of the same work.

Lemma 4.1. Let u,, be the solution to (1.4) and let v be the solution to

{vt—Av:e”&v, xeRY, 10,
v(x,0) =vo(x), xeRY,

where vo € C(RY). Then,

4.7

(i) There exists a constant C > 0 independent of vo such that
lvC. 25 v0) | < Clvoll,

where || - || is any of the norms || - ||, 2 € [A—, A4] for N > 10 and ||| - ||| for N = 10.
(i1) If vo has compact support then

||U(~, 1 Uo)”Loo(RN) —0, ast—0. (4.8)
More generally (4.8) holds if
Hm [x]*[vo(x)| =0. (4.9)
e.9)

|x|—

Proof. We only consider the case N > 10 in the proof. The case N = 10 can be treated similarly.
By the linearity of the equation we may restrict ourselves to the case vp = 0. Since
v(x, t; vo) 2 0, we have that u, 4 v is a sub-solution to the problem, i.e.

ue(x) +v(x, t; vp) <ulx, t; ug + vo). (4.10)



Since u, is stable, there exists 8 > 0 such that if ||vg|| < & then
ltter —u -, t5ue +v0)||, < 1.

By (4.10) we obtain that

1
||U(’7 1 UO)”)L < 1= g”UO”)”

by linearity, we have proven statement (i) for C = 1/8.

To prove (ii) we first consider the case where vy has compact support. Using the weak asymp-
totic stability (see Theorem 1.3) and (4.10) we obtain (4.8) for ||voll, small enough. By linearity
of (4.7), (4.8) holds for any vy € CRY) with compact support.

We next assume that (4.9) is satisfied, then, for any € > 0 we can decompose vp as

vo = v1 + V2,

where vy is continuous with compact support and vy satisfies ||vz|l, < €. By linearity of the
problem and (i) we have that

limsup||v(~, t; vo)”k < limsup ||v(~, t; Ul)”x + lim sup ||v(~, t; v2)||k < Ce.
=0 f— o0 [—o0
Since € is arbitrarily small we get (4.8). O

Proposition 4.2. Assume ug and vy satisfy (1.5)—(1.7), then:

(i) There exist C > 0 and 8 > 0 such that for each vo € CORY) with ||vo|| < 8 we have
| 10 + vo) — u (-, 15 u0) | < Cllvol, (4.11)

where || - || is any of the norms || - ||, A € [A—, Ax]for N > 10 and || - ||| for N = 10.
(i1) If vo has compact support, then

. A
Hm  |x|*|u, T3 uo + vo) — u(-, T3 u0)| =0,
|x]—00

Jor © > 0 small enough.
Proof.

8 for § small enough, we have
uo +vo K Ug+1-

We consider the problems

_ — g1 N
{Qt Ay =e"sly, XGRN’ t>0, 4.12)
v(x,0)=(vp)-, xeR",
and
T — AT = pllet1y N
{vt Av=e v, xeRN,t>O, @.13)
v(x,0)= (o), xRV,

where (-)4 is the positive part function (i.e. (s)+ =0 if s <0 and (s)y = s if s 2> 0) and

()= = (=)



As in Lemma 4.1 we can see that u(x,t; ug) + v(x,t; (vo)+) is a super-solution and
u(x,t; ug) —v(x,t; (vo)—) is a sub-solution. Then

3 0+ vo) — uC 1300} | oo vy < max (@, v}

Applying Lemma 4.1 we obtain (i).
(ii) By the stability of ug (see Proposition 4.1) we have that

|u (. t:u0 £ wo) — u (. 15 u0) |, < Cllwollz, (4.14)

for wo positive continuous function, satisfying —wp < vg < wg and such that |jwo]|, < oo.
Then, since the sup{vo} C Bg, for some R > 0 we have

u(, t;uo —wo) < u(, t;ug+vo) <ul,t;uo+wo), |x[=R, 1<t
for = small enough. Then, by maximum principle we obtain

u(-, t;ug —wo) < u(-, t;ug+vo) <u(, t;up+wo), |x|>R, t<rt.
Then, thanks to (4.14) we obtain (ii). O

Proof of Theorem 1.4. The proof can be done now, following the steps of Theorem 4.2
in [10]. O

Proof of Theorem 1.5. We first prove that the solution is global, i.e. it does not blow up at finite
time. Arguing by contradiction, we assume that the solution # blows up at time 7' < co. By
Lemma 3.1 the solution remains bounded below in every compact sub-set of RY x [0, o) and
by the maximum principle we obtain that

u(x, t;u0) < @*(|x|),  inRY x [0, T, (4.15)

as long as the solution exists. Then, if the solution blows up at finite time, it has to be at x = 0. By
maximum principle « remains strictly less than @* on the compact sub-set |x| =6, T’ <t < 7,
for§>0and0<T' < T.

Since uy, — @* as « — oo in every compact sub-set of (0, o0), there exists o, large enough
such that

u(x, t;up) < g, (x), |x|=8, te[T',T],
u(x, T up) < g, (x), |x|<38.

By maximum principle the solution remains below u,, att =T for |x| < §, which contradicts
the assumption of blow up at finite time and proves the global existence. The proof ends follow-
ing [10]. O
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