View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Servicio de Coordinacién de Bibliotecas de la Universidad Politécnica de Madrid

A System for the Design and Development of
Vision-based Multi-robot Quadrotor Swarms

Jose Luis Sanchez-Lopez, JesUs Pestana, Paloma de la Puente, Ramon Suarez-Fernandez

Pascual Campoy

|. INTRODUCTION

This paper presents a framework designed to accelerate
the prototyping of successful multi-aerial-robot behaviors
for the research and development of civilian applications of
small Unmanned Aerial Vehicles (SUAVS). The motivation of
this framework is to allow the developers to focus on their
own research by decoupling the development of dependent
modules, leading to a more cost-effective progress in the
project. In order to achieve this, the framework has been
made public and open-source, and the basic instance of the
framework offers several open-ended modules required for
experimental multi-aerial-robot navigation.

The basic instance of the framework was designed to
ease some of the main issues related to working with aerial
multirobot systems, such as: localization, obstacle avoidance
and partner detection. Our focus is to allow the team to
work in parallel so that it is possible to advance in late
stages of the project without depending on the development
of the initial stages, such as: hardware platform, state es-
timation, flight controllers, etc. It is possible to test new
multi-robot behaviors first in simulation and,
afterwards,on experimental flights based on the cost-effective
testbed Parrot AR Drone 2.0. Experimental flights using
another desired quadrotor platform can be executed once an
interface compatible with the framework has been
implemented. This way the advantages of novel strategies
can be experimentally demonstrated on early stages of the
project development.

In order to achieve the discussed interchangeability among
hardware platforms, and in order to avoid the costly ac-
quisition of a motion capture systems such as Vicon4, the
following design decisions were made: first, the localization
problem is simplified by means of visual markers; second,
each robotic agent broadcasts its current estimated pose; and
third, the basic instance of the architecture can fly the AR
Drones 2.0 with full obstacle avoidance capability. Note that
the framework was designed to work with quadrotor UAVSs.

and

Fig. 1. Experimental flight of the basic instance of the framework, which is
characterized by swarm behavior, using 5 AR Drones. The row of columns
represents a virtual wall with a single 1 5 m opening in the middle. In order
to simplify the localization problems the columns are marked using ArUco
visual markers [2]. In this flight the mission of the swarm is to cross from
one side to the other, each swarm agent also has to avoid collision with
the columns or the other drones. This test was designed to showcase the
capabilities of the basic instance of the framework.

The second motivation to design this framework is to
test the use of aerial visual multi-robot system for civilian
applications. There exist a large variety of applications which
require a robotic system to densely navigate a wide area.
Such applications can benefit from a swarming approach for
the required data gathering. For instance, such an approach
could be applied to search and rescue solutions.

This paper is intended to present and describe the designed
open-source framework. The layout of the paper is the
following. First, a description of the characteristics of the
framework is discussed in section Il. Second, a thorough

https://core.ac.uk/display/148687308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

description of the basic instance of the framework is done
in section III. Third, In order to showcase the practical
capabilities of the architecture, several simulation results
are presented in section IV, followed by corresponding
experimental flights presented in section V. And lastly, the
future work and the conclusions are discussed respectively
in the sections VI & VIL

II. SYSTEM DESCRIPTION

This paper presents a fully-functional framework designed
to ease the development of multi-sUAV autonomous systems,
with an special emphasis on vision-based quadrotor swarms.
The main design specifications of the system are the follow-
ing:

o Modularity, to allow code reuse for different solutions.
For this reason, the Robot Operating System (ROS)
is used as middleware between modules and across
computers. To better understand the characteristics of
ROS, see [15], [12].

o Compatibility with various quadrotor platforms through
the usage of a well specified interface. The use of
visual markers and the choice of AR Drone 2.0 as first
compatible platform were done to obtain cost-effective
solution.

o Capability of realizing multi-aerial-robot missions. The
robots would be connected through WLAN, see figure 2,
and they would communicate under the ROS middle-
ware.

o Flight-proven and capability of running simulations on
big parts of the developed architectures.

o Open-source, so that we can share our works and other
developers can reuse any part of the architecture in their
own projects.

Our framework uses the Robot Operative System (ROS)
[5], a worldwide used API that eases the management of
communication between the software modules of our system.
The framework modules were programmed in C++ using the
most recent version of the standard of the C++ programming
language, C++11. In general, the ROS communication inter-
face has been separated from the main functionality of the
modules by means of wrappers.

The key characteristic of our framework is modularity.
This allows to create independent modules with specific
functionalities but that can be exploited once connected to
the rest of the architecture. This modularity allows the indi-
vidual testing of modules easing the project progress. Also,
understanding the modules as input-output systems permits
to test in simulation the compatibility of their interfaces with
the full system instance at hand.

The compatibility with various quadrotor platforms is
achieved thanks to the modularity requirement. Since each
module is defined by its interface, different platforms can be
used with the only requirement of respecting the specified
interface. However, if a platform is heterogeneous with
respect to every supported platform (i.e. it uses different
sensors), the developer can leverage from the modularity
requirement to minimize the required work of interfacing

Drone 2 Drone 3

4 N/ N\

Drone 1

Drone n

s

5

e

- ¢ Z\a ¢ ~\- ¢ ~/
| Wireless Local Area Network (WLAN)
Fig. 2. The multi-robot system is composed by robotic agents, which

consist of a quadrotor platform and an specific instance of the software ar-
chitecture. The drone is either commanded via WiFi from a ground station or
from an on-board computer. All the computers can communicate with each
other through a Wireless Local Area Network (LAN). The communications
between modules and robotic agents is implemented creating a single ROS
network.

it with the rest of the architecture. To achieve this goal, the
interface between modules has been specified and each robot
agent uses its own configuration files. Each module can be
executed in an on-board computer or in ground computers.
However, all the computers have to be connected in a local
area network (LAN) or in a wireless local area network
(WLAN), see figure 2.

The framework is fully operative, which is shown in
the paper through simulations and real flight tests of up
to 5 drones, and was demonstrated with the participation
in an international micro-aerial vehicles competition. Since
we trust in our system and we believe in sharing with the
scientific community, we decided to make our framework
open-source. This way, anyone interested in working with
multi-robot aerial applications can use our framework as
a starting point of their research and as a tool to test
their own algorithms. The link to the framework’s code
Git repository is specified in the following website: http:
//www.visionduav.com/?g=quadrotor_stack.

III. MODULES

As said in section II, the proposed system framework has
the main characteristic of being modular and every person
interested in working with this system is able to create
new modules and have it functioning easily. In this section,
our particular module’s implementation is defined. Previous
works of the authors in this framework are described in [25].

In figure 3, our modules of each agent of the swarm, and
the way that they are connected are represented. The modules
are divided in five big groups, described in the following
subsections:

Drone and Low-Level Control, section III-A.
Localization and Mapping, section II1-B.
Mid-level Control, section III-C.

High-level Control and Intelligence, section III-D.
Human-Robots Interface, section III-E.

e o o o o

[ROS] Swarm Agent

Low-Level Control

I
I
I
— - Trajectory i and Drone
Mission [pemt Trajectory ; Trajectory |Commands | W& %
_Planner [point to look Planner > Controller L ’/ :
r Mission or Yaw 4| Fixed obstacles S Tl
| PRM config
(| Map config g
Mission 2 le Pose
Command| £ LT Yaw Yaw Odometry _ s
© A) Pose | Estimator =
Society| w® | o Commander Estimated o <
Pose ﬁ (n-)U r Pose Localization take-off point ©
= Estimated §
L Poses o
s | Obstacie Obstacle Aruco Amuco I al Marker| &
roscore| 2 v 3 List Detector Pose List [Tl Known poses) List & E
s : < take-off point < Detector |«
warm, Aruco[] obstacles [input] variances Marker] sizes
1

mm s (WLAN)

Fig. 3.

Our Implementation of the Modules of the Framework. The architecture is modular and is built using the Robot Operating System (ROS)

framework. Each white box represents a module, and the green text inside it are configuration parameters. The localization module fuses the odometry
based estimation with the visual markers feedback. This module broadcasts the estimated pose to the mission and trajectory planning modules, to the
controller module, to the obstacle detector, and to the other robotic agents. The trajectory planner gives free-collision trajectories to the trajectory controller
which also receives yaw commands given by the yaw commander. The trajectory controller generates commands to the drone. The mission planner module
monitors the mission given mission points to the trajectory planner. The hypothalamus module receives the estimated position of the other robots and

communicates it to the trajectory planner.

A. Drone and Low-Level Control

This module represents the real drone used in the presented
system. The drone is formed, not only by the mechanical and
electrical components, but also by a set of sensors and low-
level controllers:

o Low-level controller that allows the trajectory controller
(section I1I-C) to send commands of yaw, pitch and roll.

o Altitude controller that allows the trajectory controller
to send height commands instead thrust commands.

o Take-off, landing and hover controllers that allows the
hypothalamus (section III-D.4) to send this kind of high-
level commands.

¢ IMU measurements (accelerometers, magnetometers,
gyroscopes) and ground speed measurement, that al-
low the Odometry Pose Estimator (section III-B.1) to
calculate the pose of the drone using the odometry
measurements.

o A front camera that allows the Visual Markers Detector
(section ITI-B.2) to see the visual marks that the envi-
ronment has.

There are no limitations in the multirotor platforms used
as long as the requirements cited above are fulfilled. In our
particular implementation, we used the cost-effective Parrot
AR-Drone 2.0 [4] as the robotic platform. The characteristics
of this platform are thoroughly explained in [6] and satisfy
all the requirements. The ground computer communicates
with the drone via Wi-Fi using the ardrone_autonomy ROS
package [1].

B. Localization and Mapping

Localization in indoor environments is a challenging task
for UAVs, especially if a low cost and very lightweight
solution is required [20], [24], [17], [14]. In the absence of

GPS and laser sensors, visual approaches are very popular
[24], [17], [14].

In the proposed system, the global localization of each
drone is based on IMU and optical flow data for the pose
estimation, calculated by the Pose Estimator module. How-
ever, this measure has some drift which may be significant,
so it should be corrected with more reliable information from
the environment when available. Visual markers (see section
ITI-B.2) are used for this purpose to recover the 3D pose of
the front camera of the drone with respect to each visual
marker.

Since the environment can be partially known in advance,
some fixed landmarks are employed. This previously known
landmark can be also attached to the previously-known pose
and shape obstacles. Other visual markers have to be added to
the previously-unknown obstacles. The only requirement is
to know which visual markers are attached to each obstacle.

Localization with visual external aids for UAVs has been
recently proposed in other works [24], [17], [14]. The method
presented by Jayatilleke and Zhang [17] requires all the
landmark poses to be known a priori and only works in
limited areas, making use of quite a simple approach without
filtering of any kind. The work by Faig et al. presents an
interesting approach for local relative localization in swarms
of micro UAVs, that requires to keep external markers
always visible. Our method was mainly inspired by the work
by Rudol [24], but our models and formulation are quite
different from those proposed by Conte [7].

1) Odometry Pose Estimation: The “Pose Estimator” is
explained in the following article and Master’s Thesis [23],
[22].

2) Visual Markers Detector: To correct the drift that the
Odometry Pose Estimator module has, absolute measures
provided by visual markers are used. Our system employs

ArUco visual markers, which are shown in figure 1. These
visual markers are open-source and the software library can
be downloaded from [2]. This library allows to compute the
current 3D pose of the camera with respect to the ArUco
markers that are visible in the current frame. The visual
markers help us solve two problems at the same time in
quite a straight forward manner: the problem of sensing
the various obstacles, which is a very hard task using only
computer vision techniques, and we also avoid the visual
localization problem in a general environment, which has
not been entirely solved yet. A remarkable work where visual
localization is achieved using AR Drones is [13].

3) Localization and Visual Markers Mapping: The inputs
of this localization module are hence the pose estimation
result (similar to odometry) and the relative observations of
the visual markers.

We designed and implemented an Extended Kalman Filter
(EKF) that allows the complete 6 DOF pose of the drone
to be corrected by integrating the odometry data and the
information from the visual external aids detection. The
localization method benefits from the existence of known
landmarks, but it also incorporates unknown detected fea-
tures, using a Maximum Incremental Probability approach
for building a map of 6 DOF poses corresponding to visual
markers positioned in the environment. Similar methods for
ground mobile robots were developed in previous work by
de la Puente et al., initially based on the observation of 2D
point features with a laser scanner [9] and later based on the
extraction of planar features from 3D point clouds generated
by a tilting laser scanner [11], [10].

In this work, the data association problem does not have
to be addressed, since the visual markers readings provide
unique ids for the observations and the landmarks. This
way, loop closure is facilitated and enhanced robustness can
be achieved with a not very cumbersome algorithm which
showed nice empirical results in our initial tests.

Non linear state and observation models are used. At each
iteration k, the prediction of the pose state = (6 DOF) is
given by:

ik = f(xvu)f(k_l,uk -)A(kfl ©® u, (l)

where the & operator corresponds to the composition of
relative transformations in the 6D space. The noise in the
odometry measurements is considered as Gaussian white
noise (as required to apply the EKF), and the odometry
increment u is represented as u ~ N (1, Q).

The observation model is defined by the following inno-
vation vector for an association of observation o; and map
landmark 1;:

hi,i+5 =X Oj — lj (2)

The correction of the pose state is obtained by the update
equation:
Xk = Xk — Why (3)

where W is the Kalman gain matrix of the system. The
covariance matrices are updated at each stage of the filter
as required [26].

The environment is assumed to be static except for the
presence of other drones. The accumulation of drift error if
the drone is not able to detect visual markers all the time may
require the incorporation of a forgetting mechanism so that
the drone can navigate safely with local maps. In our tests
thus far this has not been necessary due to the addition of
extra visual markers over the floor, but this should be further
investigated.

The input parameters of the algorithm (initial pose, covari-
ance values, global poses and ids of the known landmarks)
are read from an XML file, by means of the pugixml library
[18]. The corrected absolute pose of the drone and the list
of global poses of the landmarks belonging to the map are
obtained as output of this module.

4) Obstacle Processor using Visual Markers: Once the
position of the unknown visual landmarks is obtained, they
are processed in order to obtain higher level geometrical
features in 2D to be used as obstacles by the trajectory
planner. The map of obstacles is rebuilt at every iteration.

To do so, some prior information is required. Each of
the obstacles is given a unique id and the ids of the visual
markers belonging to it are provided. The poles are modeled
with circles given by the coordinates of their center and
the radius c¢(z.,y.,7), while the walls are modeled with
rectangles given by the coordinates of the center, the width
and the length R(z., y., w,l).

Given the observation of a landmark 1; belonging to pole
1, an initial estimate of the circle 7 is very easily obtained:

(Tesr Ye;) = L + rdir 4)

with dir = (cos(yaw), sin(yaw)). This initial estimate is
further refined by the mean value of incorporating subsequent
landmarks belonging to the same pole.

A similar algorithm is used to obtain the rectangle models
of the wall.

C. Mid-level Control: Trajectory Controller

The responsibility of this module is the transformation of
the trajectory references given by the trajectory planner, and
the yaw references given by yaw commander in low-level
commands of the drone, that allows the drone to follow these
references appropriately.

The “Trajectory Controller” module is explained in the
following article and Master’s Thesis [23], [22]. The con-
troller is able to follow yaw commands while executing a
trajectory.

D. High-level Control and Intelligence

In this section, the high-level control and the basic in-
telligence that each drone has is described. This high-level
control is formed by a trajectory planner that creates collision
free trajectories, a yaw commander that generates yaw refer-
ence to look to the points of the map with more information,
and a sequential mission planner that allows the drone to
follow a user-predefined mission. The basic intelligence that
the drone has is concentrated in the hypothalamus that
monitors the state of the drone and its modules, and manage
the basic functionalities of the drone.

1) Trajectory Planner and Collision Avoidance: The ob-
jective of this module is the computation of a free collision
2D trajectory (horizontal coordinates x and y) to achieve a
mission.

This module works as follows: a free of obstacles Proba-
bilistic Road Map (PRM) [8] of the 2D map is generated off-
line. The advantage of using a PRM instead of a fixed-cell
decomposition is that you can select the number of nodes
in the graph and their neighborhood. Also, if the robot is
moving through a zone with a lot of obstacles, new nodes
can be added.

Once the free of obstacle graph is created, an A-Star
algorithm [21] searches the path using a potential field map
function as cost of the algorithm. This potential field map
is built as a sum of one component that attracts the drone
to the end of the obstacle zone and another component that
repels the drone from any obstacle. The usage of a search
algorithm (A-Star) instead of the potential field map alone
[19], avoids the problem of the local minimum blockage.

Three kinds of obstacles are considered. The first type of
obstacles are the fixed and previously known obstacles which
are set during the module startup and are obstacles and never
change their previously known position. The second type are
the fixed and unknown obstacles that are received from the
obstacle generator whose position could change over time,
depending on how precisely are the visual markers pose is
determined by the localization module. The last type are the
unknown and moving obstacles that are other drones and
are only considered in the path planning if they are close to
the drone. Other drones’ positions are received through the
hypothalamus module.

Once the path is calculated using the A-Star algorithm, it
is post-processed in order to obtain a shorter and more direct
path, avoiding the noise produced by moving the robot from
node to node of the PRM. The post-processing is done using
the value of the potential field map.

When new drones’ poses or new obstacles’ positions are
received, the planner checks if the new obstacles are outside
the planned trajectory and if the drone is following the path.
Otherwise, the trajectory is re-planned.

With this algorithm we solve the problem of the path
planning and the collision avoidance, being able to navigate
safely in the map using the Trajectory Controller module.

An important work in this field is described in [16].

2) Yaw Commander: The “yaw commander” module, see
Fig. 3, calculates de yaw reference depending on the current
swarm agent’s mission. This module could potentially decide
in which direction to look in order to explore or to get the
most localization information from the environment. These
possibilities will be explored in future work.

3) Mission Planner: The mission planner allows the op-
erator to define a mission as a set of separate tasks; which
are, in turn, fully described by a set of numeric parameters.
The mission definition requires a xml file where the mission
is defined. It has different available tasks such as: take off,
land, hover, sleep or move.

This module interacts with the trajectory planner module,

the localization module when moving and with the hypotha-
lamus module.

4) Basic Intelligence - Hypothalamus: This module im-
plements low-level intelligence such as: monitoring the state
of the other modules of the swarm agent and presenting
a simple interface between the mission planner and other
modules. Some of the commands that the mission planner
can achieve through the hypothalamus module are: setting up
the whole system to an active flying behavior (including the
start-up of all other modules and the trajectory controller);
and also simpler commands such as take-off, land or hover.

This module also implements the communication between
its swarm agent and the rest of the swarm. Currently the
communication is limited to sharing each drone’s current
pose.

E. Human-Robots Interface

A Human-Robot Interface was implemented in order to
have a better understanding of the flight dynamics and the
response of the drones in each mission. It can be used in
real-time flight tests as well as simulated environments. The
intended purposes of the interface are:

« To visualize and keep track of the progress of the drones
in real-time during missions and send commands, if
necessary.

e To verify that the modeled behavior and the expected
performance of the different modules are adequate for
executing the assigned mission in a simulated environ-
ment.

« To extend the assessment behavior and expected perfor-
mance on types of missions that cannot be tested.

« To extrapolate to scenarios not currently available due
to hardware or equipment limitations (higher number of
drones).

Fig. 4. Visualization of a simulated 5 drone flight in the Pinball Mission
using the Rviz Interface. Drone axes: red x axis, green y axis and blue
z axis. The blue cylinders represent the map columns and the green grid
the floor. The red line shows the current planned trajectory for the selected
drone and the red dot is the current mission point.

The interface developed, shown in figure 4, is based on
the 3D visualization tool for ROS, Rviz. Communication is
done in real time between all the ROS nodes. The 6D poses
of the drones and the position of the obstacles are received
via ROS topics as well as being able to send velocity,
position and trajectory commands in real-time. The data
collected during simulations has the purpose of validating
the developed trajectory controller and mission planner in
different scenarios.

IV. SIMULATION RESULTS

Before a multi-aerial-robot flight all the hardware needs
to be checked and set up, including not only the quadrotor
platforms but also the test environment, the external visual-
ization and processing computers, the WLAN, etc. Another
very important requirement, for security reasons, is to have
one emergency pilot per quadrotor. All this means that a lot
of time and people are required to set up everything for an
experimental test, which also means that every test has a
significant cost. Since preparing a multi-aerial-robot system
for a flight is costly, real tests should preferably be carried
out after the system is tested in simulation.

Thanks to the modularity of our proposed system, it is
possible to replace actual modules with simulated counter-
parts, since they only need to somewhat mimic the original
module’s interface. Then, except maybe for the modules that
directly interface with the drone or the environment, the rest
of the system can be tested in simulation. The value of such
simulations is that they allow to test sets of modules of the
actual flight architecture, easing the testing and debugging
software development processes.

In order to simulate the basic instance of the framework,
described in section III, two simulator modules were devel-
oped. The first one replaces the interface and approximates
the flight dynamics of the quadrotor, which corresponds to
the drone interface module described in subsection III-A.
Since the Visual Marker Detector module implementation
uses an external open-source library, instead of obtaining
simulated images that could be processed by the Visual
Marker Detector module, it was decided that the best option
was to develop a simple simulated version of the whole
module with a comparable marker detection and position
estimation capabilities.

The following sections of the paper present the execution
of a mission called: “The Pinball”. It is noted that these two
simulator modules were not designed to provide an accurate
behavior compared to their real counterparts’ behavior. The
goal was to test the rest of the system in order to debug it
and improve it, and also to check the mission specifications
before experimental flights. The reader is invited to visit the
research group’s webpage to watch videos of these simu-
lations and the corresponding experimental flights: http:
//www.visionduav.com/?g=quadrotor_stack.

In order to interpret the simulation and experimental flight
figures, the modules specifications have to be taken into
account, which are described in the Arhictecture Software

Modules section (Sec. II). From them, the overall expected
behavior of the drones is:

o Each drone follows a sequence of waypoints given by
its mission specification. The mission planner executes
it sequentially.

o During execution, the planner will attempt to find tra-
jectories that are collision-free. If it fails, the drone will
be controlled to stay in the current position.

o If other swarm agents enter the current trajectory, the
planner will detect it and will stop the drone and attempt
to find a collision-free trajectory.

o If another swarm agent is on the current goal waypoint,
the drone is commanded to stay in the current position.
A new trajectory is planned when the goal position is
again free.

A. Mission: The Pinball

This mission is carried out in a volleyball court (dimen-
sions: 9 m x 18 m). Twelve poles (four of them with a
diameter of 40 cm; and the other eight of 30 cm) are
spread in the court with a distribution 1-3-4-3-1, shown
in figures 5 and 6. These poles act like obstacles in the
same way that the pins in the pinball. Five drones execute
a navigation mission that consist on crossing the obstacles
zone from one side of the court to the other. The mission
specification consists on the following sequence of tasks:

1) Start the architecture operation and take-off,
2) Move to a goal landing location,
3) Land and stop the architecture.

In figures 5 and 6, the trajectories followed by each
drone in two simulations of the same mission are displayed.
As there is no high-level intelligence that synchronizes the
swarm their behaviors are not deterministic and, thus, are
different in every simulation execution:

o Simulation 1, Fig. 5: each drone followed a short and
direct path, with very small rectifications, to its goal
landing location.

o Simulation 2, Fig. 6: some drones followed a short and
direct path, but others accomplished a very long path to
avoid the other drones in the court.

Since the swarm agents plan their trajectories with no interac-
tion with a global synchronization intelligence, the different
executed paths are a demonstration of a low-intelligence
swarm behavior.

V. EXPERIMENTAL RESULTS

Once the system has been tested in simulation, the follow-
ing step is to test it in a real experiment.

As the simulations were not an accurate representation of
the reality, in the real tests, some issues that are not present
in simulation appeared, such as:

 Inaccurate quadrotor model

o Inaccurate drone’s sensors measurements

o Inaccurate performance of the computer vision algo-
rithms

18

I |
. |
16 ' |
o) |
14 ;\ \“‘
! \
12 o o o
\)
10 " \

Y [m]
o

*'
O
(o)
(o)

8 .I' ‘\ / /ll
I y
6——3— 10— l o j ©
I
‘ 1
4 i{ / \\
. o
2 /1 /
420\
0 > S /\
0 2 4 6 8
X [m]

Fig. 5. Simulated flight of the Pinball Mission, where five drones flew
autonomously. The executed trajectories of the drones are shown as line
plots. The black circles are the poles. In this simulation, all the trajectories
followed by the drones are direct and short. Some drones needed to create
a longer path to avoid a collision. For example, the drone plotted in green
had to go to the left of the map at the beginning of the simulation to avoid a
collision with the drone in cyan. Once the collision was avoided, the drone
replanned its trajectory again in order to avoid a collision with the red drone.

Those inaccuracies involve localization and control errors
that the system has to minimize and deal with.

In this section, real tests of the mission simulated in
section IV are achieved.

A. Mission: The Pinball

This is the same mission defined in section IV-A. Fig-
ure 7 shows the trajectories followed by each drone. These
trajectories are more noisy that the one achieved through the
simulations due to the problems and inaccuracies cited above.
However, the system keeps working correctly and completes
the mission.

\

\

0

\
\/

S —

/

H »
™ " . .
|
o |
N\
N ©

/_rr

\
/

0 2 4
X [m]

(o3}
(0]

Fig. 6. Simulated flight of the Pinball Mission, where five drones flew
autonomously. The figure can be interpreted similarly to Fig. 5. In this case,
all the drones followed a short and direct path except the green one, which
had to fly a very long path to avoid several collisions: first, with the cyan
drone; and later with the magenta and red ones.

VI. FUTURE WORK

There are many possible ways to research in multi-aerial-
robot based on the presented architecture. Thanks to the
modularity of the system, specialists in different robotics
fields can contribute to specific modules of the architecture.
Since the system is open-source and it is fully working both
in simulation and in reality, each specialist can download
it and develop a module for the system that attracts their
interest and, afterwards, he will be able to test it against the
rest of the system in simulation or in experimental flights.
Some possible work lines are described in the following
paragraphs:

One possibility is to use the described modules to research
in the fields of swarming and multi-robot systems. More
complex behaviours could be added to the agents of the
swarm in order to accomplish more complex missions that

‘-‘

2 —
\ A
0 ‘-‘):{ —T e
0 2 4 6 8

Fig. 7. Experimental flight of the Pinball Mission, where five drones flew
autonomously. The executed trajectories of the drones are shown as line
plots. The black circles are the poles. Some of the drones followed a direct
and short path (blue, magenta, and cyan) and others a longer one (red and
green). The experimental trajectories are noisier than the simulated ones,
due to limitations in the simulator.

require a higher level of coordination. Or, putting behind the
swarming aspect, a central unit that coordinates the robots
can be added in order to improve their synchronization.

Another possibility is to research in the field of fault
tolerant systems, creating a module that is able to detect
events such as component failures (i.e. one of our modules),
and after its occurrence attempt to rearrange the module
architecture excluding the malfunctioning module.

Other future work that we have in mind is to work
with heterogeneous swarm of drones. That means that the
system could be composed of some cheap drones, which
are able to achieve simple tasks, and other more expensive
drones, which are in change of more demanding tasks.
This alternative is feasible thanks to the modularity and the
multiplatform orientation of the system.

Although the system works correctly, it can only perform
navigation tasks and it still requires to fly in an structured
environment. This means that the mission planner could
be redesigned in order to obtain a more versatile swarm
behaviour. Better perception, localization and mapping al-
gorithms and sense and avoid algorithms that do not rely on
visual markers are needed to move the experiments out of
the laboratory.

VII. CONCLUSIONS

This paper presented a fully functional framework for
the research of multirotor swarms and of multi-aerial-robot
systems. Thanks to the modularity in the design of the sys-
tem, its modules could be easily replaced by new ones with
other features. The system is also multiplatform, allowing the
use of diverse robotic platforms that use different modules
depending on their characteristics. The framework has been
developed in C++, under the standard C++11, and using the
worldwide utilized ROS to execute and communicate the
different modules of the system.

This paper also presented a fully working instance of the
framework that allows the autonomous navigation of a swarm
of the cost-effective platform ARDrone 2.0 in structured
environments. Our system has a mid-level controller that lets
the drone to follow the free-collision trajectories given by the
trajectory planner included in the high-level control. This
high-level control also consists of a basic mission planner
and a basic intelligence that we call hypothalamus. For
the localization and mapping task, the system relies on the
drone’s odometry and on a several visual markers named
ArUcos. The system counts also with a simulator to test the
functionality of the system in a less time consuming way.

In order to contribute with the scientific development, we
made the framework and our module’s implementation open-
source, giving anyone interested in the field of the aerial
robotics system a fully-operative starting point to develop
their own algorithms. The code can be downloaded from the
research group webpage: http://www.visionduav.
com/?g=quadrotor_stack.

We are aware that our module’s implementation is quite
basic, but a huge number possible future works are open and
easily achievable thanks to the design of the framework. Our
main interests are the developing of heterogeneous swarms
and the improvement of our modules such as the localiza-
tion and mapping that allow the navigation of unstructured
environments without visual markers.

The presented implementation of the system has not only
been tested under simulation or in real tests, but also, it was
awarded the First Prize in the category Indoors Autonomy
of the International Micro Air Vehicle Indoor Flight Com-
petition (IMAV 2013) [3].

REFERENCES

[1] ardrone autonomy ros stack. https://github.com/
AutonomyLab/ardrone_autonomy/.

[2] Aruco: a minimal library for augmented reality applications based
on opencv. http://www.uco.es/investiga/grupos/ava/
node/26.

[3]

[4]
[5]
[6]

[7]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25

[26]

Imav 2013 flight competition rules. http://www.imav2013.
org/index.php/information.

Parrot ardrone 2.0 web. http://ardrone2.parrot.com/.

Ros web. http://www.ros.org/wiki/.

The Navigation and Control Technology Inside the AR.Drone Micro
UAV, Milano, Italy, 2011.

G. Conte. Vision-Based Localization and Guidance for Unmanned
Aerial Vehicles. PhD thesis, Linkopings universitet, 2009.

R. Motwani D. Hsu, J.C. Latombe. Path planning in expansive
configuration spaces. In Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 27192726, 1997.

P. de la Puente, D. Rodriguez-Losada, L. Pedraza, and F. Matia. Robot
goes back home despite all the people. In Proc. 5th. Conference
on Informatics in Control, Automation and Robotics ICINCO 2008
Funchal, Portugal, pages 208-213, 2008.

P. de la Puente, D. Rodriguez-Losada, and A. Valero. 3D Mapping:
testing algorithms and discovering new ideas with USARSim. In
USARSim workshop, IEEE Int. Conf. on Intelligent Robots and Systems
(IROS), 2009.

P. de la Puente, D. Rodriguez-Losada, A. Valero, and F. Mata. 3D
feature based mapping towards mobile robots enhanced performance
in rescue missions. In Proc. of the IEEE Int. Conf. on Intelligent
Robots and Systems (IROS), 2009.

Ayssam Elkady and Tarek Sobh. Robotics middleware: A compre-
hensive literature survey and attribute-based bibliography. Journal of
Robotics, 2012, 2012.

J. Engel, J. Sturm, and D. Cremers. Camera-based navigation of a
low-cost quadrocopter. In Proc. of the International Conference on
Intelligent Robot Systems (IROS), Oct. 2012.

J. Faigl, T. Krajnik, J. Chudoba, M. Saska, and L. Pfeucil. Low-Cost
Embedded System for Relative Localization in Robotic Swarms. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA).
IEEE, 2013.

Willow Garage. Ros: Robot operating system. www.ros.org/.
Daniel Hennes, Daniel Claes, Wim Meeussen, and Karl Tuyls. Multi-
robot collision avoidance with localization uncertainty. In Proceedings
of the 11th International Conference on Autonomous Agents and Mul-
tiagent Systems-Volume 1, pages 147-154. International Foundation
for Autonomous Agents and Multiagent Systems, 2012.

L. Jayatilleke and N. Zhang. Landmark-based localization for un-
manned aerial vehicles. In IEEE International Systems Conference
(SysCon’13), pages 448-451, 2013.

A. Kapoulkine. pugixml. http://pugixml.org/.

J. C. Latombe. Robot Motion Planning. Kluwer Academic, 1991.

G. Mao, S. Drake, and B. D. O. Anderson. Design of an Extended
Kalman Filter for UAV Localization. In Information, Decision and
Control, 2007 (IDC’07), pages 224-229, 2007.

B. Raphael P. E. Hart, N. J. Nilsson. A formal basus for the heuristic
determination of minimum cost paths. IEEE Transactions on SYstems
Science and Cybernetics, 4(2):100-107, 1968.

Jesus Pestana. On-board control algorithms for Quadrotors and indoors
navigation. Master’s thesis, Universidad Politécnica de Madrid, Spain,
2012.

Jesds Pestana, Ignacio Mellado-Bataller, Jose Luis Sanchez-Lopez,
Changhong Fu, Ivin F Mondragén, and Pascual Campoy. A general
purpose configurable controller for indoors and outdoors gps-denied
navigation for multirotor unmanned aerial vehicles. Journal of Intel-
ligent & Robotic Systems, 73(1-4):387-400, 2014.

P. Rudol. Increasing autonomy of unmanned aircraft systems through
the use of imaging sensors. Master’s thesis, Linkoping Institute of
Technology, 2011.

Jose Luis Sanchez-Lopez, Jests Pestana, Paloma de la Puente, Adrian
Carrio, and Pascual Campoy. Visual quadrotor swarm for the imav
2013 indoor competition. In Manuel A. Armada, Alberto Sanfeliu, and
Manuel Ferre, editors, ROBOT2013: First Iberian Robotics Confer-
ence, volume 253 of Advances in Intelligent Systems and Computing,
pages 55-63. Springer, 2013.

J. De Schutter, J. De Geeter, T. Lefebvre, and H. Bruyninckx. Kalman
Filters: A Tutorial, 1999.

