

A System for the Design and Development of
Vision-based Multi-robot Quadrotor Swarms

Jose Luis Sanchez-Lopez, Jesús Pestana, Paloma de la Puente, Ramon Suarez-Fernandez and
Pascual Campoy

I. INTRODUCTION

This paper presents a framework designed to accelerate
the prototyping of successful multi-aerial-robot behaviors
for the research and development of civilian applications of
small Unmanned Aerial Vehicles (sUAVs). The motivation of
this framework is to allow the developers to focus on their
own research by decoupling the development of dependent
modules, leading to a more cost-effective progress in the
project. In order to achieve this, the framework has been
made public and open-source, and the basic instance of the
framework offers several open-ended modules required for
experimental multi-aerial-robot navigation.

The basic instance of the framework was designed to
ease some of the main issues related to working with aerial
multirobot systems, such as: localization, obstacle avoidance
and partner detection. Our focus is to allow the team to
work in parallel so that it is possible to advance in late
stages of the project without depending on the development
of the initial stages, such as: hardware platform, state es-
timation, flight controllers, etc. It is possible to test new
multi-robot behaviors first in simulation and,
afterwards,on experimental flights based on the cost-effective
testbed Parrot AR Drone 2.0. Experimental flights using
another desired quadrotor platform can be executed once an
interface compatible with the framework has been
implemented. This way the advantages of novel strategies
can be experimentally demonstrated on early stages of the
project development.

In order to achieve the discussed interchangeability among
hardware platforms, and in order to avoid the costly ac-
quisition of a motion capture systems such as Vicon4, the
following design decisions were made: first, the localization
problem is simplified by means of visual markers; second,
each robotic agent broadcasts its current estimated pose; and
third, the basic instance of the architecture can fly the AR
Drones 2.0 with full obstacle avoidance capability. Note that
the framework was designed to work with quadrotor UAVs.

Fig. 1. Experimental flight of the basic instance of the framework, which is
characterized by swarm behavior, using 5 AR Drones. The row of columns
represents a virtual wall with a single 1 5 m opening in the middle. In order
to simplify the localization problems the columns are marked using ArUco
visual markers [2]. In this flight the mission of the swarm is to cross from
one side to the other, each swarm agent also has to avoid collision with
the columns or the other drones. This test was designed to showcase the
capabilities of the basic instance of the framework.

The second motivation to design this framework is to
test the use of aerial visual multi-robot system for civilian
applications. There exist a large variety of applications which
require a robotic system to densely navigate a wide area.
Such applications can benefit from a swarming approach for
the required data gathering. For instance, such an approach
could be applied to search and rescue solutions.

This paper is intended to present and describe the designed
open-source framework. The layout of the paper is the
following. First, a description of the characteristics of the
framework is discussed in section II. Second, a thorough

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148687308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ArUco visual markers, which are shown in figure 1. These
visual markers are open-source and the software library can
be downloaded from [2]. This library allows to compute the
current 3D pose of the camera with respect to the ArUco
markers that are visible in the current frame. The visual
markers help us solve two problems at the same time in
quite a straight forward manner: the problem of sensing
the various obstacles, which is a very hard task using only
computer vision techniques, and we also avoid the visual
localization problem in a general environment, which has
not been entirely solved yet. A remarkable work where visual
localization is achieved using AR Drones is [13].

3) Localization and Visual Markers Mapping: The inputs
of this localization module are hence the pose estimation
result (similar to odometry) and the relative observations of
the visual markers.

We designed and implemented an Extended Kalman Filter
(EKF) that allows the complete 6 DOF pose of the drone
to be corrected by integrating the odometry data and the
information from the visual external aids detection. The
localization method benefits from the existence of known
landmarks, but it also incorporates unknown detected fea-
tures, using a Maximum Incremental Probability approach
for building a map of 6 DOF poses corresponding to visual
markers positioned in the environment. Similar methods for
ground mobile robots were developed in previous work by
de la Puente et al., initially based on the observation of 2D
point features with a laser scanner [9] and later based on the
extraction of planar features from 3D point clouds generated
by a tilting laser scanner [11], [10].

In this work, the data association problem does not have
to be addressed, since the visual markers readings provide
unique ids for the observations and the landmarks. This
way, loop closure is facilitated and enhanced robustness can
be achieved with a not very cumbersome algorithm which
showed nice empirical results in our initial tests.

Non linear state and observation models are used. At each
iteration k, the prediction of the pose state x (6 DOF) is
given by:

x̃k = f(x,u)x̂k−1,uk
= x̂k−1 ⊕ u, (1)

where the ⊕ operator corresponds to the composition of
relative transformations in the 6D space. The noise in the
odometry measurements is considered as Gaussian white
noise (as required to apply the EKF), and the odometry
increment u is represented as u ∼ N(û, Q).

The observation model is defined by the following inno-
vation vector for an association of observation oi and map
landmark lj:

hi,i+5 = x̃⊕ oi − lj (2)

The correction of the pose state is obtained by the update
equation:

x̂k = x̃k −Whk (3)

where W is the Kalman gain matrix of the system. The
covariance matrices are updated at each stage of the filter
as required [26].

The environment is assumed to be static except for the
presence of other drones. The accumulation of drift error if
the drone is not able to detect visual markers all the time may
require the incorporation of a forgetting mechanism so that
the drone can navigate safely with local maps. In our tests
thus far this has not been necessary due to the addition of
extra visual markers over the floor, but this should be further
investigated.

The input parameters of the algorithm (initial pose, covari-
ance values, global poses and ids of the known landmarks)
are read from an XML file, by means of the pugixml library
[18]. The corrected absolute pose of the drone and the list
of global poses of the landmarks belonging to the map are
obtained as output of this module.

4) Obstacle Processor using Visual Markers: Once the
position of the unknown visual landmarks is obtained, they
are processed in order to obtain higher level geometrical
features in 2D to be used as obstacles by the trajectory
planner. The map of obstacles is rebuilt at every iteration.

To do so, some prior information is required. Each of
the obstacles is given a unique id and the ids of the visual
markers belonging to it are provided. The poles are modeled
with circles given by the coordinates of their center and
the radius c(xc, yc, r), while the walls are modeled with
rectangles given by the coordinates of the center, the width
and the length R(xc, yc, w, l).

Given the observation of a landmark lj belonging to pole
i, an initial estimate of the circle i is very easily obtained:

(xci , yci) = lj + rdir (4)

with dir = (cos(yaw), sin(yaw)). This initial estimate is
further refined by the mean value of incorporating subsequent
landmarks belonging to the same pole.

A similar algorithm is used to obtain the rectangle models
of the wall.

C. Mid-level Control: Trajectory Controller
The responsibility of this module is the transformation of

the trajectory references given by the trajectory planner, and
the yaw references given by yaw commander in low-level
commands of the drone, that allows the drone to follow these
references appropriately.

The “Trajectory Controller” module is explained in the
following article and Master’s Thesis [23], [22]. The con-
troller is able to follow yaw commands while executing a
trajectory.

D. High-level Control and Intelligence
In this section, the high-level control and the basic in-

telligence that each drone has is described. This high-level
control is formed by a trajectory planner that creates collision
free trajectories, a yaw commander that generates yaw refer-
ence to look to the points of the map with more information,
and a sequential mission planner that allows the drone to
follow a user-predefined mission. The basic intelligence that
the drone has is concentrated in the hypothalamus that
monitors the state of the drone and its modules, and manage
the basic functionalities of the drone.

1) Trajectory Planner and Collision Avoidance: The ob-
jective of this module is the computation of a free collision
2D trajectory (horizontal coordinates x and y) to achieve a
mission.

This module works as follows: a free of obstacles Proba-
bilistic Road Map (PRM) [8] of the 2D map is generated off-
line. The advantage of using a PRM instead of a fixed-cell
decomposition is that you can select the number of nodes
in the graph and their neighborhood. Also, if the robot is
moving through a zone with a lot of obstacles, new nodes
can be added.

Once the free of obstacle graph is created, an A-Star
algorithm [21] searches the path using a potential field map
function as cost of the algorithm. This potential field map
is built as a sum of one component that attracts the drone
to the end of the obstacle zone and another component that
repels the drone from any obstacle. The usage of a search
algorithm (A-Star) instead of the potential field map alone
[19], avoids the problem of the local minimum blockage.

Three kinds of obstacles are considered. The first type of
obstacles are the fixed and previously known obstacles which
are set during the module startup and are obstacles and never
change their previously known position. The second type are
the fixed and unknown obstacles that are received from the
obstacle generator whose position could change over time,
depending on how precisely are the visual markers pose is
determined by the localization module. The last type are the
unknown and moving obstacles that are other drones and
are only considered in the path planning if they are close to
the drone. Other drones’ positions are received through the
hypothalamus module.

Once the path is calculated using the A-Star algorithm, it
is post-processed in order to obtain a shorter and more direct
path, avoiding the noise produced by moving the robot from
node to node of the PRM. The post-processing is done using
the value of the potential field map.

When new drones’ poses or new obstacles’ positions are
received, the planner checks if the new obstacles are outside
the planned trajectory and if the drone is following the path.
Otherwise, the trajectory is re-planned.

With this algorithm we solve the problem of the path
planning and the collision avoidance, being able to navigate
safely in the map using the Trajectory Controller module.

An important work in this field is described in [16].
2) Yaw Commander: The “yaw commander” module, see

Fig. 3, calculates de yaw reference depending on the current
swarm agent’s mission. This module could potentially decide
in which direction to look in order to explore or to get the
most localization information from the environment. These
possibilities will be explored in future work.

3) Mission Planner: The mission planner allows the op-
erator to define a mission as a set of separate tasks; which
are, in turn, fully described by a set of numeric parameters.
The mission definition requires a xml file where the mission
is defined. It has different available tasks such as: take off,
land, hover, sleep or move.

This module interacts with the trajectory planner module,

the localization module when moving and with the hypotha-
lamus module.

4) Basic Intelligence - Hypothalamus: This module im-
plements low-level intelligence such as: monitoring the state
of the other modules of the swarm agent and presenting
a simple interface between the mission planner and other
modules. Some of the commands that the mission planner
can achieve through the hypothalamus module are: setting up
the whole system to an active flying behavior (including the
start-up of all other modules and the trajectory controller);
and also simpler commands such as take-off, land or hover.

This module also implements the communication between
its swarm agent and the rest of the swarm. Currently the
communication is limited to sharing each drone’s current
pose.

E. Human-Robots Interface

A Human-Robot Interface was implemented in order to
have a better understanding of the flight dynamics and the
response of the drones in each mission. It can be used in
real-time flight tests as well as simulated environments. The
intended purposes of the interface are:

• To visualize and keep track of the progress of the drones
in real-time during missions and send commands, if
necessary.

• To verify that the modeled behavior and the expected
performance of the different modules are adequate for
executing the assigned mission in a simulated environ-
ment.

• To extend the assessment behavior and expected perfor-
mance on types of missions that cannot be tested.

• To extrapolate to scenarios not currently available due
to hardware or equipment limitations (higher number of
drones).

Fig. 4. Visualization of a simulated 5 drone flight in the Pinball Mission
using the Rviz Interface. Drone axes: red x axis, green y axis and blue
z axis. The blue cylinders represent the map columns and the green grid
the floor. The red line shows the current planned trajectory for the selected
drone and the red dot is the current mission point.

The interface developed, shown in figure 4, is based on
the 3D visualization tool for ROS, Rviz. Communication is
done in real time between all the ROS nodes. The 6D poses
of the drones and the position of the obstacles are received
via ROS topics as well as being able to send velocity,
position and trajectory commands in real-time. The data
collected during simulations has the purpose of validating
the developed trajectory controller and mission planner in
different scenarios.

IV. SIMULATION RESULTS

Before a multi-aerial-robot flight all the hardware needs
to be checked and set up, including not only the quadrotor
platforms but also the test environment, the external visual-
ization and processing computers, the WLAN, etc. Another
very important requirement, for security reasons, is to have
one emergency pilot per quadrotor. All this means that a lot
of time and people are required to set up everything for an
experimental test, which also means that every test has a
significant cost. Since preparing a multi-aerial-robot system
for a flight is costly, real tests should preferably be carried
out after the system is tested in simulation.

Thanks to the modularity of our proposed system, it is
possible to replace actual modules with simulated counter-
parts, since they only need to somewhat mimic the original
module’s interface. Then, except maybe for the modules that
directly interface with the drone or the environment, the rest
of the system can be tested in simulation. The value of such
simulations is that they allow to test sets of modules of the
actual flight architecture, easing the testing and debugging
software development processes.

In order to simulate the basic instance of the framework,
described in section III, two simulator modules were devel-
oped. The first one replaces the interface and approximates
the flight dynamics of the quadrotor, which corresponds to
the drone interface module described in subsection III-A.
Since the Visual Marker Detector module implementation
uses an external open-source library, instead of obtaining
simulated images that could be processed by the Visual
Marker Detector module, it was decided that the best option
was to develop a simple simulated version of the whole
module with a comparable marker detection and position
estimation capabilities.

The following sections of the paper present the execution
of a mission called: ”The Pinball”. It is noted that these two
simulator modules were not designed to provide an accurate
behavior compared to their real counterparts’ behavior. The
goal was to test the rest of the system in order to debug it
and improve it, and also to check the mission specifications
before experimental flights. The reader is invited to visit the
research group’s webpage to watch videos of these simu-
lations and the corresponding experimental flights: http:
//www.vision4uav.com/?q=quadrotor_stack.

In order to interpret the simulation and experimental flight
figures, the modules specifications have to be taken into
account, which are described in the Arhictecture Software

Modules section (Sec. II). From them, the overall expected
behavior of the drones is:

• Each drone follows a sequence of waypoints given by
its mission specification. The mission planner executes
it sequentially.

• During execution, the planner will attempt to find tra-
jectories that are collision-free. If it fails, the drone will
be controlled to stay in the current position.

• If other swarm agents enter the current trajectory, the
planner will detect it and will stop the drone and attempt
to find a collision-free trajectory.

• If another swarm agent is on the current goal waypoint,
the drone is commanded to stay in the current position.
A new trajectory is planned when the goal position is
again free.

A. Mission: The Pinball

This mission is carried out in a volleyball court (dimen-
sions: 9 m x 18 m). Twelve poles (four of them with a
diameter of 40 cm; and the other eight of 30 cm) are
spread in the court with a distribution 1-3-4-3-1, shown
in figures 5 and 6. These poles act like obstacles in the
same way that the pins in the pinball. Five drones execute
a navigation mission that consist on crossing the obstacles
zone from one side of the court to the other. The mission
specification consists on the following sequence of tasks:

1) Start the architecture operation and take-off,
2) Move to a goal landing location,
3) Land and stop the architecture.
In figures 5 and 6, the trajectories followed by each

drone in two simulations of the same mission are displayed.
As there is no high-level intelligence that synchronizes the
swarm their behaviors are not deterministic and, thus, are
different in every simulation execution:

• Simulation 1, Fig. 5: each drone followed a short and
direct path, with very small rectifications, to its goal
landing location.

• Simulation 2, Fig. 6: some drones followed a short and
direct path, but others accomplished a very long path to
avoid the other drones in the court.

Since the swarm agents plan their trajectories with no interac-
tion with a global synchronization intelligence, the different
executed paths are a demonstration of a low-intelligence
swarm behavior.

V. EXPERIMENTAL RESULTS

Once the system has been tested in simulation, the follow-
ing step is to test it in a real experiment.

As the simulations were not an accurate representation of
the reality, in the real tests, some issues that are not present
in simulation appeared, such as:

• Inaccurate quadrotor model
• Inaccurate drone’s sensors measurements
• Inaccurate performance of the computer vision algo-

rithms

[3] Imav 2013 flight competition rules. http://www.imav2013.
org/index.php/information.

[4] Parrot ardrone 2.0 web. http://ardrone2.parrot.com/.
[5] Ros web. http://www.ros.org/wiki/.
[6] The Navigation and Control Technology Inside the AR.Drone Micro

UAV, Milano, Italy, 2011.
[7] G. Conte. Vision-Based Localization and Guidance for Unmanned

Aerial Vehicles. PhD thesis, Linkopings universitet, 2009.
[8] R. Motwani D. Hsu, J.C. Latombe. Path planning in expansive

configuration spaces. In Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 27192726, 1997.

[9] P. de la Puente, D. Rodriguez-Losada, L. Pedraza, and F. Matia. Robot
goes back home despite all the people. In Proc. 5th. Conference
on Informatics in Control, Automation and Robotics ICINCO 2008
Funchal, Portugal, pages 208–213, 2008.

[10] P. de la Puente, D. Rodriguez-Losada, and A. Valero. 3D Mapping:
testing algorithms and discovering new ideas with USARSim. In
USARSim workshop, IEEE Int. Conf. on Intelligent Robots and Systems
(IROS), 2009.

[11] P. de la Puente, D. Rodriguez-Losada, A. Valero, and F. Mata. 3D
feature based mapping towards mobile robots enhanced performance
in rescue missions. In Proc. of the IEEE Int. Conf. on Intelligent
Robots and Systems (IROS), 2009.

[12] Ayssam Elkady and Tarek Sobh. Robotics middleware: A compre-
hensive literature survey and attribute-based bibliography. Journal of
Robotics, 2012, 2012.

[13] J. Engel, J. Sturm, and D. Cremers. Camera-based navigation of a
low-cost quadrocopter. In Proc. of the International Conference on
Intelligent Robot Systems (IROS), Oct. 2012.

[14] J. Faigl, T. Krajnı́k, J. Chudoba, M. Saska, and L. Přeučil. Low-Cost
Embedded System for Relative Localization in Robotic Swarms. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA).
IEEE, 2013.

[15] Willow Garage. Ros: Robot operating system. www.ros.org/.
[16] Daniel Hennes, Daniel Claes, Wim Meeussen, and Karl Tuyls. Multi-

robot collision avoidance with localization uncertainty. In Proceedings
of the 11th International Conference on Autonomous Agents and Mul-
tiagent Systems-Volume 1, pages 147–154. International Foundation
for Autonomous Agents and Multiagent Systems, 2012.

[17] L. Jayatilleke and N. Zhang. Landmark-based localization for un-
manned aerial vehicles. In IEEE International Systems Conference
(SysCon’13), pages 448–451, 2013.

[18] A. Kapoulkine. pugixml. http://pugixml.org/.
[19] J. C. Latombe. Robot Motion Planning. Kluwer Academic, 1991.
[20] G. Mao, S. Drake, and B. D. O. Anderson. Design of an Extended

Kalman Filter for UAV Localization. In Information, Decision and
Control, 2007 (IDC’07), pages 224–229, 2007.

[21] B. Raphael P. E. Hart, N. J. Nilsson. A formal basus for the heuristic
determination of minimum cost paths. IEEE Transactions on SYstems
Science and Cybernetics, 4(2):100–107, 1968.

[22] Jesús Pestana. On-board control algorithms for Quadrotors and indoors
navigation. Master’s thesis, Universidad Politécnica de Madrid, Spain,
2012.

[23] Jesús Pestana, Ignacio Mellado-Bataller, Jose Luis Sanchez-Lopez,
Changhong Fu, Iván F Mondragón, and Pascual Campoy. A general
purpose configurable controller for indoors and outdoors gps-denied
navigation for multirotor unmanned aerial vehicles. Journal of Intel-
ligent & Robotic Systems, 73(1-4):387–400, 2014.

[24] P. Rudol. Increasing autonomy of unmanned aircraft systems through
the use of imaging sensors. Master’s thesis, Linkoping Institute of
Technology, 2011.

[25] Jose Luis Sanchez-Lopez, Jesús Pestana, Paloma de la Puente, Adrian
Carrio, and Pascual Campoy. Visual quadrotor swarm for the imav
2013 indoor competition. In Manuel A. Armada, Alberto Sanfeliu, and
Manuel Ferre, editors, ROBOT2013: First Iberian Robotics Confer-
ence, volume 253 of Advances in Intelligent Systems and Computing,
pages 55–63. Springer, 2013.

[26] J. De Schutter, J. De Geeter, T. Lefebvre, and H. Bruyninckx. Kalman
Filters: A Tutorial, 1999.

